Documents Department **Ekiahoma** State University Library TRINITY RIVER AND TRIBUTARIES, TEXAS

> NS Ishger the property of Oblahoma State University Libra

Also Issued as H. Doc. 275-

LETTER

AND TRIBUTA

TINIS

52-704 O

RIVER

FROM

THE SECRETARY OF THE ARMY

TRANSMITTING

A LETTER FROM THE CHIEF OF ENGINEERS, DEPART-MENT OF THE ARMY, DATED NOVEMBER 29, 1963, SUB-MITTING A REPORT, TOGETHER WITH ACCOMPANYING PAPERS AND ILLUSTRATIONS, ON A REVIEW OF THE RE-PORTS ON, AND A SURVEY OF THE TRINITY RIVER AND TRIBUTARIES, TEXAS, MADE PURSUANT TO SEVERAL CONGRESSIONAL AUTHORIZATIONS LISTED IN THE REPORT

IN FIVE VOLUMES Volume III

AUGUST 25, 1965.—Referred to the Committee on Public Works and ordered to be printed with illustrations and appendixes

U.S. GOVERNMENT PRINTING OFFICE WASHINGTON: 1965

VOLUME INDEX

Volume I	Main Report Attachment - Information Required by Senate Resolution 148
Volume II	Appendix I - Project Formulation Appendix III - Navigation and Navigation Economics Appendix IV - Flood Control Economics
Volume III	Appendix II - Hydrology, Hydraulic Design, and Water Resources
Volume IV	Appendix VI - Cost Estimates, Geology, and Design Information
Volume V	Appendix V - Recreation and Fish and Wildlife Appendix VII - Economic Base Study Appendix VIII - Comments of Other Agencies Appendix IX - Resolutions, Public Hearings, Prior Reports

COMPREHENSIVE SURVEY REPORT

TRINITY RIVER AND TRIBUTARIES, TEXAS

APPENDIX II

HYDROLOGY, HYDRAULIC DESIGN, AND WATER RESOURCES

U. S. ARMY ENGINEER DISTRICTS FORT WORTH AND GALVESTON CORPS OF ENGINEERS FORT WORTH AND GALVESTON; TEXAS

JUNE 1962

그는 것은 너희 옷에서 나는 것이 많이 좀 들어야 할까?

ina ana amin'ny solatra dia mampina amin'ny fisiana amin'ny fisiana amin'ny fisiana amin'ny fisiana. Ny INSEE dia mampina amin'ny fisiana amin'ny fisiana amin'ny fisiana amin'ny fisiana amin'ny fisiana amin'ny fis

and the second

COMPREHENSIVE SURVEY REPORT

ON

TRINITY RIVER AND TRIBUTARIES, TEXAS

APPENDIX II

HYDROLOGY, HYDRAULIC DESIGN, AND WATER RESOURCES

TABLE OF CONTENTS

Title

Page Number

GENERAL

SCOPE

SCOPE	
RELATIONSHIP OF THIS APPENDIX TO OTH	ER PARTS OF THE REPORT
DESCRIPTION OF THE BASIN	
EXISTING FEDERAL IMPROVEMENTS	
EXISTING NON-FEDERAL IMPROVEMENTS	
CLIMATE	
HUMIDITY	
WINDS	
TEMPERATURE	
GROWING SEASON	
SNOWFALL	
PRECIPITATION	
ANNUAL RAINFALL	
RAINFALL INTENSITY	
EVAPORATION	
RIVER STAGE AND DISCHARGE	
ANNUAL RUNOFF	
DROUGHTS STORM CHARACTERISTICS	
THUNDERSTORMS FRONTAL STORMS	
CYCLONIC STORMS	· · · · · · · · · · · · · · · · · · ·
MAJOR BASIN STORMS	
STORM OF JUNE 28-JULY 1, 1899	
STORM OF MAY 22-26, 1908	
STORM OF DECEMBER 1-5, 1913	
STORM OF APRIL 20-26, 1915	
STORM OF APRIL 24-27, 1922	
STORM OF MAY 24-31, 1929	
STORM OF SEPTEMBER 25-28, 1936	
STORM OF NOVEMBER 19-26, 1940	
STORM OF APRIL 5-30, 1942	
STORM OF APRIL 29-MAY 4, 1944	
······································	

Title	Page Number	
STORM OF MARCH 28-APRIL 2, 1945 STORM OF MAY 16-17, 1949 STORMS OF APRIL-JUNE 1957 FLOODS	30 30 31 33	

WATER RESOURCE REQUIREMENTS

GENERAL

	- 39
·	39
	41
	41
	41
	42
	42
	43
	43
	44
	44

45 45

45 46

46

47

49

51 54

54

54

54

FLOOD PROBLEMS

GENERAL PAST FLOODS EXISTING FLOOD-CONTROL PROJECTS CRITICAL AREAS CHANNEL DEFICIENCY

PLAN OF IMPROVEMENT

GENERAL WATER SUPPLY NAVIGATION WATER SUPPLY WATER QUALITY Ground Water Surface Water FULFILLMENT OF FLOOD-CONTROL REQUIREMENTS

Title

Page Number

RESERVOIRS

GENERAL	56
CORPS OF ENGINEERS RESERVOIRS	56
NON-FEDERAL RESERVOIRS	56
AREA AND CAPACITY OF THE RESERVOIRS	59
DETERMINATION OF RESERVOIR INFLOWS	70
SEDIMENT DEPOSITION IN RESERVOIRS	81
SEDIMENT - UNCONTROLLED DRAINAGE AREA	81
SEDIMENT DISTRIBUTION	82
SEDIMENT DISTRIBUTION	82
	83
CONSERVATION STORAGE	87
FLOOD-CONTROL STORAGE	88
STANDARD PROJECT FLOODS	89
FLOOD-CONTROL EFFECTS	-
MINIMUM INFILTRATION INDICES	95
UNIT HYDROGRAPH STUDIES AND SYNTHETIC UNIT HYDROGRAPHS	96
SPILLWAY DESIGN STORMS	101
SPILLWAY DESIGN FLOOD HYDROGRAPHS	105
SPILLWAY DESIGN FLOOD ROUTINGS	106
GUIDE TAKING LINE	110
RELOCATION CRITERIA	110
FREEBOARD REQUIREMENTS	110
HYDROLOGIC NETWORK	111

LOCAL PROTECTION

DESIGN STORM FOR FLOODWAY AND CHANNEL IMPROVEMENT	112
DESIGN FLOOD FOR PROPOSED FLOODWAYS AND CHANNEL IMPROVEMENTS	114
SYNTHETIC UNIT HYDROGRAPHS - INTERIOR DRAINAGE AREAS	117
INITIAL LOSSES AND INFILTRATION INDICES - INTERIOR DRAINAGE	
AREAS	123
RAINFALL INTENSITY DURATION	123
DESIGN STORM FOR INTERIOR DRAINAGE FACILITIES	132
DESIGN FLOOD CRITERIA FOR INTERIOR DRAINAGE FACILITIES	134

CHANNELS

GENERAL	138
NAVIGATION CHANNEL	138
CHANNEL REQUIREMENTS FOR RESERVOIR REGULATION	139
CHANNEL REQUIREMENTS FOR FLOOD CONTROL	142
MULTIPLE-PURPOSE CHANNEL REQUIREMENTS	143

<u>Title</u>

Page <u>Number</u>

INTERIOR DRAINAGE - EXISTING LEVEE DISTRICTS	145
SEDIMENT IN MULTI-PURPOSE CHANNEL	145
SEDIMENT DEPOSITION	146
EFFECTS ON DESIGN WATER SURFACE	146
FLOW-DURATION STUDIES	147
NAVIGATION DESIGN FLOOD	149
DEPTH OF WATER AVAILABLE FOR NAVIGATION	149
DISCHARGES CONSIDERED	151
DURATION OF FLOWS AT OR ABOVE OPERATING DISCHARGES	151
DURATION OF FLOWS AT OR ABOVE RECOMMENDED CHANNEL CAPACITY	153
VELOCITIES IN NAVIGATION POOLS	154
EFFECT OF VELOCITIES ON NAVIGATION	156
DISCHARGE FREQUENCY	156

HYDRAULIC DESIGN

GENERAL	157
WATER SURFACE PROFILES - EXISTING CONDITIONS	157
CHANNEL CAPACITIES	157
PLAN OF IMPROVEMENT	157
Channel	157
Levees	158
Bridge. Improvements	158
Interior Drainage	159
WATER SURFACE PROFILES - MULTIPLE-PURPOSE CHANNEL	163
Trinity River below Five Mile Creek	163
Trinity River and West Fork above Five Mile Creek	163
NAVIGATION LOCKS	165
NAVIGATION DAMS	167
MULTI-PURPOSE DAMS	169
TENNESSEE COLONY DAM	169
Spillway	169
Outlet Works	169
Tailwater Rating Curve	169
LAKEVIEW DAM	171
Spillway	171
Outlet Works	171
Tailwater Rating Curve	171
AUBREY DAM	173
Spillway	173
Outlet Works	173
Tailwater Rating Curve	173

x

Title	Page Number
ROANOKE DAM	175
Spillway	175
Outlet Works	175
Tailwater Rating Curve	175
TRIBUTARY CHANNEL IMPROVEMENTS - TRINITY RIVER	177
EAST FORK IMPROVEMENTS	179
DUCK CREEK IMPROVEMENTS	179
ELM FORK IMPROVEMENTS	179
MOUNTAIN CREEK IMPROVEMENTS	181

LIST OF TABLES

Table		
Number	<u>Title</u>	
1	PRINCIPAL STREAMS - TRINITY RIVER BASIN	. 5
2	PERTINENT DATA - EXISTING AND AUTHORIZED CORPS OF ENGINEERS RESERVOIRS	8
3	PERTINENT DATA - EXISTING LOCAL IMPROVEMENT (FLOODWAY)	•
4	PROJECTS BY CORPS OF ENGINEERS PERTIMENT DATA - EXISTING NON-FEDERAL RESERVOIRS WITH	9
	CAPACITIES GREATER THAN 5,000 ACRE-FEET	12
5	LEVEE DATA	15
6	CLIMATOLOGICAL DATA	17
7	PRECIPITATION DATA	19
8	MAXIMUM 24-HOUR AND MAXIMUM MONTHLY RAINFALL	21
9	RAINFALL INTENSITIES AT FIRST ORDER STATIONS IN AND	
	NEAR THE TRINITY RIVER BASIN	22
10	EVAPORATION DATA	23
11	ANNUAL RUNOFF DATA (OBSERVED) CALENDAR YEAR	25
12	FLOOD DATA	33
13	1958 WATER USE	40
14	PROJECTS CONSIDERED IN PLAN OF IMPROVEMENT	48
15	RESERVOIRS PROPOSED BUT NOT RECOMMENDED AT THIS TIME	57
16	PERTINENT DATA - RECOMMENDED RESERVOIRS	- 58
17	AREA AND CAPACITY DATA - BENBROOK RESERVOIR	60
18	AREA AND CAPACITY DATA - LAKEVIEW RESERVOIR SITE	61
19	AREA AND CAPACITY DATA - ROANOKE RESERVOIR SITE	62
20	AREA AND CAPACITY DATA - GRAPEVINE RESERVOIR	63
21	AREA AND CAPACITY DATA - AUBREY RESERVOIR SITE	64
22	AREA AND CAPACITY DATA - GARZA-LITTLE ELM RESERVOIR	
	(LEWISVIILE DAM)	65

xi

.

		· ·
Table		Page
Number	Title	Number
23	AREA AND CAPACITY DATA - LAVON RESERVOIR	66
24	AREA AND CAPACITY DATA - BARDWEIL RESERVOIR	67
25	AREA AND CAPACITY DATA - NAVARRO MILLS RESERVOIR	68
26	AREA AND CAPACITY DATA - TENNESSEE COLONY RESERVOIR	00
20	SITE	69
27	ESTIMATED MONTHLY AND ANNUAL FLOWS IN ACRE-FEET AT	09
~ (·	BENEROOK RESERVOIR - EXISTING (1958) CONDITIONS	71
28	ESTIMATED MONTHLY AND ANNUAL FLOWS IN ACRE-FEET AT	71
20		50
00	LAKEVIEW DAMSITE - EXISTING (1958) CONDITIONS	72
29	ESTIMATED MONTHLY AND ANNUAL FLOWS IN ACRE-FEET AT	60
	ROANOKE DAMSITE - EXISTING (1958) CONDITIONS	73
30	ESTIMATED MONTHLY AND ANNUAL FLOWS IN ACRE-FEET AT	olu
	GRAPEVINE RESERVOIR - EXISTING (1958) CONDITIONS	74
31	ESTIMATED MONTHLY AND ANNUAL FLOWS IN ACRE-FEET AT	
	AUBREY DAMSITE - EXISTING (1958) CONDITIONS	75
32	ESTIMATED MONTHLY AND ANNUAL FLOWS IN ACRE-FEET AT	
	GARZA-LITTLE ELM RESERVOIR (LEWISVILLE DAM)	_
	EXISTING (1958) CONDITIONS	76
33	ESTIMATED MONTHLY AND ANNUAL FLOWS IN ACRE-FEET	
	AT LAVON RESERVOIR - EXISTING (1958) CONDITIONS	77
34	ESTIMATED MONTHLY AND ANNUAL FLOWS IN ACRE-FEET	
	AT BARDWELL DAMSITE - EXISTING (1958) CONDITIONS	78
35	ESTIMATED MONTHLY AND ANNUAL FLOWS IN ACRE-FEET AT	
	NAVARRO MILLS DAMSITE - EXISTING (1958) CONDITIONS	79
36	ESTIMATED MONTHLY AND ANNUAL FLOWS IN ACRE-FEET AT	
–	TENNESSEE COLONY DAMSITE - EXISTING (1958) CONDITIONS	80
37	SEDIMENT STORAGE PROVIDED IN CORPS OF ENGINEERS	••
21	PROJECTS ON TRINITY RIVER BASIN	83
38	SUMMARY OF PERTINENT DATA FOR EXISTING AND PROPOSED	- 2
50	SOIL CONSERVATION SERVICE RESERVOIRS	84
39	RESERVOIR YIELDS - CORPS OF ENGINEERS RESERVOIRS	85
40	RESULTS OF ROUTING FLOODS OF APRIL-JULY 1942	91
41	RESULTS OF ROUTING FLOODS OF FEBRUARY-MAY 1945	.92
42	RESULTS OF ROUTING FLOODS OF APRIL-JULY 1957	93
43	MINIMUM INFILTRATION RATES	95
45 44	SYNTHETIC UNIT HYDROGRAPH COEFFICIENTS FOR	//
	UNCONTROLLED AREAS	04
45	SYNTHETIC 6-HOUR UNIT HYDROGRAPHS FOR COMPONENT	96
47		
	SUBWATERSHED LAND AREAS ABOVE TENNESSEE COLONY DAMSITE	~~
1.0	SYNTHETIC 6-HOUR UNIT HYDROGRAPHS - ELM FORK AND	99
46		
	TRINITY RIVER AND 1-HOUR UNIT HYDROGRAPHS -	
	DUCK CREEK	100

Table Number	Title	Page Number
47 48	SPILLWAY DESIGN STORM RAINFALL AND RAINFALL-EXCESS SPILLWAY DESIGN STORM RAINFALL AND RAINFALL-EXCESS	103
49	TENNESSEE COLONY RESERVOIR SPILLWAY DESIGN FLOOD HYDROGRAPHS FOR TRINITY RIVER	104
49	RESERVOIRS	109
50	UPPER GUIDE CONTOUR LEVELS	110
51	FREEBOARD REQUIREMENTS	111
52	STANDARD PROJECT STORM RAINFALL AND RAINFALL-EXCESS	113
53	DESIGN FLOOD DISCHARGES - FLOODWAYS AND CHANNEL IMPROVEMENTS	115
54	SYNTHETIC 1-HOUR UNIT HYDROGRAPHS FOR INTERIOR	
	DRAINAGE FACILITIES - WEST FORK SYNTHETIC 1-HOUR UNIT HYDROGRAPHS FOR INTERIOR	118
55	DRAINAGE FACILITIES - ELM FORK	119
56	SYNTHETIC 1-HOUR UNIT HYDROGRAPHS FOR INTERIOR DRAINAGE FACILITIES - DALLAS FLOODWAY EXTENSION	120
57	SYNTHETIC 2-HOUR UNIT HYDROGRAPHS FOR INTERICR DRAINAGE FACILITIES - FLOOD PROTECTION - CITY OF	121
58	LIBERTY DESIGN STORM RAINFALL AND RAINFALL-EXCESS FOR GRAVITY DRAINAGE FACILITIES - UPPER TRINITY BASIN - 100-	
	YEAR FREQUENCY	133
59	DESIGN STORM RAINFALL AND RAINFALL-EXCESS FOR GRAVITY DRAINAGE FACILITIES - LIBERTY - 100-YEAR FREQUENCY	134
60	WEST FORK INTERIOR DRAINAGE AREAS - PERTINENT DATA	135
61	ELM FORK INTERIOR DRAINAGE AREAS - PERTINENT DATA	136
62	DALLAS FLOODWAY EXTENSION INTERIOR DRAINAGE AREAS - PERTINENT DATA	136
63	LIBERTY INTERIOR DRAINAGE AREAS - PERTINENT DATA	137
64	CHANNEL REQUIREMENTS FOR RESERVOIR REGULATION	141
65	TIME REQUIRED FOR EVACUATION OF FLOOD-CONTROL STORAGE	142
66	CHANNEL REQUIREMENTS FOR FLOOD CONTROL	143
67	DEGREE OF PROTECTION UNDER EXISTING CONDITIONS AND RECOMMENDED PLAN	144
68	PERTINENT DATA CONCERNING PLAN OF IMPROVEMENT FOR MULTIPLE-PURPOSE TRINITY RIVER CHANNEL TO FORT	
69	WORTH, TEXAS PERCENT OF TIME OPERATING DISCHARGE IS EQUALLED OR EXCEEDED AT PROPOSED TRINITY RIVER LOCKS & DAMS (BASED ON FLOW DURATION CURVES FOR 2020 CONDITIONS AT DESIGNATED STREAM-GAGING STATIONS)	150 152
70	PERTINENT DATA CONCERNING MEAN VELOCITIES IN NAVIGATION	
	POOLS DURING PASSAGE OF OPERATING DISCHARGE	155

xiii

Table Number	Title	Page Number
71	HYDRAULIC DESIGN DATA - MULTIPLE-PURPOSE CHANNEL	
	FIVE MILE CREEK TO FORT WORTH, TEXAS	160
72	PERTINENT DESIGN DATA - RECOMMENDED RAILROAD	200
	BRIDGES - MULTIPLE-PURPOSE CHANNEL	161
73	PERTINENT DESIGN DATA - RECOMMENDED HIGHWAY	4V4
	BRIDGES - MULTIPLE-PURPOSE CHANNEL	162
74	HYDRAULIC DATA - NAVIGATION DAMS - MULTIPLE-PURPOSE	106
	CHANNEL	168
75	HYDRAULIC DESIGN DATA - TRINITY RIVER TRIBUTARY	700
	CHANNEL IMPROVEMENT	100
76		177
77		180
11	HYDRAULIC DESIGN DATA - TRIBUTARY CHANNEL IMPROVEMENTS	
	ELM FORK	181

LIST OF PLATES

Plate <u>Number</u>

Title

1 2 3 4 5 6	WATERSHED MAP PROFILES - TRINITY RIVER PROFILES - TRINITY RIVER PROFILES - TRINITY RIVER PROFILES - TRINITY RIVER	facing facing facing facing	36666
6 7 8 9 10 11 12	PROFILES - CLEAR FORK TRINITY RIVER AND MARYS CREEK PROFILES - MOUNTAIN CREEK PROFILES - ELM FORK AND DENTON CREEK PROFILES - EAST FORK PROFILES - CEDAR CREEK AND KINGS CREEK PROFILES - RICHLAND CREEK PROFILES - CHAMBERS AND WAXAHACHIE CREEKS	facing facing facing facing facing facing facing	666666
13 14 15	COMPREHENSIVE PLAN OF DEVELOPMENT LEVEE DISTRICTS PRECIPITATION DATA	facing 1 facing 1 facing 2	10 14
16 17 18 19 20 21 22	PERIOD OF RECORD FOR RESERVOIR AND STREAM-GAGING STATIONS ISOHYETAL MAP ISOHYETAL MAP ISOHYETAL MAP - STORM OF APRIL 1942 ISOHYETAL MAP RETURN FLOWS AND NAVIGATION REQUIREMENTS - 1970 & 2020 STORAGE-YIELD RELATION	facing facing facing facing facing facing facing	32 32 32 32 32

Plate Number

Title

Page <u>Number</u>

		· · ·
23	RESERVOIR REGULATION - FLOOD OF APRIL-JULY 1942	facing 94
24	RESERVOIR REGULATION - FLOOD OF APRIL-JULY 1942	facing 94
25	RESERVOIR REGULATION - FLOOD OF APRIL-JULY 1942	facing 94
26	RESERVOIR REGULATION - FLOOD OF APRIL-JULY 1942	facing 94
27	RESERVOIR REGULATION - FLOOD OF APRIL-JULY 1942	facing 94
28	RESERVOIR REGULATION - FLOOD OF FEBRUARY-MAY 1945	facing 94
29	RESERVOIR REGULATION - FLOOD OF FEBRUARY-MAY 1945	facing 94
30	RESERVOIR REGULATION - FLOOD OF FEBRUARY-MAY 1945	facing 94
31	RESERVOIR REGULATION - FLOOD OF FEBRUARY-MAY 1945	facing 94
32	RESERVOIR REGULATION - FLOOD OF FEBRUARY-MAY 1945	facing 94
	RESERVOIR REGULATION - FLOOD OF APRIL-JULY 1957	facing 94
33	RESERVOIR REGULATION - FLOOD OF APRIL-JULY 1957	facing 94
34	RESERVOIR REGULATION - FLOOD OF APRIL-JULY 1957	facing 94
35	RESERVOIR REGULATION - FLOOD OF AFRIL-JULY 1957	
36		
37	RESERVOIR REGULATION - FLOOD OF APRIL-JULY 1957	- ·
38	DRAINAGE AREA MAP	facing 98
39	DRAINAGE AREA MAP	facing 98
40	SPILLWAY DESIGN FLOOD - LAKEVIEW RESERVOIR	facing 108
41	SPILLWAY DESIGN FLOOD - ROANOKE RESERVOIR	facing 108
42	SPILLWAY DESIGN FLOOD - GRAPEVINE RESERVOIR	facing 108
43	SPILLWAY DESIGN FLOOD - AUBREY RESERVOIR	facing 108
44	SPILLWAY DESIGN FLOOD - GARZA-LITTLE ELM RESERVOIR	facing 108
45	SPILLWAY DESIGN FLOOD - TENNESSEE COLONY RESERVOIR	facing 108
46	STANDARD PROJECT FLOOD HYDROGRAPHS - I	facing 116
47	STANDARD PROJECT FLOOD HYDROGRAPHS - II	facing 116
48	STANDARD PROJECT FLOOD HYDROGRAPHS - III	facing 116
49	STANDARD PROJECT FLOOD HYDROGRAPHS - IV	facing 116
50	STANDARD PROJECT FLOOD HYDROGRAPHS - IV	facing 116
51	STANDARD PROJECT FLOOD HYDROGRAPHS - V	facing 116
52	LOCAL PROTECTION PROJECTS - WEST FORK & TRIBUTARIES	facing 122
53	LOCAL PROTECTION PROJECTS - WEST FORK & TRIBUTARIES	facing 122
54	LOCAL PROTECTION PROJECTS - ELM FORK & TRIBUTARIES	facing 122
55	LOCAL PROTECTION PROJECTS - ELM FORK & TRIBUTARIES	facing 122
56	LOCAL PROTECTION PROJECTS - DALLAS FLOODWAY	facing 122
57	LOCAL PROTECTION PROJECTS - DALLAS FLOODWAY EXTENSION	facing 122
58	LOCAL PROTECTION PROJECTS - LIBERTY	facing 122
59	ALL SEASON RAINFALL INTENSITY-FREQUENCY CURVES AT FORT WORTH	124
60	ALL SEASON RAINFALL INTENSITY-FREQUENCY CURVES AT	****
~~	DALLAS	125
61	ALL SEASON RAINFALL INTENSITY-FREQUENCY CURVES AT	/
	HOUSTON	126
62	COINCIDENT RAINFALL-INTENSITY CURVE - WEST FORK	128
63	COINCIDENT RAINFALL-INTENSITY CURVE - ELM FORK	129

Plate Number	Title	Page Number
Humber		110000
64	COINCIDENT RAINFALL - INTENSITY CURVE - TRINITY R	IVER 130
65	COINCIDENT RAINFALL-INTENSITY CURVE - LIBERTY	131
66	MULTIPLE-PURPOSE CHANNEL PROFILE	
67	MULTIPLE-PURPOSE CHANNEL PROFILE	facing 144
68	MULTIPLE-PURPOSE CHANNEL PROFILE	facing 144
69	MULTIPLE-PURPOSE CHANNEL PROFILE	facing 144
70	FLOW DURATION CURVES	facing 144 facing 148
71	FLOW DURATION CURVES	facing 148
72	GENERAL PLAN, MULTIPLE-PURPOSE CHANNEL	facing 158
73	GENERAL PLAN, MULTIPLE-PURPOSE CHANNEL	facing 158
74	GENERAL PLAN, MULTIPLE-PURPOSE CHANNEL	facing 158
75	GENERAL PLAN, MULTIPLE-PURPOSE CHANNEL	facing 158
76	GENERAL PLAN, MULTIPLE-PURPOSE CHANNEI	facing 158
77	GENERAL PLAN, MULTIPLE-PURPOSE CHANNEL	facing 158
78	GENERAL PLAN, MULTIPLE-PURPOSE CHANNEL	facing 158
79	GENERAL PLAN, MULTIPLE-PURPOSE CHANNEL	facing 158
80	PROFILE - LIBERTY LEVEE	facing 160
81	TYPICAL HIGHWAY AND RAILROAD BRIDGES	facing 162
82	DETAILED PROFILES, WEST FORK	facing 164
83	DETAILED PROFILES, WEST FORK	facing 164
84	DETAILED PROFILES, DALLAS FLOODWAY	facing 164
85	DETAILED PROFILES, DALLAS FLOODWAY EXTENSION	facing 164
86	SITE PLAN - MULTIPLE-PURPOSE CHANNEL	facing 166
87	SITE PLAN - MULTIPLE-PURPOSE CHANNEL	facing 166
88	SITE PLAN - MULTIPLE-PURPOSE CHANNEL	facing 166
89	SITE PLAN - MULTIPLE-PURPOSE CHANNEL	facing 166
90	TYPICAL LOCK AND DAM, MULTIPLE-PURPOSE CHANNEL	facing 166
91.	TYPICAL LOCK AND DAM, MULTIPLE-PURPOSE CHANNEL	facing 166
92	TYPICAL LOCK AND DAM, MULTIPLE-PURPOSE CHANNEL	facing 166
93	TYPICAL LOCK AND DAM, MULTIPLE-PURPOSE CHANNEL	facing 166
94	PLAN, PROFILE, AND SECTIONS - TENN. COLONY DAM	facing 170
95	GENERAL HYDRAULIC DATA, TENNESSEE COLONY DAM	facing 170
96	PLAN, PROFILE, AND SECTIONS - LAKEVIEW DAM	facing 172
97	GENERAL HYDRAULIC DATA - LAKEVIEW DAM	facing 172
98	PLAN, PROFILE, AND SECTIONS - AUBREY DAM	facing 174
99	GENERAL HYDRAULIC DATA - AUBREY DAM	facing 174
100	PLAN, PROFILE, AND SECTIONS - ROANOKE DAM	facing 176
101	GENERAL HYDRAULIC DATA - ROANOKE DAM	facing 176
102	PLAN OF IMPROVEMENT - DUCK CREEK	178
103	DETAILED PROFILES, WEST FORK TRIBUTARIES	facing 178
104	DETAILED PROFILES, WEST FORK TRIBUTARIES	facing 178
105	DETAILED PROFILES, ELM FORK AND TRIBUTARIES	facing 178
106	DETAILED PROFILES, ELM FORK AND TRIBUTARIES	facing 178
107	DETAILED PROFILES, ELM FORK AND TRIBUTARIES	facing 178
108	PROFILES, DUCK CREEK	facing 178

xvi

LIST OF EXHIBITS

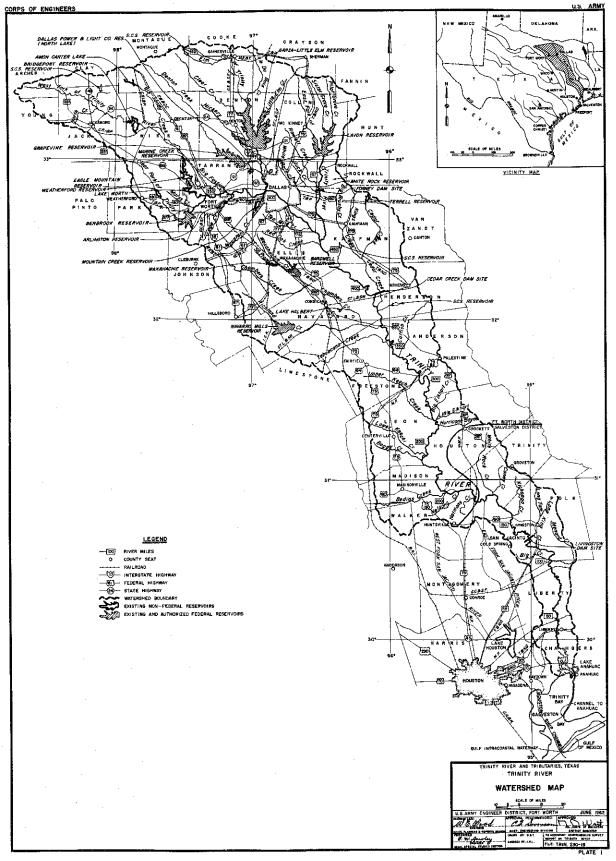
Exhibit Number	Title				
l	WATER RESOURCES STUDY - TRINITY RIVER BASIN, TEXAS	183			

52-704 O-65 (Vol. III)--2

xvii

COMPREHENSIVE SURVEY REPORT ON TRINITY RIVER AND TRIBUTARIES, TEXAS

APPENDIX II


HYDROLOGY, HYDRAULIC DESIGN AND WATER RESOURCES

GENERAL.

