TEXAS STATE DOCUMENTS COLLECTION

Energy Studies

Volume 11 Number 6 July/August 1986

Newsletter of the Center for Energy Studies of The University of Texas at Austin

Energy Studies reports on activities of the Center for Energy Studies and other energy-related news from The University of Texas at Austin. Subscription is free upon request (six issues a year). ISSN: 0743-829X.

The Center for Energy Studies is a multidisciplinary research center, the central liaison for energy research, education, and public service at The University of Texas at Austin. Dr. Herbert H. Woodson is director.

Editor: Jennifer Evans

Microwave Drying Improvements Studied

Center researchers studying microwave energy for drying in industry are investigating how the particle size of a material can affect its drying time.

Drying is a common process in food, chemical, manufacturing, and other industries. Yet the microwave oven, nearly standard equipment for American kitchens today, is not yet widely used for industrial drying. Center researchers see promise in combining microwaves with forced hot air and with air at room temperature.

Drs. Philip S. Schmidt, professor, and Theodore Bergman, assistant professor of mechanical engineering at UT, are leading the center's microwave research. Their goal is to create a base of knowledge about the fundamental characteristics of drying with microwaves so that adequate drying, with minimum degradation and maximum cost effectiveness, can be predicted for a variety of materials.

The research is funded by the Electric Power Research Institute, and other UT participants are mechanical engineering graduate students Jean Accad (now with Thermon Corp.), Thomas Evans, and Nadeem Malik.

In the study of how particle size affects drying, the researchers measured evaporation of moisture contained in beds of water-saturated glass and plastic beads subjected to (Continued on next page)

An industrial-size microwave unit will be used in future drying experiments. NON-CIRCULATING NTSU LIBRARY varying microwave powers, air flow rates, and air temperatures. The particles ranged in size from 1-micrometer dustlike spheres to pellets 6 millimeters in diameter.

The test materials were dried several ways: with microwaves, with microwaves combined with hot and with cooler air, and with air alone (comparable to a conventional industrial dryer). A 1-kilowatt microwave unit was used. A 6-kilowatt test unit is being fabricated for larger-scale testing to begin in the fall (see photograph).

The results revealed a trend that surprised the researchers. Faster drying occurred with smaller particles. Drs. Schmidt and Bergman said that one possible reason is that, because water has surface tension, the smaller particles allow wicking of moisture to the surface of the bed of material. Where the spaces between the beads are too large, the wicking cannot occur.

The highest drying rates occurred with the microwave/forced-air-flow combinations. The researchers discovered that fairly high drying rates can be achieved even if the forced air is at room temperature.

"This finding can be important because it means you don't always have to spend a lot of money to heat the air," Dr. Schmidt said. "Microwave heating, while expensive, can produce very efficient moisture removal. In some circumstances the net cost of drying can be reduced by the judicious use of microwaves."

Blasting away with microwaves is often not the optimum approach to drying. If overheated or too quickly heated, materials can flake, burst, crumble, dry unevenly, scorch, melt, or chemically degrade.

Microwave dryers used in industrial plants are set to maintain a temperature just under the point at which these sorts of degradation occur. Yet a lower rate of microwave heating and cooler temperatures might sometimes be more suitable in terms of cost and quality, with little loss of time, Dr. Schmidt said.

Microwave heating is more expensive than conventional heating or drying, but it has two characteristics that counterbalance its costliness and sometimes make it the most cost-effective choice. First, microwaves are more efficient for drying because they tend to pinpoint water in a material, heating and driving it to the surface. Second, microwaves can penetrate inside an object and drive out moisture bound within it—what happens when popcorn is popped.

Popcorn is one of the few cases where rupturing a material is desirable. Microwaves can also be used at low power to accelerate the drying of particularly heat-sensitive materials without damaging them, the investigators said.

"The objective of our research program is to establish what combinations of conditions will produce the most efficient and cost-effective drying for any given material," Dr. Bergman said.

(Note: The center is developing a new research program in process energetics, to be headed by Dr. Schmidt. The program will address how energy in industrial processes can be used most productively. Researchers will carry out technical testing and experimentation, as well as economic and broad strategic studies of industrial productivity. For other process energetics news, see page 3.)

