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Stngle Particle Behavior in Plasmas

Brendan McNamara
Lawrence Livermore Laboratory, Livermore, CA

Introduction

One cannot expect to memnHze the content of such an intense course
as this and considerable emphasis has been placed on collecting and
cataloging key resuits and principal references. The behavior of single
particles in a plasma s basic to the rest of the course, but not elementary.
The subject is well covered in many text books and the purpose of this
paper is merely to collect, in a brief form, the essential formulae and
mathematical methods.

The paper follows the history of a neutral atom or molecule into a
plasm - jonization, dissociation, radiation, - untfl it becomes a set
of charged particles moving in the electromagnetic fields of the plasma
system. The varfous usefu) forms of the method of averaging are displayed
and applied to t.:alculation of constants of motfon. The breakdown of

these constants is discussed along with some of the implications for fusion
systems.
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3, Motion of Charged Particles in Electromagnetic Fields

Charged particle motions are generally complicated and, in designing
fusion devices, one tries to simplify the motions by use of symmetries
or constants of the particle motions to provide confinement within the
device. The equations of motion in an electric field € (I,t) and magnetic

field § {X,t) are, in Gaussian units,
gy, gl-S(EJXE) ' (3.1
t t m -

where ¥ is the particle position and ¥ its velocity. The equations obviously
separate into motion parallel and perpendicular to B. The constant £ & §

fields the equations are trivally solved to give
X ® Kug + Vuo 435 Eat?
VosVio+ BBt (3.2)

>
i_.'= Dt+p

where the electric drift velocity is ¥y ~Ex 8¢ and 3 is a circular motion
in the drift frame with frequency, 0 = e8/ak and Larmor radivs o =y 1./9-

It {is important to notice that the drift-velocity is the same for fons ;ﬁ‘d
electrons, being independent of mass and charge, but thntihe cyclotron
-frequencies and gyrnradﬂ are not. The electric field onl_y: accelerates
particle parallel to B and because electrons respond 5o quickly it is
difficult to maintain a constant E,, except in a potential well genei‘qted

by a collection of (magnetically tr‘apped)’iuns. We assume E, * 0 for the

moment.,




In a real device we need to understand the motfon of particles in
electromagnetic fields which vary on time scale t and space scales L,
L. In the case where at, p/L,, p/L. are a1l 0{1) orly a high degree
of symmetry will save you from needing a computer, but otherwise there are
various forms of perturbation theory which give approximate solutions. The
most useful cases will be discussed.
1) Small Larmor Radius, Slow time Scales.

The case with gt > 1, p/l., nfla << 1 is of the most interest. Since
the gyr'-ufrequency is large it seems appropriate to average out htis rapid
motion and develop equations for the mean drift of the particle. As the
particle moves its 1acal gyrofrequency will change; consider the Taylor

series expansion of the function

A = x, €os (no + eQ)t (3.3)

. X
0 2
= xg €OS Rt +x.t e sin At - (teR)” cos gt *o..

The successfve terms are not purely oscillatory, but are ‘secular® with
coefficients 0(t”). The radius of convergence of the series is D(n;I) and
so simple Taylor expansion of the equation of motion is of little value and
we prefer the method of averaging which, although it is anly asymptotic,
has a range 0 e, jor better. The method is required in many applications
and so is worth giving here in detail.

Thé original equations of motion must be normalized and transformed
(X,¥+3,v) to display the phase angle v of the gyromotion as follows (McHamara
and Whiteman, 1967).

Vo=t (3.9

v = 1+ ef(fv)

where E and f are pertodic in v, periad © o and © is the small expansion
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The equations (3.8, 3.9) are sufficient to gencrate a power series
expansion for the transformation 2 and the averaged driving terms . The
result is conveniently written down in terms of the integrating and averaging

operators (v,-) defined as follows: for any function f, periodic in v,

Fo=f ¢F-Frav

- o]
T = 1—r°fdv‘
0’0

u
Notice that f contains a constant of integration or ipjtial condition and

(3.10)

S0 :‘ =0 but f § 0. Without further ado, we write the transformation to
0(:3) as

T=V-e6+ ez(ﬁ-év - 'EEV) +o(e%) (3.1}
Te¥a+ets+ cz(ﬁz - E*'E—i) + 0(e3)