SCOPE. - This appendix contains detailed hydrologic, hydraulic 1. design, and water resource data pertinent to formulation of the comprehensive plan of improvement for the Trinity River Basin and provides a basis for statements relating to the above subject matter that are presented in other sections of this report. The Department of Health, Education, and Welfare, Public Health Service, studied the Trinity River Basin as requested by the Corps of Engineers, Fort Worth District, by letter dated June 8, 1959, to determine the present and prospective municipal and industrial and water quality control requirements which were adopted for this report. The request for this study was made in accordance with a Memorandum of Agreement between the Department of Health, Education, and Welfare and the Department of the Army, dated November 4, 1958, pertaining to the Water Supply Act of 1958, Title III of Public Law 85-500. Their report, "Water Resources Study, Trinity River Basin, Texas," is included in this appendix as exhibit 1. Certain data in this appendix were obtained from "A Report to the President and to the Congress," prepared by the U. S. Study Commission - Texas.

RELATIONSHIP OF THIS APPENDIX TO OTHER PARTS OF THE REPORT .-2. This appendix presents a detailed analysis concerning all hydrologic aspects of water problems in the basin, including floods, droughts, water quality and similar hydrologic considerations. The magnitude and frequency of floods are developed, stream flow data are presented, and yields are estimated. The demand for water supply is given for all uses, including navigation, and evaluations are made as to how these needs can be met from projects considered in connection with this study. Details concerning hydrologic and hydraulic design of all structures considered in this study are covered herein, including the design for locks and dams. Hydrologic data developed herein on floods with and without various projects have been used in Appendix IV on Flood Control Economics as a basis for evaluating project flood control benefits. The hydrologic and hydraulic design data presented herein, as well as similar data prepared for other projects that were studied but not recommended for authorization at this time, have been used in the formulation processes covered in Appendix I. The estimates of future needs of water for various uses presented herein are consistent and within the parameters of economic projections presented in the economic base survey, Appendix VII.

3. DESCRIPTION OF THE BASIN. - The Trinity River Basin lies in the eastern half of the State of Texas, approximately between $29^{\circ}46^{\circ}$ and $33^{\circ}44^{\circ}$ north latitude and $94^{\circ}40^{\circ}$ and $98^{\circ}43^{\circ}$ west longitude. It is bounded on the north by the Red River Basin; on the east by the Sabine and Neches River Basins; and on the west and south by the Brazos and San Jacinto River Basins. The Trinity River Basin is relatively long and narrow with a maximum length of about 360 miles and a maximum width of about 100 miles near the upper end. The basin, having a total drainage area of 17,845 square miles, is shown on plate 1. It embraces all or portions of 38 counties and lies within two physiographic provinces - the northwestern portion of the basin is situated in the central lowland province of the Interior Plains and the remainder of the basin is in the West Gulf Coastal Plain. The topography of the basin is that of a moderately to gently sloping plain which has been more or less dissected by streams.

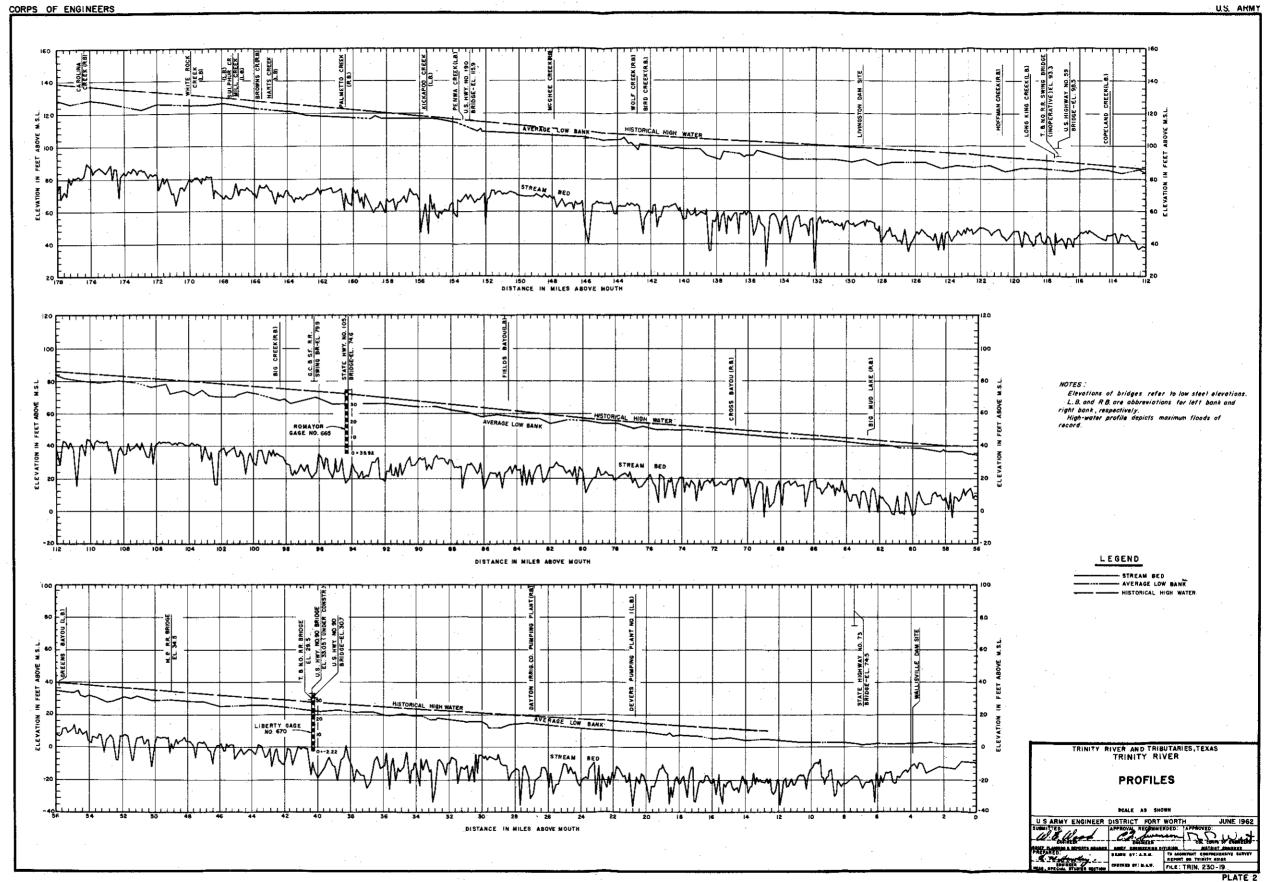
.

4. The Coastal Plain section, which extends nearly to Fort Worth on the main stream and includes the entire East Fork watershed, has a generally flat or undulating to gently rolling topography on the interstream divides. In the vicinity of the larger streams the topography is more rolling and broken, but nowhere does it present a rugged appearance.

5. The Central Lowland province, which includes the watersheds of the West Fork and Elm Fork, has considerable areas of flat to undulating land on the interstream divides, but the topography is generally more rolling and broken. Approaching the headwaters of the West Fork the topography, especially near the streams, becomes quite rugged.

6. The general land elevation of the basin rises gradually from a few feet above sea level at Galveston Bay to about 550 feet on the interstream divides in the vicinity of Dallas, and to about 800 or 850 feet on the divide at the headwaters of Richland Creek and East Fork. To the west and north of Dallas the general slope of the land increases, the elevation rising to about 1,250 feet on the divide in the northwest corner of the basin.

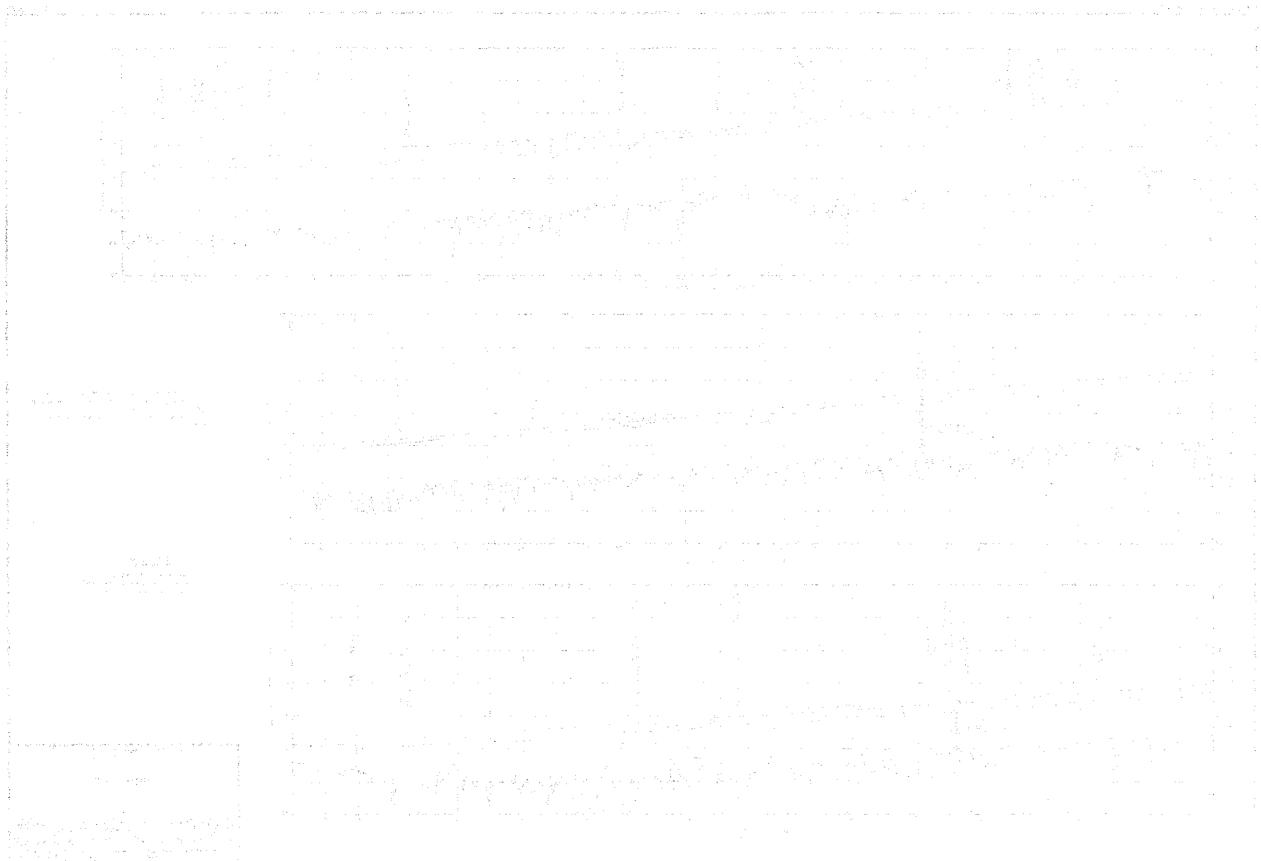
7. Table 1 lists the principal tributaries and sub-tributaries of the Trinity River system and gives the length and contributing drainage area of each. Plates 2 through 5 show the historical highwater, average bank, flood stage, and streambed profiles of the Trinity River. Plates 6 through 12 show the historical highwater, average bank, and streambed profiles for the principal tributaries of the Trinity River. Plates 2 through 12 also show the location of existing reservoir projects and damsites of the projects included in the proposed plan of improvement. The drainage areas for the various watersheds and sub-watersheds in the Trinity River Basin are shown on plates 38 and 39.

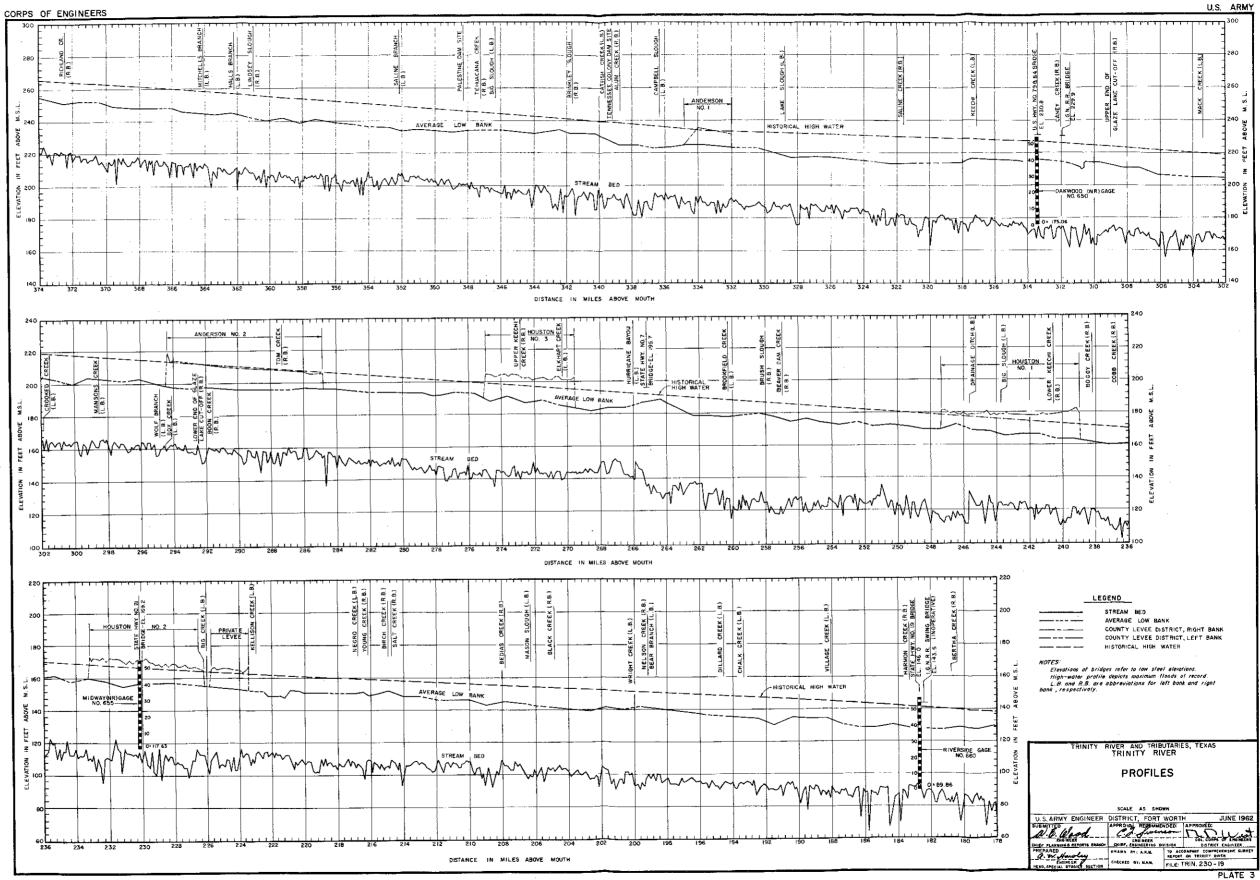

TABLE 1

PRINCIPAL STREAMS

TRINITY RIVER BASIN

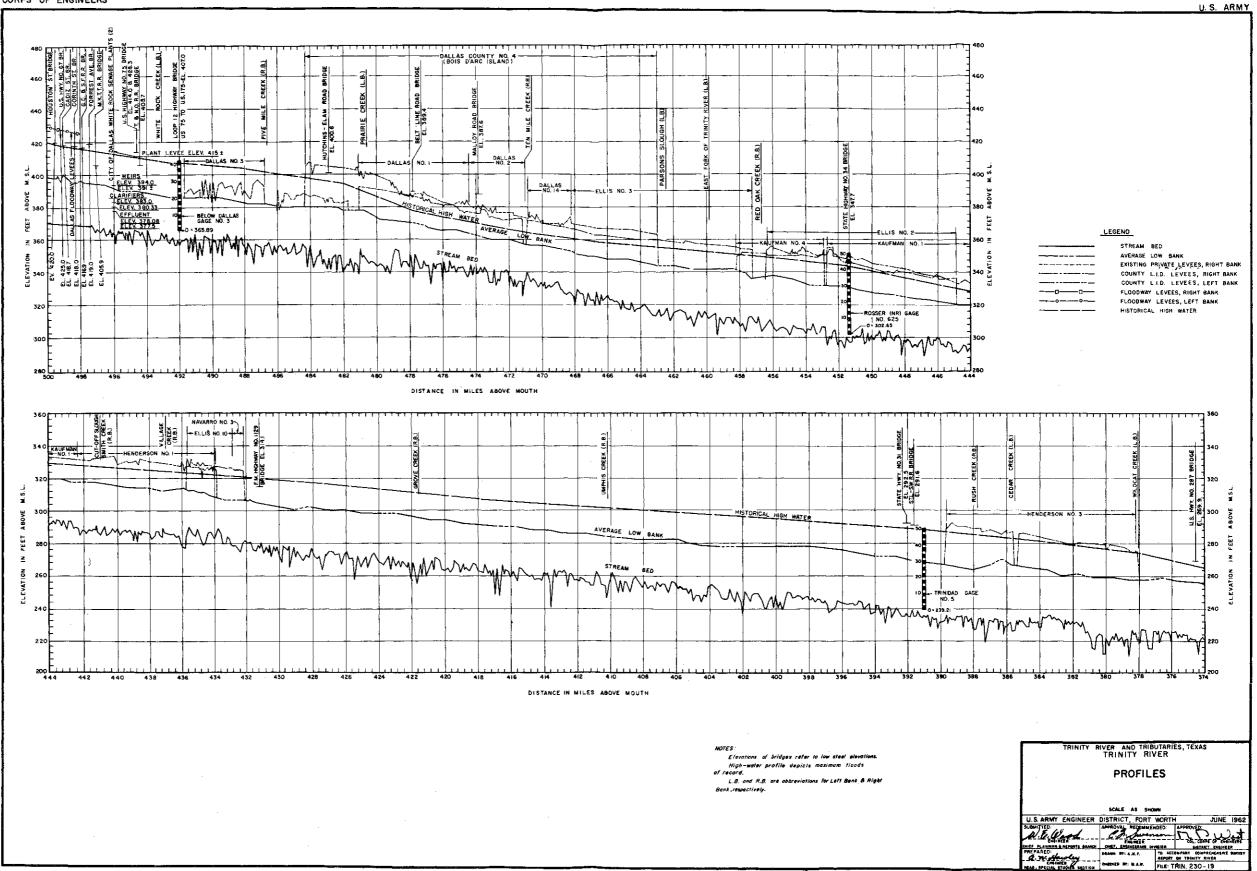
Stream	: par	luence with ent stream above mouth	:(river	: Drainage : area
	:/mrres	above mouth): (sq. mi.
inity River (including				
West Fork)		0	715	17,845
Clear Fork of Trinity Rive	r	558.7	70	531
Big Fossil Creek		542.7	21	75
Village Creek		533.8	33	1.84
Mountain Creek		507.8	37	305
Elm Fork of Trinity River		505.5	119	2,578
Denton Creek		18.4	102	719
Little Elm Creek		39.4	41	262
Clear Creek		50.5	55	354
White Rock Creek (Collin a	nd			
Dallas Counties)		493.1	42	138
East Fork of Trinity River	•	459.8	112	1,309
Duck Creek	÷ .	31.0	22	45
Cedar Creek		385.5	92	1,072
Richland Creek		372.4	97	1,990
Chambers Creek		14.2	107	1,072
Tehuacana Creek		347.2	42	432
Catfish Creek	÷	339.6	37	305
Upper Keechi Creek		272.8	40	512
Lower Keechi Creek		240.5	29	192
Bedias Creek		207.9	35	603
White Rock Creek (Houston	and	-		
Trinity Counties)		169.9	35	518
Long King Creek		117.5	31	214


(1) Existing conditions.


-- ---

ŝ ତ blank p. (Face] Vol. III 65 Ó 52-704

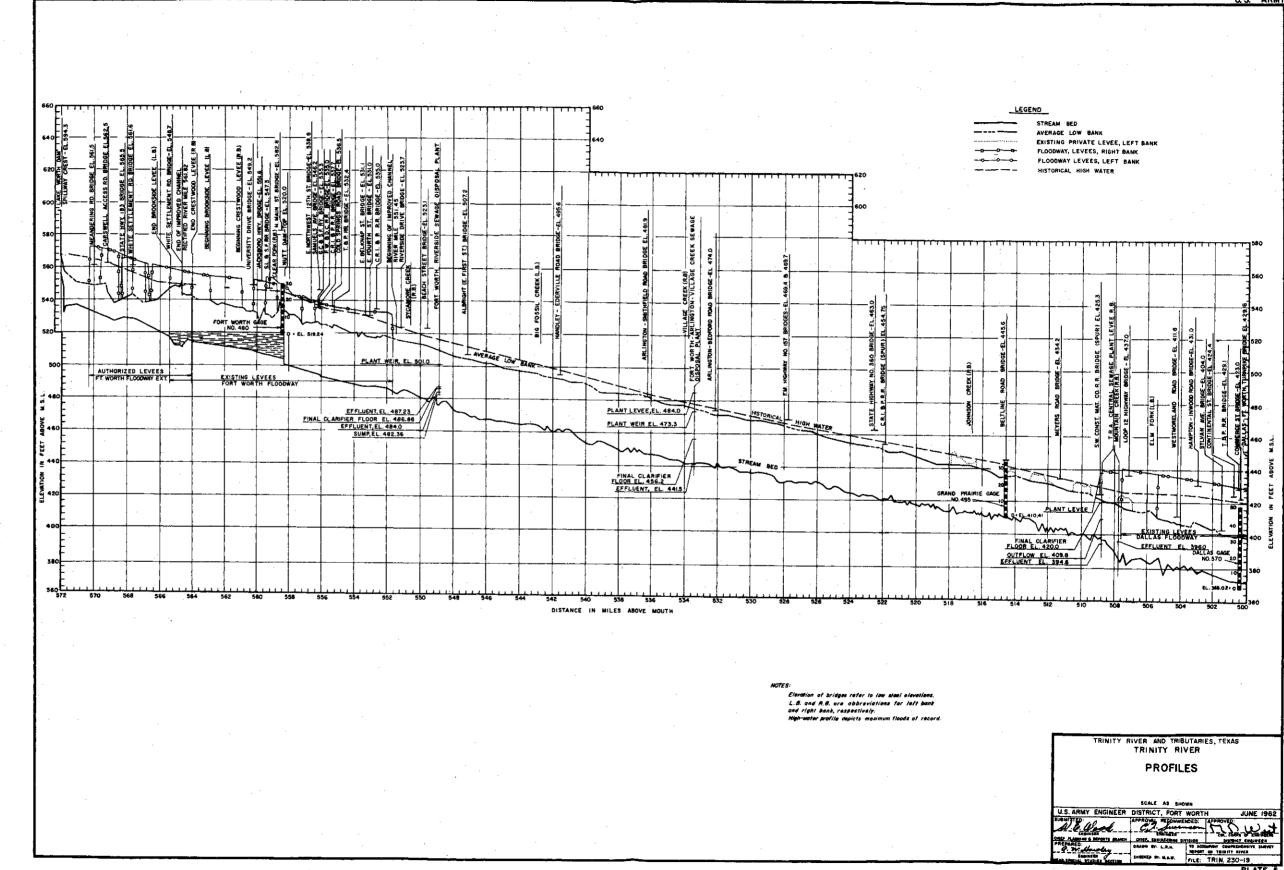
٤·


6) No. ų. blank (Face . H Vol. 65 Ó 40 2

 \sim

·

. -----



52–704 O–65 Vol. III (Face blank p. 6) No. 3

CORPS OF ENGINEERS

PLATE 4

ø 5. 1. and a second second

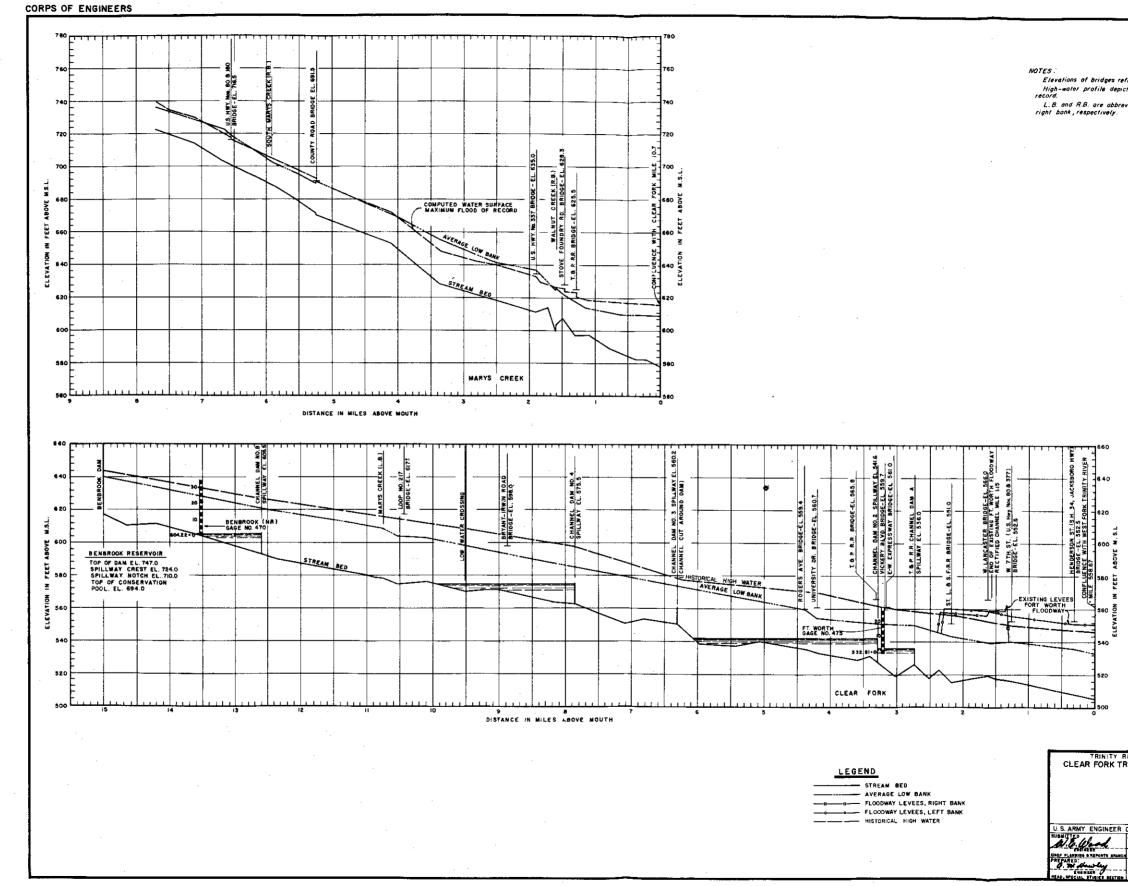
4 6) No.

Ċ, blank 5 (Fa ш Vol. -65 ó 52-704

CORPS OF ENGINEERS

U.S. ARMY

PLATE 5



and a start for the second

ø .بح 6,

r .

5 Š. ত p. blank ଧି (Fa Π Vol. ŝ 0 704 2

あ

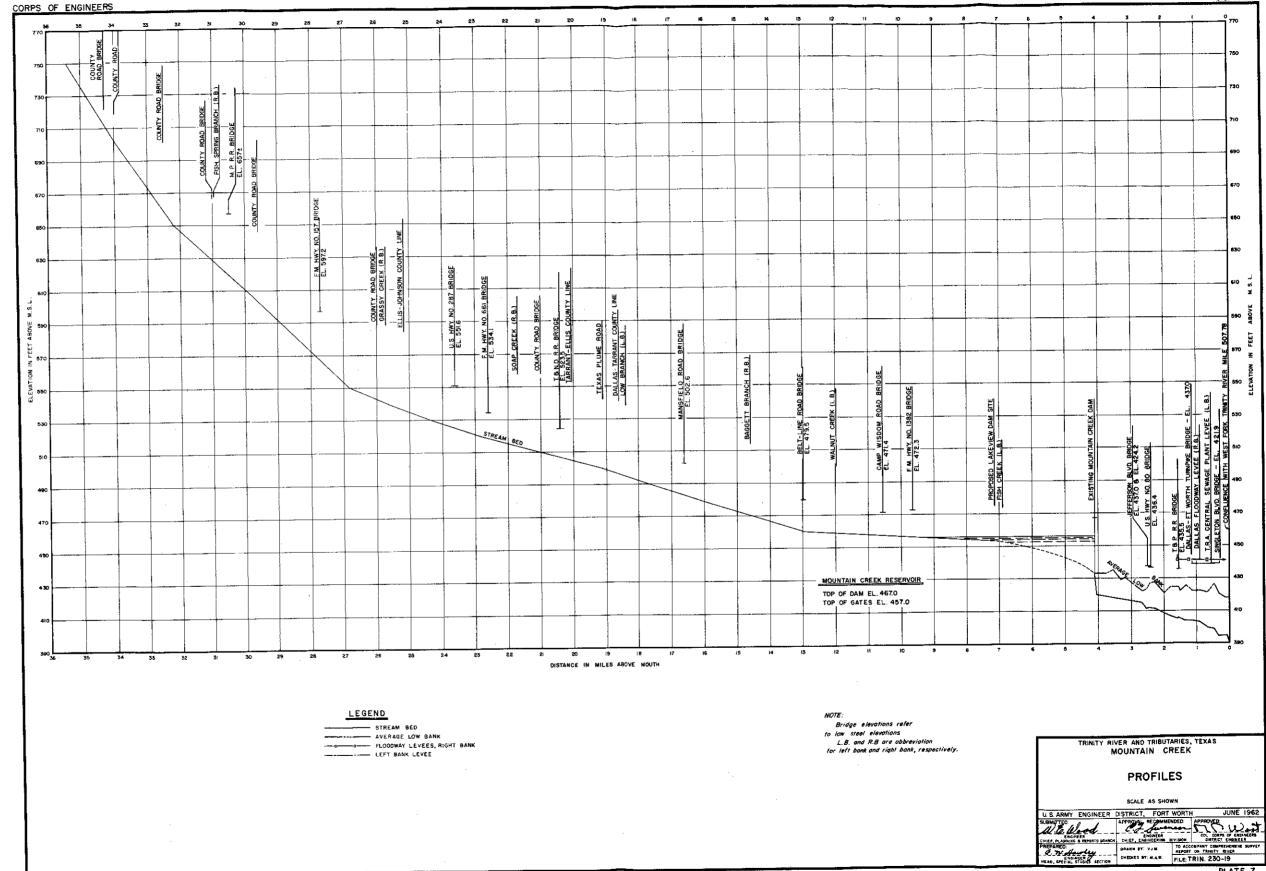
U.S. ARMY

Elevations of bridges refer to low steel elevations High-water profile depicts moximum floods of record.

record. L.B. and R.B. are abbreviations for left bonk and right bank, respectively.