CES Update

Office of Director

Dr. John R. Howell has been named **deputy director** of the Center for Energy Studies. Dr. Howell is a solar and conservation researcher and authority on heat transfer. In the UT Department

UT Department John R. Howell of Mechanical Engineering, he is E.C.H. Bantel Professor for Professional Practice.

Dr. Herbert H. Woodson, director of the center, has been appointed to the Advisory Panel on Magnetic Fusion Research and Development formed by the Office of Technology Assessment of the US Congress.

Electric Power

W. Mack Grady, assistant professor of electrical and computer engineering, has been appointed a 1986–87 visiting scholar by Oak Ridge Associated Universities. As part of the visiting scholar program, he will lecture at several US universities on power systems harmonics and integrating photovoltaics into electric utility systems.

Conservation and Solar Energy

The Third Annual Symposium on Improving Building Energy Efficiency in Hot and Humid Climates is scheduled for November 18-19 in Arlington, Texas. The Center for Energy Studies is a cosponsor.

About two dozen topics related to improving the energy efficiency of residential and commercial buildings will be discussed at the symposium. Technical papers, workshops, a product exhibit, and short courses are to be offered at the symposium. Dr. Jerold Jones, mechanical engineering professor and conservation researcher at the center, will lead a panel in a seminar on the development of ASHRAE Standard 90, a detailed national standard for building energy performance.

The main sponsor of the symposium is Texas A&M University. Other cosponsors include the Gas Research Institute, the Texas Public Utility Commission, and energy agencies from Arkansas, Oklahoma, and Louisiana.

The 1986 symposium will be held in the Arlington Convention Center. About 275 attended the second symposium in the series. Early registration is \$125.

For information, contact Dr. Dennis O'Neal, Department of Mechanical Engineering, Texas A&M University, College Station, Texas 77843 (409/ 845-8039).

The Conservation and Solar Energy Program has received \$25,000 from the National Association of Homebuilders Research Foundation to study **energy retrofit measures** in apartment buildings in Austin, Texas, and Boston, Massachusetts.

A contract to build a \$257,000 dual-air-loop test system in the center's labs at Balcones Research Center has been awarded to Scientific Development Engineers of Austin, Texas. The system is to be completed by September and will be used for testing air-conditioning and evaporative cooling systems and components.

Americans are coming to realize that **passive solar buildings are beautiful**, with dramatic sunspaces, pleasant natural light, and interesting architectural features, J. Douglas Balcomb told audiences in two talks April 15 at The University of Texas at Austin. His visit was cosponsored by the center and the Resource Management Department of the City of Austin.

Dr. Balcomb is scientific advisor to the Solar Energy Section of Los Alamos National Laboratory, currently on leave and serving as a distinguished research fellow at the Solar Energy Research Institute.

He pointed out that twelve years ago five or six passive solar houses existed in the United States. Today there are 200,000.

"Pockets of people are just doing this like mad. Once people see this, it spreads," he said.

"In the last decade we have learned how to design buildings that provide a more pleasant environment in which to live and work and that use much less energy. The strategies used are passive solar heating, natural cooling, and daylighting.

"The remarkable thing is, these tend to be synergistic. They can be done at the same time."

Dr. Balcomb recommended that daylighting be designed into new commercial buildings. Studies on daylighting have shown that people like it better and are more productive in daylit spaces, Balcomb said. Most of the cooling in a commercial building is required by the lights. Daylighting helps reduce the cooling load, as well as reduce or eliminate the energy needed for lighting.

"Although in the last decade we have emphasized energy as the is-

J. Douglas Balcomb

sue, to me the key reason for doing these kinds of things is to enhance the quality of life, to provide a better interior environment, more comfortable, perhaps more visually exciting. We use daylighting more often, simply because it's a nicer quality of light than artificial light. Many of the strategies in this same way are techniques which enhance the livability of the building."

Dr. Balcomb said that key research needs related to passive solar energy today are to document the energy performance of window shading devices and of radiant barriers, and to better understand moisture absorption and desorption of buildings.

Mechanical engineering professor John R. Howell has written an introductory **thermodynamics textbook** that comes with its own computer disk and contains a different approach to understanding the second law of thermodynamics.

The text, Fundamentals of Engineering Thermodynamics, is planned for release in November by McGraw-Hill Book Company. The coauthor is Richard Buckius of the University of Illinois.

The IBM PC-compatible computer disk that comes with the book can be used by students to avoid laborious calculations from property tables.