Tha average caordinates 'i have the equation of motion
-it =3+ eiﬁ) - ez(?.'-'a'z - E‘EZ) +0(e3) i5.12)
where 3 = {1,0,0,...,0). Notice that the phase ¢ does not appear on the right
of this equaticn, as desired. There are many “escriptions of the meindd
‘of averaging in the text books but equations {3.11, 3.12) are the answer for
the plasma physicist. In celestial mechanics one 15 usually interested
4n a high order of accuracy and so requires many orders of the expansion.
The bést method 1s due to Ceprit (1369) 2nd is well dascribed 1n Nayfeh's
book (1973). The method uses a generating fuaction or Lie transform,
ﬁ(T), which allows the ma.nipu!at'lnns to be computerized on an algebraic
manipylator. This generating function approach also allows any function
. of theol variables to be expanded direcily in the ne;u variables.
We observe that the original problem has merely been transformed to

a simpler one which still must be soled, equations (3,12). As a final answer,
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slower period oscillation. The same technique can be used to average over

this oscillation and reduce the system sti11 further.

3.2 High Frequency Fields
in the case when ﬂ_r << 1, v/L << 1, the equations of motion can be

averaged over the high-frequency field variation. In the non-relativistic case
s

we get m:—t=e'f+%(‘lx§)- Z_E;E? (3.16)

The high frequency part of the field app";rs as a potential u = (eZIZmuZ)EE,

independent of the sign of the charge. This additional force is of

prime importance in laser fusion. When E, B vary slowly an the scale of

the larmor period the methad of averaging can be applied, as before.

4. Adiabatic Invariants

The six equations of motion have six constants of the motion, mamely
the Initial conditions on the motion. These are in general useless for
making further deductions and we seek a better choice of constants in
systems with sufficient symmetry. A typical example for a charged particle
in a time 1ndependent field is the total energy or the Yiami}tonian

W= (3.-1) +e (a.1)

If the fields § = v x &, E = -v¢, are independent of a coordinate, 0,
then the corresponding cavonital momentum, Pa' is a constant of the
motion. Such constants confine a particle to a surface in phase space

which, 1f we are lucky or chose the configuration carefuily, will tonfine
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where GrI is independent of q). We finally require that Jn be periodic in g,
and s0 the average of the Paisson bracket must be made to vanish by choice

of J° and the integration constants Gn:

["‘Jn_,.'"n]= ] (a.7)
The first equation is

[oa]=0- [or i) (2.8}

since ‘]o is independent of qy- The obvious non-trivial solution is

9, =9, @). ’ (4.9)

The series can be develaped in terms of the Poisson bracket operator, the

averaging operator, and the indefinite integrator
d= I (3 - J) 99, (4.10)
ard the general answer, correct to 0(:2) is

JaR+c[E.0)+§ (B w)

cfmie §Ea) @
< lama] « [T a]

¥
The most general Hamiltonian for which we have developed such an adiabatic
javariant-is of the form
W=y {tay -0y F, Py ch,,,, Py ct) (4.12)
+ et (g5, Py et)

In terms of {iic ratation freguency A = av,’/a,P, and the "slow" bracket { }

At
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-

3 = -5.vB, the field line curvature.

Notice that u, contains V, and the oscillates on the cyclotron period.

When the particles are trapped in 2 magnetic mirror field to a particular
region of a field line we have to introduce the sign, ¢ = £1, of the parallel
velocity. The bounce motion, at frequency wpe C2N be averaged to yield

a second invarfant p'rovided R>2w > [WfL]:

1
J = § (2(: < gt u])a))"T ds - g fz % Vyew, + 0 (r—t)z (4.16)
1 ]

where J0 = § 2{e - uoa)z 45

™13

Finally, 3f the fields are allowed to change very slowly in time over 2
period much longer than the drift of a particle around a J surface then
the energy ¢ is no longer a constant of rpotinn on this time scale. The
total flux ¢ through a drift surface, J = const, is another adiabatic

fnvariant: .

e=§: ads . (4.17)
J = const

where (a,8) are the field line coordinates, & = V4 x V8.

For a plasma to be in equilibrium in a given static magnetic field the plasma
distribution function must be a function of the constants of motion,
f= f (e,uJ). This statement will be developed better in the talk on

mirror machinas.