L	Ε	G	Ε	N	D	
	-					

 STREAM BED
 AVERAGE LOW BANK
 FLOODWAY LEVEES, RIGHT B
 FLOODWAY LEVEES, LEFT BA
 HISTORICAL HIGH WATER


TRINITY RIVER AND TRIBUTARIES, TEXAS CLEAR FORK TRINITY RIVER AND MARYS CREEK

PROFILES

SCALE AS SHOWN U.S. ARMY ENGINEER DISTRICT, FORT WORTH JUNE 1962

PLATE 6

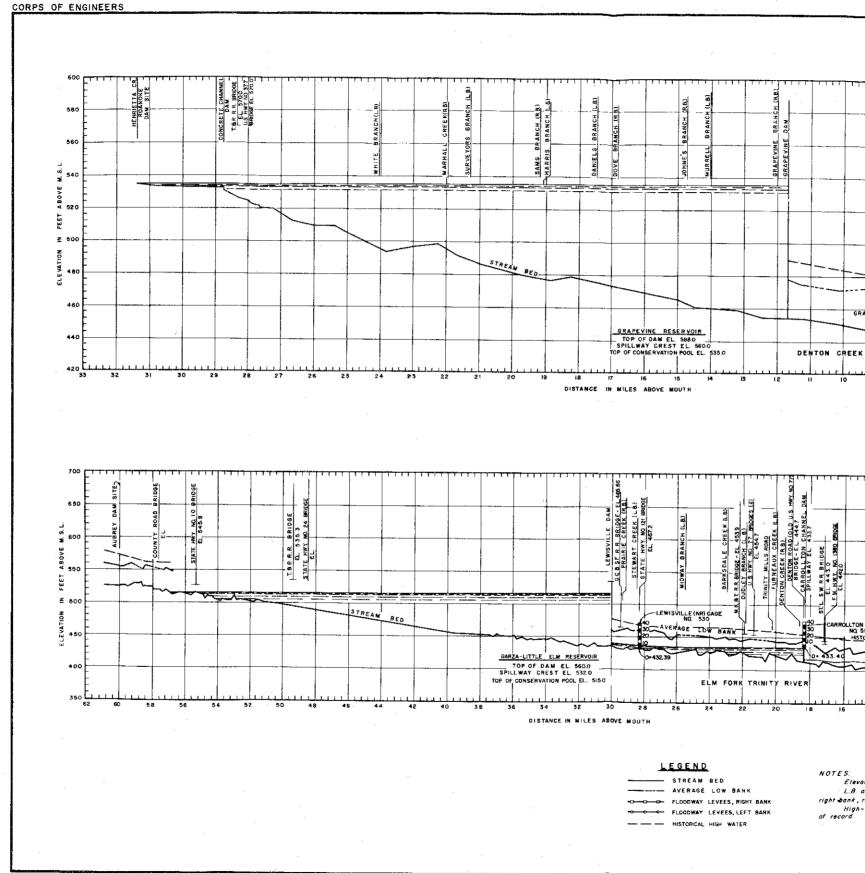
1.1

9 °Z ত blank p. (Face Π Vol. 6 Ó 52-704

PLATE 7

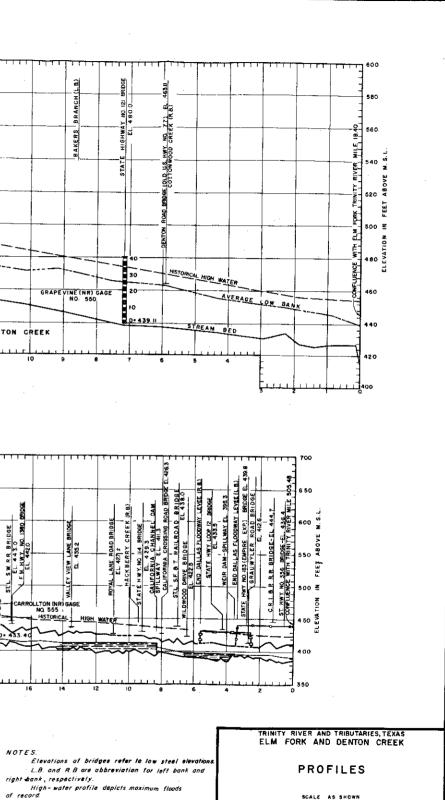
U.S. ARMY

					. · · ·
					·
					· · · · · ·
			• · · · · · · · · · · · · · · · · · · ·		
				•	· · ·
		1			
and a second					
			· .		
	2				
	· · ·				
	· · · · · · · · ·				•
		-			
				· .	
1					
A second s				- -	


?

æ,

20**0**

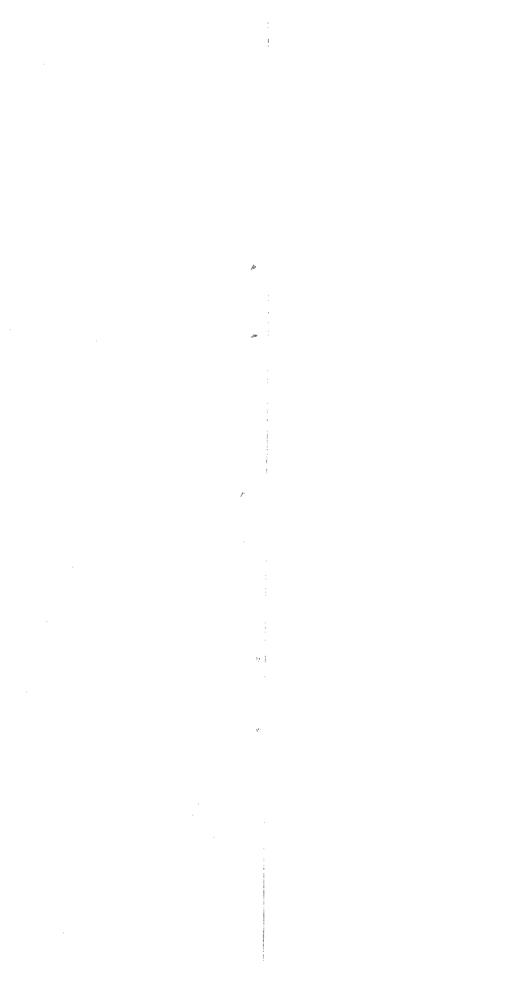

2

¢., ŕ:

Pla Bla 9 III Vol. 9

No. 6 പ് цk 65 704 52-

16

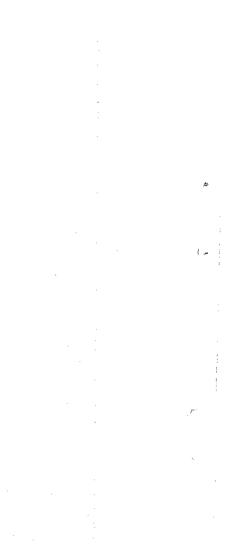

SCALE AS SHOWN S. ARMY ENGINEER DISTRICT, FORT WORTH JUNE 1962

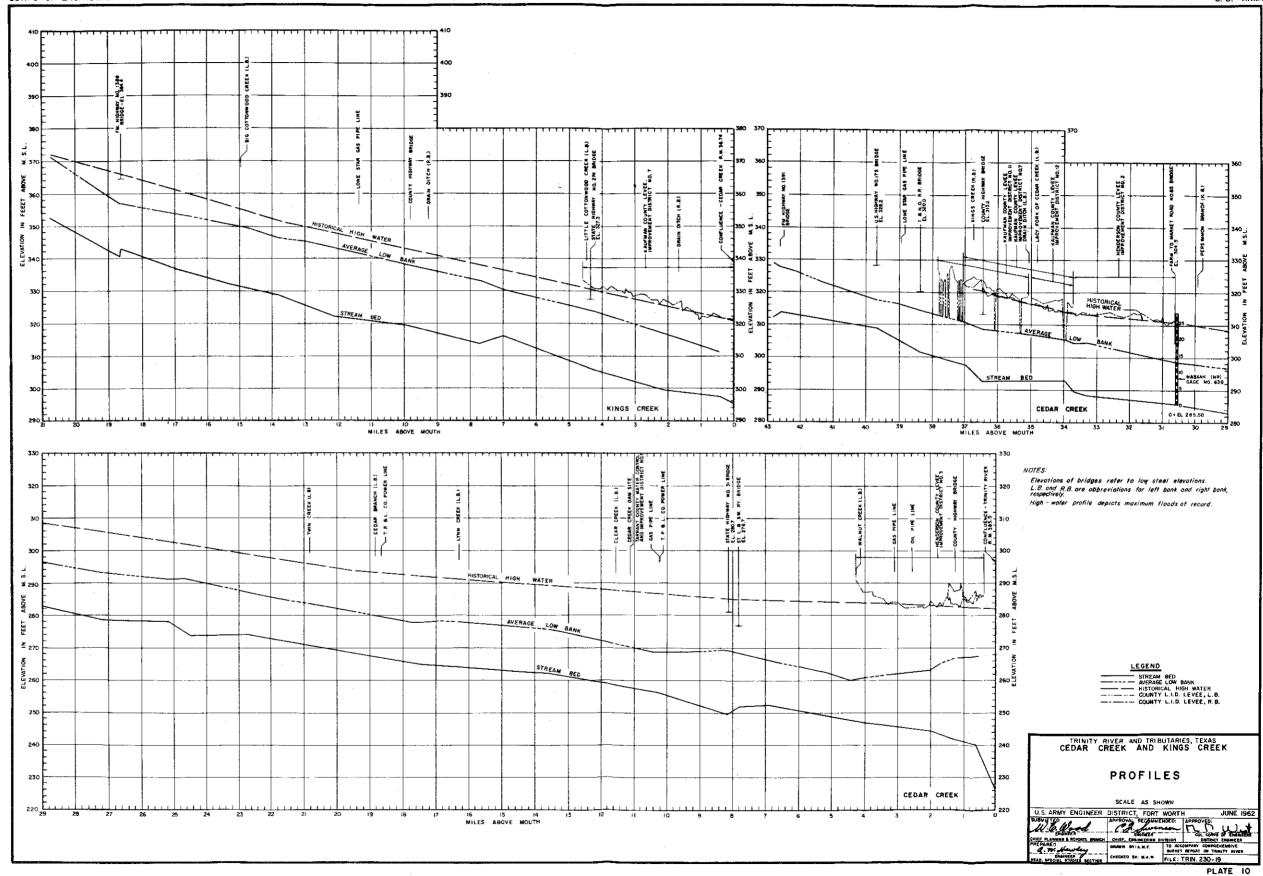

U.S. ARMY ENGINEER DISTRICT, FORT WORTH JUNE 1962 SAMUTED: APPROVAL RECOMMENDED: APPROVAL EMMAGE DEFENSION APPROVAL RECOMMENDED: APPROVAL THE AND APPROVAL APPROVAL DEFENSION APPROVAL APPROVAL DEFENSION APPROVAL THE APPROVAL APPROVAL DEFENSION APPROVAL DEFEN

PLATE 8

U.S. ARMY

.

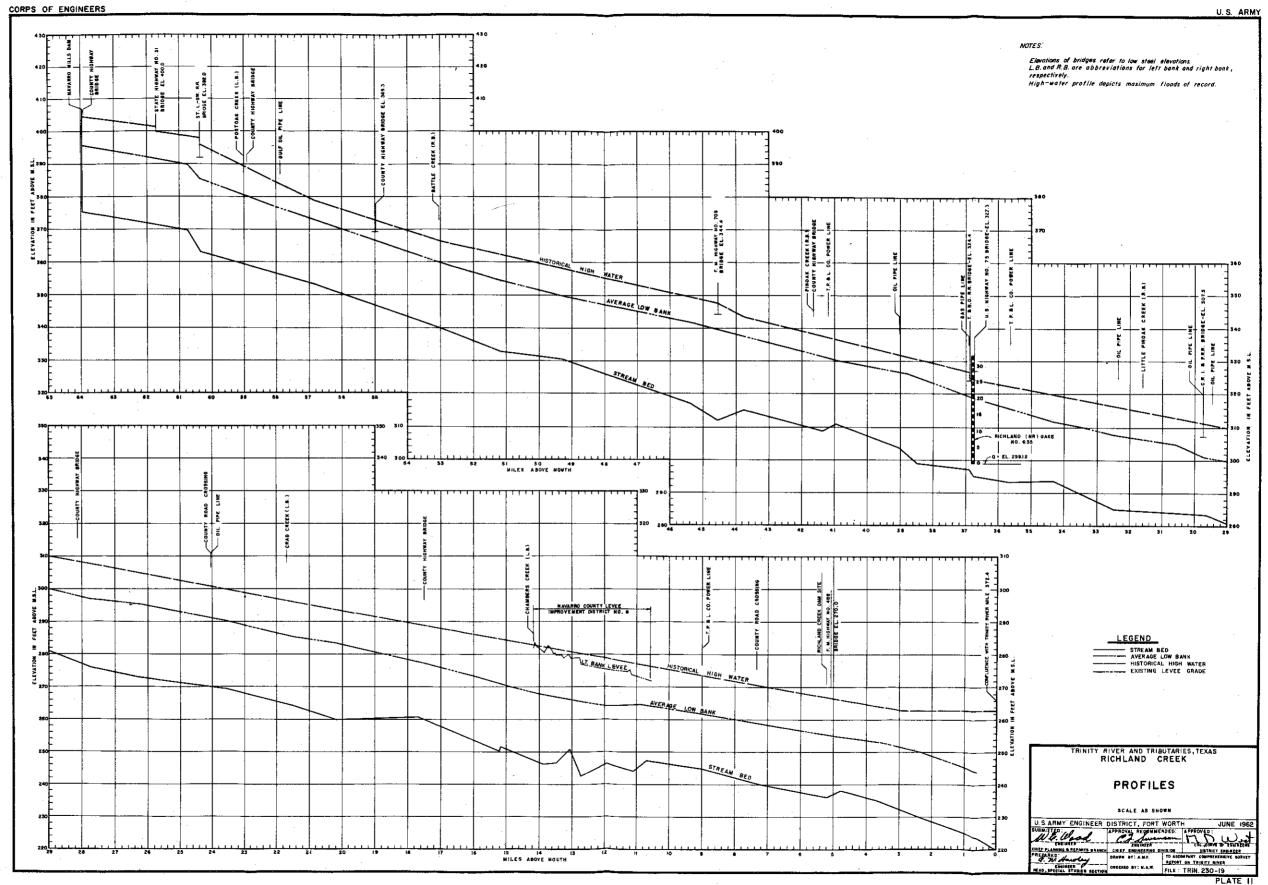



52-704 O-65 Vol. III (Face blank p. 6) No.

œ

PLATE 9

¢

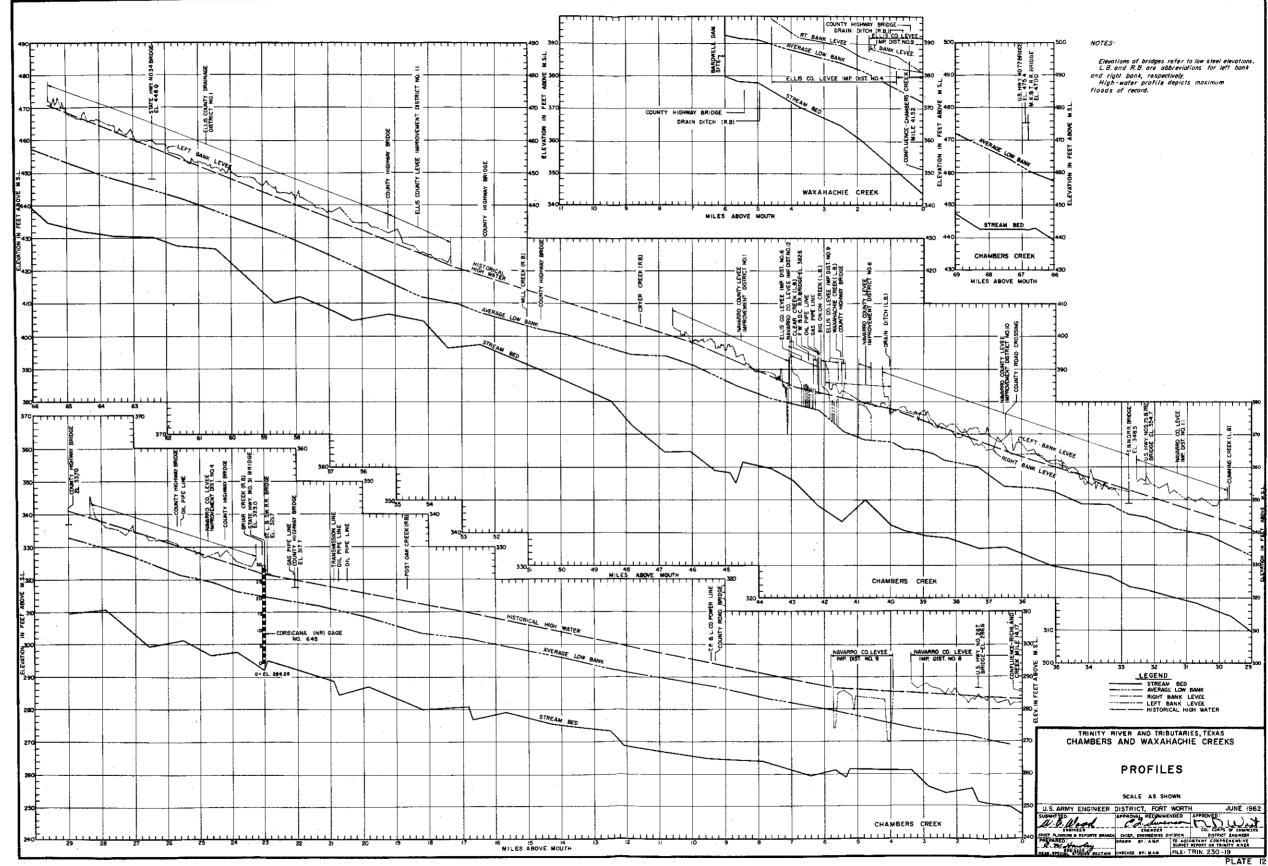

6 p. 6) No. 9 blank (Face III Vol. 0-65 52-704

CORPS OF ENGINEERS

	·.		

والمراجع والمراجع والمتحد والمتحد والمحاج والمحاج والمحاج والمحاج والمحاج والمحاج والمحاج والمحاج والمحاج والم

t.



10 No. ত ظ blank (Face III Vol. 52-

0-65 704

and a second A second secon A second secon

 $1 \leq 1 \leq n \leq 1$

52-704 O-65 Vol. III (Face blank p. 6) No.

11

.

8. EXISTING FEDERAL IMPROVEMENTS. - There are at present four Corps of Engineers flood-control reservoirs in operation in the Trinity River Basin. An additional Corps of Engineers flood-control reservoir is under construction; one has been authorized; another has been recommended: and enlargement of one of the existing reservoirs, together with improvement of its downstream channel and levees, has been recommended. The Corps of Engineers also has two existing floodway projects, one authorized and one previously recommended project providing for extension of an existing floodway, and one authorized local protection project in the In addition to the above projects, the Corps of Engineers has basin. authorization for construction of a navigation channel to Liberty and a reservoir project near the mouth of the Trinity River has been recommended for authorization for salinity control, navigation, and other water resource purposes. The lower portion of the authorized navigation channel to Liberty has been completed to the vicinity of Anahuac. A list of federal projects showing their present status is presented in the following tabulation:

Project

Status

To conception

Benbrook Reservoir	in operation				
Grapevine Reservoir	In operation				
Garza-Little Elm Reservoir (Lewisville Dam)	In operation				
Lavon Reservoir	In operation				
Navarro Mills Reservoir	Under construction				
Bardwell Reservoir	Authorized				
Wallisville Reservoir	Previously recommended				
Lavon Reservoir Enlargement and Channel					
Improvement	Previously recommended				
Fort Worth Floodway	In operation				
Dallas Floodway	In operation				
Fort Worth Floodway Extension, Part I	Authorized				
Fort Worth Floodway Extension, Part II	Previously recommended				
Big Fossil Creek Local Flood Protection	Authorized				
Navigation Project to Liberty	Authorized to Liberty. Completed to vicinity of Anahuac				
•					

Pertinent data for the existing and authorized projects are shown in tables 2 and 3. Pertinent data for the previously recommended floodway project at Fort Worth are shown in table 14, and those for the previously recommended reservoir projects are shown in table 16. Data for the authorized navigation project to Liberty are not included in these tables. The navigation project to Liberty was authorized for a 9-foot depth and 150-foot bottom width from the Houston Ship Channel to Liberty, approximate river mile 40. A portion of the channel, to about 1 mile downstream from Anahuac, has been completed. The location of each of the above projects is shown on plate 13.

7

Deservedu	:		Contrib			e - acre-feet		: Total con-	:				- ft. m.s.	
Reservoir	: Stream	:River: :mile :		The second se	reserve in FC pool	: :Conservation	: Flood : control	:trolled storag : (acre-feet)	e: Yield :_c.f.s.		.Top con-		Design wate: surface	r:Top o : dam
Benbrook	Clear Fork	15	433	15,750	· · ·	72,500	170,350 *	258,600*	10.0 (6.5)	617.0	694.0	710.0*	741.0	747.0
Grapevine	Denton Cr.	11.7	694	27,300	8,700	161,250	238,250	435,500	32.0 (20.7)	451.0	535.0	560.0	581.0	588.0
Garza-Little Elm	Elm Fork	30.0	1,658	46,000	0	436,000		1,002,900	167.0 (107.9)	435.0	515.0	532.0	553.0	560.0
Lavon	East Fork	55.9	- 777	43,600	4,200	100,000	275,600	423,400	71.0 (45.9)	433.0	472.0	490.0	496.0	.502.0
Navarro Mills	Richland Cr.	63.9	316	10,100	5,700	53,200	143,200	212,200	32.0 (20.7)	375+3	424.5	443.0	451.9	457.0
Bardwell	Waxahachie C	r.6. 0	171	6,000	2,700	29,500	79,600	117,800	8.4 (5.4)	379.8	418.0	439.0	443.7	447.5

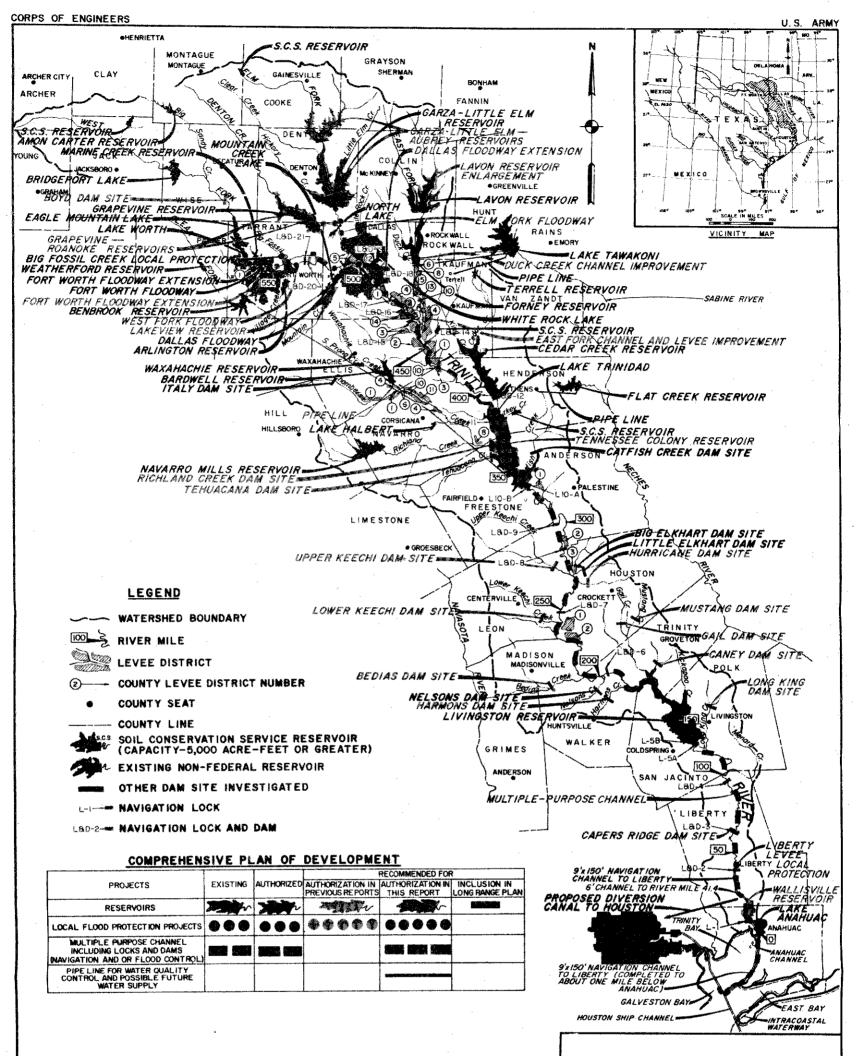
TABLE 2

PERTINENT DATA - EXISTING & AUTHORIZED CORPS OF ENGINEERS RESERVOIRS

. 00

_	:		way design flo			illway	: Flo	od-control outle	t works	Low-fl	ow outlets
Reservoir	:	Peak inflow c.f.s.	:Peak outflow : c.f.s.		: Net length a : crest (feet)		: :No.& size	: Control	: Intake :invert elev.	: : No. & size	: Intake : invert elev.
Benbrook		290,100	180,000	483,800	500#	None	1-13'ø	2-6.5'x13'gates	622.0	2~30"ø	656.0
Fapevine		31.9,400	190,700	797,800	500	None	1-13'ø	2-6.5'x13'gates	475.0	2-30"ø	500.5
arza-Little Elm		633,200	229,400	1,815,000	5 60	None	1-16'ø	3-6.5'x13'gates	448.0	2 -60"ø	481.0
evon	-	430,300	255,800	960,400	480	12-40'x28'gate	s None		•	5-36" sluices	453.0
avarro Mills		280,500	225,000	521,100	240	6-40'x29'gate	s None	· · ·		2 -36" ø	400.0
ardwell		159,300	115,700	274,400	160	4-40'x28'gate	s None		•	1-36" sluice	402.0

* The spillway consists of a 100-foot section with crest at elevation 710.0 and an additional 400-foot weir with crest at elevation 724.0. The total floodcontrol storage provided below elevation 724.0 is 170,350 acre-feet, of which 76,550 acre-feet lies below elevation 710.0. The discharge through the 100-foot notch with the pool at elevation 724.0 is 17,900 cfs.


~

NOTE: Figures shown parenthetically in yield column are existing yields in million gallons daily.

Project :	Local agency :	Stream	; pro	inage area at oject - square :Controlled:Un	miles	: River mile : limits of d: project	: Impr : chan : leng	nel :	flood,	:Min. : :free-: :board:	Left :	of levee Right bank
479				FORT WORTH								
Fort Worth Floodway	Tarrant County W.C.&I.D. No. 1	West Fork above Clear Fork	2,088	1,974	114	558.7 to 564.	7 16,3	73'	50,000	41	9,6621	15,045'
· .		Clear Fork	531	433	98	0.0 to 1.	6 6,0	יסקי	75,000	4.*	8,300'	0
		West Fork below Clear Fork	2,627	2,407	220	551.3 to 558.	7 30,0	50'	95,000	4'	14,965'	20,100'
Fort Worth Floodway- Part I	Tarrant County W.C.&I.D. No. 1	West Fork	2,070	1,974	96	564.7 to 570.	4 22,3	101	50 ,000	41	11,280'	30,840'
Big Fossil Creek Floodway	City of Richland Hills	Big Fossil Creek	53	0	53	0.0 to 3.	31 17,5	i001	52,000	5'	6,700'	0
	· · ·			DALLAS								
Dallas Floodway	Dallas County Flood Control District	West Fork - Trinity River	3,502	2,407	1,095	505.48 to 508	3.7	01	.95,000	4'	• 0	18,700'
		Elm Fork - Trinity River	2,578	2,352	226	0.0 to (3•5	0.	61,000	4 • .	20,278'	0
		Trinity River	6,080	4,759	1,321	497.37 to 505.	+8 28,7	2 100	26,000	4'	42,300'	38,800

TABLE 3

PERTINENT DATA - EXISTING LOCAL IMPROVEMENT (FLOODWAY) PROJECTS BY CORPS OF ENGINEERS

TRINITY RIVER AND TRIBUTARIES, TEXAS TRINITY RIVER

	COMPREHENSIVE PLAN OF DEVELOPMENT
SCALE IN MILES 5 0 5 10 13 20 25	U.S. ARMY ENGINEER DISTRICTS, Fort worth and galveston

PLATE 13

9. The Soil Conservation Service, Department of Agriculture, has been authorized by Congress to undertake a program of runoff and waterflow retardation and soil erosion prevention in the Trinity River Basin. As of 1961 a total of 288 detention structures had been constructed in the basin as part of this program. Data on the complete program and its effect are presented later in this appendix (paragraphs 69, 94, 95, and 135).

