NON-CIRCULATING NTSU LIBRARY

Volume 9 Number 4 March/April 1984

Newsletter of the Center for Energy Studies of The University of Texas at Austin

Energy Studies reports on activities of the Center for Energy Studies and other energy-related news from The University of Texas at Austin. Subscription is free upon request (six issues a year).

The Center for Energy Studies is a multidisciplinary research center, the central liaison for energy research, education, and public service at The University of Texas at Austin. Dr. Herbert H. Woodson is director.

Editor: Jennifer Evans

SRP Researchers Study Polymer Membranes for Separating Gases

Plastic membranes almost as thin as the wall of a human cell are the basis for a new technology for separating gases. Researchers in the Separations Research Program (SRP) of the Center for Energy Studies are studying ways to understand and improve these new membranes.

Ener

The intangibility of gases has long frustrated scientists and engineers seeking an inexpensive, reliable way to unmix them. Gas separation by synthetic membranes holds promise as a less energy intensive competitor against existing techniques such as cryogenic distillation and solvent extraction and recovery.

Inexpensive gas separation could generate large quantities of oxygen, carbon dioxide, helium, hydrogen, and many other gases for which the market is now limited because the cost of producing them is high.

Since the 1830s, it has been known that thin membranes tend to block some gases and allow others to pass through freely. The earliest membranes tested with gases were of india rubber. But for all known materials, the membrane permeation rate (the rate that gas molecules pass through it) was very slow until a few years ago. In recent years numerous breakthroughs have allowed very thin, very efficient membranes to be cast from polymers. The asymmetric membrane is the leading type. It is called asymmetric because it is formed of two layers: a (Continued on next page)

TEXAS STATE

DOCUMENTS COLLECTION

Studies

SRP researcher William Koros measures the weight gained by a tiny membrane sample as it sorbs, or takes in, gas. A weight gain of 500 millionths of a gram indicates a highly sorbent material.

With an efficient gas-separating membrane, molecules of one kind of gas travel across the membrane, but molecules of other gases do not.

thin, dense layer that performs the separation and a thick, foamlike layer that provides support and durability.

A membrane sheet placed in a frame is not an efficient separation device because its output is low. Membrane units such as bundles of hollow membrane fibers or spirally wound multiple sheets have much higher surface-to-volume ratios.

Such membranes are beginning to be used industrially in several ways:

- Separating hydrogen from methane in refineries, from carbon monoxide in syngas and oxy-alcohol plants, and from nitrogen in ammonia synthesis
- Enriching air with nitrogen to be used to blanket flammable petroleum products during transport to reduce the risk of fire
- Enriching air with oxygen for medical use and for enhancing combustion in furnaces
- Recovering and recycling carbon dioxide that has been injected below ground into oil reservoirs, an enhanced recovery technique

Gas membrane separations is an infant industry, barely five years old. Many in the field expect it to boom in the next decade, as further improvements are achieved.

"Head to head with traditional technologies." Gas membranes are one of the main research areas in the Separations Research Program. The effort is headed by Dr. Donald R. Paul, professor and chairman of the UT Department of Chemical Engineering, and Dr. William J. Koros, research engineer at the center. In addition to the SRP industrial support, funding for the research also comes from the National Science Foundation and the US Navy.

"We want to build up enough sound, reliable data so that membranes don't have to be created from scratch each time," Dr. Koros said. "A lot of processes are operating. Almost no fundamental data have been gathered on them.

Donald Paul

No one really knows exactly how to predict their behavior."

Their goal is to build up comprehensive data about the properties of different membrane materials under different operating conditions. "Membranes are coming head to head with traditional technologies that have been highly optimized. . . . We want to get them quickly on a good foundation."

In his present research, Dr. Koros is studying a fundamental aspect of membrane science: how much of a gas will *sorb*, or go into, a certain membrane sample under varying conditions of temperature and pressure. The weight of the membrane changes infinitesimally when gas sorbs into it. The weight change is measured with a microbalance, essentially a delicate spring made of quartz.

In other sorption studies, a membrane is exposed to a pressurized chamber filled with a gas, then left to stabilize. The pressure changes are measured to derive the amount of gas sorbed.

To examine permeability, the researchers reinforce a membrane sample and place it between two chambers, one filled with gas under pressure and the other containing a vacuum. Pressure increases in the empty chamber indicate how much gas has permeated across the membrane.