5. Analpgy with Magnetic Field Structures

As an aside to the main business of particle motions the structure of
magnetic fields can be analyzed in the same fashion. Compare the gemeral
invariants for a divergence free magnetic field and a Hamiltonian system,
namely the flux & through an arbitrary curve € which always passes through

the same set of field lines and the action integral J around an arbitrary loop
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The solution can be written down easily from eq. (4.11):

-
- b

¥F e T- Ak AR
web -b v b v [b,- y-bx-by]40(c2) {5.8)

In the stellarator configuration it is usually assumed that b_:.? are O{c)
y

and so the form of the surfaces is determined by

¥ =eb, Gy\ - (5.9)

This work is one illustration of how to take a conservative (v-E = 0}
system and express it in Hamiltonian form and shows how the discussion of
particle orbits relates to magnetic surfaces. Typical magnetic surfaces

in an L = 3 stellarator are shown in Fig. 1. {A. Gitson 1967).

6. Resonant Effects on Adiabatic Invariants.

‘Iﬁe theory of .invariants so fdar described shows how to average over a
Single frequency. In systems where there is more thar cne fundamentai
frgquency or where the fundamental varies -1 phase space it is pos’ idle
for beats between the various frequsicies to produce 3 slow variation.

Terms like cos(nm‘ - muz)q. arise in the series expansions and when integrated
have a denominator (rnml - mz) which cc;uld be very smail for large values of
n,M.  The series can only be showh to be asymptotic ang one simply has to
stop the expansion when a small denominator arises. If this hagpens in the
second or third term then the whole procedure must be modified.

A nice example (Taylor and Laing 1976) is of a charged particle in
a uniform magnetic field interacting with an electrostatic plasma wave.

The Hamiltonian is

HIEB) = (3 - md)¥ran + en sin (k2 + k) (6.1)
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surfaces have broken up, leaving only islands arcund certain ixed points
9f the phase plewe. Jdaeger and Lichtenberg have examined a number of
simpler examples and distinguish two possible ways in which the rescr-;ant
surfaces can break up. In the case of an exact resonance a 20 oscillator

problem can be reduced to the averaged Hamiltonian

H= K+ o8 (QpkiPy) + 0(e) (6.7)

where K = TH - ¢1J is the canonical invariant conjugate to Q] in sec. (4).

The remaining motion, in Q,,P, may have an elliptic fixed point (EZ.FZ). where

aH L.
302 = 0 Froid ] {6.8)

Expanding about this point we get the Hamiltonian for the local motion
60y = @y - Tpu 8P, = P, - Py

- I 0y [2=\ 2 [
H =K+eQ4Q,, K P} +¢ 2 Sil, . 2 9—-&—'*0(63) {6.9)

2 2 F; DQZ 2 BPZ

. 2 2

The frequency of these oscillations is clearly O(e) and the ratio of the

semiaxes of the orbits in the (602, GPZ) phase plane is
(GP) 2= 2-\1/2
2/MAX an aQ
= = off& g {6.10)
(%)uax ((ao§ )/ (ap; )) :
If a high harmonic of these ascﬂ\a&tms resonates with the primary oscillations
in the (K.q.l) phase space then the invariant is altered just as described above
for the magnetized particle in a wave: That example was more complicated

in that the resonance between the ¢ and z oscillations depended on [ The

best we can do with the iavariant is to write the Hamiltonian as

B w (1) + € B (1,Pply) + 0 (1) (6.11)

The expansics about an elliptic point in.this case gives
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of the serfes fs fmportant. There are cases of simple dymamical systems where
an exact constant can be found which, on expansion in the approprizte

small parameter gives the adfabatic series. In general, the best that can

be done is-to show that the series is asymptotically converéent: The general

fnvarfant J, of eq. (4.11), summed to n terms can be shown to vary like

™ L o) 2.1

A key assumption in the whole development was- that J could be expanded in

a pouar' serfes in g, which a priori eliminates small non-expandable terms like
2P/, The magnetic moment, u, of a particle displays just such jumps at
each hounce of the particle in a mirror machine {(Cohen et. al., Hastie et. al.).
This 1s easlly deduced by examining the change in uj over one bounce. The

exsct equations of motion give
dy . 2
2 -5 wl s 20,2) o cosy e de v, 0 cos ¥

5 3B - g
o B i - Gem -] .2)

where
cos ¢ = (vy - VB (vp|VB|), cos yy = V. BJ/(VJ_ 0y}
By = Ex(vxB) o = v, B|/B

Bb
> - a RN -
Ve v cos §e - v, sine,+vb

This equation is {ntegrated aleng a field Vine, the zeroth order motion of

the particle, to give the change in uy3

P ™

- 1y i1
-1 . ¥ P 1Y
o v2 Re ég% Pre ¥y 9 (7.3}

o
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A - Atomic mass T - bounce time
H - Mass Z - charge
M - energy

Wotice that these results arise from a ron-resonant coupling between the

bounce motion and the cyciolron motion and account for the stochastic motions

in phase space when the adiabatic invariant has broken down. Qne remaining

question 5 whether or not these exponentfally small jumps destroy the invar-

fance of 1. over a Tong time scale even in the adiabatic region.