10. EXISTING NON-FEDERAL IMPROVEMENTS. - There are 18 non-federal reservoirs existing or proposed for immediate construction in the Trinity River Basin with an individual capacity greater than 5,000 acre-feet and 79 that have a capacity of less than 5,000 acre-feet each. These reservoirs are principally for municipal and industrial water supply and for non-consumptive cooling purposes at power generating plants. Marine Creek Reservoir, constructed by the Tarrant County Water Control and Improvement District No. 1, is the only non-federal reservoir with over 5,000 acre-feet capacity that contains allocated flood-control storage. Of the 15,400 acre-feet of storage in the reservoir, 11,600 acre-feet are reserved for flood control. Other pertinent information on the 18 reservoirs is listed in downstream order in table 4. The reservoirs are shown on plate 13.

11

	:	: Location		: Contrib.	: Stora	e capacity -	acre-f	eet	:Reservoir elev.;	<u> </u>	: 2020
Name	: Ownership :	: : : Stream :	River mile	: D.A. :(eq. mi.)	: :Sediment:	Conservat ion	: Flood :Control		:at maximum con-: :trolled storage:		: Yield ; (cfs)
Amon Carter	City of Bowie	Big Sandy Creek	31.0	103	5,100	14,800	0	19,900	920.0	1956	0 (0)
Bridgeport	Tarrant County WC&ID #1	West Fork Trinity	626.2	1,114	37,700	233,200	0	270,900	826.0	1932	78
Eagle Mountain	Tarrant County WC&ID #1	West Fork Trinity	583.3	1,974	39,100	143,500	0	182,600	649.0	1934	(50.4)
Lake Worth	City of Fort Worth	West Fork Trinity	572.1	2,069	2,100	31,600	0	33,700	594.3	1913) 27) (17.5)
Marine Creek	Tarrant County WC&ID #1	Marine Creek	4.7	10	450	3,350	11,600	15,400	715.0	1957	0 (0)
Weatherford	City of Weatherford	Clear Fork Trinity	39.8	106	6,300	13,100	0	19,400	896.0	1956	1 (0.6)
Arlington	City of Arlington	Village Creek	8.0	136	10,100	35,600	0	45,700	550.0	1957	(0.8) 9 (5.8)
Mountain Creek	Dallas Power & Light Co.	Mountain Creek	4.1	289	20,000	4,200	0	24,200	457.0	19 36	~~ (1
North Lake	Dallas Power & Light Co.	South Fork - Grapevine Creek	0.5	2.3	1,100	16,000	0	17,100	510.0	1957	(0) (0)
White Rock	City of Dallas	White Rock Creek	12.0	99	7,400	4,900	0	12,300	457.5	1911	3 (1.9)
Trinidad	Texas Power & Light Co.	(2)	-	-	0	6,200	0	6,200	285.0	1925	(1.9) 0 (0)
Livingston (3)	City of Houston and the Trinity River Authority	Trinity River	129,2	16,606	51,600	1,698,400	0	1,750,000	131.0	(3)	1950 (4 (1260.3)
Anahuac	Chambers and Liberty Counties Navigation Dist.	(5)	-	129	0	35,300	. 0	35,300	-	1953	20.7 (13.4)
Forney (3)	City of Dallas	East Fork Trinity	31.8	1,074	24,000	466,000	0	490,000	434.5	(3)	91 (58-8)
Terrell	City of Terrell	Muddy Cedar Creek	<u>9</u> .8	13	1,200	7,100	0	8,300	503.0	1956	(0.6)
Cedar Creek (3)	Tarrant County WC&ID #1	Cedar Creek	11.1	1,013	70,900	608,000	° O	678,900	322.0	(3)	268 (173-2)
Waxahachie	Ellis County WID No. 1	South Prong - Waxabachie Creek	0.5	31	2,100	11,400	0	13,500	531.5	1957	(1,9) (1,9)
Halbert	City of Corsicana	Elm Creek	0.7	12	1,170	6,250	0	7,420		1924	0 (0)

PERTINENT DATA - EXISTING NON-FEDERAL RESERVOIRS WITH CAPACITIES GREATER THAN 5,000 ACRE-FEET

(1) Operating level of reservoir between elevations 450.0 and 457.0.

2) Off-channel reservoir, on left bank of Trinity River just upstream from mouth of Cedar Creek.

(2) Off-channel reservoi
(3) Under construction.
(4) Combined yield from 2

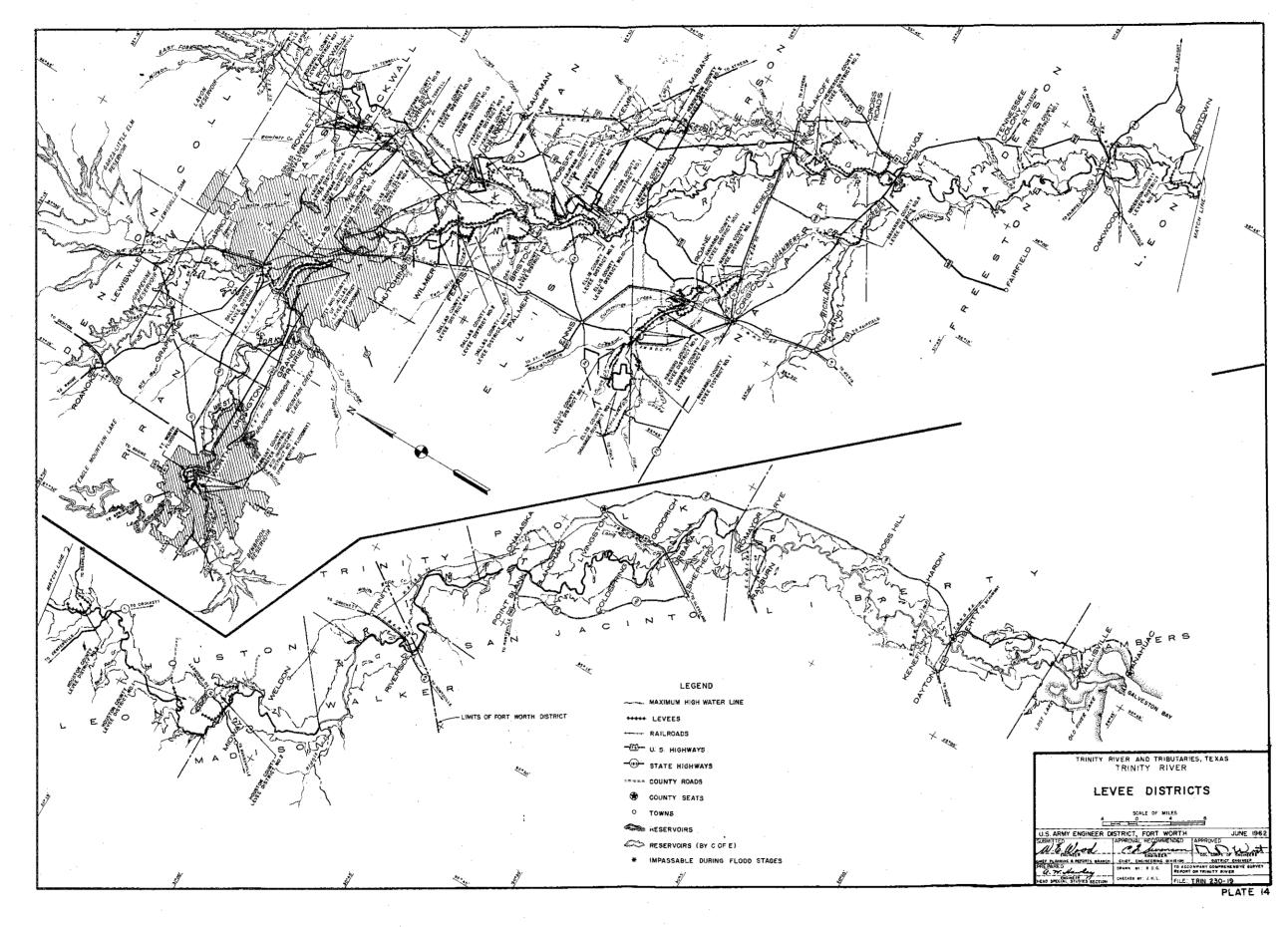
4) Combined yield from Livingston and Wallisville Reservoirs operated as a system including return flows.

See table 16 for other pertinent data on Wallisville Reservoir.

(5) Off-channel reservoir - Turtle Bay.

NOTE: Where no yield is indicated for 2020 conditions some yield would be available for a portion of the critical period.

Figures shown parenthetically in yield column are 2020 yields in million gallons daily.


TABLE 4

11. The 40 organized levee improvement districts in the Trinity River Basin that are active have approximately 341 miles of levees. The levees provide varying degrees of protection to about 180,500 acres of land along the Trinity River and its tributaries. The districts are shown on plate 14, and pertinent data concerning them is listed in table 5. Levees of the Tarrant County Water Control and Improvement District No. 1 and levees of the City and County of Dallas Levee Improvement District have been incorporated in the Corps of Engineers Fort Worth Floodway and Dallas Floodway projects.

13

.

.....

52–704 O–65 Vol. III (Face blank p.

14)

· . »;...

and the second second second second

TABLE 5

							TABLE		
Leves Improvem County :	ent District Dist. Ro.	Strenzi	Benk	: River : From	≡ile To	: _: Length : : (miles)	Overtoppin stage (feet)	: Approx. area: : protected : : (sores) :	Resarks
Tarrant(1)	1	Clear Fork and West Fork	RAL	0.0 551-7	2.3 565.4	12.31	25	1,710	Ovartoyyed by 1949 flood. Repaired by Coff. Strengthaned by Coff 1950-1957. (1) Terrent County Water Control & Improvement District No. 1 (Port Morth)
Dellas(2)	-	Trinity River and West Fork	RAL	498.0 505-5	505.5 509.0	14.33	Ż	9,520	Never overtopped. Repaired 1945-1946 by Coff; strengthened by Coff 1950-1959. (2) City and County of Balles J.J.D. (Balles)
Dallas	5	Trinity Siver and Rim Fork	R&L		505.5 5.6	14.61	52	5,000	Northwest overtopped in 1942; repaired by CofE in 1948. Strengthened by CofE 1950-1959. (Dallas)
Dallas	12	Trinity River	L		496.2	0.20	47	59	Sendbagged low areas in 1949 flood. (Dallas)
Dellas	3	Trinity River	R	486.8	491.6	9.75	-	(3,650)#	Lavae never completed.
Dallas	1	Trinity River	R	474.4	481.0	9.55	45	3,366	Overtopped by 1942 and 1949 floods. Repaired by Coff after 1949 and 1957 floods. Local interest raised leves 1958. (Dallas)
Dallas	2	Trinity River and Cottonwood Creek	R	471.1	474.4	9.00	45	2,080	Overtopped by 1935 and 1942 floods. Repaired by local interests. Overtopped by 1949 and 1957 floods. Repaired 1944, 1948, 1949, 1957 & 1958 by Coff. (Ballas)
Dellas	14	Trinity River and Ten Mile Creek	Ř	468.3	471.0	5.18	45	2,400	Overtopped by 1935 and 1942 floods. Repaired by local interests. Repaired by DOE 1945. Overtopped by Tan Mile Greek 1948 and 1949 - mo damage, levee raised by local interests. (Pailles)
Dallas(3)	4	Trinity River	L	463.0	484.4	16.08	48	17,700	Never overtopped. Repaired 1948 by Coff. (3) Dellas County Hois D'Arc Island L.I.D. No. 4. (Dallas)
Elis	3	Trinity River and Red Oak Crask	R	497-3	468-3	15.04	47	6,229	Overtopped by 1942 flood. Repaired by local interests. Repaired by CofE 1946.
Elle	. 5	Trinity River	R	444.9	456.3	16.80	40	11,100	Overtopped by Red Oak Creek 1958, repaired by Coff 1959-1960. (Dallas) Overtopped by 1942 flood. Repaired by local interasts. Broached by 1945 flood.
Kaufman	1	Trinity River	L	442.4	452.8	6.78	50	7,380	Repaired by Goff 1945, 1946, 1947. (Rosser) Demaged by 1942 flood. Repaired by local interests. Damaged 1945. Repaired by
	-		-						Dessaged by 1942 (2000). Repaired by local interests. Dessaged 1945. Repaired by Coff 1945-1948. (Rosser)
Benderson Kilis and	1	Trinity River Trinity River	LR		442.4 435.6	10,12 4,17	40	4,216 1,840	Damaged by 1945 flood. Repaired by CofE 1945-1948. (Rosser) Never overtopped. (Rosser)
MAVATTO	3				435.6 432.8				
Renderson	3	Trinity River and Gedar Greek	L	378.3	389 6 4 3	28.26	47 25	17,000	Overtopped by 1942 and 1945 floods. Repaired by Coff. (Trinidad, Mabank)
Anderson	ĩ	Trinity River	L	· · · ·	334-9	5.53	22	2,583	Overtopped by 1942 and 1945 floods. Repaired by Cors 1944-1945. (Long Lake)
Anderson	2	frinity River	L		294.4	6,90	48	5,740	Repaired by local interests 1951. Overlogged by 1957 flood. Repaired by local interests. Overlogged by 1953 flood. Repaired by Coff. Local interests raised gruin of levee. (Long Lake)
Houston	3	Trinity River	L L		275.0 247.4	10.03	52 48	5,140 7,380	Repaired by CofE 1946, 1948, and 1960. (Long Lake) Damaged by 1942 flood. Repaired by local interests. Overtopped with no damage
HOU 6201	1	Trinity River	Ň	\$39.2	<41.44	9.10	40	1,300	1957. Drainage structure repaired by Coff 1959-1960. (Midway)
Nonston Ronkwall	2	Trinity River	L	226.2	233.1 46.7	20.47	49 22	9,626	Mever overtopped. Local interests installed pumps and strengthaned lavee 1959-1960. (Midway)
Dellas	1 6	Bast Fork East Fork and	Ľ. R	40.1 31.1	40.7 38.9	3.90 12.88	20	2,875	Damaged by 1942 and 1945 floods. Repaired by Coff. (Rockwell) Repaired by Coff 1945, 1947, 1948, 1949 and 1958. (Rockwell)
Kaufman	6	Rowlett Greek Rest Fork and Duck Greek	R	28.9	30.9	2.50	20	663	Overtopped by 1935, 1938, 1942 and 1949 floods. Repaired in 1945 à 1949 by Coff. (Bachvell)
Kaufmen	в	East Fork	R	26.5	28.8	3-79	20	876	Overtopped by 1942 flood. Repaired by local interests. Repaired by Coff 1944 & 1945. (Rockwall)
Kaufman	15	Bast Fork and Mustang Creek	L	15.2	20.1	5.16	24	2,745	Damaged by 1942 flood. Repaired and reised by local interests. Overtopped by 1957 and 1958 floods. Repaired by Coff. (Crandell)
Kauften	13	East Fork and Mustang Creek	L	12.3	15.2	6.38	-	926	Damaged by 1932 flood. No repairs made. Demaged by 1957 and 1958 floods. Repaired by Coff.
Kaufnan	10	East Fork	я	11.3	15.4	2.14	21	1,499	Overtopped by 1944, 1945 & 1946 floods. Repaired by Coff. Overtopped by 1950, 1957 an 1955 floods. Repaired by Coff. Local interests related laves grade 1960. (Crandall)
Kaufman	5	East Fork and Buffalo Creek	RSL.	8.0	11.0	6.63	21	2,133	Overtopped by 1935, 1945, 1946, 1957 and 1958 floods. Repaired by Coff. (Grandall)
Kaufman	4	Trinity River and East Fork	r	453.0 0.4	458.3 8.0	26.00	38	12,130	Overtopped by 1935 flood. East Fork by Jen. & May 1949 floods. May damage repaired by Coff. Overtopped by 1957 and 1958 floods. Repaired by Coff. (Resser, Dramidall)
E1118(4)	1	Charbers Greek	L	55.2	65.5	8.00	-	5,936	Damaged by 1978 flord. Repaired by local interests. (4) Ellie County Drainage District Ho. 1.
Ellis	11	Chambers Creek	Ŀ	53-3	55.2	2.00	-	1,500	Continuation of Elis No. 1
Navarro	1 12	Chambers Crack	L R	43.1 42.3	46.6 43.1	3.88 0.85		1,000 (1,094)*	Damaged by 1944 and 1945 floods. Repaired by Coff. District discolved. Levee no longer maintained.
Kilis	4	Wateshachie and	R	1.6	3.0	8.69		900	Overtopped by 1944 and 1945 floods. Repaired by Coff.
Zlis	6	Onion Greeks Chambers and Onion Greeks	L	48.2	43.0	1.58	-	(257)*	District not ministeinel.
XLLis	9	Chambers and Waxahachie Creeks	L	41.4 0.0	42.1 1.6	8.96	•	(566)*	District not meintained.
Neverto.	6	Chambers Greek	R&L-	40.6	41.0	3.25	• .	1,462	Loft Bank levee partially washed away.
Maverro	10	Chambers Cresk	RAL	32.8	40.3	13.98	25	7,000	Demaged by 1944, 1945, 1949, 1952, 1957 and 1958 floods. Repaired by Corf and local interasts. (Coreinana)
MAVETTO	ц	Chambers and Cumins Creeks	L	29.8	32.6	5. 79	25	3,000	Demaged by 1944 flood. Repaired by Coff. Demaged by 1952, 1957, and 1958 floods. Repaired by Local interests. (Corsicana)
Navarro Navarro	4	Chambers and Briar Creeks Chambers Creek	R	23.3 3.9	28.3 5.6	8.69 1.63	25	2,608 (575)*	Demagni by 1944, 1945 and 1995 floods. Repaired by Coff. Damagnd by 1952 and 1997 flooring maximum by local interests. Local interests related loves grade 1996. District not maximized.
Bavarro	9 8	Chambers Creek Richland and	L	3-9 10-6	14.2	6.55	85	3,100	Dimetrice new mainteneed. Demaged by 1944, 1945, 1948, 1957, 1958 floods. Repaired by Coff. (Corricana)
		Chambers Creeks		0.0	3.4				
Kaufman Kaufman	ц 7	Cedar Creek Cedar and Kinge	L R	35.1 33.7	37.8 37-1	4.22 6.39	- 23	(822)* ' 3,800	District not maintained. Overtopped by 1945 and 1957 floods. Repaired by Coff. (Mabank)
Kaufman	12	Creeks Cedar Creek and	L	33.7	31.6 35.0	3.50	-	(1,070)*	District not soundered.
		Lacy Fork							
Henderson	2	Cedar Greek	R	30.6	33-7	1.84	23	1,282	(Wertopped by 1945 and 1957 floods. Repaired by Coff. (Mabank)

* Since districts are not maintained, acreages have been amitted from area protected as given in text. ** Referred to mearest official gage; mame of gage shown in parentheses in "Nemarks" column.

,

12. CLIMATE. - The climate over the basin is generally mild with the distinctive features of a large range of annual and daily temperatures. In summer, the days are generally hot and the nights moderately warm. Snowfall and sub-freezing temperatures are rare in the lower section of the basin near the Gulf, but are experienced occasionally during the winter season in the more northerly parts of the basin. Generally, the winter temperatures are mild, with occasional cold periods of short duration resulting from the rapid movement of cold high-pressure air masses from the northwestern polar regions and the continental western highlands.

13. There are no important topographic features affecting climate in this area. The general elevation of the basin increases gradually from a few feet above sea level at Galveston Bay to approximately 1,250 feet above mean sea level in the extreme headwaters.

14. Table 6 gives climatological data relative to temperature, growing season, wind velocity, and humidity at representative United States Weather Bureau stations in and adjacent to the Trinity River Basin. The stations in this table are arranged in geographical order from the headwaters downstream in order to show the gradations of climate. There is a general increase in mean annual temperature, length of growing season, and relative humidity from the headwaters to the Gulf.

••••••••••••••••••••••••••••••••••••••	:Years	of: Tem	erature	in degr	ees Fahre	nheit
	:comple		Average:			•
Station	: reco	rd : Mean	maximum:	minimum	:Maximum	:Minimum
	: (1) :annual	: daily :	daily	:recorded	recorded
	(0	(7 7 0			10
Gainesville	69		77.3	53.3	114	-12
Jacksboro	18		79.0	53.0	112	- 3
Bridgeport	24		76.8	50.2	115	- 1
Graham (2)	53		77.2	51.8	117	- 8
Denton (Exp Sta			76.5	53.1	113	- 3
McKinney	43		76.0	54.0	118	- 7
Dallas	79	66.5	76.6	56.4	111	- 3
Fort Worth	64	66.0	76.2	55.8	112	- 8
Weatherford	70	64.0	76.1	51.9	113	
Cleburne (2)	52		79.0	54.2	114	- 3
Waxahachie	54		78.1	52.9	115	- 9
Corsicana	80		78.0	55.2	113	- 7
Mexia (2)	54		75.8	56.2	112	- 2
Palestine	66		75.7	56.7	108	- 6
Crockett	24		79.4	54.8	114	0
Huntsville	75		77.8	58.2	107	- 2
Liberty	56		79.9	58.1	108	. 8
Anahuac (2)	28		77.3	59.3	110	11
Galveston (2)	89		76.0	64.2	101	
Houston (2)	73		78.5	61.4	108	5
nouston (2)	5	1010	1017	02.0.	200	
:Growing	g season	*				****
	erage	Wind Ve.	Locity: R	Relative	humidity	in percent
	ngth	:Average:F	astest:			
· · · · · · · · · · · · · · · · · · ·	ays)	: mph :	mile :6	a.m.:No	on:6 p.m.	:Midnight
						· · · · · · · · · · · · · · · · · · ·
Dallas	243	10.8	77		<u>53</u>	71
Fort Worth 2	252	12.3	73		53 53	70
Palestine 2	249	7.4	47		60 7	-
Galveston (2)	341	10.9	91		70 75	81
	309	10.1	84	89 6	68 68	86
· · ·						

(1) All data as of December 31, 1959.

(2) Station outside of basin.

15. HUMIDITY.- The relative humidity over the basin is generally moderate, decreasing from humid in the lower portion nearest the Gulf to subhumid in the northwestern extremity of the basin. Rélative humidity observations have been made by the United States Weather Bureau at Dallas and Fort Worth, in the upper part of the basin; at Palestine, near the eastern border of the central section; and at Galveston and Houston, near the lower part of the basin. Table 6 shows the average humidity for each of these stations.

16. WINDS.- The prevailing winds are from the south or southeast during the greater part of the year. Dry southwesterly winds are experienced occasionally. During the winter months, December, January and February, the high-pressure air masses approaching from the northwest, cause the prevailing wind direction to shift to the north. Wind movements are strongest during the months of March and April; and the lightest wind movements generally occur during July, August, and September. The maximum published wind velocity of 91 miles per hour occurred at Galveston in August 1915, during a severe tropical storm. In general, wind movements over the basin are relatively mild. The average annual wind velocities are: 10.9 miles per hour at Galveston, near the lower extremity of the basin; 7.4 miles per hour at Palestine, on the eastern border; and 10.8 and 12.3 miles per hour at Dallas and Fort Worth, respectively, in the upper section of the basin.

17. TEMPERATURE. - The mean annual temperature varies from 69.0 degrees at Liberty, in the lower part of the basin, to 63.5 degrees at Bridgeport in the northern part of the basin. The mean annual temperature over the basin is about 66 degrees. There is a range in mean monthly temperatures of about 35 degrees between the warmest month, July, and the coldest month, January. Subzero temperatures have been recorded over the northern section of the basin extending as far south as Huntsville. Temperature ranges are rather narrow or oceanic near the coast; but are wide or continental in character in the interior of the basin.

18. GROWING SEASON.- The growing season between killing frosts normally extends from the latter part of March to the early part of November in the interior of the basin, and from the early part of March to the latter part of November near the coast. The growing season averages 232 days in the northern part of the basin, 277 days in the southern part.

19. SNOWFALL. - Snowfall is generally light over the basin. It is occasional in the northern part and rare in the southern area near the coast. It comes at infrequent intervals and melts rapidly. Seasonal accumulations are not experienced in this basin, and snowfall therefore does not constitute a flood hazard. 20. PRECIPITATION.- Precipitation in the Trinity River Basin has been observed officially since 1849, when a station was established by the United States Weather Bureau at Fort Worth, Texas. However, only a few stations were in existence prior to the year 1890. A total of 109 stations have been established in this basin, but at the present time there are only 88 stations in operation. The remainder have been abandoned or their records combined with nearby stations. Of the 28 active automatic recording stations within the basin, only 2 are first-order stations. These are located at Fort Worth and Dallas in the upper part of the basin. Palestine, located in the middle basin, was discontinued as a first-order station in 1953 but the recording precipitation record is continuous to date. Plate 15 shows the locations and type of record of the rainfall stations on and adjacent to the basin.

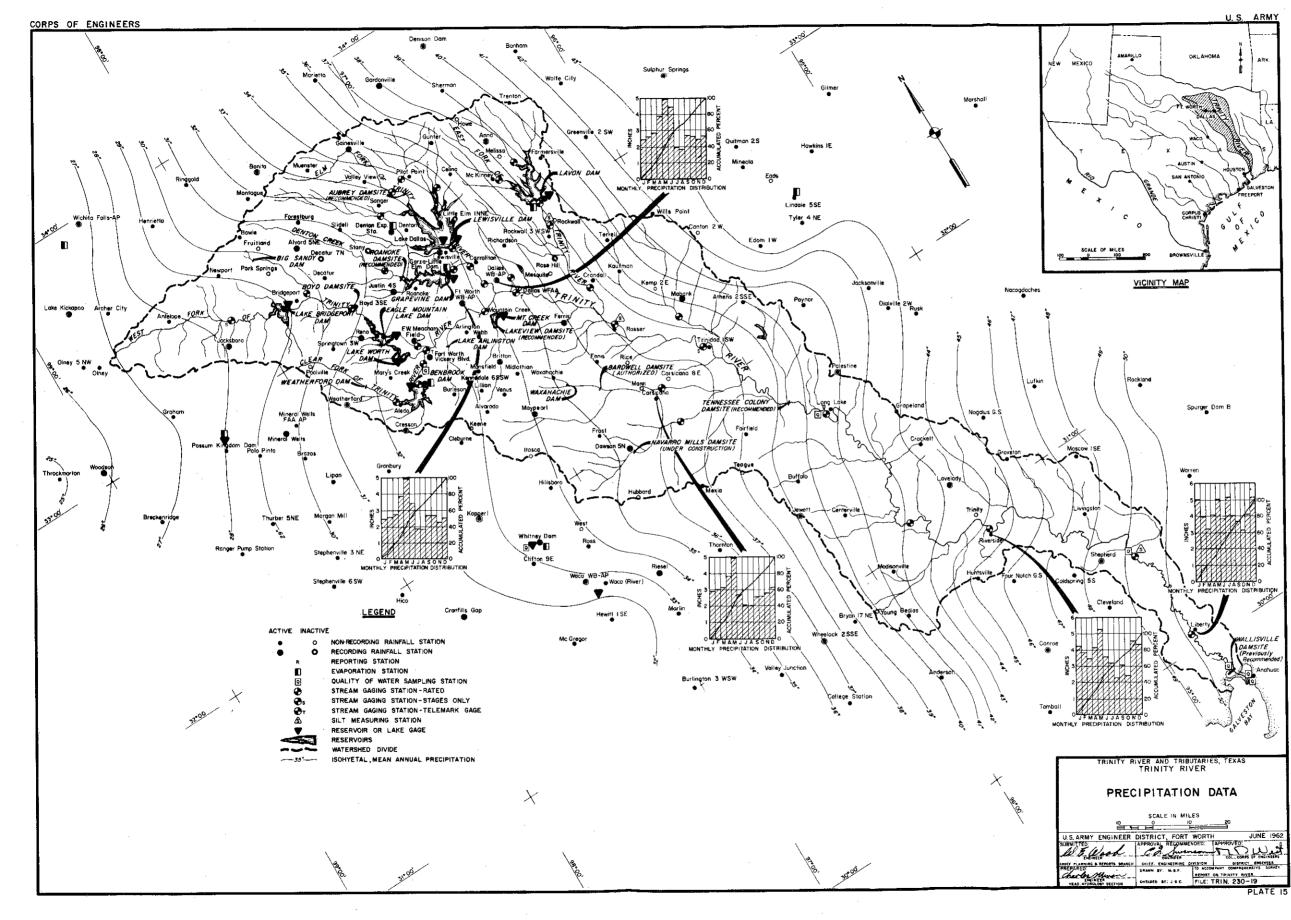

21. ANNUAL RAINFALL. - Mean annual precipitation over the basin ranges from a minimum of about 27 inches in the northwestern extremity of the basin to a maximum of 51 inches at the lower end. The average annual precipitation over the basin is about 38 inches. Plate 15 shows isohyetals of mean annual precipitation over the basin, the mean monthly distribution of rainfall at Fort Worth, Dallas, Corsicana, Riverside, and Liberty. Table 7 shows the maximum, minimum, and United States Weather Bureau published normal annual precipitation at stations in and near the basin.

TABLE 7

<u></u>	: Number : : complete :	An	nual prec:	ipitation
Station	: years : : of record :	: Maximum :	Minimum	:USWB published : normal
	:through 1959:	(inches):	(inches)	: (inches)
Anahuac (l) Bridgeport	47 52	98.08 54.55	26.54 15.56	53.02 29.11
Corsicana	83	61.50	19.36	35.92
D allas Fort Worth	72 64	59.53 51.03	18.81 17.91	34.42 33.69
Gainesville	65	52.79	20.37	34.42
Galveston (l) Graham (l)	88 65	78•39 48•99	21.40 14.12	45.19 27.0'
Huntsville	69	69.79	17.93 29.63	45.6
Liberty McKinney	55 50 78	85.08 76.12	20.76	37.48
Palestine Riverside	78 56	62.48 65.41	23.98 27.32	40.54 44.22
Waxahachie Weatherford	57 68	54.82 55.88	20.80 16.66	35.05 31.54

PRECIPITATION DATA

(1) Station outside of basin.

.