The researchers will conduct hundreds, perhaps thousands, of trials on different combinations of membranes, gases, and operating conditions.

A superior gas membrane will possess high permeation and selectivity rates with adequate durability, especially at high temperatures, Dr. Paul said.

A basic question facing membrane researchers is how to go about searching for high-performance polymers. Extensive testing certainly must be part of the approach, but the SRP researchers hope to bypass a great deal of testing by creating good theoretical models.

The ideal gas membrane. Drs. Paul and Koros have a working hypothesis about what makes an ideal gas membrane.

First, adequate rigidity, of "a stiff molecular backbone," as Dr. Koros termed it. A polymer that is softened or rubbery makes a poor membrane because it is not selective enough. Molecules can easily push their way through a stretchy membrane, but a rigid structure is more selective—open to some gases but not others. Glassy polymers seem to be most promising.

Second, gaps in the molecular matrix. A crystalline-type polymer has almost no gaps and thus almost no permeability. The molecular chains are too closely packed. In amorphous (i.e., noncrystalline) polymers of open structure, gaps do exist, allowing gas molecules to pass through. But gaps of too large a size again seem to diminish selectivity.

Third, *chemical affinity*. A membrane with a chemical affinity for a certain gas tends to cause more molecules of that gas to dissolve into it, thus improving its performance.

Recent studies by Drs. Paul and Koros have turned up some interesting discoveries about the properties of gas membranes.

One study dealt with the selectivity of a highly permeable membrane. The researchers sought to learn whether the selectivity could be improved by adding small molecules to the membrane's open chemical structure, thereby "tightening it up." This technique is called *antiplasticization*, because it also makes the polymer less plastic.

The researchers found that the small molecules could indeed make a membrane more selective (possibly by making the gaps smaller), but at the same time reduced the membrane's permeation rate substantially. Whether higher selectivity can be achieved without much sacrifice of permeability is an issue that future research may resolve.

Blends and fluorination. In studies of combinations of polymers, Dr. Paul found "in some cases twopolymer blends can be more selective together than either pure polymer alone." Interesting results were obtained with a blend of poly(phenylene oxide) and polystyrene.

Another characteristic of membranes is known as the permeability coefficient. It is a performance value that expresses the amount of gas going through the membrane

Graduate student Jamal Elhibri unloads a polyvinyl chloride membrane sample after measuring its performance in a high-pressure gas permeation device.

per psi of pressure difference across the membrane. The researchers have studied the permeability coefficients of numerous membrane materials.

The permeability coefficient of nearly all membranes decreases as pressure increases, within the usual range of 20 to 25 atmospheres (300 to 500 psi). That is, higher pressure does cause more gas to pass through the membrane, but the increase gets smaller and smaller—a pattern of diminishing returns.

"For ten years, that is what we have seen. Now, in a very few cases, we are seeing the opposite," Dr. Paul said.

"Why does one polymer's permeability go up and another go down with increasing pressure? We have ideas, but they are still under test," Dr. Paul said. What such polymers will do under even higher pressures is not yet known and is a subject for future SRP research.

A third area of study has been the effect of fluorine on membranes. Dr. Paul and chemical engineering graduate student Carol Kiplinger have tested a partial fluorination technique created by Dr. Richard J. Lagow, UT professor of chemistry.

The surface of a polyethylene membrane was treated with fluorine and then exposed to gases. The fluorine made the membrane less permeable to methane and carbon dioxide but not to helium. Thus the technique may hold commercial promise as a way to recover helium from natural gas, Dr. Paul said.

These SRP projects and future ones emphasize the kind of research useful to companies yet unlikely to be carried out by them.

"We don't tend on our own to get very heavily involved in applications, and companies don't tend to get very heavily involved in fundamentals," Dr. Paul said. The interplay between the two is likely to contribute substantially to gas membrane technology in the next several years.

Want to receive CES Executive Summaries?

To be included on the mailing list to receive executive summaries of major Center for Energy Studies research reports, both technical and policy-related, please send your name, affiliation or organization, address, and area(s) of interest to: Jennifer Evans, Center for Energy Studies, ENS 143, The University of Texas at Austin, Austin, Texas 78712.

UT's

Energy-Related Courses and Degree Plans

If you are a UT student interested in learning about energy or in pursuing an energy-related career, The University of Texas at Austin offers a variety of opportunities for you. More than 170 undergraduate and 200 graduate courses are offered on different aspects of energy, including energy technology, public policy, conventional production, alternative sources, energy-conscious design, economic issues, and many other topics.