Dr. Howell said the new explanation of the second law of thermodynamics is easier to grasp than the traditional Carnot engine explanation and is based on observed facts familiar to students.

Process Energetics

A five-day short course, **"Industrial** Electrification: Technology and Economics," will be taught at The University of Texas at Austin October 6-10 and later in the year at Purdue University in Indiana.

The course will teach participants to evaluate the technical and the economic feasibility of electric-based industrial processes, as compared with rival conventional processes.

The topics to be studied include such processes as electric melting and heating of metals; heating, drying, and curing methods (microwave and radio-frequency heating, infrared and ultraviolet curing); laser and electron-beam materials processing; and heat pumps.

The teachers of the course will be Dr. Philip S. Schmidt, UT professor of mechanical engineering and head of the developing Process Energetics Program at the center; and Dr. Frederick T. Sparrow, professor of industrial engineering and economics at Purdue University.

Dr. Schmidt said the course will be useful for utility representatives in industrial customer service and marketing, process engineers, process managers and engineers, energy researchers, and government policy makers. The UT Center for Energy Studies, UT Continuing Engineering Studies, and the Electric Power Research Institute are sponsoring the short course.

For full information, contact Mike Jackson, Continuing Engineering Studies, ETC 2.138, The University of Texas at Austin, Austin, Texas 78712(512/471-3396).

Vince Torres has joined the center as program manager for the developing Process Energetics Program.

Separations Research Program

Membrane separations

techniques emerged as the most energy-saving future alternatives to distillation, in a study of separations processes for three industrially important mixtures.

The three mixtures were ethanol from water, oxygen from nitrogen in air, and ethylbenzene from styrene monomer.

In industry today, separation of each of these three mixtures involves distillation as the primary stage. They are energy-intensive processes. The (Continued on page 8)

UT's Energy-Related Courses and Degree Plans

The University of Texas at Austin offers a wide variety of courses that are energy related—more than 170 undergraduate-level and 200 graduate-level courses. Students interested in majoring in an energy field will find 40 energy-related degrees (or program concentrations) offered at UT. These are also listed below.

Not every course is offered every semester. Those listed here have been offered at least once between spring 1985 and fall 1986.

To learn more about the specific requirements of an undergraduate degree, refer to the catalogue of the college or school in which it is offered (\$1 each). For graduate degrees of all kinds, refer to the graduate school catalogue (\$2). Catalogues can be purchased from the Registrar, MAI 1, The University of Texas at Austin, Austin, Texas 78712.

ARCHITECTURE		
ARC 340M	Environmental Controls	
ARC 340N	Environmental Controls II	
ARC 141	Environmental Controls	
	Lab	
ARC 355	Alternative Energy Sys-	
	tems Seminar	
ARC 355	Application of Energy	
	Methods in Architecture	
ARC 355	Manual Methods of En-	
	erav Analysis	
ARC 380*	Alternative Energy Sys-	
	tems	
ARC 380*	Application of Energy	
	Methods in Architecture	
ARC 380*	Davlighting	
ARC 380*	DEROB Simulation	

ARC 380*	Energy-Conserving De-
	sign with Mechanical
	Equipment
ARC 380*	Energy Simulation in Ar-
	chitecture
ARC 380*	Manual Methods of En-
	ergy Analysis
ARC 380*	Survey of Environmental
	Control Systems II
ARC 384M*	Environmental Controls I
CRP 383*	Applied Techniques in
	Environmental Analysis
CRP 383*	Environmental Policy
CRP 384K*	Natural Resources and
	Environment Workshop
	No. of Concession, Name
	Buannea
ADMINISTRATION	
ADN	INISINATION

Special Studies in Busi- ness Administration:
Legal Environment of Business
Special Studies in Busi- ness Administration: Re-
Special Studies in Busi- ness Administration: Re-
sources
ness Topics: Environmen- tal Law
Oil and Gas Law
Industry Analysis
International Trade
International Commercial Relations and Policies
World Resources and In-
ternational Trade (RES 370)
International Business in the Middle East (MES 322K)

*Graduate course

4

Problems in Business Ad-

ministration-Resources

BA 279

IB 395*	Business and Politics in the Middle East
IB 395*	International Marketing
IB 395*	Multinational Business
MAN 385*	Operations Technology Manage-
	ment—Focus on Oil Field Services Industry
RES 325	Economic Activity and
	(GRG 335, IS 320)
RES 326	Texas's Resources and Industries
RES 370	World Resources and In- ternational Trade (IB 370)

ENGINEERING

Water, Sanitary, and Elec- trical Systems in Build- ings
Environmental Pollution
Water Pollution Control Industrial Hygiene and Toxicology

(Refer to the College of Engineering Catalogue for a full descriptive list of more than 30 civil engineering courses on air and water pollution control, environmental health engineering, and atmospheric science.)