52-704 O-65 Vol. III (Face blank p.

20)

22. RAINFALL INTENSITY. - Periods of excessive precipitation have been experienced over all parts of the basin. Generally, the highest 24-hour and monthly periods have occurred during major storms. However, there are some instances of heavy precipitation resulting from local thunderstorms. Examples of the latter type of precipitation are the 14.21 inches of rainfall that was observed at Kaufman on August 22-23, 1908, and the 9.18 inches observed at Dallas on August 26-27, 1947. For a further discussion of thunderstorm rainfall see paragraph 31. Maximum 24-hour and maximum monthly precipitation for representative stations in and adjacent to the basin are given in table 8.

TABLE 8

	: Years of	:Maximum 24-hour:	
Station	:complete record	d: rainfall (1) :	rainfall (l)
	: through 1959	: (inches) :	(inches)
· / \	1		
Anahuac (2)	47	15.87	20.03
Bridgeport	52	9.07	16.23
Corsicana	83	7.96	17.76
Dallas	72	9.18	13.89
Fort Worth	64	9.57	17.64
Gainesville	65	10.07	16.40
Galveston (2)	88	14.35	26.00
Graham (2)	65	5.80	12.54
Huntsville	69	7.78	19.00
Liberty	55	10.22	22.70
McKinney	50	7.55	34.85
Palestine	78	12.06	17.25
Riverside	56	7.50	17.25
Waxahachie	57	10.80	15.03
Weatherford	68	6.75	27.94

MAXIMUM 24-HOUR AND MAXIMUM MONTHLY PRECIPITATION

(1) Published records. Unofficial observations indicate published records have been exceeded in some areas.

(2) Station outside of basin.

The United States Weather Bureau maintained three recording raingaging stations (Fort Worth and Dallas in the Upper Trinity River Basin and Palestine in the middle basin) from which data are obtainable regarding intensities of rainfall for short periods. In addition there are two such stations (Houston and Galveston) near the mouth of the Trinity River, both outside of the basin, which give some indication of rainfall intensities on the lower Trinity River Basin. Table 9 shows the maximum published precipitation at these 5 stations for durations of 24 hours or less.

: <u>Total precipitation in inches (1)</u>													
Station	: 1-hour :	2-hour	: 3-hour	: 6-hour	: 12-hour	: 24-hou:							
Fort Worth	3.35	5.59	5.99	6.93	9.04	9.57							
Dallas	3.39	4.77	6.24	8.00	9.07	9.18							
Palestine	3.24	4.31	4.64	5.25	6.21	12.06							
Houston	4.36	6.05	6.62	8.67	10.02	10.83							
Galveston	5.31	7.58	8.78	11.79	12.75	14.35							

RAINFALL INTENSITIES AT FIRST-ORDER STATIONS IN AND NEAR THE TRINITY RIVER BASIN

(1) Published records. Unofficial observations indicate published records have been exceeded.

23. EVAPORATION.- An analysis was made of evaporation records as presented by the United States Study Commission for various reservoirs in the Trinity River Basin for the 1941-1957 period. As a result of the analysis it was concluded that such records were reasonable estimates and were therefore adopted for use in this report. These records were based on available data at several stations in and near the basin. Seven of the stations in and adjacent to the basin have comparatively long records - Denton in the northen part of the basin; Troup (Lindale) and Nacogdoches, 30 and 40 miles, respectively, east of the basin; College Station and Temple, 20 and 70 miles, respectively, west of the basin; and Beaumont and Angleton, 40 miles northeast and 60 miles southwest, respectively, of the mouth of the Trinity River. The above stations were used to determine evaporation at the reservoirs for the 1924-1940 period not covered by United States Study Commission data. Table 10 gives pertinent data for the seven evaporation stations.

Station	: : : Period :				1: Average :annual net :evaporation : loss from : reservoir : surface : (inches)
		<u></u>			
Denton	1917-1959	32.05	56.60	53.22	21.17
Troup (Lindale)	1915 - 1959	44.59	51.86	48.73	4.14
Nacogdoches	1915 - 1947	49.32	44.67	41.99	(3)
College					
Station	1916-1955	39.15	55.61	52.28	13.13
Beaumont	1917-1959	54.21	48.31	45.42	(3)
Angleton	1915 - 1959	47.73	45.12	42.42	(3)
Temple	1915 - 1959	33.62	58.53	55.02	21.40

EVAPORATION DATA

NOTE: All Texas Agricultural Experiment Stations.

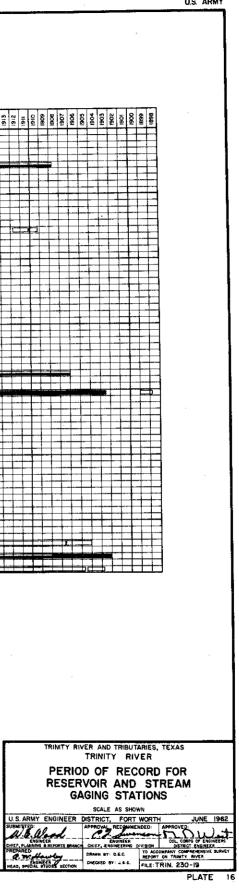
(1) Corresponding to the period for which evaporation records are available.

(2) Estimated at 94 percent of pan evaporation.

(3) Rainfall exceeds evaporation for average conditions.

24. Evaporation is greatest in the higher and less humid upper portion of the basin and least in the humid area near the coast. Approximately two-thirds of the annual evaporation normally occurs during the six warm months, April through September, and practically the entire net evaporation loss occurs during the months of June, July, August, and September.

25. RIVER STAGE AND DISCHARGE. - The observation of Trinity River streamflow began on October 1, 1898, when the United States Geological Survey established a gage at the Turtle Creek pumping plant in Dallas. This gage was abandoned on December 31, 1899. No discharge records were published for this period. In 1903 the United States Weather Bureau established gages at Dallas, Riverside, and Liberty. Subsequently, the Weather Bureau established gages at Bridgeport, Fort Worth, Carrollton, Trinidad, and Oakwood (Long Lake). Prior to 1939 the United States Geological Survey had established a total of 22 streamflow gages on the Trinity River and its tributaries. The greatest expansion in streamgaging activity occurred during the period 1923-1925, when 12 gages were installed. In 1939, the Geological Survey installed 4 new gages on the Trinity River Basin in cooperation with the Corps of Engineers. Two of these gages were at the location of old gages that had been abandoned, and two were at new locations. Reservoir gages and inflow and outflow gages have been established in connection with the construction of Corps of Engineers reservoirs in the Upper Trinity Basin. For the period 1903-1959 stage and discharge records of varying length were available for 63 streamflow and reservoir gages in the basin. Plates 38 and 39 show the locations and the drainage areas of active and discontinued stream-gaging stations in the basin. Plate 16 shows in bar-graph form the periods covered by records of stream-gaging and reservoir stations. CORPS OF ENGINEERS


														C/	ALEN	DAR	YEAF	RS .				, ,	1 1									<u> </u>	
GAGE NO.	STREAM	STATION	MILES ABOVE MOUTH	DRAINAGE AREA IN SQ. MILES	1965 1964	1963 1962	1961 1960	996 1956	1957 1956	1955 1954	1953 1952	1951 1950	1949 1948 1947	1946 (945	1944 1943	1941 1941	666	1937	935 1935	1933 1932	193(1930	1929 1928	1926	1925 1924	1923	1922 1921	1920 1919	1918	1916 916	1914	215 15	16	506I
	TRINITY RIVER: WEST FORK TRINITY RIVER:												╶╢╼╋				+-+-	++	++		\ 	┼┉┿╌	╉┿╌	+		-+		++	<u>-</u> +-	┼╌╋	-+-+	+	+-+
427	NORTH CREEK	NEAR JACKSBORG	14.0	22	+++	+-	+	<i>unun</i>	20003	-								1.1	++			11					_						
428	WEST FORK TRINITY RIVER	NEAR JACKSBORO	660.0	683 1,114		_		1161111	dimine.																			_	┿┿	++	\rightarrow	⊢ Ⅰ −	+-+-
430	BRIDGEPORT RESERVOIR	ABOVE BRIDGEPORT AT BRIDGEPORT	626.2																		+ +-	<u> </u>			++		-					<u>t</u>	+
435 440	WEST FORK TRINITY RIVER BIG SANDY CREEK	NEAR BRIDGEPORT	620.4 4.4	339	+			Contractor	in the second	10000	mann		ennennennenne		<i>wanni</i>	in land	in and			++	i 						- T.	ТТ	ТТ	TT			TT.
440	WEST FORK TAINITY RIVER	NEAR BOYD	602.0	332 L729		+	Ì	114.111	2/11/2/120	in an the second se	UMAUAN	714112114	ana	2	1				1.			1			+-+							F	
450	EAGLE MOUNTAIN RESERVOIR	ABOVE FORT WORTH	583.3	(974								Ì					- <u>1</u>						1			_		┼┱┥╻	++-	4.+	\rightarrow	┢╍╋╌	++
455	WEST FORT TRINITY RIVER AT LAKE WORTH DAM	ABOVE FORT WORTH	572.1	2,069				0.0	ION H LLY	ELS AVA	ILALLE	REPT 1	EL TO PATE				++		- 7	100000										++	++	++	++-
460	WEATHERFORD RESERVOIR CLEAR FORK TRINITY RIVER	NEAR WEATHERFORD	38.7	106 246 433	+ + 1	· · · ·	++	· •			mount		nin anna	+ + + +			++	++	-++-	++	++	++	+-+-	-+-+	++	-+-1			┿╌╋╴	++	+++	-+-	+
465	BENBROOK RESERVOIR	NEAR BENBROOK	27.2	433	+++		┝╍┢╸							+++	-1-+-	4	++								1.1								\downarrow
470	BENBROOK RESERVOIR CLEAR FORK TRINITY RIVER	NEAR BENBROOK	3.5	435				1.000	in and	111181111	411-1114	ymenn.	ennennin de							1			_				4		+	┿┉╞		∔	-++-
475	CLEAR FORK TRINITY RIVER	AT FORT WORTH	3.2	526 2627			$\left \cdot \right $	7/11/1/	CALIN, MALIO		<u>un nu </u>	1111.80		21114.011.9	<u>ansano.</u> 4												a —	++	++	┿		╞╋╴	1-+-
480	WEST FORK TRINITY RIVER	AT FORT WORTH AT FORT WORTH	556.3	2627		-+-	+	200000					<u>kinan</u> an				10000	- autor	<u>caanan</u>		1	THE R		1.	-		*	++-		TI			11
488	BIG FOSSIL CREEK	NEAR HALTOM CITY	3.6	53	1	-								+ + +																\top	_		
490	VILLAGE CREEK	NEAR HANDLEY NEAR ARLINGTON	12.0	126															-++-	-					+		•+-	++	+		+/	⊢	++
492	LAKE ARLINGTON	AT GRAND PRAIRIE	8.0	136			\vdash							1	and and a					///			i i		++		┥┉	┿┿	╇╼┼	+ +	++	+-+-	++
495 500	WEST FORK TRINITY RIVER	NEAR GRAND PRAIRIE	515.I 5.5	3,070 273	1 1		┼╌╂┈							ana ka				1			sina.m	e (114:111	1.1.11.40	Willin -	· • •								
* 2	MOUNTAIN CREEK RESERVOIR	NEAR GRAND PRAIRIE	4,6	269			11		╡┈╾┝╺╼╿													T			TT	-		4		1-+		++	++
502 503	ELM FORK TRINITY RIVER SUBWATERSHED NO. 6-0	NEAR MUENSTER	0.5					10.000	6411165				· · ·	+++		1.	-+-+		-	+	. 	+++	1	-4+-	-++			┥╍┾	+ +	++	-+	┿╍╉╴	++
	ELM FORK TRINITY RIVER	NEAR MUENSTER	106,3	45			++					1	2020	+ $+$ $+$		-+-+			-++	+ +		+ {	+-+-		+ 1	1.1	┢┼╴	++	+++				+++
505 510	ELM FORK TRINITY RIVER	NEAR SANGER	6.6	379 262			┥╌╍╉╸	119070		114411		1110	7/7/4	╅╼┽╌┤	++	t-	+++	-+-+	++	++	+ +	+-+							-				
515	CLEAR CREEK	NEAR SANGER	12.1	292				20.200	2010.9111c	900.2011	7110,1111	SHILL MI	1.000					_			-							\downarrow			-+-'	++	
520	ELM FORK TRINITY RIVER	NEAR DENTON	51.4	1076			T		1 1 1		1 I					-	_									\rightarrow	L i-	++	+	++	-+	┿╂	++-
525	LAKE DALLAS	NEAR LAKE DALLAS	39.4	1,165	++	- i	+	-															+ +	+	-++		+ +	+-+	++	++		++	++
527	LITTLE ELM CREEK	NEAR AUBREY NEAR LEWISVILLE	19.1	76			++							+++	-+-+	-+-+	++	++	++	-++-	+ +	++-		1-1-	- 1								
530	ELM FORK TRINITY RIVER	NEAR LEWISVILLE	26.2	1,671				\$11:111	9.9MC12181	TURNAR AN	in de la companya de					_							1					$T \downarrow$				++	++
535	DENTON CREEK	NEAR JUSTIN	45.2	409				7//////	ennovnik.	1.71676766	11161.1111	14.21	26				1	+		++-	+	++-			<u>+</u> -+		↓ ⊢	1.+	++		+	++-	+++
540	DENTON CREEK	NEAR ROANOKE	27.9	.62			┼╍╉╸							1 1	<u> 11 A I A</u>				-++	-+-+-	+	+ i-		1		+	++-	+ +	+ +	++		++	++
550	GRAPEVINE RESERVOIR DENTON CREEK	NEAR GRAPEVINE	7,2	704			+ +	1000		sun aun	21216-12/14	iun in	1997110 911109	+ 1			-+-1				+-+	11											
555	ELM FORK TRINITY RIVER	NEAR CARROLLTON	16.2	245?				11.171	comestin.	TALA AR	uniani		KURAN DESI	nanina ma	mann	manka	mann	unanna	UN MALE														
	TRINITY RIVER:							1 1	1 1 1		F 1		1 1 1				+	\rightarrow		-++-	┿╋	+	+	-+-+			++	++	-+-+	-+-+	<u> </u>	+-+-	++-
565	TURTLE CREEK	AT DALLAS	500.3	8	++-	<u>├</u>	+ +	2/2///	<u></u>							minite	in and	winter in the	manna		, la		2			-		1 1		4	تعفق		<u>air is</u>
570	TRINITY RIVER	AT DALLAS BELOW DALLAS	491.9	6,120 6,301			+	2/7///				1	nin ministri		-		1			- <u>-</u>					_			1					
* 4	WHITE ROCK LAKE	NEAR DALLAS	9,4	99	-			INTER	MITTENT	(MONTH	hly (Ai	KE LEV	ELS												+ +		1	11	-		+	++	- -
L .	EAST FORK TRINITY RIVER:						L-L									+		1-+	+-+	-++	++	++	+-+		+		╋┯┿	+++	+-+	+	-+	+-+	-+-+
575	HONEY CREEK SUBWATERSHED NO. 11 HONEY CREEK SUBWATERSHED NO. 12	NEAR MCKINNEY NEAR MCKINNEY	0.7	2	++-		łł	V///////	<u>, 1997, 1977, 1977, 1977, 1977, 1977, 1977, 1977, 1977, 1977, 1977, 1977, 1977, 1977, 1977, 1977, 1977, 1977, 1</u> 1977, 1977, 1977, 1977, 1977, 1977, 1977, 1977, 1977, 1977, 1977, 1977, 1977, 1977, 1977, 1977, 1977, 1977, 1977 1977, 1977, 1977, 1977, 1977, 1977, 1977, 1977, 1977, 1977, 1977, 1977, 1977, 1977, 1977, 1977, 1977, 1977, 197			↓ ↓	+				-+-+			- + +	+++		+ +	++	- - 	-+-		+ 1			<u>_</u> †_	++	++
585	HONEY CREEK	NEAR MCKINNEY	5,5	39	++	\vdash	++-	- 201100	estation of the second	in and	in the second		+++	+ + +	++	- 1	++				-+ +		+ +										
590	EAST FORK TRINITY RIVER	NEAR MCKINNEY	82.4	169 115			11	416411	17/11/1/14.	2111.									_		_				-					-	<u>+</u> +	++	++
595	SISTER GROVE CREEK	NEAR PRINCETON	5.2					115.211	stnam.	anann	inuun	141111211				- 1		-+-+	-+-+		++		++	-++			++	++	+	++	-+	++	-++
605 610	LAVON RESERVOIR EAST FORK TRINITY RIVER	NEAR LAVON	55.9 54.9	777 779	╺╋╍┿╍╸	-	++	10.00	in anna anna	ann an	횗	┿┉╋╼	┿╍┿╍╋╌			- 4			++	++	++	+++	+-+	++	+ +	-	╋┿	++	-+-+	++	_ + _	++	+-+
6/5	EAST FORK TRINITY RIVER	NEAR ROCKWALL	44.2	840	+	++-	+ +					dered .																					
617	DUCK CREEK	NEAR GARLAND	8,3	31					2							_						ΤI					\square		4-1		\vdash	++	-+-+
620	EAST FORK TRINITY RIVER	NEAR CRANDALL	13.8 451.4	1,257 8,152			T	111.111	en in the second se		ennann.	81.11.U	1110						-+-+		+	<u> </u>	++	╌┼┍╾╋	- 		╉┾╍	+-+	-++		┢╾╋╾	++	-+-+
625	TRINITY RIVER	NEAR ROSSER		8,52		\vdash	++		BUIGHT					000000000	una una	<u>IRISTRES</u>			<u> </u>	-++	++		+++					++	-	-	<u>⊢</u> +	++	
* 5 630	TRINITY RIVER CEDAR CREEK	AT TRINIDAD NEAR MABANK		8,566 734		\vdash	+	2/11/16			innisum.	in an		in the second	11111111	THE ALL																	
	RICHLAND CREEK						+-+			<u> </u>						_				-					-								
* 6	WAXAHACHIE RESERVOIR	NEAR WAXAHACHIE	02	31			-	_				+ +					-++			-+ - +-	+++	++	++				╉╍┿	+	+		\vdash	+-+	-+-+
640	CHAMBERS CREEK	NEAR EMHOUSE NEAR CORSICANA		8 8			++	1000	annanna	anne m	tenna en	2000	maintan		uinnein.		nina.	++	-+-+	┉┼┉┼	┿╋	+	++				1	+ +	-+-+			++	+
645	PIN OAK CREEK	NEAR HUBBARD	23.4	971 18	++	\vdash	++	17/2/10	12mino		and the		nennañaken.				ulans		+	11	++	+-+	+ †		1								
635	RICHLAND CREEK	NEAR RICHLAND	36.0	737				2//.	maint	in and		iun a	a ann ann an Teannan	en anterine	mitens	Minutes .	ilinii ilis				1.1								_				_
650	TRINITY RIVER	NEAR OAKWOOD (LONG LAKE)	36.0 3 3.4	737 12,912				100,000	that the second second	PULL CHA	HIII MAIN	13/14/1 14	ngan san san	unannann.	unienne	SIN MAR	un un	111.9111	nan an				1	-	- K		74			-90		- +	
655	TRINITY RIVER	NEAR MIDWAY	230.2	14,484	+	\downarrow	┼┈╋																					1	-				_
660	TRINITY RIVER	AT RIVERSIDE AT ROMAYOR	(82.5	15,619		++-	+	20100		in and	a man	i in the second			16/1/12												TT	1		31			
665 ##670	TRINITY RIVER	AT ROMAYOR	94.3 40.3	17.(92	+	++-	+ł		a constant																-					-		T	
14004	1 2004011 1 1042 60	The manual is a second se			يا باس		÷																									_	

NOTES: Dage numbers refer to USGS permanent numbering system. This basin is located in the Western Guit of Mexico Basin. Prefix OBO to number shown to abtain camplete gage number. (Example: Gage 590, East Fork above McKinney, is actually OBO590, 4. No permanent U.S.G.S. number assigned to these gages. Refer to plates 38 and 39 for location of stream gaging stations.

** Discharge not computed below gage height of 10 feet because tides affect the stage-discharge relation.

LEGEND

TITITITIE U.S.G.S. RECORDING GAGE RECORD RESERVOIR CONTENTS U.S.G.S. NON-RECORDING RECORD ESTIMATED BY U.S.G.S. GAGE-HEIGHT RECORD ~

新教育。 新教育社会主义和主义的新教会 이 영상하는 것은 이 가지. 1999년 - 1999년 - 1999년 영상 이 이 1999년 - 19

26. ANNUAL RUNOFF. - Observed average annual runoff at the principal gages in the Trinity River Basin are given in table 11. Also given are the minimum and maximum annual runoff for the purpose of illustrating the extremes to which the annual runoff in this basin is subject.

TABLE 11

مى يې دەرىپ مەرىپىلەر بىرىيەن يېرىپى يېرىپ يېرىپ بېرىپ بېرىپ يېرىپ يېرىپ يېرىپ يېرىپ يېرىپ يېرىپ يېرىپ يېرىپ يې يېرىپ يېرىپ يېرى	:Drainage:	Period	: Runo	off in ir	iches
Stream and station	: area :	of	:Minimu	n:Average	:Maximum
······································	:(sq.mi.):	record	:annual	:annual	:annual
West Fork at Bridgeport Big Sandy Creek near	1,147	1908-1930	0.59	2.48	6.50
Bridgeport	332	1937-1959	0.17	3.61	15.01
Clear Fork near Aledo	246	1947-1959	•	2.21	5.18
Clear Fork near Benbrook	435	1947-1959		2.15	7.21
Clear Fork at Fort Worth	526	1924-1959		2.70	8.23
West Fork at Fort Worth	2,627	1921-1959	0.06	2.18	7.93
West Fork at Grand Prairie	3,070	1925-1959	0.31	2.51	8.30
Elm Fork at Lewisville	1,671	1949-1959	0.81	4.01	13.35
Denton Creek near Roanoke	621	1924-1955		3.65	11.49
Trinity River at Dallas	6,120	1903-1959		3.32	10.01
East Fork near Rockwall	840	1923-1954		7.71	21.02
East Fork near Crandall	1,257	1949-1959		5.75	16.57
Trinity River near Rosser	8,162	1938-1959		4.61	10.87
Cedar Creek near Mabank	734	1939 - 1959	-	8.69	18.01
Richland Creek near Richla		1939-1959		7.26	18.11
Chambers Creek near Corsic		1939 - 1959		6.54	15.76
Trinity River near Oakwood		1923-1959		5.10	12.78
Trinity River near Midway	14,484	1939-1959		5.63	13.11
Trinity River at Riverside	15,619	1903-1959		5.71	13.27
Trinity River at Romayor	17,192	1924-1959) 1.00	5.83	13.39

ANNUAL RUNOFF DATA (OBSERVED) (1) CALENDAR YEAR

 Observed runoff reflects historical depletions due to storages, evaporation, diversions, etc., in existing local interest and Corps of Engineers projects.

27. The data in table 11 indicate that the annual runoff tends to increase from the headwaters toward the mouth. This is to be expected because of the greater rainfall on the lower part of the basin. 28. Runoff values in studies of basin development were based on: (1) existing conditions of runoff, determined from observed records at stream-gaging stations with applicable reduction factors applied to account for existing developments on the basin, and (2) the 2020 conditions of runoff, determined as follows: An analysis was made of the runoff for the 1941-1957 period as presented by the United States Study Commission - Texas. As a result of this analysis it was concluded that such runoff constituted a reasonable estimate and was therefore used with the following exception. Detailed operational records from the Dallas Power and Light Company at the existing Mountain Creek Dam were used by the Corps of Engineers to determine the runoff on Mountain Creek. For the period 1924-1940 the runoff was determined from observed records at stream-gaging stations with applicable reduction factors applied to reduce these flows to 2020 conditions of basin development.

29. DROUGHTS .- There have been two major droughts experienced on the Trinity River Basin - 1908-1913 and 1950-1957. Due to paucity of records during the 1908-1913 period, the latter drought period, due to its areal coverage, duration and the availability of data, has been adopted as the critical period with respect to water supply for this report. The drought of 1950-1957 was terminated by the floods of April-June 1957. Excessive runoff also occurred during the earlier part of 1950. The calendar years 1951 through 1956 were, however, entirely within the drought period. The mean annual runoff on the Trinity River at Dallas (in the upper basin) and Romayor (in the lower basin), based upon the entire period of observed record at the two gaging-stations, is 3.32 inches and 5.83 inches, respectively. The mean annual runoff for calendar years 1951 through 1956 was only 0.54 inch at Dallas and 2.14 inches at Romayor. Normal precipitation at the Dallas and Liberty gages, as published by the U.S. Weather Bureau, is 34.42 inches and 51.15 inches, respectively. During the period 1951-1956 the mean annual precipitation was 25.39 inches at Dallas and 41.47 inches at Liberty. These represent average annual rainfall deficiencies of 9.03 inches and 9.68 inches at Dallas and Liberty, respectively, during the period 1951 through 1956.

30. STORM CHARACTERISTICS. - The storms that cause precipitation on the Trinity River Basin are of three general types: (1) thunderstorms, culminating in devastating cloudbursts; (2) frontal storms; and (3) cyclonic storms originating in the tropics or the western Gulf of Mexico. Approximately three-fourths of the precipitation on the basin results from disturbances of the first two types and the remaining one-fourth from disturbances originating in the tropics or the Gulf of Mexico. The tropical and Gulf storms occur principally during the period from June to November, inclusive.

THUNDERSTORMS .- Thunderstorms, as here described, are 31. produced and maintained by local convectional currents of the vertical type. They are sometimes accompanied by excessive precipitation for periods up to about 6 or 8 hours, but rarely produce excessive precipitation over extensive areas. Thunderstorms cause freshets and even major floods on the smaller tributaries, but do not produce major floods in the larger streams. Thunderstorms, however, often cause damage to the levee districts on the larger tributaries and on the main river by breaching the lateral or hillside levees and covering the protected lands within the levee districts with the floodwaters and debris collected from the local watershed. The floods produced by these storms are especially damaging to crops because they occur most frequently in the growing season. This type of storm is exemplified by the rainfall of 14.21 inches observed at Kaufman on August 22-23, 1908. The area covered by the intense precipitation was probably small, since practically no precipitation was observed at surrounding stations. Although no information is available on the distribution of this rainfall, it is probable that the greater part of the 14.21 inches recorded for 24 hours fell in a much shorter period. A more recent example of thunderstorm type rainfall occurred at Dallas on August 26-27, 1947 where 9.18 inches fell in a period of 24 hours with 9.07 inches occurring in a period of only eleven hours.

32. FRONTAL STORMS. - Frontal storms that cause precipitation on this basin result from the forced ascension of warm moisture-laden air masses originating over the warm oceanic areas to the south. The lifting of the warmer air mass is accomplished either by direct convergence of a tropical air mass and a polar air mass, or by the convergence and partial emcompassing of a tropical air mass by several denser air masses. The greatest storms of record that have been experienced on the Trinity River Basin are of the frontal type. Some examples of the frontal type storm are those of May 22-26, 1908; December 1-5, 1913; May 24-31, 1929; and September 25-28, 1936.

33. CYCLONIC STORMS.- It remains to consider the characteristics of the cyclonic storm which originates in the tropics and the western Gulf of Mexico. When these storms move inland they tend to curve to the northeast and to pass up the Mississippi Valley. In following this course, the storm center would most likely cross the lower portion of the basin somewhere below Dallas, where its width is relatively narrow and the land slopes are not steep. The heaviest precipitation in these storms is generally experienced in the right front quadrant. Hence, the greatest precipitation would tend to be concentrated on the lower portion of the basin. The severe tropical storm of August 17-20, 1915, is an example of the cyclonic storm.

27

nan Antonio 34. MAJOR BASIN STORMS. - Some of the major flood-producing storms that have occurred over the Trinity River Basin are as follows: June 28-July 1, 1899; May 22-26, 1908; December 1-5, 1913; April 20-26, 1915; April 24-27, 1922; May 24-31, 1929; September 25-28, 1936; November 19-26, 1940; April 5-30, 1942; April 29-May 4, 1944; March 28-April 2, 1945; May 16-17, 1949; and April-June 1957. Isohyetal maps and typical mass curves of precipitation for selected major basin storms are shown on plates 17 through 20, and a description of these storms is given in the following paragraphs.

35. STORM OF JUNE 28-JULY 1, 1899. The center of this storm was located at Hearne (about 60 miles west of the Trinity River Basin) where rainfall of 34.5 inches was recorded for the 108-hour storm period. The heaviest concentration of rainfall in the Trinity River Basin occurred on the Richland and Chambers Creek watersheds and in the lower portion of the Trinity River Basin below the mouth of Richland Creek where the following rainfall amounts were recorded: Mann (near Corsicana), 10.0 inches; Palestine, 7.5 inches; and Huntsville, 7.6 inches. An isohyetal map and typical mass curves of precipitation for the storm of June 28-July 1, 1899 are shown on plate 17.

36. STORM OF MAY 22-26, 1908. - The center of this storm was at Chattanooga in southern Oklahoma where rainfall of 9.4 inches was recorded for the storm period. This storm covered the entire headwaters of the Trinity River down to the mouth of the East Fork with the heaviest concentration over the Elm Fork watershed. Between 8 and 9 inches of rain fell over the upper portion of the Elm Fork watershed and from 4 to 8 inches over the greater part of the Trinity River Basin above Dallas. Practically no rainfall was recorded on the Trinity River Basin below the mouth of the East Fork. Some of the rainfall amounts on the Upper Trinity River Basin were as follows: Gainesville, 8.3 inches; Fort Worth, 7.3 inches; Weatherford, 6.4 inches; and Dallas, 4.0 inches. An isohyetal map and typical mass curves of precipitation for the storm of May 22-26, 1908 are shown on plate 17.