Not every course is offered every semester; some are added as others are dropped. If a course listed here does not appear in a current course catalogue, you can inquire with the department office about when it will be offered again.

The university offers about 40 degrees with program concentrations related to energy. They also are listed below. To learn more about the specific requirements of an undergraduate degree, refer to the catalogue of that college or school; for all graduate degrees, refer to the graduate school catalogue. These publications can be purchased from the Registrar, MAI 1, UT-Austin, Austin, Texas 78712.

* Denotes graduate course.

ARCHITECTURE

ARC 340M	Environmental Con-
ARC 340N	Environmental Con- trols II
ARC 141L	Environmental Con- trols Lab
ARC 355	Alternate Energy Sys- tems Seminar
ARC 355	Application of Energy Methods in Architec- ture
ABC 355	Energy Methodology
ARC 355	Manual Methods of
	Energy Analysis
ARC 380*	Alternate Energy Sys-
ARC 380*	Application of Energy Methods in Architec-
ARC 380*	ture Computer Methods of Energy Analysis
ARC 380*	Davlighting
ARC 380*	DEBOB Simulation
ARC 380*	Energy-Conserving Design with Mechan-
	ical Equipment
ARC 380*	Energy Simulation in Architecture
ARC 380*	Manual Methods of
ARC 380*	Passive Solar Analysis
ARC 380*	Survey of Environmen
	tal Control Systems II
CHP 355	Environmental Policy

CRP 383* CRP 383* CRP 384K*

Coastal Zone Planning **Environmental Policy** Natural Resources and Environment Workshop

BUSINESS ADMINISTRATION

BA 279	Problems in Business Administration: Re-
BA 391*	Special Studies in Business Administra-
RΔ 301*	mental-Business
DA 001	Business Administra-
BA 691*	Special Studies in Business Administra-
BL 370	tion: Resources Government and Busi-
	ness Topics: Environ- mental Law
BL 372	Oil and Gas Law
IB 350	International Trade
ID 303	cial Relations and Poli-
IB 370/	World Resources and
RES 370	International Trade
IB 395*	Seminar: International Trade
MAN 385*	Technology Manage-

	ment—Focus on Oil Field Services Industry
MAN 387*	Technology Forecast- ing and Assessment
RES 326	Texas' Resources and Industries
RES 361	Introduction to the Study of Resources
RES 363	Resources of Industry
RES 394*	Seminar: Resources
TR 350	Transportation Sys- tems and Services
TR 361	Mass Transportation and Urban Problems
TR 362	Management of Trans- portation Enterprises
TR 370	Transportation and Logistics
TR 375	Transportation Regu- lation and Policy
TR 395*	Seminar: Logistics and Transportation

ENGINEERING

ARE 345	Water, Sanitary, and Electrical Systems in Buildings
ARE 345Q	Mechanical Equip- ment of Buildings
ARE 259	Environmental Prob- lems for Architecture Majors
ARE 360	Principles of Comfort Control
ARE 361	Building Investment Analysis
ARE 363/	Air Conditioning and
ARE 385*	Project Manage- ment—Pipeline Proj- ects
ARE 385N*	Construction Manage- ment—Offshore Con- struction
CE 341	Environmental Pollu- tion Engineering
CE 342 CE 345	Water Pollution Control Industrial Hygiene and
CE 346	Solid Waste Engineer-
And the set of sector and the second second	

(Refer to the College of Engineering Catalogue for a full descriptive list of more than 30 civil engineering courses on air and water pollution control, environmental health engineering, and atmospheric science.)

CE 358	Introductory Ocean
	Engineering
CE 377K	Studies in Civil Engi-
	neering: Energy Policy
	and Ethical Conflict