CE 358	Introductory Ocean Engi-
CE 364	Design of Pollution Con-
	trol Systems
CE 369L	Air Pollution Engineering
CE 370K	Environmental Sampling
	and Analysis
CE 377K	Studies in Civil Engineer-
	ing: Energy Policy and
	Ethical Conflict (EE 379K)
CE 377K	Studies in Civil Engineer-
	ing: Hazardous Waste
	Management
CE 377K	Studies in Civil Engineer-
	ing: Water Resources and
	Environmental Systems
CE 385J*	Hazardous Waste
	Mangement
CE 385K*	Water Quality: Stream
	and Estuarine Analysis I
CE 388M*	Radiological Health
CE 390L*	Environmental Analysis
CE 390M*	Water Quality Manage-
	ment
CE 396L*	Air Pollution Evaluation
CE 396L*	Particulate and Gaseous
	Control

CE 396M*	Advanced Topics: Air
05 0071	Pollution Meteorology
CE 397*	Advanced Theory of
	Iraffic Flow
CE 397*	Environmental Protection
	in Developing Countries
CE 397*	Geotechnical Engineer-
	ing of Waste Disposal
CE 397*	Offshore Structures Semi-
	nar
CE 397*	Water Pollution Chemistry
CHE 377	Thermodynamics
CHE 354	Unit Operations I: Fluid
	Flow Heat and Mass
	Transfer
CHE 257	Technology and Its Im-
	nect on the Environment
CHE 303	Unit Operations II—Sepa-
	ration Processes
CHE 3/2	Chemical Reactor Design
CHE 373K	Process and Plant Design
CHE 381N*	Fluid Flow and Heat
	Transfer
CHE 388K*	Separations Processes
EE 368	Electric Power Transmis-
	sion and Distribution
EE 369	Power Systems Engineer-
	ing
EE 379K	Power Electronics
EE 379K	Topics in Electrical Engi-
	neering—Energy Policy
	and Ethical Conflict (CE
	377K)
FF 379K	Topics in Electrical Engi-
	neering—Environment
	Resources and Tech-
	nological Bisk
EE 370K	Topics in Electrical Engi-
LLOIDIN	nooring Technical In-
	neuritionand Bioethics
EE 204 1*	Applied Solar Energy (ME
EE 394J	Applied Solar Energy (IVIL
EE 2041	S94J)
EE 394J	Economic Analysis of En-
	ergy Systems (IVIE 394J)
EE 394J^	Energy Conversion Engl-
	neering (ME 394J*)
EE 394J*	Power Systems Engineer-
	ing I
EE 394J*	Power Systems Engineer-
	ing II (ME 394J*)
EE 397K*	Advanced Studies in
	Electrical
	Engineering-Introduc-
	tion to Plasma Dynamics
(Defer to the	Collogo of Engineering
(Heler to the	

Catalogue for a full descriptive list of more than 30 electrical engineering courses on power systems engineering, plasma dynamics, and electrical systems.)

EMR 396*	Seminar—Energy and
	Mineral Resources
ME 320	Applied Thermodynamics
ME 326	Thermodynamics I
ME 328	Thermodynamics II

ME 335K	Principles of Comfort
	Control
ME 337	Nuclear Engineering: In- troduction to Nuclear
	Power Systems

(Refer to the College of Engineering Catalogue for a full descriptive list of more than 15 mechanical engineering courses on nuclear engineering and fusion engineering.)