37. STORM OF DECEMBER 1-5, 1913. The center of this storm was at San Marcos in south central Texas (about 100 miles southwest of the Trinity River Basin) where rainfall of 15.5 inches was recorded for the 96-hour storm period. This storm generally covered that portion of the Trinity River Basin between the mouth of the East Fork and the Riverside gage with the heaviest concentration of rainfall on the watersheds of Richland, Chambers, and Cedar Creeks. Some of the higher rainfall amounts within the storm area on the Trinity River Basin were as follows: Kaufman, 11.7 inches; Waxahachie, 8.2 inches; Corsicana, 9.0 inches; Long Lake, 8.5 inches; and Riverside, 5.3 inches. An isohyetal map and typical mass curves of precipitation for the storm of December 1-5, 1913 are shown on plate 17.

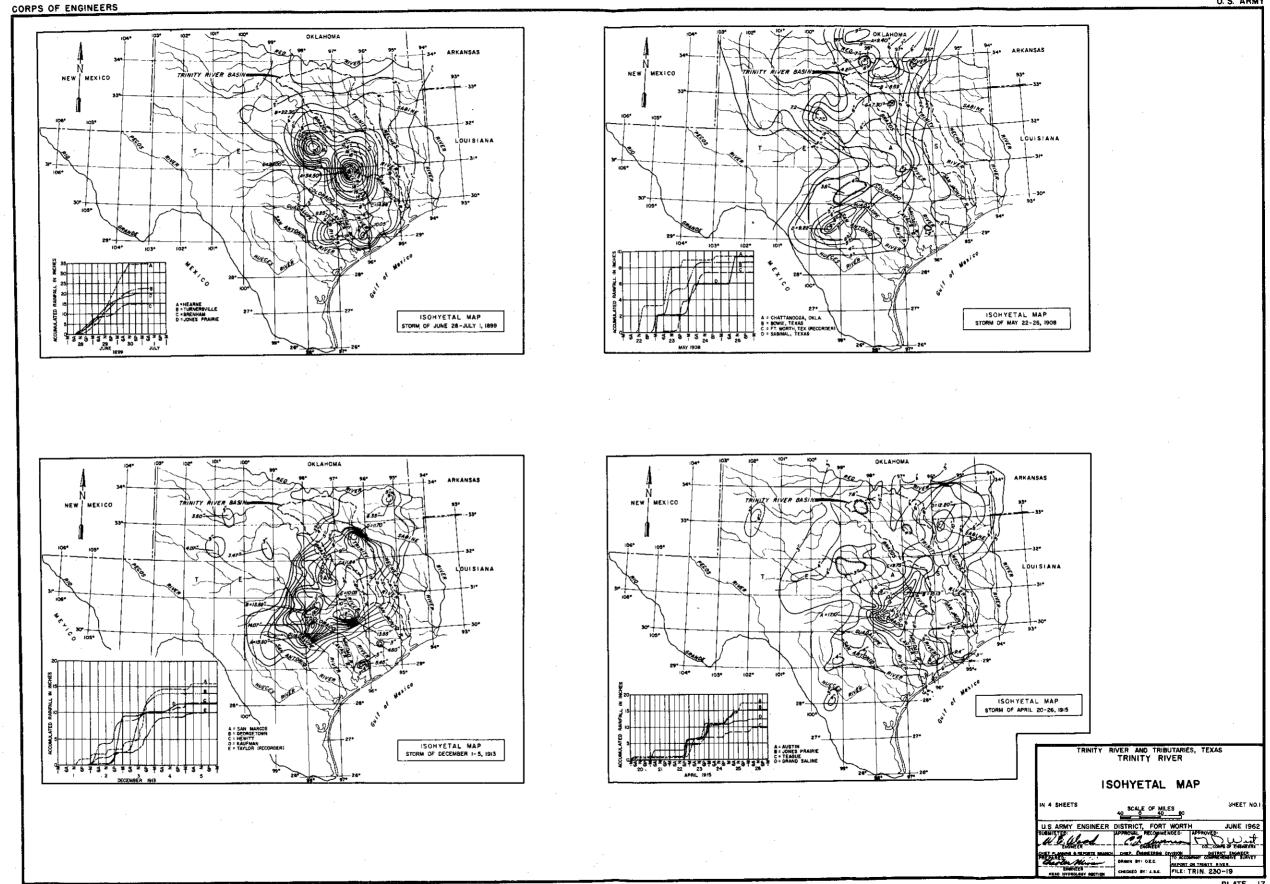
38. STORM OF APRIL 20-26, 1915. - The center of this storm was at Austin, Texas (about 90 miles west of the Trinity River Basin) where rainfall of 17.1 inches was recorded for the storm period. This storm generally covered the East Fork watershed and that portion of the Trinity River Basin between the mouth of the East Fork and the Oakwood (Long Lake) gage. Rainfall amounts recorded within this area were as follows: McKinney, 6.6 inches; Trinidad, 8.0 inches; and Long Lake, 5.3 inches. An isohyetal map and typical mass curves for the storm of April 20-26, 1915 are shown on plate 17.

39. STORM OF APRIL 24-27, 1922. The center of this storm was at Weatherford, in the Clear Fork watershed, where rainfall of 11.4 inches was recorded for a period of about 30 hours. The storm generally covered the Upper Trinity River Basin with the heaviest concentration on the Clear Fork. Rainfall amounts recorded within the storm area on the Upper Trinity River Basin were as follows: Weatherford, 11.4 inches; Fort Worth, 10.6 inches; Dallas, 5.8 inches; and Waxahachie, 6.3 inches.

40. STORM OF MAY 24-31, 1929.- The center of this storm was at Driftwood (near Austin and about 100 miles west of the Trinity River Basin) where rainfall of 15.0 inches was recorded for the storm period. The 5-inch isohyet for this storm enveloped practically the entire area of the Trinity River Basin between the mouth of East Fork and Liberty gage. Rainfall amounts recorded within this area were as follows: Huntsville, 10.8 inches; Mexia, 8.4 inches; Crockett, 6.5 inches; Riverside, 9.9 inches; and Liberty, 4.5 inches. An isohyetal map and typical mass curve of precipitation for the storm of May 24-31, 1929 are shown on plate 18.

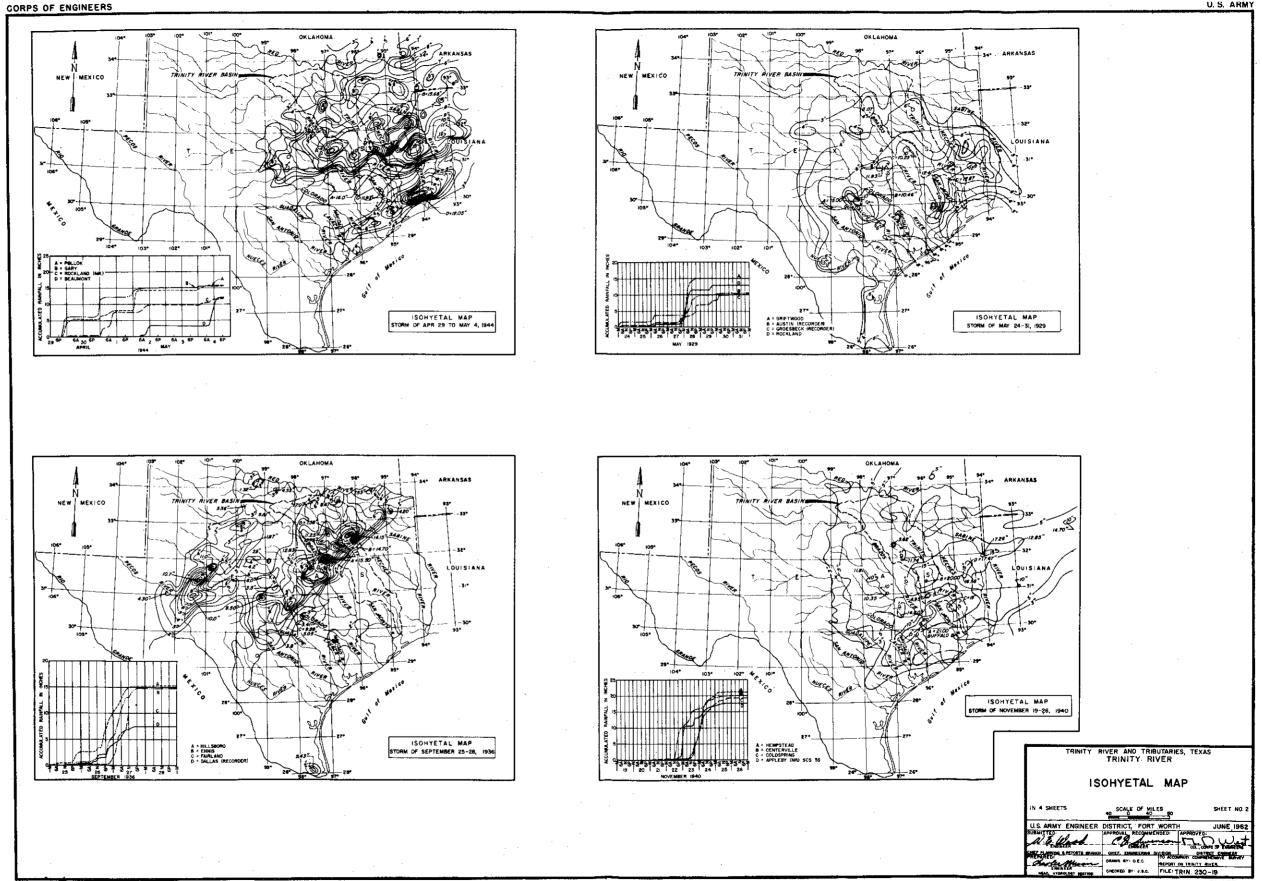
41. STORM OF SEPTEMBER 25-28, 1936. - This storm was centered at Hillsboro, just outside the Trinity River Basin, where rainfall of 15.5 inches was recorded within the storm period. Rainfall of an almost equal amount (14.7 inches) was recorded at Ennis in the Chambers Creek watershed. Although the storm had a duration of 90 hours, the greater part of the rain fell in a period of from 12 to 18 hours. The heaviest concentration of rainfall within the Trinity River Basin occurred on the watersheds of Mountain, Richland, Chambers, and Cedar Creeks. Rainfall amounts recorded within this area of heaviest concentration were as follows: Kaufman, 14.2 inches; Ennis, 14.7 inches; Mountain Creek, 11.3 inches; Waxahachie, 10.3 inches; and Corsicana, 7.0 inches. An isohyetal map and typical mass curves of precipitation for the storm of September 25-28, 1936 are shown on plate 18.

42. STORM OF NOVEMBER 19-26, 1940.- The center of this storm was at Hempstead (about 80 miles west of the Trinity River Basin) where rainfall of 21.0 inches was recorded for the storm period. Heavy rainfall was experienced on the central and southern portions of the Trinity River Basin during this storm. Some of the higher rainfall amounts recorded in the basin during this storm were as follows: Long Lake, 19.6 inches; Centerville, 20.0 inches; and Shepherd, 16.7 inches. An isohyetal map and typical mass curves of precipitation for the storm of November 19-26, 1940 are shown on plate 18.


43. STORM OF APRIL 5-30, 1942. - This storm covered the entire Trinity River Basin. Storm centers were scattered throughout the basin; however, the heaviest concentration of rainfall was experienced in the upper basin. The storm of April 5-30, 1942 consisted of four distinct periods of rainfall. These periods were as follows: April 5-9, April 12-14, April 18-20, and April 23-30. Precipitation during the first period fell at moderate rates on relatively dry ground and did not produce excessive runoff on the tributaries. The second period consisted of light rains of little significance. The third and fourth periods consisted of several short periods of intense precipitation and generally produced the high discharge experienced in the basin. Some of the rainfall amounts recorded in the basin during the total storm period of April 5-30 were as follows: Roanoke, 18.8 inches; Gainesville, 16.4 inches; Fort Worth, 17.0 inches; Dallas, 12.4 inches; McKinney, 17.1 inches; Rosser, 13.7 inches; Trinidad, 8.3 inches; Long Lake, 8.0 inches; and Liberty, 8.5 inches. An isohyetal map and typical mass curves of precipitation for the storm of April 5-30, 1942 are shown on plate 19.

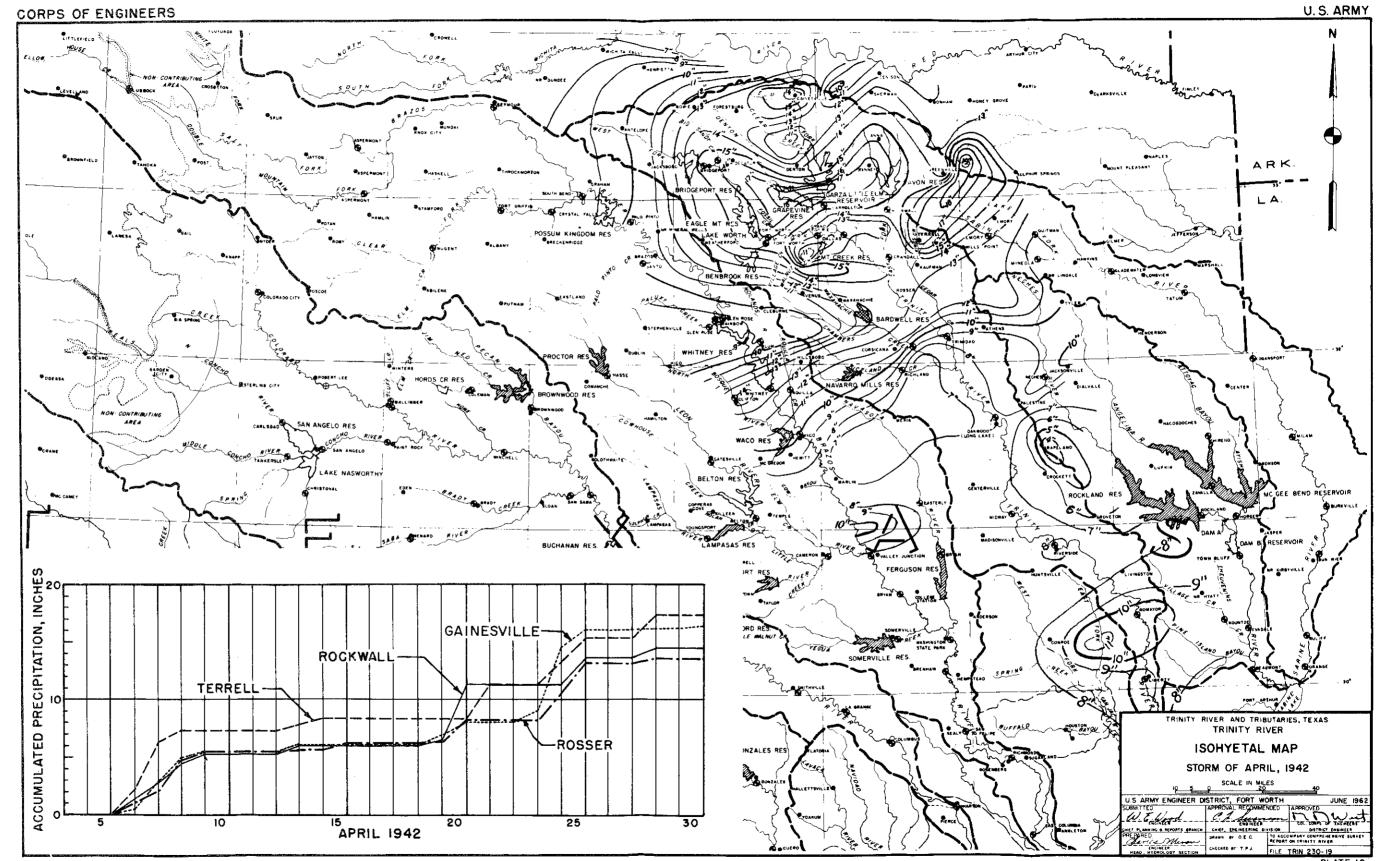
44. STORM OF APRIL 29-MAY 4, 1944. The center of this storm was at Pollok (about 30 miles east of Crockett) where rainfall of 16.0 inches was recorded for the storm period. This **storm generally** covered the Trinity River Basin below Dallas. Some of the rainfall amounts recorded in the Trinity River Basin were as follows: Denton, 3.6 inches; Dallas, 5.9 inches; Trinidad, 7.8 inches; Jewett, 11.9 inches; Riverside, 4.9 inches; and Liberty, 6.4 inches. An isohyetal map and typical mass curves of precipitation for the storm of April 29-May 4, 1944 are shown on plate 18.

45. STORM OF MARCH 28-April 2, 1945. The center of this storm was at Winnsboro (about 60 miles east of the Trinity River Basin) where rainfall of 15.5 inches was recorded for the storm period. This storm generally covered the Trinity River Basin between Dallas and Oakwood (Long Lake) and the West Fork watershed below Fort Worth. Some of the rainfall amounts recorded in the Trinity River Basin were as follows: Fort Worth, 3.5 inches; Mansfield, 9.8 inches; Rosser, 8.7 inches; Trinidad, 8.2 inches; Kemp, 10.0 inches; and Long Lake, 5.4 inches.


46. STORM OF MAY 16-17, 1949.- The center of this storm was at Kennedale on the Village Creek watershed (a tributary of the West Fork) where rainfall of 12.8 inches was recorded in a period of 9 hours. The heaviest rainfall for this storm occurred on the Clear Fork watershed and on that portion of the West Fork watershed lying between Fort Worth and Dallas. Heavy rainfall with an average depth of 8.75 inches on the area of the Clear Fork between the Aledo and Fort Worth gages produced the maximum flood of record on the Clear Fork at the Fort Worth gage. Some of the rainfall amounts recorded in the storm area were as follows: Weatherford, 10.0 inches; Aledo, 11.0 inches; Fort Worth, 8.0 inches; Hurst, 10.0 inches; and Dallas, 5.4 inches.

47. STORMS OF APRIL-JUNE 1957. - The storms which began over Texas on April 19 produced rainfalls during the month varying from about 8 inches in the lower Trinity River Basin to about 10 inches in the central portion of the basin to a maximum of about 20 inches in the upper basin near the Garza-Little Elm Reservoir. During the month of May, the storms continued over the basin producing rainfalls varying from about 2 inches near the mouth to about 4 inches in the central basin near Oakwood to about 16 inches on the watersheds of the East, Elm, and West Forks. Rainfall totals over the basin for the month of June were more moderate, ranging from about 2 inches in the upper basin to about 10 inches at the extreme lower end of the basin. The heavy general rains ended about June 5 and for the remainder of the month such rainfall as occurred was in the form of scattered showers. The most significant periods of flood runoff resulting from the series of storms which occurred during the period of April-June 1957 were during the latter part of April, about the middle and end of May, and the early part of June. Flows in the river continued high during June due to releases from the upper Trinity River reservoirs where the flood-control storage was being evacuated. Although none of the peak discharges exceeds the record peak discharges of the respective gages, the volume of runoff exceeded that produced during any similar period for which records are available. The floods of April-June 1957 on the Trinity River Basin above Dallas produced about 3,888,000 acre-feet of runoff (adjusted for storage in upstream reservoirs), whereas the floods of April-June 1908 produced only about 2,400,000 acre-feet of runoff or about one and one-half times as much flood runoff occurred on the Trinity River Basin above Dallas as during the floods of April-June 1908 which produced the maximum known peak discharge at Dallas. The West Fork watershed above Fort Worth produced about 1,278,000 acre-feet of runoff (adjusted for storage), during the April-June 1957 floods or about five times the flood volume of the April-June 1949 flood (255,000 acre-feet) which produced the maximum known peak discharge on the Clear Fork at Fort Worth. Isohyetal maps and typical mass curves of precipitation for April, May, and June 1957, and for the total period of April through June 1957 are shown on plate 20.

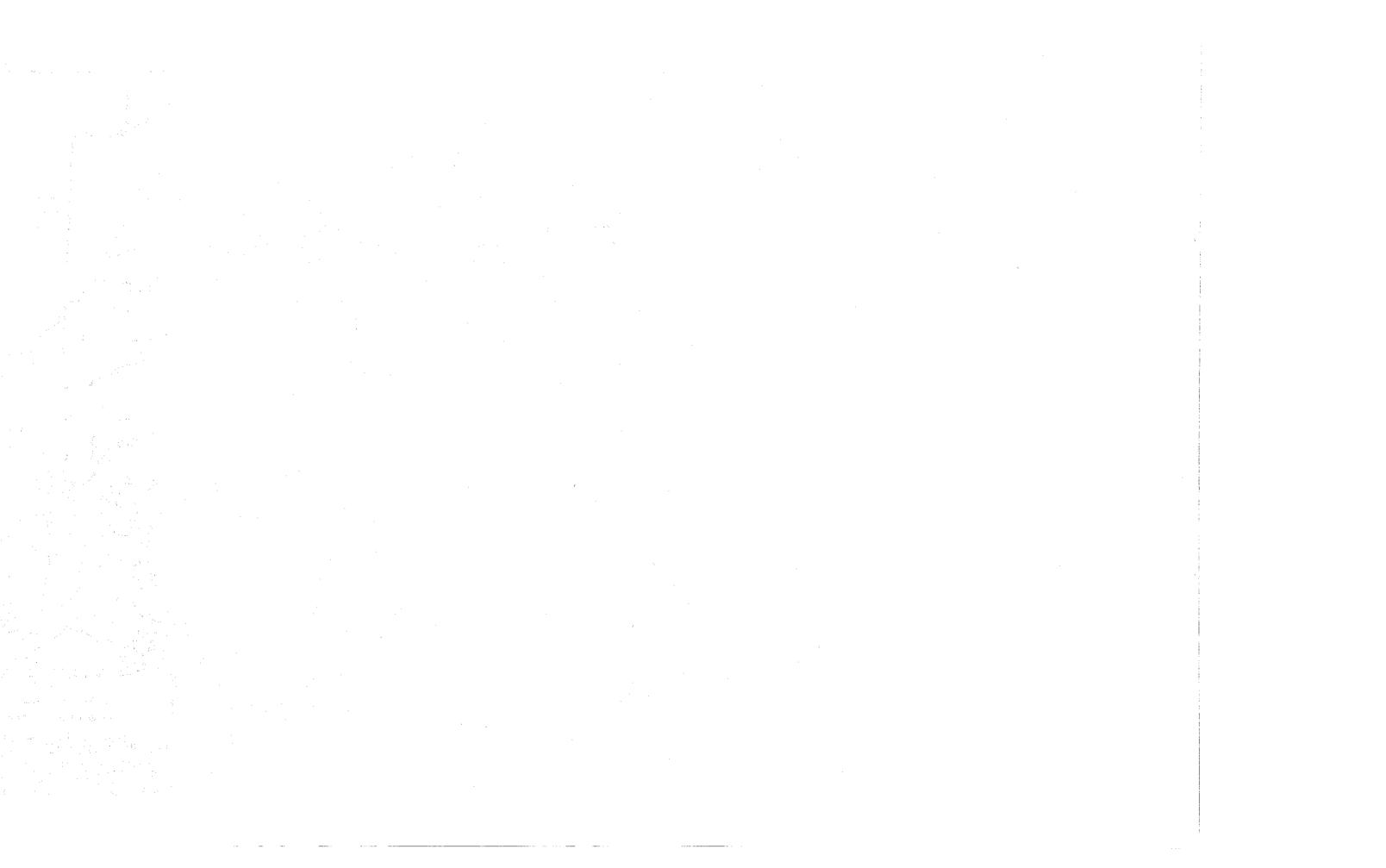
,-**-**-No. 32) Vol. III (Face blank p. 0-65 52-704

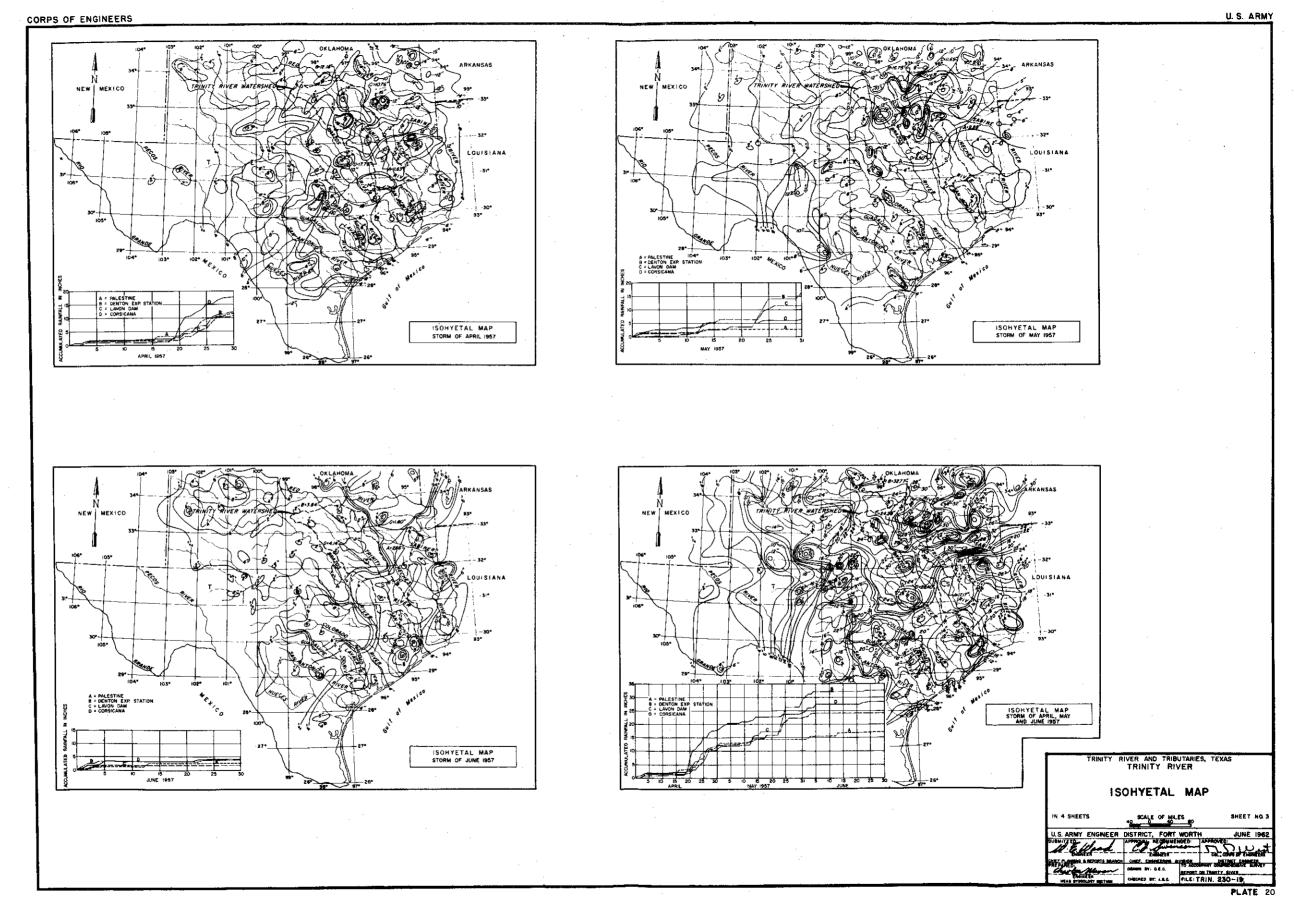


7 °Z Vol. III (Face blank p. 32) 0-65 52-704 U.S. ARMY

PLATE 18

<


CORPS OF ENGINEERS



blank p. 32) No. (Face Vol. III 704 O-65 52-

··· · -

PLATE 19

48. FLOODS .- Floods occur frequently and at almost any time of the year on the Trinity River Basin. Table 12 gives peak discharges and volumes for some of the larger floods at some of the principal gages in the basin:

TABLE 12

FLOOD DATA

Date of flood	4 0	Peak : discharge :			8 8 9 0		volume ng gage
	U D	(cfs) :	pea	ak	4 9	(acre-feet) : (inches
WEST FORK TRINITY	RIV	ER AT FORT	WORT	<u> </u>	D.	A. = 2,627	SQ. MI.
April 23-May 7, 1922 April 18-May 16, 1942 March 29-April 21, 1945 May 15-25, 1949 April 18-July 5, 1957		85,000 23,700 31,200 64,300(1) 26,800(2)		24 30 17		265,600 417,500 172,500 125,000 792,300	1.90 2.98 1.23 0.89 5.66

Affected by major levee breaks.

 Affected by major levee breaks.
 Discharge estimated at 58,800 second-feet without Benbrook Reservoir in operation.

WEST FORK TRINITY RIVER A	T GRAND PE	RAIRIE - D.	A. =	3,070	SQ. MI.
---------------------------	------------	-------------	------	-------	---------

April 18-May 18, 1942 March 29-April 21, 1945	27,200 29,500	Apr 25 Mar 31	521,500 251,800	3.18 1.54
May 15-25, 1949	62,000(1)	· •	213,600	1.31
April 19-July 6, 1957	59,200(2)	May 26	1,040,200	6.35

Affected by major levee breaks.

 Affected by major levee preaks.
 Discharge estimated at 68,800 second-feet without Benbrook Reservoir in operation.

FLOOD	DATA

· · · · · · · · · · · · · · · · · · ·	*	Peak		Date	è	Flood volume
Date of flood	\$	discharge	* 6	of		passing gage
	:	(cfs)	:	peak	*	(acre-feet) : (inches)

TRINITY RIVER AT DALLAS - D. A. = 6,120 SQ. MI.

May 22-June 10, 1908 April 25-May 7, 1922 June 6-July 2, 1941 April 18-May 18, 1942 March 29-April 22, 1945 May 27-June 19, 1946 May 15-25, 1949 April 19-August 31, 1957	82,500(1) 75,300(2)	May 26	1,354,100 531,600 980,600 1,521,400 685,100 564,900 392,100 2,679,500	4.15 1.63 3.00 4.66 2.10 1.73 1.20 8.20
April 19-August 31, 1957	75,300(2)	-	2,679,500	8.20
April 13-June 11, 1958	23,200(2)		896,200	2.75

Affected by major levee breaks.
 Discharge estimated at 222,000

(2) Discharge estimated at 222,000 second-feet and 98,500 second-feet in 1957 and 1958, respectively, without Corps of Engineers reservoirs in operation.