CE 377K	Hazardous Waste
CE 377K	Technical Innova-
020111	tion—Bioethical Issues
CE 380P*	Ocean Engineering
	Applications
CE 388M*	Radiological Health
CE 388P*	Environmental Engi-
	neering of Energy Sys-
CE 207*	tems Ocean Engineering
CHE 322	Thermodynamics
CHE 354	Unit Operations I:
	Fluid Flow, Heat, and
CHE 257	Mass Transfer
CHE 357	Impact on the Environ-
	ment
CHE 363	Unit Operations II:
	Separation Processes
CHE 372	sign
CHE 373K	Process and Plant De-
	sign
CHE 384*	Introduction to Re-
	Search: Advanced
	Technology
CHE 384*	Introduction to Re-
	search: Advanced
	Concepts of En-
	eral Recovery
CHE 384*	Introduction to Re-
	search: Advanced
	Concepts of Ther-
CHE 384*	Membrane Science
ONE OOF	and Engineering
CHE 387K*	Advanced Thermody-
	namics
CHE 388K	ses
EE 102	Introduction to Elec-
	trical Engineering
EE 368	Electric Power Trans-
FE 369	Power Systems Engi-
LL 000	neering
EE 379K	Relay Protection of
FF 070K	Power Systems
EE 3/9K	Engineering—Energy
	Policy and Ethical
	Conflict
EE 379K	Topics in Electrical
	nical Innovation and
	Bioethics
EE 394J*	Economic Analysis of
	Energy Systems
EE 394J*	Energy Conversion
FF 394.1*	Environmental Engi-
LL 0040	(Continued on next page

UNDERGRADUATE DEGREES AND MAJORS

(programs or options in parentheses)

Architectural Engineering (Environmental Systems) Architectural Engineering and Architecture-a six-year dual program Architectural Studies Architecture Business Administration (Engineering Route to Business, Petroleum Land Management, World Resources and Industries, International Business) Chemical Engineering (Environmental Improvement, Energy Resources) Chemistry Civil Engineering (Environmental Pollution) Economics Electrical Engineering (General Electrical Engineering, Power Systems and Energy Conversion) Engineering Science (Environmental Engineering, Geological Engineering, Nuclear Engineering, Ocean Engineering) Geography Geological Sciences Government Interdisciplinary Engineering Program: Environmental Quality Latin American Studies Mechanical Engineering (Energy and Fluids Systems Engineering, Nuclear Engineering, Petroleum Industry Applications) Middle Eastern Studies Petroleum Engineering (Oil and Natural Gas Reservoir Engineering, Oil and Natural Gas Production Engineering, Petroleum Finance and Management) Physics

GRADUATE DEGREES

(selected programs in parentheses)

Architectural Engineering (Environmental Systems) Architecture (Energy Studies in Architecture) Business Administration (Management of Technology, Regional Resources Management, Resources) Chemical Engineering (Energy Resources, Environmental) Chemistry Civil Engineering (Environmental Health Engineering, Geotechnical Engineering, Ocean Engineering) Economics (Resource and Energy Economics [in formation]) Electrical Engineering (Energy Systems, Plasma and Quantum Electronics) Energy and Mineral Resources-a multidisciplinary master of arts degree program Geography Geology (Economic Geology of Nonmetals and Fluids, Environmental Geology) Government Latin American Studies Law Mechanical Engineering (Energy and Fluid Systems, Nuclear Engineering) Petroleum Engineering Physics (Nuclear Physics, Plasma Physics) Public Affairs (Energy, Natural Resources) Public Affairs and Business Administration-a joint master's degree

	neering and Energy
FF 00 ()*	Systems
EE 394J*	Power Systems Engi-
FE/ME 394.1*	Applied Solar Energy
EE/ME 394J*	Economic Analysis of
	Energy Systems
EE/ME 394J*	Power Systems Engi-
	neering
(Refer to Colle	ege of Engineering
Catalogue for	a full descriptive list of
more than 30	electrical engineering
courses on po	wer systems engi-
electrical sys	tems)
EMR 306*	Seminar-Fnerov and
EIVIN 390	Mineral Resources
ME 320	Applied Thermody-
	namics
ME 326	Thermodynamics I
ME 328	Thermodynamics II
ME 335K	Principles of Comfort
ME 227	Nuclear Engineering
IVIE 337	Introduction to Nu-
	clear Power Systems
(Refer to the (College of Engineering
Catalogue for	a full descriptive list of
more than 15	mechanical engineer-
ing courses o	n nuclear engineering
and fusion e	ngineering.)
ME 339	Heat Transfer and
ME OF AL	Rate Processes
ME 35TK	siderations in Fusion
	Reactor Design
ME 360N	Intermediate Heat
	Transfer
ME 361G	Nuclear Reactor Oper-
	ations
ME 361M	Materials
ME 362K	Readings in Engineer-
WIE OUZIX	ing (problems of soci-
	ety, technology, and
	energy)
ME 363L	Energy Systems Labo-
	Air Conditioning and
ME 364K	Refrigeration
ME 3741	Design of Thermal
	Systems
ME 374S	Solar Thermal Appli-
	cations
ME 379K	Combustion Engine
	Processes
ME 381R*	Convection Heat
ME 2010*	Radiation and Heat
NE SOTA	Transfer
ME 381Q*	Thermodynamics
ME 382Q*	Design of Thermal and
	Fluid Systems
ME 387Q*	Thermodynamics of
	Materials