8. Superadiabaticity

Thts has been investigated by Aamodt and by Rosenbluth for the case of
mirror trapped particles in the presence of electrostatic fluctuations near
a harmonic of the cyclotron frequency which produces similar jumps in n.

The key point is that jumps in u, are periodic in Vor Let Y be the phase

on the nth bounce and Mo the magnetic moment on the prior to the ath scatler-

fng, then (7.6) can be rewritten as
Vge) T ¥p t 0 sin g,

The particle makes many gyrations between bounces and we need a simple

model to describe L in terms of ¥ and p.  Following Rosenbluth, let us

(8.1)

consider a simple quadratic variation in field strength so that the cyclotron

frequency is
Q= no(l + s219)

Constancy of the total energy gives

e - 3 -,

L

(8.2)

(8.3)
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When this condition is met the particle orbits do not diffuse in velocity
space due to the non-adiabatic jumps in u, and the orbits are called "super-
adfabatic®. Numerical calculations by Cohen et. al. show that particle orbits
in typical.mirror fields are indeed superadiabatic up to about twice the
energy at which the jumps could compete with coulomb scatteriig fn a fusion
plasma, egqn. (7.8). The adiabatic invariants of a charged particle are

indead approximations to goou constants of the motion.
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F16. 2 Surface of section plot of 1)+ ely, € » 025,
Taylor and Laing (1976).
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Numer{cal Orbit computations at € = .025 by Saith and

Kaufaan (13/6).
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2. lanization of Keutral Atoms and Molecules

It seems Yikely that the primary heating and fueling of fusfon reactors
will be by hot neutral injection. The neutral atom ar molecule §s therefore
a stax;ting point for the discussion of the physics of single particle
behzyior. A neutra‘l beam injector works by accelerating fons, say D’.
out of a Jow temperature plasma, and then neutralizing the fast jons by

charge exchange with some suitable gas, say DZ:

+ +
0y ¢ Oypr ~ DHOT + 0, {2.1)
The hot neutral enters the fusion plasma and can be fonized by the ions

or eieuirons of *he plasma:

0" e+ 20"t e {2.2)

e+D+D"+ 2 (2.3)

or can charge exchange with a hot-ion af the plasma which will produce a
hot neutral traveling in a different direction - prabably out of the plasma.
The measurement and calculation of the cross sections for these and similar
reactions {f an elaborate process and I do not wish to give a course on
Atomic Physics! (one has just been given at Trieste}. However, these cross
sectians are important to those who wish to compute the behavior of neutral
injectors and the buildup and equilibrium of injected piismas. Many of
these cross sections for the interaction of atoms and molecules of hydrogen,
deuterium, and tritium with themselves, electrons, and o-particles have been

incorporated in a simple subroutine by C.A. Finan.

Many other such

efforts exist to reduce the relevant data on cross sections, atomic energy

TISTRIBUTION QE THIS DOCUMENT bS LNLE

MITED

¥
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3, Motion of Charged Particles in Electromagnetic Fields

Charged particle motions are generally complicated and, in designing
fusion devices, one tries to simplify the motions by use of symmetries
or constants of the garticle motions to provide confinement within the
device. The equations of motion in an electric field £ (X,t) and magnetic

field § {X,t) are, in Gaussian units,
& _w &, e ’
=V, =2 ix8 R
a o (”E + ._é__) (3.1)

where ¥ is the particle position and ¥ its velocity. The equations obviously
separate into motion parallel and perpendicular to B. The constant £ & §

fields the equations are trivally solved to give
X ® Kuo + Vuo t 435 Eat?
VesVao* BEE (3.2)

>
i_'_= Dt+p

where the electric drift velocity is VIJ «Ex8 c and 5 is a circular motion
1n the drift frame with frequency, 0 = e8/al and Larmor radius =V, [0