TRINITY RIVER AT ROSSER - D. A. = 8,162 SQ. MI.

June 2-July 10, 1941	55,300	Jun 16	1,694,800	3,89
April 20-May 17, 1942	(1)	(1)	2,128,700	4.89
April 29-May 18, 1944	39,000	May 6	500,400	1.15
March 28-May 5, 1945	66,600	Apr 2	946,700	2.17
May 28-June 19, 1946	54,800	Jun 4	996,500	2.29
May 16-27, 1949	51,900	May 21	473,000	1.09
April 19-September 5, 1957	56,000(2)	May 29	4,045,900	9.29
April 13-June 12, 1958	34,000(2)	May 3	1,426,600	3.28

(1) Maximum discharge not determined, occurred April 23 or 24 following numerous breaks in levee system, average daily discharge on April 23 was 133,000 second-feet.

(2) Discharge estimated at 142,000 and 100,000 second-feet in 1957 and 1958, respectively, without existing Corps of Engineers reservoirs.

TABLE 12 (Cont'd)

FL	COOD	DATA	
11		THTH	

	TD + - 1-	Data	: Flood vo	1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
•	Peak :	Date		
Date of flood : d	lischarge :	of	: passing	
÷	(cfs) :	peak	: (acre-feet) :	(inches
TRINITY RIVER A	T OAKWOOD -	D. A. =	12,912 SQ. MI.	
and the second se	<u> </u>	7		
1890	180,000	(1)	(1)	(1)
May 29-June 11, 1908	164,000	Jun 4	2,490,900	3.62
April 25-May 12, 1922	67,100(2)		1,515,300	2.20
	69,300(2)		2,333,600	3.39
June 2-July 16, 1941	153,000	Apr 29	3,330,800	4.84
April 23-May 22, 1942		-	1,828,200	2.65
April 30-May 20, 1944	111,000	May 5		4.29
March 31-May 13, 1945	140,000	Apr 3	2,955,100	-
May 28-June 20, 1946	54,000		1,366,800	1.98
May 18-June 12, 1949	28,600(2)	May 30	741,300	1.08
April 19-September 9, 1957	91,800(3)	Apr 28	6,553,600	9.52
April 11-June 15, 1958	95,400(3)	-	2,395,600	3.48
apara ar-ound all allo	JJJ (*** (J)		, 	-

 $\overline{(1)}$ Data not available.

(2) Average daily discharge.

Discharge estimated at 137,100 and 110,500 second-feet in 1957 and (3) 1958, respectively, without existing Corps of Engineers reservoirs.

TRINITY RIVER AT RIVERSIDE - D. A. = 15,619 SQ. MI.

May 24-July 7, 1908 April 25-May 20, 1922 June 3-July 21, 1941 April 21-May 29, 1942 April 30-June 1, 1944 March 30-May 10, 1945 May 31-June 30, 1946 May 22-June 15, 1949 April 21-September 11, 1957	100,000 Jun 73,300(1) May 47,500(1) Jul 121,000 May 83,000 May 116,000 Apr 40,200 Jun 23,400(1) Jun 97,700(2) May	4 2,773,60 2 2,639,60 5 4,192,40 11 2,723,40 9 3,769,60 19 1,618,20 5 727,10	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
April 21-September 11, 1957 April 13-June 17, 1958	97,700(2) May 66,800(2) May		

Average daily discharge. (1)(2)

Discharge estimated at 130,500 and 109,000 second-feet in 1957 and 1958, respectively, without existing Corps of Engineers reservoirs.

FLOOD D	ATA
---------	-----

· · · · · · · · · · · · · · · · · · ·	:	Peak	:	Date	;	Flood volume
Date of flood	:	discharge	•	of	°	passing gage
	:	(cfs)	;	peak	:	(acre-feet) : (inches)

TRINITY RIVER AT ROMAYOR - D. A. = 17,192 SQ. MI.

June 5-July 31, 1941		Jul 5	3,047,500	3.32
April 21-June 1, 1942		May 9	4,751,700	5.18
April 30-June 6, 1944		May 15	3,216,900	3.51
March 31-May 15, 1945		Apr 13	4,340,200	4.73
May 31-July 6, 1946		Jun 23	1,844,500	2.01
May 23-June 21, 1949		Jun 7	820,700	0.89
April 23-September 15,		May 10	8,234,100	8.98
April 13-June 18, 1958	58,200(2)	May 10 May 19	2,797,600	0.90 3.05

(1) (2) Average daily discharge.

Discharge estimated at 125,900 and 102,000 second-feet in 1957 and 1958, respectively, without existing Corps of Engineers reservoirs.

MOUNTAIN CREEK NEAR GRAND PRAIRIE - D. A. = 289 SQ. MI.

Dec. 15-Jan. 4, 1928 May 8-18, 1930 April 18-May 19, 1942 March 29-31, 1945 May 29-31, 1946	35,900 18,800 29,300(1) 23,100(1) 18,500(1)	Dec 17 May 15 Apr 20 Mar 30 May 30	31,700 27,400 89,400 52,700 42,500	2.06 1.78 5.80 3.42 2.76
	18,500(1)	May 30	42,500	2.76
February 23-25, 1949	19,200(1)	Feb 24	51,500	3•34
April 19-June 5, 1957	25,400(1)	Apr 26	133,300	8.65

(1) Peak discharges estimated from changes in reservoir contents and releases from Mountain Creek Reservoir.

TABLE 12 (Cont'd)

FLOOD DATA

9		Date :	Flood vo.	
Date of flood	: discharge :	of :	passing (
	: (cfs) :	peak ;	(acre-feet) :	(inches)
ELM FORK AT	CARROLLTON - D.	A. = 2, 4	57 SQ. MI.	
<pre>:cember 9-20, 1913 ay 12-26, 1935 fune 6-July 1, 1941 April 18-May 17, 1942 March 27-April 10, 1945 May 28-June 19, 1946 April 18-August 31, 1957 April 13-June 11, 1958 (1) Flows regulated by 1954, Garza-Little July 1952. (2) Peak discharge est: 1957 and 1958 with operation.</pre>	82,100(1) M 76,400(1) J 90,700(1) A 18,000(1) A 42,800(1) J 7 13,700(1&2) J 7,720(1&2) A Lake Dallas from Elm since 1954 a imated at 164,100	pr 27 Februar nd Grape and 121	vine Reservoir ,300 second-fee	since et in
operación	÷	·		
EAST FORK N	EAR ROCKWALL - D.	$A_{*} = 8^{1}$	<u>0 SQ. MI.</u>	
June 15-20, 1935 February 17-25, 1938 April 19-29, 1942 May 1-5, 1944 February 20-25, 1945 May 29-June 5, 1946 April 19-June 24, 1957 April 30-May 5, 1958	57,600 F 80,000(1&2) A 28,500 M 42,800 F 43,600 M 43,000(2&3) M	un 16 eb 18 pr 20 ay 3 eb 22 ay 31 ay 27 ay 2	173,000 181,500 259,600 102,000 105,300 204,200 720,200(4) 241,600(4)	3.86 4.05 5.80 2.28 2.35 4.56 16.08 5.40

Estimated by Corps of Engineers. (1)

(2) Affected by major levee breaks.
(3) Observed flows modified by Lavon Reservoir. Estimated peak discharges without Lavon Reservoir in operation would be 54,600 and 31,800 second-feet for the 1957 and 1958 flood, respectively.

(4) Inflow computed at Lavon Reservoir.

FLOOD	DATA
-------	------

o •	Peak	: Date	: Flood vo	
Date of flood :	discharge	: of	: passing	
• • •	(cfs)	: peak	: (acre-feet) :	(inches)
CHAMBERS CREEK	NEAR CORSTC	$\Delta M \Delta = D \Delta$	-071 SO. MT.	
CHAPTER O CITATIN	MIMIC CONDIC	UTAU - 7.9 Yr9.	- 911 Date 1110	
1012		Dec -	(1)	(1)
1913 Neverther 22, 20, 1040	54,000 25,400	Nov 24	(1) 121,800	2.35
November 23-30, 1940 April 20-30, 1942	25,400 37,400	Apr 26	243,000	4.69
April 30-May 6, 1944	48,000	May 3	191,200	3.69
March 29-April 8, 1945	32,900	Mar 31	203,000	3.92
April 19-May 30, 1957	23,200	May 24	444,600	8.59
April 29-May 10, 1958	38,200	May 3	252,300	4.87
April Cymag 10, 1990	505200		2,2,000	
(1) Data not available.				
RICHLAND CREE	K NEAR RICHL	AND - D. A.	= 737 SQ. MI.	
	•	_	4- 5	
1913	85,000	Dec -	(1)	(1)
Nov. 23-Dec. 8, 1940	43,000	Nov 24	176,400	4.49
April 20-May 4, 1942	39,600	Apr 26	140,200	3.57
April 29-May 10, 1944	55,000	May 2	196,700	5.00
March 29-April 7, 1945	55,000	Mar 31	163,100	4.15
May 11-17, 1948	58,900	May 12	134,700	3.43
May 12-21, 1953	29,500	May 13	187,400	4.77
April 19-May 10, 1957	44,600	Apr 21	431,500	10.98
April 30-May 6, 1958	33,400	May 3	1.68,600	4.29

(1) Data not available.

WATER RESOURCE REQUIREMENTS

49. GENERAL. - Data relative to present and prospective municipal and industrial water requirements and water quality control used in this section were taken from the report, "Water Resources Study, Trinity River Basin - Texas," prepared by the Department of Health, Education and Welfare and presented as exhibit 1 in this appendix.

50. SURFACE AND GROUND WATER USE IN 1958.- The total water use in 1958 for municipal, industrial, and irrigation purposes was about 272.3 million gallons per day, of which about 200 million gallons per day were supplied from surface water sources and about 72.3 million gallons per day were supplied from ground water sources. In addition, it is estimated that in 1958, the adjoining coastal area to the lower Trinity River Basin used about 0.4 million gallons per day for municipal purposes, all of which was supplied from ground water sources. Also in 1958, this area is estimated to have used over 107.8 million gallons per day for irrigation, of which about 106.1 million gallons per day were from surface water sources and about 1.7 million gallons per day were from ground water sources. The municipal, industrial, and irrigation water uses during 1958 in the Trinity River Basin and adjoining coastal areas are summarized in table 13.

TABLE 13

1958 WATER USE

Municipa	al use	Industrial	use	Total	1156	a ≠ •	Source of	supply	
	e e		:	· · · · · · · · · · · · · · · · · · ·		: Surface v	and the state of the	Ground w	ater
(AcFt.) :	: (MGD) :	(AcFt.) :	(MGD) :	(AcFt.)	: (MGD)	: (AcFt.)	: (MGD) :	(AcFt.)	: (MGD
		1958	3 TRINITY	RIVER BASI	IN WATER (JSE	·		
227,300	202.8	34,100	30.4	261,400	233.2	197,900	176.5	63,500	56.7
Water used	l for irrig	ation		43,800	39.1	26,300	23.5	17,500	15.6
Total M &	I and irri	gation use		305,200	272.3	224,200	200.0	81,000	72.3
		<u>19</u>	58 ADJAC	ENT COASTAL	, AREA USF	<u> </u>			
400	0.4	0	. 0	400	0.4	0	0	400	0.4
Water used	l for irrig	ation		120,900	107.8	119,000	106.1	1,900	1.7
Total M &	I and irri	gation use		121,300	108.2	119,000	106.1	2,300	2.1

51. RETURN FLOWS IN 1958. - Available measurements indicate that sewage return flows varying between 68 and 73 gallons per capita daily have been experienced at Fort Worth in recent years. Records of sewage measurements at Dallas indicate that recent rates of return sewage flows varied between about 74 and 80 gallons per capita daily. The lower rate was experienced during the 1952-1953 water year when water use was somewhat restricted because of the drought. Although there are monthly variations in return flow, in general the differences are not great and a seasonal variation is not clearly indicated.

52. SURFACE WATER QUALITY IN 1958. - The quality of surface water in the Trinity River and its tributaries ranges from "very good" to "questionable" with concentrations of mineral solids varying from 100 to 1,000 parts per million. However, concentrations in excess of 500 ppm have been reported in only a few instances. The only high concentrations of mineral solids are found in the lower 40 miles of the river and result from salt water intrusion from Trinity Bay.

53. Organic solid concentrations present the most serious problem of surface water quality, with conditions of maximum oxygen depletion existing downstream from the Dallas-Fort Worth metropolitan area. In the reach of the river from Fort Worth to Rosser, oxidation of organic matter is retarded and septic conditions and offensive odors are usually present. The water is turbid and discolored, sludge banks may be observed at many locations and there is insufficient oxygen for fishlife to propagate.

54. Downstream from Rosser a steady improvement in quality takes place because of dilution by good quality water discharged by tributaries. The organic problems have almost completely disappeared at a point near the San Jacinto-Liberty County line, about river mile 100.

55. GROUND WATER QUALITY IN 1958. - The quality of water produced from aquifers underlying the Trinity River Basin ranges from "very good" to "unsatisfactory" as indicated by mineral solids, which vary from 150 to over 5,000 ppm, with the predominating number of wells having solids less than 1,000 ppm. Chlorides range from a low of 10 ppm to a high of about 1,800 ppm with many wells showing less than 1,000 ppm. Sulfates are present in quantities ranging from a low of 10 to a high of 5,000 ppm. Only in Dallas County do the concentrations of sulfates exceed those of chlorides. Hardness is moderate throughout the entire basin, ranging between 10 and 300 ppm, with most samples containing less than 100 ppm. Of significance to industries is the presence of silica concentrations ranging from 12 to 50 ppm, necessitating higher treatment costs for many industrial uses. Water from a number of wells contains sodium concentrations ranging from 60 to 600 ppm which limits its usefulness for irrigation. Also, of significance to public health is the presence of fluorides in some areas in concentrations greater than the suggested maximum (1.0 ppm).

56. FUTURE WATER REQUIREMENTS. - Urban and industrial areas of the Trinity River Basin are in a period of rapid economic expansion at a rate of almost one and one-half times the national average. Dallas and Fort Worth, the second and fourth largest cities in the state, have become leading manufacturing centers in the nation, ranking high in aircraft and electronics. With the anticipated continued increase in population and economic growth throughout the basin goes the need for maintenance of adequate water supply facilities and development of the surface and ground water resources of the basin to meet future demands.

57. Through analysis of the various needs and purposes of water resource development, both past and present, as related to the economic activities of the Trinity River Basin, broad projections to the years 2020 and 2070 have been made. In developing the requirements, recognition has been given to the efforts of a number of federal, state, and local agencies charged with the responsibility of development of the water resources of this basin. The requirements to meet the projected demands are divided into the general categories of navigation, municipal and industrial, agricultural, water quality, and recreation. The specific requirements of the Trinity River Basin are discussed in subsequent paragraphs.

58. WATER REQUIREMENT FOR NAVIGATION. - The operation of navigation on the multiple purpose canalized Trinity River would necessitate supplying water at the head of navigation, or along the waterway, to meet the following uses and losses:

- a. For the lockage of floating craft.
- b. To replenish the pools for the following losses:
 - (1) Leakage through structures.
 - (2) Seepage under and around structures.
 - (3) Accidents and operating contingencies.
 - (4) Evaporation in locks and pools.

The total water requirements for operation of navigation at each lock on the canalized multiple-purpose channel to Fort Worth for the years of 1970 and 2020 were estimated. The following tabulation presents the estimated water requirements based on projected conditions of basin development and water use for 1970 and 2020 for the critical locks. Plate 21 shows the water requirements for the 1970 and 2020 conditions for each of the proposed locks.

Lock No.	\$,	Location	: Water re	quirements
	*	(channel	: <u>for navig</u>	ation (cfs)
	*	mile)	: 1970	: 2020
21 (1)		360.17	114.2	144.1
19		342.51	114.8	145.9
15		306.31	197.3	269.5
13		286.64	260.3	356.0
7		183.92	227.8	369.2
6		147.92	104.6	483.7
5A		98.00	303.5	519.9

(1) Lock and Dam No. 21 forms the uppermost pool at head of navigation.

59. MUNICIPAL AND INDUSTRIAL. - The municipal and industrial water requirement projections for the years 2020 and 2070 have been determined by the Public Health Service, U. S. Dept. of Health, Education and Welfare. Their report containing a detailed analysis of water needs for the study area comprising 46 counties in and surrounding the Trinity River Basin, as based on past and present uses and economic trends is presented as exhibit 1 in this appendix. The Public Health Service's projected municipal and industrial demands are 2,080.0 million gallons per day for the year 2020 and 3,918.0 million gallons per day for the year 2070.

60. The above requirements are established for the Trinity River Basin only. In addition, in order to satisfy the terms of the Texas Water Commission permits issued to the Trinity River Authoritv and the city of Houston, 839.5 million gallons of water daily would be required for diversion from the Trinity River by the city of Houston for municipal and industrial uses in the San Jacinto River Basin.

61. AGRICULTURAL.- Surface water irrigation in the basin is concentrated largely in Liberty, Chambers, and Jefferson Counties where water is diverted from the Trinity River for rice production. Based on results of a joint land classification survey by the Bureau of Reclamation and the Soil Conservation Service, it is estimated that future rice irrigation in this area from water of the Trinity River will not exceed approximately 80,000 acres, the record year in the 1940-1959 period. In addition to this area in the lower basin, there are about 42,000 acres between Dallas and the Tennessee Colony Reservoir site and 49,000 acres between that site and Livingston Reservoir that are suitable for sustained permanent irrigation. These lands occur in small scattered tracts along the Trinity River. The Public Health Service has determined that these areas will require for irrigation use approximately 356 million gallons per day by the year 2020.

62. WATER QUALITY .- Efficient development of all of the water resources of the Trinity River Basin is essential to the continued growth of the area. To attain full utilization of these resources for municipal, industrial, agricultural, navigation, and recreation purposes will require abatement of the present pollution in the upper basin as well as control of future pollution throughout the area. Therefore, provision of water to maintain minimum quality conditions in the river must be made a part of the water supply plan until such time as future advances in waste treatment technology can economically provide for removal of residual pollutants before they reach the stream. The water supply plan for quality control purposes in the Trinity River Basin would come from excess dependable yields for municipal and industrial purposes in federal reservoirs, both existing and proposed, during the intervening period between construction and full utilization of the dependable yields for municipal and industrial purposes. Indications are that sufficient water resources are available in the basin to satisfy projected primary water and water quality control demands although water would have to be pumped a considerable distance up to the point of demand (Fort Worth) from the downstream reservoirs.

63. RECREATION, FISH AND WILDLIFE. - The land areas adjacent to water developed projects located in the upper reach (Dallas-Fort Worth area) of the Trinity River Basin are sufficient at the present time to accommodate the number of people seeking water-related recreation activities. However, on the basis of the projected population for this vicinity, there will develop a substantial need for additional facilities. The number of water developed projects in the Trinity River Basin below the Dallas-Fort Worth area are very limited, and there are needs for additional projects to serve the number of people desiring to participate in water-related recreation activities. The proposed projects, when constructed, will assist materially in satisfying these needs and demands.

64. The tidal waters in the Gulf of Mexico and other bays also attract many visitors seeking water-related recreation activities. However, some of these individuals will alternate their water-related recreation activities between the tidal water and fresh water when fresh water impoundments are available and the travel distance is not too great.

65. Construction and operation of reservoirs in the comprehensive plan of improvement for the Trinity River Basin would result in the creation of productive fish habitat in the recommended Lakeview, Tennessee Colony, and other reservoirs in the system, and furnish attractive fishing in the multiple-purpose channel and cutoff sections of the Trinity River. On the other hand, big game and upland game habitat and hunting will be reduced. Also, the reduced water inflow into estuaries associated with the Trinity River will cause loss of a highly valuable portion of marine fishing in the Galveston Bay system. The Fish and Wildlife Service estimate that a fresh water discharge of 2,000 second-feet into Trinity Bay during the period from March through October would be required to retain the estuarine fisheries.

FLOOD PROBLEMS

66. GENERAL. - Flooding is one of the principal problems in the Trinity River Basin. Throughout the basin, the streams are meandering and in general have small channel capacities in proportion to the areas drained. Consequently, floods are experienced at frequent intervals throughout practically the entire river system.

67. PAST FLOODS. - According to historical information, major floods occurred in the vicinity of Dallas and Fort Worth in 1866, 1884, and 1889; however, little detailed information is available on those floods outside the Dallas-Fort Worth area. Data concerning the major basin storms and the resulting floods have been presented previously in this appendix (paragraphs 34 through 48).

EXISTING FLOOD-CONTROL PROJECTS. - Local interests have taken 68. some steps toward solving the flood problem in localized areas within the basin, principally by construction of levees and floodway improvements (see paragraph 11). In recent years, the Federal Government has provided betterments to some of the locally constructed improvements and has constructed additional flood-control works which have materially increased the protection from floods (see paragraphs 8 and 9). The flood-control work to date has been primarily in the portion of the basin upstream from Richland Creek, the area in which the most extensive concentrations of urban and agricultural developments in the Trinity River Basin are located. These projects have served to control flood runoff and reduce flood discharges from an area on which the most damaging floods of record in the basin have been generated. Major floods have on occasion been generated in the basin area below the confluence of Richland Creek and the main stem of the Trinity River, but records show that the magnitude of such floods has not been as great as those which originate upstream. Runoff from the lower basin, however, augmented by that from the upper basin, results in an increase in volume and duration of flood flows as they progress downstream. Existing flood-control works afford a high degree of protection to some areas of the basin from damages which would result from the recurrence of floods equal in magnitude to those of record. The effectiveness of those works was demonstrated during the 1957 flood in the upper reaches of the basin during which the operation of the existing flood-control projects is credited with prevention of widespread damages.

69. Local soil conservation districts, with the assistance of the Soil Conservation Service, have instituted and now have in progress an accelerated land treatment program. Approximately 28 percent of the agricultural land of the basin is adequately treated at this time, and another 10 percent is partially treated, lacking one or more practices. In addition to, and supplementing this program, construction of floodwater retarding structures in the creek watersheds will serve to reduce flash runoff and sediment production. However, uncontrolled releases from these structures will occupy downstream channels for prolonged periods and thus limit controlled releases from other reservoirs.

70. CRITICAL AREAS. - Extensive urban development, which has taken place in the lowland areas adjacent to the Trinity River and its tributaries, was accelerated by the prolonged drought of 1950-1957 and an erroneous impression as to the degree of protection afforded by the upstream projects built during and subsequent to the drought period. Damages which were experienced during the 1957 flood clearly emphasized the need for additional flood-control works for the protection of these newly-developed areas, as well as other portions of the basin which were not previously afforded adequate protection. Critical urban areas requiring additional flood protection are on the West Fork between Fort Worth and Dallas, the Elm Fork between Dallas and Carrollton, the Trinity River immediately below Dallas and at Liberty, and Duck Creek at Garland. Extensive damages are also sustained in agricultural areas along the main stem of the Trinity River below Dallas and on the Elm Fork watershed between Carrollton and the Garza-Little Elm and Grapevine Reservoirs.

71. CHANNEL DEFICIENCY .- Floods experienced subsequent to the completion of the Corps of Engineers reservoir projects in the upper Trinity River Basin revealed that the problem of inadequate channel capacity exists on the Trinity River and tributaries. The problem of insufficient channel capacities was particularly evident during the April-June 1957 flood, when the Trinity River Basin experienced heavy rainfall almost daily. Recent encroachments, together with certain channel deficiencies that previously existed, have limited flood-control releases from existing upstream reservoirs to such an extent as to materially reduce their effectiveness for providing flood protection. Therefore, in order to provide an effective plan for flood control in the basin, channels should be of sufficient capacity to provide a reasonable degree of protection against floods originating on the uncontrolled area below upstream reservoirs. As a further requirement, channels should be of sufficient capacity to permit passage of uncontrolled releases from downstream reservoirs together with regulated flood releases from Corps of Engineers reservoirs at rates of sufficient magnitude to permit evacuation of stored floodwaters in a reasonable period of time after downstream flooding has ceased.

PLAN OF IMPROVEMENT

72. GENERAL. - The projects considered for addition to the authorized plan of improvement for the Trinity River Basin as set forth in Appendix I, Project Formulation, consists of the following principal features:

a. A multiple-purpose channel extending from the Houston Ship Channel in Galveston Bay to Fort Worth and including 23 navigation locks and 18 navigation dams;

b. ten multiple-purpose reservoir projects;

c. twelve reservoir projects primarily for water conservation;

d. one reservoir primarily for flood control; and

e. eleven local flood protection projects.

Existing and authorized projects and the projects considered for addition to the authorized plan for the Trinity River Basin are listed in table 14 and are shown on plate 13.

TABLE	14

PROJECTS CONSIDERED IN PLAN OF IMPROVEMENT

		ation	_i
Name of project	Stream	: River mile	: Purpose
1. CHANNEL-MULTIPLE PURPOSE			
(a) Recommended New Project:			
(1) Houston Ship Channel to Fort Worth	Trinity River	0.~542.0	Navigation and Flood Control
(-)	•		WELFORDING ON ANY TION CONTOUR
2. CHANNEL-NAVIGATION			
a) Existing Project:			
(1) Houston Ship Channel to Anahuac	Trinity River	0 23.2	Nevigation
(b) Authorized Project:			
(1) Anahuac to Liberty	Trinity River	23.2 48.9	Navigation
3. REMERVOIR -MULTIPLE PURPOSE			
(a) Existing Projects:			
(1) Benbrook	Clear Fork	15.0	Flood Control and Navigation
(2) Grapevine	Denton Creek	11.7	Flood Control, Navigation, and Water Conservation
(3) Garza-Little Elm	Elm Fork	30.0	Flood Control and Water Conservation
(4) Lavon	East Fork	55+9	Flood Control and Water Conservation
(5) Navarro Mills (under construction)	Richland Creek	63.9	Flood Control and Water Conservation
b) Authorized Projects:			
(1) Bardwell	Waxahachie Creel	6.0	Flood Control and Water Conservation
c) Recommended New Projects:			
(1) Tennessee Colony	Trinity River	339-2	Flood Control, Navigation, Water Conservation, Recreation,
			and Fish and Wildlife
(2) Lakoview	Mountain Creek	7.2	Flood Control, Water Conservation, Recreation, and Fish
(3) Lavon (enlargement) (1)	East Fork	FF 0	and Wildlife
(4) Wallisville (1)		55.9	Water Conservation and Recreation
(4) WELLSVILLE (I)	Trinity River	3.9	Salinity Control, Navigation, Water Conservation, Recreation
(5) Aubrey (2)	Elm Fork	60.0	and Fish and Wildlife Flood Control and Water Conservation (2)
()) March (E)	HT I LOIN	00.0	Flood control and water conservation (2)
4. RESERVOIRS FRIMARILY FOR CONSERVATION (3	3		
a) Proposed New Frojects:	· ·		
(1) Richland Creek	Richland Creek	5.2	Water Conservation
(2) Tehuacana	Tebuacana Creek	11.2	Water Conservation
(3) Boyd	West Fork	604.7	Water Conservation
(^f i) Upper Keechi	Upper Keechi Cre	ek 11.0	Water Conservation
(5) Hurricane	Hurricane Bayou	7.0	Water Conservation
(6) Lover Keechi	Lower Keechi Cre		Water Conservation
(7) Bedias	Bedias Creek	19.2	Water Conservation
(8) Harmons	Harmons Creek	10.5	Water Conservation
(9) Gail	Gail Creek	25.3	Water Conservation
(10) Mustang	Mustang Creek	<u>21</u> .5	Water Conservation
(11) Caney	Caney Creek	7.7	Water Conservation
(12) Long King	Long King Creek	22.9	Water Conservation.
5. RESERVOIR PRIMARILY FOR FLOOD CONTROL			
a) Proposed New Project:			
(1) Roanoke (4)	Denton Creck	31.4	Flood Control (4)
(2)	Pointoin Orobia		11004 0000101 (4)
6. LOCAL FLOOD PROTECTION PROJECTS			
a) Existing Projects:			
(1) Fort Worth Floodway	West Fork	551.3 -564.7	Local Flood Protection
	Clear Fork	0 1.6	
(2) Dillas Floodway	Trinity River	497-4505-5	Local Flood Protection
	West Fork	505.5508.7	
	Elm Fork	0 3.5	•
b) Authorized Projects:			
(1) Fort Worth Floodway Extension (Part I)	West Fork	564.7570.4	Local Flood Protection
(2) Big Fossil Creek	Big Fossil Creek	0 3.3	Local Flood Protection
c) Recommended New Projects: (1) Forth Month Floodway Futorcian (Dont TI) (1)) (Il can Davis	1 6 20 1	
(1) Fort Worth Floodway Extension (Part II) (1		1.610.4	Local Flood Protection
 (2) West Fork Floodway (3) Elm Fork Floodway 	West Fork Elm Fork	505.5551.5	Local Flood Protection
(2) TTH FOLK FTOODWAY	Eim Fork Denton Creek	0 29.4 0 11.1	Local Flood Protection
(4) Dallas Floodway Extension	Trinity River	487.7498.1	Local Flood Protection
(5) East Fork Channel Improvement (1)	East Fork	+01.1490.1 0 31.8	Local Flood Protection
(6) Duck Creek Channel Improvement	Duck Creek	10.4 17.5	Local Flood Protection
	Trinity River	34.0 44.5	Local Flood Protection
(7) Liberty Floodway	TLUILL'A VIAGL	14.V = (14.)	

(1) Previously recommended.

.

(2) The flood-control storage in Aubrey Reservoir would replace a comparable amount of flood-control storage which would be reallocated to concervation purposes in Garza-Little Eim Reservoir.

(3) These reservoirs will also be considered for flood control, as well as water supply, water quality, recreation and fish and wildlife purposes, when the needs become imminent.

(4) The flood-control storage in Roanoke Reservoir would replace a comparable amount of flood-control storage which would be reallocated to conservation purposes in Grapevine Reservoir.