ME 339	Heat Transfer and Rate
ME 360N	Intermediate Heat Trans-
ME 361E	Nuclear Engineering: Nu- clear Reactor Engineer-
ME 361F	Ing Nuclear Engineering: In- troductory Laboratory
ME 361G	Nuclear Reactor Opera-
ME 361M	Thermodynamics of Ma-
ME 362K	Readings in Engineering (problems of society,
ME 363L	technology, and energy) Energy Systems Labora- tory
ME 364K	Air Conditioning and Re-
ME 374L	Design of Thermal Sys-
ME 374S	Solar Thermal Applica-
ME 379K	Combustion Engine Pro-
ME 381Q*	Advanced Thermody-
ME 3818*	Conduction Heat Transfer
ME 381B*	Convection Heat Transfer
ME 281 P*	Convective Transport
ME 201D*	Padiation Heat Transfer
ME 2000*	Design of Thormal and
ME 382Q	Fluid Systems
ME 382Q*	Solar Thermal Energy System Design
ME 382R*	Fundamental Combustion Science
ME 387Q*	Thermodynamics of Ma- terials
ME 388Q*	Nuclear and Neutron Phy-
ME 3880*	Nuclear Reactor Theory I
ME 388R*	Dynamics of Nuclear Sys-
ME 388R*	tems Nuclear Power Engineer-
ME 388R*	Nuclear Radiation Shield-
ME 389R*	Design of Nuclear Sys-
ME 394J*	tems Applied Solar Energy (EE 394J*)

(Continued on next page)

*Graduate course

ME 394J*	Economic Analysis of En-
	ergy Systems (EE 394J*)
IVIE 394J	peering (EE 394 I*)
ME 394J*	Power Systems Engineer-
	ing II (EE 394J*)
ME 397*	Current Studies in Gas
ME 207*	Radiation
IVIE 397	Electric Power and the
ME 397*	Electrothermal Energy
	Conversion
ME 397K*	Energy and Fluids Sys-
	tems
WE 397K	Seminar in Nuclear Engi-
ME 697*	Current Studies in Engi-
	neering: Nuclear Engi-
	neering Health Physics
PEN 102	Introduction to Petroleum
DEN 220	Engineering Potroloum Exploration
I LIN 520	and Production (for
	nonengineering students)
PEN 323	Fluid Flow in Porous
DENIORI	Media
PEN 324	Petrophysics and Fluid
PEN 326	Thermal and Phase Be-
I EN OLO	havior of Hydrocarbon
	Reservoir Fluids
PEN 430	Drilling and Well Comple-
DEN 331	tions Eurodamontals of Posor
LINUUT	voir Engineering
PEN 361	Advanced Reservoir En-
DENIGOO	gineering
PEN 362	Production Lechnology
PEN 363	Land-Leasing Royalties
. 1.1.000	and Conservation
PEN 365	Petroleum Economics
	and Valuation
PEN 306K	Advanced Production
PEN 366K	Surface Production Sys-
	tems
PEN 368	Fundamentals of Well-
DEN 260	Logging Quantitative Well Log
I LIN 303	Analysis
PEN 373	Petroleum Engineering
	Design
PEN 376	Special Problems in Pe-
PEN 379	troleum Engineering Studies in Petroleum En
I LINOIO	aineerina: Reservoir
	Evaluation
PEN 280*	Advanced Petroleum
	Laboratory
PEN 382L	troleum Engineering
PEN 383*	Drilling Operation in Ab-
	normal Pressure

PEN 383*	Flow of Complex Mixtures
PEN 383*	Two-Phase Flow in Pipe
PEN 384*	Volume and Phase Rela-
	tionships in Oil and Gas
	Mixtures
PEN 386K*	Advanced Fluid Flow in
	Porous Media
PEN 387*	Secondary Recovery of
	Petroleum
PEN 387K*	Fundamentals of En-
	hanced Oil Recovery I
PEN 395*	Rock Mechanics I
Defer to the	College of Engineering

(Refer to the College of Engineering Catalogue for a full descriptive list of more than 60 courses on *petroleum engineering*.)