ME 388R*	Nuclear Radiation Shielding
ME 394J*	Energy Conversion
ME 394J*	Engineering Economic Analysis of Energy Systems
ME 394J*	Power Systems Engi-
ME 397K*	Energy and Fluid Sys- tems
ME 697*	Current Studies in En- gineering: Combustion
ME 697*	Current Studies in En- gineering: Electric Power in the Environ-
ME 697*	Current Studies in En- gineering: Nuclear Health Physics
ME 697*	Current Studies in En- gineering: Solar Power Conversion
PEN 102	Introduction to Petro- leum Engineering
PEN 320	Petroleum Exploration and Production (for nonengineering stu- dents)

(Refer to the College of Engineering Catalogue for a full descriptive list of more than 60 courses on petroleum engineering).

LAW	
LAW 341L*	Environmental Law
LAW 360N*	Regulated Industries (primarily transporta- tion)
LAW 263P*	Advanced Oil and Gas
LAW 374N*	Taxation of Natural Resources
LAW 383N*	Federal Taxation of Oil and Gas
LAW 390*	Oil and Gas

LIBERAL ARTS

AMS 315 AMS 321	Environmental History Environmental History of the United States
ANT 391*	Topics in Anthropol- ogy: Energy, Power, and Social Progress
ECO 330K ECO 360	Energy Economics Government Regula- tion of Industry

ECO 360M	Economies of the Mid- dle East and North Af-
ECO 378M	Studies in Mineral Re- sources and Environ-
ECO 204NI*	mental Economics
ECO 384N	Advance Economics
ECO 305L	Advanced Natural Re-
	sources and Environ-
F00 0041	mental Economics
ECO 391*	Environmental
	Economics
ECO 392M*	Introduction to Re-
	source Systems Mod-
	eling
GOV 337M	Government and Poli-
	tics of Mexico
GOV 3561	Government and Poli-
GOVOOD	tics of the Middle East
	and North Africa
COV 260NI	International Organi
10 200	Totional Organi-
15 320	zations
GOV 365P	Politics of Oil
GOV 381L*	Energy Policy
GOV 390L*	Political Systems of
	the Middle East
GRG 325	Geography of Texas
GRG 327	Geography of USSR
	and Its Borderlands
GRG 327K/	Energy and Society
IS 320	
GBG 328	Geography of the Mid-
and old	die East
GRG 334	Conservation Be-
010 004	sources and Technol
	sources, and rechnor-
CPC 225/	Economic Activity and
16 220	Resource Distribution
000 2424	Resource Distribution
GRG 343K	Coastal Zone Geogra-
	рпу
GRG 346/	Human Use of the
IS 320	Earth
GRG 351	Man and Nature
GRG 352	Topics in Economic
	Geography: Topic 1.
	Resources and the
	Environment
GRG 355	Problems of Urban
	Transportation and
	Travel Behavior
GRG 356	Topics in Environmen-
	tal Geography
GRG 372	Topics in the Geogra-
	phy of Latin America:
	Topic 5. Impact of
	Mining
GRG 372K	Proseminar in Environ-
010 0721	mental Geography
GPG 200*	Seminar in Resources
unu 300	and Consonuction
CPC 202K*	Research in Pomoto
GHG 393K	Capaing of the Envi
	Sensing of the Envi-
	Toriment