It is important to notice that the drift-velacity is the same for fons sﬁd
electrons, being independent of mass and charge, but thnfthe cyclotron
-frequencies and gyrnrad'i‘! are not. The electric field on'l_y: accelerates
particle parallel to B and because electrons respond 50 quickly it is
difficult to maintain a constant E., except in a potential well generated

by a collection of (magnetically tr‘apped)"luns. We assume E, * 0 for the

moment.,
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parameter, U(D/LL. ofLys fn")_ We construct a transformation to new
variables (%, ¢) with 7 periodic in v and ¢ being an angle variable:
-
M) = z(f, v+ ) {3.5)
> -
oY, v + ro) = gt #(Y, v)
The equations for the drift variables{Z, ¢) should not contain the
angle variable which is to be averaged out:
2t = ch@) (3.6)

sp =1 ¢ euld)
The original equations (3.4) and the transformation give

it “ gty r( ven) 2

W

eh {3.7)

01;‘5.5'0"' * (reflg =lées

which can be integrated over v. We combine the equations into a single
vector equation by setting 7 = (¢, 2). W = (), ¥ = (w,7; and 6(7) = (£.9)

and the integration, with boundary condition i(u) =7, gives
A

e cfofid-t.5) (3.8)
o

The condition that 7 have no secular terms in v is that the average of the

integrand vanish:

To
[o @2 -0 ' (.9)

o

7



which will appear many times at this college, we can writa down the
result of applying this method to elimimating the gyrorotation from the
equations of motion of a charged particle {3.1). These are the well

known drift-equations: (Morozov and Soloviev, 1966).

& -3 c 2 2
= o=y, o+ EF mev. RN mevy
at B o (ExB) + o Bx (Bv)B+ bt SxB (3.13)
de X mw? 28
at = o r M
LN Y
dt 2 = @t
mgge
db
i ="

where the zmergy of the realivistic particle is € = mocal(l‘,2 - v..2 + vf)‘/2
or, for a non-relivistic particle is '; (0.2 2 3,8, 4o shrarve tnat, to

thts order, the perpendicular velocity is determined by the r.ronsrtan:t‘ f

the mation, the agtabatic invarient . Khen %8 = 0 the magnetic drifis T i

,are of the same form and we get

5 '
g’f =l s (Ex B)+ 3 B w2k +E) ERTI

One essential assmnptwn in the derivation was that E.<¢ N B/c. If we-

a]'lnu for a large drift-velocity, vE E xz c the equntions, are modified ’

& . me [ U, o] 2 mavd =+ B

a =U- ~—+(u-v-u]xa+ B xVB .

gt 3 )' p B F (3.15)
e e a2 * .,

€ (Z ' + 'E) U= vg * 'v’E

The second term tn (3.15) is the drift due to the inertial effect of the
1arge electric drift. These drift equations are very useful in determining -
the dynamics of & plasma on time scales long compared with the cyclotron

period. In some cases the drift Etmtiohs themselves wil) describe a sti))
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the particle in configuration space. One method for finding constants
in less symmetric situations is to transform the Hamiltontan to mamentum
coordinates which display the larmor angle. We could then seek a canonical
transformation, as a power series in n /L, which would make the Hamiltonian
independent of the new phase angle and hence the correspending momentum
would be a constant. Unfortunately, 1t would be expressed in terms of the
averaged variables and we would then have to find its expansion as 2 series
in the original phase space coordinates.

He'u'lll demonstrate a differcnt formulation which is of general usefulness.
Consider systems in which the particles execute closed orbits fn the unperturbed

system so the Hamiltonian can be reduced to
H=p 4 esx(qi.ﬁ) (4.2}

where @ 1s (almost) periodic in the angle coordinate 9- Then we laok for a

constant of the motign J by solving the linear, partial different{al equation °

$ s pHi=o {4.3)

where [J,H] is the Poisson bracket

v a3
(o] = ?(ap‘ Ty "% ﬂi_) (s.8)

P
J is expanded as a power ser\'es.z c“.]u, to give the recursion
L]

ad al
o . il
0 Pr] .5)

The nth equation is easily integratad,

o] Bl
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defined as

[6.f] = X——] e (91} {4.13}

the result for a general oscillatory system is
_ - 22 -
. n-3), 218 v & a3 g
"‘"1’5(1 )”(xix-wf*[;?-z]'x[i'”]

{“) tﬁ]) + 0(ch) (4.14)

As far as plasma theary is concerned we can regard the calculation of adiabatic
invariants as being solved. However, the Hamiltonian formulation is most incon-
venient since H is a function of the potentials (A,¢) and. not the fields
(B,E). The atove method really only required the equation [J,H] = O to be
expressed in coordinates which display the phase angle over which we averagé.
Haas, Hastie, and i’aylor have applied the method to the Viasov equation to
generate the magnetic moment u, the longitudinal invariant J, and the flux
invarient ¢ as given below. The algebra involved was formidable and the
results are worth some comments.