LAW

LAW 341L* Environmental Law LAW 263P* Advanced Oil and Gas LAW 374N* Taxation of Natural Resources LAW 390* Oil and Gas

LIBERAL ARTS

AMS 315 AMS 315	Environmental History Environmental Issues in North America
AMS 321 ANS 361	Environmental History Human Use of the Earth (GRG 346, IS 320)
ANT 391*	Topics in Anthropology: Energy, Power, and So- cial Progress
ECO 330K ECO 350K	Energy Economics Political Economy of Inter- national Crisis (EUS 361.IS 320)
ECO 360	Government Regulation of Industry
ECO 380L*	Economic History of the Middle East (MES 381)
ECO 385L*	Advanced Natural Re- source and Environmen- tal Economics
ECO 393	The Energy Industries and Energy Policy
EUS 361	Political Economy of Inter- national Crisis (ECO 350K JS 320)
GOV 314	Introduction to the Middle East (MES 301K, OAL 312L)
GOV 337M	Government and Politics of Mexico
GOV 356L	Government and Politics of the Middle East and North Africa

*Graduate course

GOV 360N	International Organiza-
GOV 365P	Politics of Oil (IS 320)
GOV 3811 *	MES 322) Energy Policy
GOV 390L*	Political Systems of the
GRG 325	Geography of Texas
GRG 328	Geography of the Middle
GRG 334	Conservation, Resources,
GRG 335	Economic Activity and
	Resource Distribution (IS 320, BES 325)
GRG 346	Human Use of the Earth
000.054	(15 320, ANS 361)
GRG 351	Man and Nature
GRG 388"	Seminar in Resources
10.000	and Conservation
15 320	Resource Distribution
	(CPC 225 PES 225)
16 320	Human Use of the Earth
10 020	(GBG 346 ANS 361)
IS 320	International Organiza-
10 020	tions (GOV 360N)
IS 320	Political Economy of Inter-
	national Crisis (ECO
	350K, EUS 361)
IS 320	Politics of Oil (GOV 365P,
	MES 322)
MES 301K	Introduction to the Middle
	2101)
MES 200	Politics of Oil (IS 320
WILD JZZ	GOV 365P)
MES 322K	Economic History of the
	Middle East since 1800
MES 322K	Government and Politics
MES 322K	International Business in
	the Middle East (IB 372)
MES 324K	Nodern Iran
OAL 312L	Introduction to the Middle
	201K)
	SUIN)

NATURAL SCIENCES

BIO 301M	Ecology, Evolution, and
BIO 304	Environmental and Popu-
	lation Biology
BOT 349	Environmental Pollution
CH 390L*	Advanced Analysis of
	Electrochemical Methods
CH 397S*	Advanced Analysis of
	Electrochemistry
GEO 330K	Petroleum Geology—Ba-
	sin/Trend Analysis

GEO 335	of Toxas
GEO 341	Mineral Resources
GEO 344K	Marine Mining and Miner-
GEO 344K	
050 269	als Enorgy Posourcos
GEO 300	Application of Geology to
GEO 300N	Eporal Posouroos
	Advanced Coology Oil
GEO 3/9K	Advanced Geology—Oli
	Exploration and Develop-
0 = 0 0 0 0 +	ment
GEO 386L*	Geology of Petroleum
GEO 386M ³	Petroleum Exploration
	Methods
GEO 390M ³	Thermodynamics of Geo-
	logic Processes
GEO 391*	Economic Geology
GEO 391*	Internship in Environmen-
	tal Geology
GEO 391J*	Mineral and Energy Re-
	sources: Geology, Eco-
	nomics, and Policy
GEO 394*	Oil Exploration and Devel-
	opment
GEO 394*	Research in Energy Re-
	sources
MS 440	Limnology and Oceanog-
	raphy (ZOO 440)
MS 354B	Marine Ecosystems
MS 367K	Oceanography: Human
	Exploration and Exploita-
	tion of the Sea
PHY 302K	General Physics—Techn-
THI GOLIC	ical Course: Mechanics.
	Heat and Sound
PHY 3021	General Physics—Techn-
THIOLE	ical Course: Electricity
	and Magnetism Light
	Atomic and Nuclear Phys-
	ice
PHY 303K	Engineering Physics I
PHV 3031	Engineering Physics II
PHY 600A	Elementary Physics for
FITTOUSA	Nontochnical Students:
	Mochanica Host and
	Sound
	Elementary Physics for
PHIOU9D	Nentechnical Students:
	Nontechnical Students.
	Electricity and Magnet-
	Ism, Light, Atomic and
-	Nuclear Physics
PHY 316	Electricity and Magnetism
PHY 352K	Classical Electrodynam-
	ICS
PHY 380L*	Plasma Physics—Intro-
	duction
PHY 380M	* Plasma Physics—Stability
	Theory
PHY 387K'	* Electromagnetic Theory
PHY 387L*	Electromagnetic Theory
PHY 391	Seminar in Plasma Phys-
	ics
PHY 397K	* Nuclear Physics
(5.4	
(Refer to th	ne College of Natural Sci-
ences Cat	alogue for other courses on