MES 301K	Introduction to the
MES 324K	Middle East
MES 329	People, Petroleum.
	and Politics
PHL 322	Science and the Mod-
	ern World
NA	TURAL
SC	IENCES
1. 1. 1. 1. 1.	
BOT 308	Plants, Environment,
DOTAIN	and Human Affairs
BOT 340	Plants, Environment,
BOT 349	Environmental Pollu-
001 040	tion
CH 305M	Science and the Envi-
	ronment
CH 390L*	Advanced Analysis of
	Electrochemical
CH 3975*	Advanced Analysis of
0110070	Electrochemistry
GEO 401K	Energy and Geology:
	Earth Limitations
GEO 330K	Petroleum Geology—
050 225	Basin/Irend Analysis
GEO 335	Geology and He-
GEO 341	Mineral Resources
GEO 344K	Marine Mining and
	Minerals
GEO 348	Environmental Geol-
	ogy—The Paradox of
GEO 353	Environmental Geol-
GLO 000	OQV
GEO 362K	Geology of Metallic
	Mineral Deposits
GEO 362L	Economic Geology of
	Nonmetallic Mineral
GEO 365K	Introduction to
0.200000	Geophysical Explora-
	tion
GEO 365L	Geophysical Explora-
CEO SCEN	tion Coophysical Data Bra
GEO 305N	Geophysical Data Pro-
GEO 365N	Geophysical Interpre-
	tation
GEO 368	Geology of Energy Re-
	sources
GEO 368L	Occurrence and Ex
	ploration Concepts
GEO 368N	Application of Geol-
	ogy to Energy Re-
	SOURCES

GEO 386L* GEO 386M*	Geology of Petroleum Petroleum Exploration
GEO 390M*	Methods Thermodynamics of
	Geologic Processes
GEO 391*	Economic Geology
GEO 391*	Internship in Environ-
	mental Geology
GEO 391E*	Petrology of Shales
GEO 391M*	Environmental Geol-
	ogy
GEO 391J	Mineral and Energy
	Resources: Geology,
	Economics, and Policy
JEO 394*	Research in Energy
	Resources
PHY 302K	General Physics—
	Technical Course: Me-
	chanics, Heat, and
	Sound
-HT JUZL	Technical Courses
	Electricity and Mag
	netism Light Atomic
	and Nuclear Physics
203K	Engineering Physics
PHY 3031	Engineering Physics II
PHY 316	Electricity and Mag-
111 010	netism
PHY 326	Introduction to Nu-
	clear Physics
PHY 341	Selected Topics in
	Physics: Energy Pro-
	duction
PHY 341	Selected Topics in
	Physics: Physics of Air
	Pollution
PHY 352K	Classical Electrody-
	namics
PHY 380M*	Plasma Physics-Sta-
	bility Theory
HY 391M*	Nonlinear Plasma
	Cominar in Plaama
11 3913	Physics
207K*	Nuclear Physics
Defecte the O	Nuclear Friysics
Heler to the College of Natural Sci-	
noes catalogue for other courses	
ni priysics, plasina priysics, alla	
	Introductory Dhysical
5 304	Science II: Sub
	stances Heat Floo
	tricity
	thoity

PUBLIC AFFAIRS

PA 388K*	Seminar on Environ-
	mental Problems and
	Policies
PA 388K*	Seminar on Contem-
	porary Policy Issues
PA 693A*	Political Economy

* Denotes graduate course.

CENTER FOR ENERGY STUDIES The University of Texas at Austin Engineering Science Building 143 Austin, Texas 78712

NON-CIRCULATING NTSU LIBRARY

ADDRESS CORRECTION REQUESTED

CES Update

Office of Director

The City of Austin's **first hydroelectric plant**, a small one, has moved several steps closer to reality since CES researchers investigated its feasibility in 1981.

October 22 Austin voters approved \$10 million in bonds to finance the hydro plant. The next steps, according to Chris E. loannou of the city's Power Production Department, are preliminary design, obtaining a federal permit (easily a six-month process), final design, and construction.

The low-head hydro unit will be designed to generate electricity from water falling over a 14-foot drop at the Austin Longhorn Dam on the Colorado River. Dr. Walter Moore, the UT professor of civil engineering who directed the feasibility study, said that the unit probably will not be constructed on the dam itself, but will be cut into the bank beside it. Some water flow will be diverted around the dam, through a turbine, and released downstream. A horizontal-type turbine looks most promising, he said.

One of the chief advantages of the unit is that it will use a source of energy that is essentially free, "water that has to be released anyway," said Dr. Moore. Another advantage is its minimal environmental impact. The structure that will house the turbine will be low and unobtrusive, he said.

Its chief disadvantage, aside from a cost of up to \$10 million, is that the capacity will be small—3 megawatts—in a city where the past summer's peak demand for electricity was 1,101 megawatts, Mr. Ioannou said.

Longhorn Dam on the Colorado River is to become the first hydroelectric site in Austin, Texas (Photo courtesy of Austin History Center, PICA12575)