A charged particle in a time independent clectromagnetic field will
have 25 constants of the motion the energy € and the canonical moments
corresponding to any symmetrics of the con'figuration. If there are no
symmetries then, in a strong magnetic ficld such that "L/L << 1, the mag-

netic moment will be an adiabatic constant:
o . (rL)Z R
S LR Ay - (4.15)
=
where Uy = vi/28
[v‘-ub Le §v GO + 3 (0 dufien E]

-

X (V3'5+uVB), a =

@
3
a
pt
.
m,\,lml ml—
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in phase space which always passes through the same trajectories:

Q= 2:] B, dxdy, J= (} pdq (5.1)

This suggests that a magnetic field might be described 1in canonical coordinates

v t
PE,[Bzdy‘sz' qQzx, t=sz2 (5.2)

The Hamiltonian may be found from the equations of motion

H.e,

gl
L]

as
m

WIXW

(5.3)

i
n

N

and the constraint 78 = 0. It turns out that we need to separate the tiela
component By - By] (x,y,2) + Byz (x,2} to correctly choose the constants of
integration when solving for H

He Jnyd_v - [0 = 8

*
-8B

% -8 .0,

As a simple example, we can naw apply the Hamiltonian formalizm to a
stellarator field which we write as
Bc Bz + e B (xy.2:) (5.5)

where the field is principally in the 2 direction (; - unit vector) and '5‘
is periodic in z and may be further expandable in €. The momentum and
Hamiltonian are

. +
pe Boy +g bz s H= sb; - eb; BN ) (5.6)

We seek an adizbatic {nvariant y to describe the magnetic surfaces by solving

the Hamittonian form of va = 0, namely,

$oo-2iemul (5.7)
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where § = eB/mc and q,o is the wave amplitude. This is first transformed to
the action-angle coordinates of the gyromotion, Pw = va_ZIZn, with gyroradius
o= (zpé/m)'lz:

2
H=p"/om+ DPQ +edy sin (kz - ko sin ¢) (6.2)

In the case of propagation at 45° (k = k,), the Hamiltonian may be aon-
dimenstonalized and, using a Bessel function identity, becomes
2
P -
H= P° gt ;ZJL {p} sin (z - 2¢) = Ho + ey (6.3)

The recurrence relations in (4.5) for an invariant 1 become

a1, 2l a2l
[} s = Saep 0.l
e F A TR A

B To) (6.9)
observe that the 2eroth order orbit depends on p!

The solution ta 0(e) of (6.4) is
I,+ely= I 0p) e f;’gzal_ (p) Sinfr - sai (X8

The expansion clearly fails at every integral resomance p = 2 unless
Iy is chosen to vanish in the same way at each'resonance. An appropriate
choice is ‘o = cos (nk)/m:

1, +ely = 7! cos (mp) - € sin (np)z 3 sinp{z 8 16.6)
This invariant is shown in Figs.(2, 3) in the plane ¢ = 7 for two values of
g and p = (1.482 - DZ)I/Z' We observe .that v:é50qances aF p =0, 1 overlap
strongly in the second case. . )

These curves can now be compared with the mmerical orbit cu\éu\a;iuns
of Smith and Kaufman, Figs. (4,5), at the same parameter values.v The orbits
are plotted as they intersect the plane ¢ = m and, when the pniqts lieona = Lo

$Mmonth curve 1t s clear that the invariant is a good one. In Fig. 5 the
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2 /.2 2 0.2 Lo
55 (3% 3% 2 g 3
= = 2 + € ‘e + 0(5° {6.12)
Hepted + (apz apg) T o