Castanu and Deseuroes

000000

physics, pl physics.) PS 304 ZOO 440 ZOO 352	asma physics, and nuclear Introductory Physical Sci- ence II: Substances, Heat, Electricity Limnology and Oceanog- raphy (MS 440) Man and the Environment			
PUBLIC AFFAIRS				
PA 388K	Seminar on Energy and Minerals			
Geographic Geology Nonminian Governmi Latin Arritector Chemical Source Chemical Source Chemistri Civil Eng Health ical En neerin Economi Econo	CTED PROGRAMS CTED PROGRAMS DEGREES CTED PROGRAMS DEGROPTIONS PARENTHESES ural Engineering (Environ- Systems) ure (Energy Studies in Ar- ure) Administration (Manage- f Technology, Regional rce Management, Re- s) I Engineering (Energy Re- s, Environmental Engineering, Geotechn- gineering, Geotechn- gineering, Ocean Engi- g) cs (Resource and Energy mics) I Engineering (Energy mics) I Engineering (Energy mics) I Engineering (Energy mics) I Engineering (Energy mics) I Engineering (Energy mics) and Mineral Resources—a isciplinary master of arts e program ohy (Economic Geology of etals and Fluids, Environ- I Geology) ment herican Studies ical Engineering (Energy uid Systems, Nuclear En- ring) m Engineering (Nuclear Physics, Plasma D) ffairs (Energy, Natural Re-			
Public A istratio	es) ffairs and Business Admin- on—a joint master's degree			

NTSU LIBRARY

The University of Texas at Austin Center for Energy Studies Balcones Research Center 10100 Burnet Road Austin, Texas 78758

Non-Profit Organization U.S. POSTAGE PAID Austin, Texas Permit No. 391

ADDRESS CORRECTION REQUESTED FORWARDING POSTAGE GUARANTEED

(Continued from page 3) study dealt with the processes' energy consumption alone.

The research was conducted by James R. Fair, head of the Separations Research Program; Jimmy L. Humphrey, associate head; and Jose L. Bravo, program manager. It was funded by the US Department of Energy.

Analysis showed that the membrane-type processes in general promise the lowest energy consumption, Mr. Bravo said. Adsorption was seen to be another good candidate for energy efficiency.

Nineteen processes or combinations of processes were studied, each related to:

- Distillation (including stripping and absorption)
- Liquid-liquid extraction/stripping

(including supercritical extraction)

Adsorption

- Membrane separation of gases
- Membrane separation of liquids
- Pervaporation
- Crystallization

Although new separations processes might eventually replace distillation in certain applications, a more likely direction is combining distillation with one or more new processes, Mr. Bravo said.

A study of **fixed-bed adsorption**, a method of separating mixed gases or liquids, has shown that the energy required by the process possibly can be reduced one-half or more.

Fixed-bed adsorption involves passing a mixture through a container

In July the Center for Energy Studies will mark the first anniversary of moving into the new Electromechanics and Energy Building at UT's Balcones Research Center.

filled with an adsorbent, such as activated charcoal. One or more components of the mixture stick—or adsorb—to the charcoal. A gas mask uses this principle to purify air.

To reuse it, the charcoal must first be purged of the adsorbents by means of a hot purge gas, then cooled with a cool gas. The purging step is quite energy-intensive and represents nearly all the energy required by the process.

Dr. James R. Fair, head of the Separations Research Program, said the study demonstrated that the purge step can be much shorter than previously thought. The purge gas can be pushed through the bed with the cool gas, and the heating requirements reduced considerably.

Adsorption is making a comeback as a separations method, Dr. Fair said. Industrial plants often must clean polluted gases and liquids before releasing them to the environment.

"At 1,000 parts per million, most separations methods just don't work. This is where adsorption shines," Dr. Fair said. The fundamentals of the adsorption process are not yet well understood.

The SRP study was carried out by Joan Schork for a dissertation in chemical engineering, and was supervised by Dr. Fair. A propane-nitrogen mixture, an activated-charcoal bed, and nitrogen purge and cool gas were used.

Dr. Schork, now with Alcoa, also developed a mathematical model of the adsorption process that represents the temperature changes and requirements.