The frequency of the drift in the PZQ2 plane 1s now 0(ve) and R is also

0 {VE). This resonates more readily with the fundamental and it is the
averlap of these secondary islands, in either case, which leads to tho stoch-
astic behavior. Th2 criterion used by Smith and Xaufman, based on overlap of
the primary resonances is not accurate and their ¢omputations clearly show

a secondary chain of five islands around one of the fixed points. The start
of tha required transformations must be done with the usual generating

function approach:

Q
§ = §(0qQ) = - Py - X cosmp (6.13)

50 that

Hapy +3 (c.;;-h,px)? + ;;EJL(D) sin (qx"l . p¢)

which makes Px = -!;:cos 7 P the leading order invariant in the new coordinates.
I have not carried out the rest of the analysis of this case, but this shows
how to bring together the elements of the modern theory. Jaeger et al. have
applied the theory to electron cyclotron resomance heating in wirror machines.
They show that, as the electron emergy increases, the high order (5th)
resomance of the bounce motion with the cyclatron heating breaks up the

jnvariant surfaces and places an upper Timit on the attainable electron energy.

7. Jumps in Adiabatic Invariants

The question arises as to whether the adiabatic invariant series are
approximations to some true constant or whether they are merely approximate
constants. 1n fusion piasmas we certainly want to contain the particles much

longer than a few hundred cyclotron periods and the questian of the convergence




The phases w.wd are rotating rapidly at the qyrofrequency and the integral
is close to zero. A& more careful analysis is done by deforming the path

of intggration S fitn the complex plane to pick up the residues around the
zeroes of B. The details vary for each plasma configuration and so we will
display the results for 2 finite 8, P(B) equilibrium in a mirror machine when

it can be shown that L

= . B ¥ - 7.4

Ix y(B) B=0, Py [N y 8 ' {7.8)

'The field can then be expanded about the jth 2ero in the complex S plane in
the form

2
B=B; e (u-u) . - X, L-(zs/”)""’ 7.5
e (- ¥y €= preJ (7.5)

and the general result is

My arcmue? [(a n) 2 ( gy tvd K I%] .-

2 20 Re 1+ By } e e J '(7.5) 5
2 : B, )

™ y J"G*‘j , v)i . i

where 5 5;
. 3 b -
K, = ~f [ . B ds , l ds e, - 98 ; P
1] B, v i 5 (.. 7

These small jumps in u, can lead to a diffusion in velocity space and rapid less

of containment for the most energatic particles. The maximm enargy particle P

which can be contained ‘a a mirror machine has L
2,2.2 ' . R
-3 28 °L° 72 . .
W KL v, (7:8) .
¥ M1 - .036 20A) ’ )

where

¥ (50 kev) [ L v - 107 cs]z1 _R) /v ) :
A = 30 keV)y__ L X ] S{1-R) /v 1.
o z W V0 &y e T K (7‘): s »"s]. ;

(2.9



-22-

where V. is the parallel velocity at s = 0. The change in 6 between bounces
is then

o ame e[ e () e
o = | @-a)e- -(—) : 8.4

o, ) (VE . ZuBoszle)”Z ) (ZuB°)3/z
Expressing uBo in units of v%/z the phase change between bounces is

- L\ =
Vot = ¥y +(E) 372 (8.5)
Hn+l
There are clearly m...y fixed points of the mapping {(8.1), (B.5) whenever

Boey = ¥p = (wrem?3, ¥psy = Vp * M. Let us Vinearize the motion about

one such point, '”m: =Ygt &un. B, = up sun to get

Supyy = O, *aty, 8.8}

= 3{.L
Slpiy = 8y - 2 (Dus/z) Stnny
£

Eliminating dw" gives

a3 L =
ey - (2 - -2(_5ﬁ)) Buy, + duy 4 =0 8.7)
PR

and we Took for solutfons of the form éu ~ A" for stability [2| <1

which gives

{8.8)
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FI&. 1 Intersection of wagnetic field lines with radial planes,
at field period intervals, in a toroidal L = 3 Stellarator.
There are 8 field periods around the torus and the numbers
indfcate revoluticns about the major axis. The splitting
of the axis arises from a small L = ¥ field component due
to the helical windings. The fiyure is taken from
A. Gibson, (1967).
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FIG, 3 Surface of section plat at ¢ » .1. Primary Resonances
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FIG. 5 Surface of section of orbits shows breakup of primary
resonances and faormatfon of ne= § secondary resonances
st ¢ = .1, Smith and Kaufman {1976).