73. WATER SUPPLY.- The projected water supply requirements for the Trinity River Basin to satisfy the needs for municipal, industrial, non-municipal use, water quality control, navigation, irrigation, and exportations have been estimated to be 3,433 million gallons per day by year 2020 and 5,187 million gallons per day by year 2070, as shown in the following tabulation:

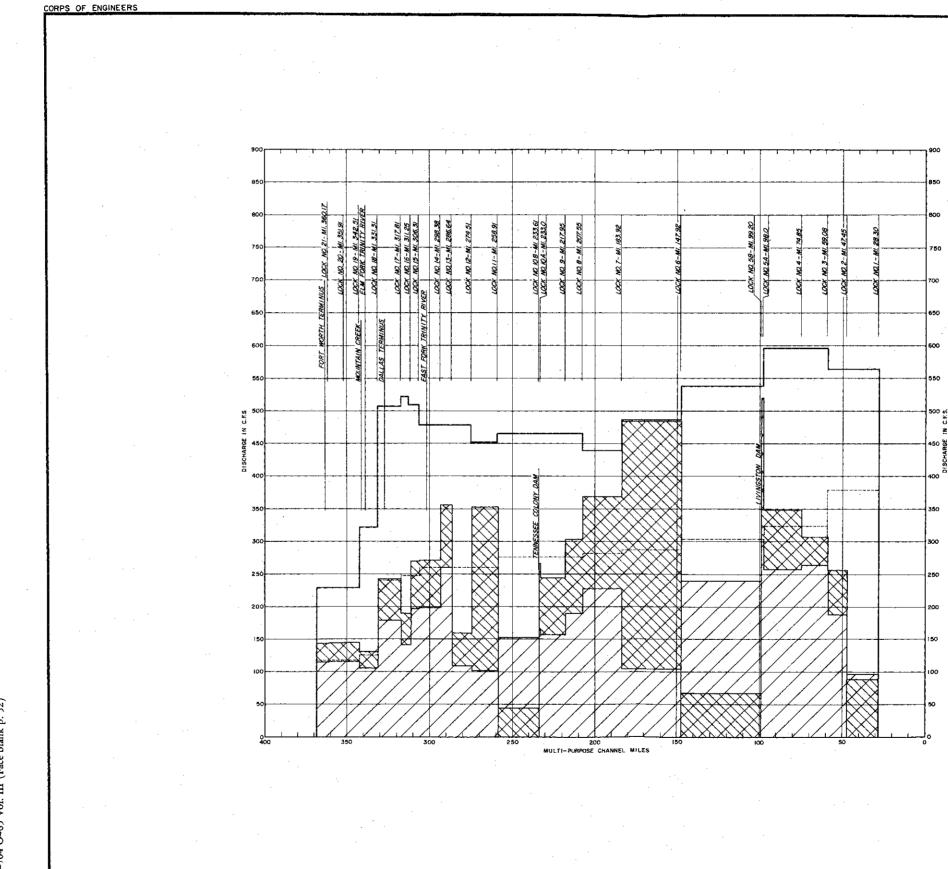
Sub-Basin:	Municipal and Industrial		Water : quality: control:			Exports	: : Total :
			<u>Year 202</u>	<u>0</u>			
Upper Middle Lower Total	1,513(1) 227 <u>340</u> 2,080	15 3 <u>2</u> 20	80(2) 0 <u>0</u> 80	0 0 <u>57</u> 57	69 65 <u>222</u> 356	0 0 <u>840</u> 840	1,677 295 1,461 3,433
			<u>Year 207</u>	0			
Upper Middle Lower Total	2,797 435 <u>686</u> 3,918	11 4 <u>1</u> 16	0(2) 0 <u>0</u> 0	0 0 <u>57</u> 57	69 65 <u>222</u> 356	0 0 <u>840</u> 840	2,877 504 1,806 5,187

WATER REQUIREMENTS (Million Gallons Per Day)

(1) Includes 40 MGD yield from Aubrey Reservoir for interim use as water quality control.

(2) 80 MGD for water quality control would be converted to water supply as the need develops.

The existing, under construction, and authorized reservoirs 74. with storage for water supply for municipal and industrial purposes together with the importations would produce a water supply of 1,343.4 million gallons per day. The Roanoke (including modification of Grapevine Reservoir), Aubrey (including modification of Garza-Little Elm Reservoir), Lakeview, and Tennessee Colony multiple-purpose reservoir projects which are recommended for authorization in this report plus the previously recommended enlargement of Lavon Reservoir would produce a water supply of 453.1 million gallons per day. Thirteen additional potential reservoir projects have been recommended for inclusion in the long-range plan of development for the Trinity River Basin primarily in the interest of water supply. These reservoirs were formulated on the basis of developing the surface water resources of the Trinity River Basin to the maximum practical extent. The construction of the longrange projects has been considered as a phase development which would be coordinated with the needs of the basin in such a manner as to permit


timely construction to provide additional water supply as the needs develop. The thirteen potential reservoirs would produce a water supply of 680.4 million gallons per day. The system of reservoirs included in the comprehensive plan together with importations would furnish a water supply of 2,476.9 million gallons per day as summarized below:

Reservoirs	Water supply (Million gallons per day)
Existing, Under Construction, Authorized Importations Previously recommended for authorization Recommended for authorization in this re	180.0 42.7
Sub-total	1,796.5
Potential long-range projects	680.4
Total	2,476.9

75. Water supply from reservoirs which are existing, under construction, authorized, and recommended for authorization in this report together with a nominal use of ground water and return flow would satisfy the projected demands in all segments of the basin until about 2000 to 2010. An additional supply of approximately 1640 and 3390 million gallons per day would be required to satisfy the projected water requirements for years 2020 and 2070 respectively. An analysis of the available water supply in the basin from additional reservoirs in the long-range plan, ground water and return flow revealed that the potential of these resources may be sufficiently developed to satisfy the additional requirements of the basin to year 2070. Unquestionably the expansion of ground water use beyond the present 72 million gallons per day and the use of return flows will progressively increase throughout the projected period of basin development. Other than to conclusively establish the fact that ultimate water requirements will necessitate the maximum practical development of these two resources to meet in-basin demands, no definitive basis is available to predict just when these resources would be scheduled into the overall development. Alternate resources of supply from adjacent basins to the north and east could be imported if in the future local interests decided to utilize such resources rather than to use additional ground water or return flow. Generally, the development and use of these water resources will progress in consonance with the changing economic conditions and areal development of the basin and with the distribution, availability and quality of these water resources.

76. Development of the Lakeview Reservoir project would afford a source of water supply to satisfy the immediate needs of local interests. The water supply of 291 million gallons per day from the Tennessee Colony Reservoir would serve a dual purpose - initially 80 million gallons would be used for water quality control in the upper basin and the remainder would be available as a source of municipal and industrial. water supply for the middle basin. At about year 2020, as the need for municipal and industrial water supply increases in the upper basin, a transfer would be effected in the area of use for the remaining 211 million gallons per day of the Tennessee Colony water supply. It is anticipated that construction of the eight long-range reservoir projects in the middle basin would be phased with the gradual transfer of the Tennessee Colony water supply with construction of certain projects starting around the turn of the century so that the demands of the middle basin may continue to be fully satisfied. Initially the water supply from the Aubrey Reservoir would be used in the interest of water quality control. However, as the need for municipal and industrial water supply develops, a conversion from water quality control to water supply for municipal and industrial use would be made. There is no immediate demand for the additional water supply provided by the Roanoke Reservoir; however, it is considered that preservation of this project by acquisition of the land required at this time is desirable and economically justified. The actual project would not be constructed until the needs for the storage developed. The 13 potential projects included in the long-range plan to satisfy future requirements would be considered for authorization after detailed investigations to determine the full scope and purposes that would be justified at that time.

77. NAVIGATION WATER SUPPLY .- The net water requirements for navigation based on evaporation and other losses through the lowest lock at Wallisville Reservoir would be 95.7 and 88.2 second-feet in the years 1970 and 2020, respectively. However, in order for the system to become operational, it will require a supply of water at the head of navigation of 114.2 second-feet in 1970. For planning purposes in connection with this study, the Public Health Service was requested to make an analysis of the future net return flows in the Trinity River for the years 1970 and 2020. The studies made by the Public Health Service were premised (at the request of the Corps) on the conditions that the proposed modified plan for the Trinity River would be considered as operational by the year 1970 and that return flows would be considered as the only available source of supply without allowances for any local runoff from the uncontrolled drainage areas. The Public Health Service took into account the projected conditions of basin development and water use expected for the years 1970 and 2020. The following tabulation presents the navigation water requirements as estimated by the Corps and net available return flows based upon the Public Health Service studies for the 1970 and 2020 conditions at the critical locks. Plate 21 shows the water requirements and return flows for the 1970 and 2020 conditions at each of the proposed locks.

III (Face blank p. 52) Vol. 52-704 O-65

CORPS OF ENGINEERS

U.S. ARMY

LEGEND

NAVIGATION REQUIREMENTS (1970) ----- RETURN FLOW (1970) * NAVIGATION REQUIREMENTS (2020) ______ RETURN FLOW (2020)

* Includes releases from navigation storage in Benbrook and Grapevine Reservoirs.

Lock Number	: Lock : :location: :(channel: c: mile) :	ment	: Return	70 conditions Supply (cfs) :Reservoir :):releases(2):	Total		Return flow
21(4)	360.17	114.2	97	17.8	114.8	144.1	229
19	342.51	114.8	97	17.8	114.8	145.9	229
15	306.31	197.3	226	22.3	248.3	269.5	510
13	286.64	260.3	238	22.3	260.3	356.0	479
7	183.92	227.8	259	14.5	273.5	369.2	1+1+1+
6	147.92	104.6	264	14.5	278.5	483.7	486
5A	98.00	303.5	289	14.5	303.5	51.9.9	539
				1			

(1) Based on data furnished by Public Health Service, Region VII, Department of Health, Education and Welfare.

- (2) Releases from the navigation storages of Benbrook and Grapevine Reservoirs would be made at such rates as would be necessary to meet the requirements.
- (3) Waterway will reach its full traffic capacity by the year 2015.

(4) Lock and Dam No. 21 forms the uppermost pool at the head of navigation.

78. The data presented in the preceding tabulation reveal that in the year 2020, return flows would be sufficient to meet the navigation requirements, but that in 1970 there would be several critical areas where the water supply from return flow alone would not quite satisfy the requirements. However, it is estimated that the return flows would furnish sufficient water to meet the navigation requirements by the year 1973. In the interim (1970-1973), return flows and local runoff from the uncontrolled areas would be supplemented by releases from the navigation storages of Benbrook and Grapevine Reservoirs at such rates as would be necessary to meet the requirements at the critical locks.

79. From an overall analysis of the navigation aspects of the Trinity River plan with respect to the water requirements and available sources of supply to satisfy these requirements, it is concluded that sufficient water resources are available to permit navigation on the Trinity River to Fort Worth by year 1970.

80. WATER QUALITY .-

a. <u>Ground Water</u>.- The quality of water of the aquifers underlying the Trinity River Basin will not change materially if reasonable steps are taken to avoid contamination. Disposition of liquid wastes by means of sub-surface injection wells and in surface ponds or lagoons, and the abandonment of oil wells should be closely supervised and suitable regulations **enforced** to insure the provision of adequate facilities and suitable operations. In the area bordering the coast, saltwater encroachment is, and will continue to be, a hazard which can be minimized by the decrease in the rate of withdrawal from inland wells.

b. Surface Water .- Abatement of the present pollution problem on the West Fork and Trinity River from Fort Worth downstream to Rosser is essential to attain full utilization of the water resources of the region for municipal, industrial, agricultural, navigation, and recreation purposes. Although most of the waste treatment plants in the area discharging into the Trinity River Basin are operating efficiently within their design capacities, insufficient tributary dilution and reaeration cause anaerobic conditions to exist. Therefore, provision of water to maintain minimum quality conditions in the river must be made a part of the water supply plan until such time as future advances in waste treatment technology can economically provide for removal of residual pollutants before they reach the stream. The water supply plan for quality control purposes would be to utilize excess dependable yield from Tennessee Colony Reservoir and other federal reservoirs in the basin until such time as these yields were needed to meet the requirements for municipal and industrial purposes.

81. FULFILLMENT OF FLOOD-CONTROL REQUIREMENTS. - The recommended plan of improvement for the Trinity River Basin presented in paragraph 72 would provide a high degree of flood protection for the Trinity River and its principal tributaries. The system of major multiple-purpose and flood-control reservoirs in the plan would control flood flows from approximately 16 percent of the area above Fort Worth, 50 percent of the area above Dallas, 47 percent of the area above Rosser, and 72 percent of the area above Liberty. The local protection projects in the plan would provide flood protection to areas in the flood plains of the Clear Fork, West Fork, Elm Fork, and Trinity River in and adjacent to the cities of Fort Worth and Dallas, to areas in the flood plain of Duck Creek at Garland, and to areas in the flood plain of the Trinity River at Liberty. The recommended multiple-purpose channel would provide sufficient channel capacity to permit passage of flood flows from the uncontrolled areas, uncontrolled releases from reservoirs downstream from Corps of Engineers reservoirs, and regulated flood releases from Corps of Engineers reservoirs at rates of sufficient magnitude to permit evacuation of the flood-control storage in a reasonable period of time. The multiple-purpose channel would, therefore, afford some degree of protection against floods originating on the uncontrolled area below the upstream reservoirs, and at the same time increase the effectiveness of the flood-control storage in the upstream reservoirs.

RESERVOIRS

82. GENERAL. - In the Trinity River Basin there are 24 major reservoirs, either in operation, under construction, or authorized which contain conservation storage and have individual total storage capacities of more than 5,000 acre-feet as shown in tables 2 and 4. Of these 24 reservoirs, 6 are Corps of Engineers projects and 18 are non-federal projects. The total conservation storage contained in these reservoirs is 4,191,350 acre-feet. The location of the reservoirs is shown on plate 13, and additional information pertinent to the reservoirs is given below. There are also 79 reservoirs in the basin with individual total storage capacities of less than 5,000 acre-feet. These reservoirs contain a total of about 41,000 acre-feet of conservation storage. In addition, there are about 66,500 farm ponds with an average storage capacity of almost 2 acre-feet.

83. CORPS OF ENGINEERS RESERVOIRS. - The 6 Corps of Engineers reservoir projects mentioned above are: the Benbrook, Grapevine, Garza-Little Elm, and Lavon Reservoirs which are in operation; the Navarro Mills Reservoir which is under construction; and the authorized Bardwell Reservoir which is in the preconstruction planning stage. These six reservoirs contain a total of 852,450 acre-feet of conservation storage, of which 97,500 acre-feet are reserved for navigation requirements. Pertinent data for these reservoirs are given in table 2.

84. NON-FEDERAL RESERVOIRS. - The 18 non-federal reservoirs referred to above are as follows: Amon Carter, Bridgeport, Eagle Mountain, Lake Worth, Arlington, Mountain Creek, Marine Creek, Weatherford, North Lake, White Rock, Lake Trinidad, Livingston, Lake Anahuac, Forney, Lake Terrell, Cedar Creek, Waxahachie, and Lake Halbert. Of these, 15 are in operation and 3 - Livingston, Forney, and Cedar Creek - are under construction. These non-federal reservoirs contain a total of 3,338,900 acre-feet of conservation storage. Pertinent data for these reservoirs are given in table 4.

85. The plan of improvement for the Trinity River Basin recommends construction of 5 federal reservoirs at this time: Lakeview Reservoir on Mountain Creek; Roanoke Reservoir on Denton Creek; Aubrey Reservoir on Elm Fork of the Trinity River; Tennessee Colony Reservoir on the Trinity River; and the previously recommended Wallisville Reservoir on the Trinity River. Also included in the recommended plan of improvement is the previously recommended enlargement of the existing Lavon Reservoir. With the construction of Roanoke and Aubrey Reservoirs. it is proposed to reallocate storages in the existing Grapevine and Garza-Little Elm Reservoirs to provide additional conservation storage. Projects included in the plan of improvement as future reservoirs but not recommended at this time are Boyd, Richland Creek, Tehuacana, Upper Keechi, Lower Keechi, Hurricane, Bedias, Harmons, Gail, Mustang, Caney, and Long King Reservoirs. Pertinent data for reservoirs recommended and proposed for inclusion in the long range plan are shown in tables 15 and 16 and the location of each is shown on plate 13.

	: Reservoir :	Stream	: : River	:Contributing: : drainage	:	capacity (ac:	:	:2020 :Yield
	:	·	: mile	:area (sq.mi.)	Sediment	:Conservation	: Total	:(cfs)
	Boyd	West Fork Trinity	604.7	1,707	39,200	600,000	639,200	49(2) (31.7)
	Richland Creek	Richland Creek	5.2	71.4	45,200	1,000,000	1,045,200	262 (169.3)
	Tehuacana	Tehuacana Creek	11.2	356	12,800	282,500	295,300	(56.9)
	Upper Keechi	Upper Keechi Creek	11.0	486	9,500	125,000	134,500	(54•3)
	Lower Keechi	Lower Keechi Creek	8.9	162	3,000	170,000	173,000	39 (25.2)
	Hurricane	Hurricane Bayou	7.0	91	1,900	150,000	151,900	27 (17.5)
	Bedias	Bedias Creek	19.2	327	16,700	360,000	376,700	146 (94.4)
·	Harmons	Harmons Creek	10.5	47	1,100	78,000	79,100	26 (16.8)
	Gail	Gail Creek	25.3	91	1,900	168,000	169,900	48 (31.0)
	Mustang	Mustang Creek	23.7	84	1,700	156,000	157,700	39 (25.2)
	Caney	Caney Creek	7.7	74	1,600	134,000	135,600	39 (25•2)
	Long King	Long King Creek	22.9	57	2,200	184,000	186,200	54 (34•9)

RESERVOIRS PROPOSED BUT NOT RECOMMENDED AT THIS TIME

(1) These reservoirs will also be considered for flood control, as well as water supply, water quality, recreation and fish and wildlife purposes, when the needs become imminent.

(2) Net yield from conservation storage (all flows except flood flows assumed as passing through the reservoir).

NOTE: Figures shown parenthetically in yield column are 2020 yields in million gallons daily.

PERTINENT DATA - RECOMMENDED RESERVOIRS

	:		Contrib.	. <u> </u>	Net storage	(acre-feet)		: 2020 :		Pertinent el	evations - (ft-msl)	
Reservoir	: Stream	:River:		:	: :	Flood :		": Yield:"	Stream-	Conserva-:To			r: Top of
	:	:mile :	(sq.mi.)	Sediment	:Conservation:	Control :	Total	: (cfs):	bed		control :	surface	: dam
akeview	Mountain Cr.	7.2	272	45,600	306,400	136,700	488,700	(3) 47	hen o	51 P O			-1.5
loanoke	Denton Cr.	32.0	604	26,200	500,400 0			•	453.0	518.0	528.0	538.8	544.
rapevine (1)	Denton Cr.	11.7	694	16,000		223,700	249,900	0	534.0		61.9.0	625.7	631.
ubrey					372,200	47,300	435,500	65	451.0	556.0	560.0	583.9	588.
	Elm Fork	60.0	682	37,800	603,800	258,300	899,900	116	528.0	625.5	635.0	640.3	646.
arza-Little Elm(1)		30.0	1,658	40,700	630,600	331,600	1,002,900	118	435.0	522.0	532.0	556.6	560.
avon (enlarged)(2)		55-9	777	47,800	362,300	275,600	685,700	121	433.0	489.0	501.0	507.1	512.
ennessee Colony	Trinity Riv.	339.2		190,000	1,0 32, 500	2,144,300	3,366,800	450	191.0	262.5	285.0	297.8	305.
allisville (2)	Trinity Riv.	3.9	17,760	12,800	42,900	0	55 , 700	-	. ~	4.0		6.5	8.
Reservoir	: Stream	:infl		: w: Volume) :(acft	:Net length : at crest .): (feet)	: Gates - No : and : size	.: No. : : & : : size :	Contr		ntake invert elevation (ft-msl)	: No.& si		ake inve elevatio (ft-msl)
akeview	Mountain Cr.	372.4	00 101,00	413,	+00 120	3-40' x 28'	1-12'Ø	2-5.5'x1	2' gates	460.0	None		
loanoke	Denton Cr.		00 297,00			7-40' x 35'	1-12 ¢ 1-15'Ø	3-4.5'x1			None		
rapevine (1)	Denton Cr.		00 232,60			None	1-13'Ø	2-6.5'x1			2-30"¢ con	a.a	500 F
ubrey	Elm Fork		.00 350,80			9-40' x 35'			J gales				500.5
arza-Little Elm(1)	Elm Fork		100 290,00			, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			a	110.0	2-36"Ø con		550.0
wrze-prote wrw(r)						None	1-16 Ø	3-6.5'x1	3 gates	448.0	2-60"Ø con		481.0
amon (and and all a)	East Fork		00 386,50			12-40' x 28 11-40' x 35					5-36"Ø con		453.0
avon (enlarged)(2)							' None				4~3'x6' sli		005 0
ennessee Colony	Trinity Riv.		00 556,00									uices	225.0
			100 556,00 100 200,00			4-40' x 21' None	None				None	uices	227.0

(1) Projects based upon exchange of storage after completion of Roanoke and Aubrey Reservoirs.

(2) Previously recommended.

(3) 2020 yields in million gallons daily as follows: Lakeview, 30.4; Roanoke, 0; Grapevine, 42.0; Aubrey, 75.0; Garza-Little Elm, 76.3; Lavon (enlarged), 78.2; and Tennessee Colony, 290.8.

86. AREA AND CAPACITY OF THE RESERVOIRS. - The area and capacity of the reservoirs were determined from available topographic maps of the reservoir sites. Lake Dallas, a local interest water supply project inundated by Corps of Engineers Garza-Little Elm Reservoir, was resurveyed in 1952 and these data incorporated in the determination of the area and capacity of Garza-Little Elm Reservoir. The Corps of Engineers resurveyed Lavon, Garza-Little Elm, and Grapevine Reservoirs in 1959, 1960, and 1961, respectively. The results of the resurvey of Lavon Reservoir indicated the capacity of the reservoir in 1959 was essentially the same as the original area and capacity tabulations. The analysis of this resurvey on the other two reservoirs has not been completed at this time. Tabulations of the initial area and capacity data for Benbrook, Lakeview, Roanoke, Grapevine, Aubrey, Garza-Little Elm, Lavon, Bardwell, Navarro Mills, and Tennessee Colony Reservoirs are given in tables 17 through 26.

AREA AND CAPACITY DATA - BENBROOK RESERVOIR RIVER MILE 15.0 - CLEAR FORK TRINITY RIVER Drainage Area = 433 sq. mi.

El. in: ft-msl:	0	1	2	3	4	5	6	7	8	9
					AREA IN AC	RES			•	
610				•					-	0
620	3	. 5	7	9	11	13	16	19	22	25
630	28	31	35	9 38	42	45	56	68	79	91
640	LOO	130	150	180	200	230	260	- 300	340	380
650	410	470	520	570	620	680	730	790	840	900
660	<u>950</u>	1,010	1,060	1,120	1,170	1,230	1,330	1,420	1,520	1,610
670	1,710	1,800	1,900	1,990	2,080	2,170	2,240	2,310	2,390	2,460
680	2,530	2,620	2,710	2,800	2,890	2,980	3,070	3,150	3,240	3,320
6 <u>9</u> 0	3,410	3,500	3,590	3,680	3,770	3,860	3,990	4,130	4,260	4,390
700	4,530	4,660	4,790	4,920	5,050	5,170	5,300	5,430	5,560	5,690
710	5,820	5,950	6,070	6 , 190	6,310	6,440	6,560	6,690	6,820	6,950
720	7,080	7,220	7,360	7,500	7,630	7,770	7,910	8,050	8,190	8,230
730	8,470	8,630	8,790	8,960	9,120	9,280	9,450	9,620	9,780	9,950
740	10,120	10,300	10,490	10,680	10,860	11,050	11,260	11,470	11,690	11,900
_				CAPA	CITY IN AC	RE-FEET				
610										0
620	2	6	12	20	30	42	57	75	95	119
630	145	175	21.0	240	280	330	380	440	520	600
640	700	810	950	1,110	1,300	1,520	1,760	2,040	2,360	2,720
650	3,120	3,560	4,050	4,590	5,190	5,840	6,550	7,300	8,120	8,990
660	9,910	10,890	11,930	13,020	14,160	15,360	16,640	18,010	19,480	21,050
670	22,710	24,470	26,320	28,260	30,290	32,420	34,630	36,910	39,260	41,680
680	170و,44	46,740	49,400	52 , 150	55,000	57,930	60,950	64,060	67,250	70,530
690	73 , 900	77,350	80,890	84,530	88,250	92,060	95,990	100,050	104,240	108,570
	113,030	117,620	122,340	190, 127	132,170	137,280	142,520	147,890	153,390	159,020
	164,780	170,660	176,670	182,800	189,050	195,430	201,930	208,550	215,310	222,200
	229,210	236,360	243,640	251,070	258,630	266,330	274,180	282,160	290,280	298,530
	306,930	315,480	324,190	333 , 060	342,100	351,300	360,670	370,200	379,900	389,770
740 3	399,800	410,010	420,410	430,990	441,760	452,720	463,870	475,240	486,820	498,610

AREA AND CAPACITY DATA - LAKEVIEW RESERVOIR SITE RIVER MILE 7.2 - MOUNTAIN CREEK Drainage Area = 272 sq. mi.

					-			· · ·		
El. in ft msl	0	1	2	3	4	5	6	7	8	9
	·				AREA IN A	ACRES				
450 460 470 480 490 500 510 520 530 540 550	1,103 2,416 4,074 5,815 7,910 10,079 12,939 16,449 21,766 25,821	1,210 2,580 4,240 6,000 8,110 10,320 13,250 16,890 22,190 26,220	1,330 2,740 4,410 6,210 8,310 10,580 13,570 17,360 22,610	0 1,450 2,900 4,580 6,400 8,520 10,840 13,900 13,900 23,050	43 1,580 3,060 4,750 6,600 8,750 11,110 14,230 18,530 23,460	140 1,710 3,220 4,920 6,820 8,980 11,400 14,560 19,200 23,880	300 1,840 3,390 5,090 7,040 9,190 11,690 14,910 19,800 24,280	550 1,980 3,560 5,280 7,260 9,400 11,990 15,260 20,330 24,680	800 2,120 3,730 5,450 7,480 9,610 12,300 15,650 20,850 25,070	990 2,270 3,900 5,630 7,700 9,840 12,610 16,040 21,300 25,460
			·	CAP	ACITY IN A	CRE-FEET			· .	
450 460 470 480 490 500 510 520 530 530 550	3,430 20,675 53,000 102,295 170,670 260,370 374,720 520,785 712,050 950,530	4,580 23,170 57,160 108,200 178,680 270,570 387,815 537,455 734,030 976,550	5,850 25,830 61,480 114,310 186,890 281,020 401,225 554,600 756,430	0 7,240 28,650 65,980 120,610 195,300 291,730 419,960 572,210 779,260	22 8,760 31,630 70,640 127,110 203,940 302,705 429,025 590,425 802,520	165 10,400 34,770 75,450 133,820 212,810 313,960 443,420 609,290 826,190	385 12,180 38,080 80,480 140,750 221,890 325,505 458,155 628,790 850,270	810 14,090 41,550 85,670 147,900 231,180 337,345 473,240 648,885 874,750	1,485 16,140 45,200 91,030 155,270 240,690 349,490 488,695 669,445 899,620	2,380 18,330 49,010 96,570 162,860 250,410 361,945 504,540 690,520 924,890

AREA AND CAPACITY DATA - ROANOKE RESERVOIR SITE RIVER MILE 32.0 - DENTON CREEK Drainage Area = 604 sq. mi.

<u> </u>										
El. in: ft-msl:	4.1	1	2	3	4	5	6	7	8	9
		t		AR	EA IN ACRE	5	· .			
530					0	1	2	4	8	10
540	12	18	25	28	30	32	35	40	43	47
550	50	51	52	53	54	56	58	61	62	63
560	64	90	140	210	300	405	540	655	725	900
570	990	1,090	1,180	1,260	1,335	1,400	1,480	1,570	1,690	1,810
580	1,994	2,130	2,400	2,750	3,175	006,3	3,880	4,125	4,320	4,485
590	4,620	4,780	4,925	5,060	5,180	5,300	5,420	5,550	5 , 650	5,770
600	5,905	6,015	6,135	6,250	6,370	6,500	6,650	6,820	7,030	7,250
610	7,464	7,710	7,960	8,200	8,460	8,720	8,990	9,230	9,480	9,720
620	9,940	10,180	10,440	10,700	10,990	11,250	11,490	11,710	11,930	12,140
630	12,350	12,570	12,780	13,000	13,210	13,430	13,640	13,860	14,070	14,290
640	14,500	14,710	14,930	15,140	15,360	15,570	15,790	16,000	16,220	16,430
650	16,650									
				CAPACI	FY IN ACRE	-FEET				
530		÷			0	. 0	2	5	11	20
540	41	56	78	105	130	160	200	240	280	320
550	370	420	470	530	580	630	690	750	81.0	870
560	940	1,010	1,130	1,300	1,560	1,910	2,380	2,980	3,670	4,480
570	5,430	6,470	7,610	8,825	10,125	11,490	12,930	14,450	16,085	17,835
580	19,740	21,800	24,065	26,640	29,600	32,990	36,730	40,730	44,955	49,355
590	53,910	58,610	63,460	68,455	73,575	78,815	84,175	89,660	95,260	100,970
600	106,805	112,770	118,840	125,035	131,345	137,780	144,355	151,090	158,015	165,155
610	172,510	180,100	187,935	196,015	204,345	212,935	221,790	230,900	240,255	249,855
620	259,685	269,745	280,055	290,625	301,520	312,640	324,010	335,610	347,430	359,465
630	371,710	384,170	396,845	409,735	422,840	436 , 160	449,700	463,445	477,410	491,590
640	505,985	520,590	535,410	550,445	565 , 695	581,160	596,840	612,735	628 , 845	645,170
650	661,710					*				

TABLE	20
-------	----

AREA AND CAPACITY DATA - GRAPEVINE RESERVOIR RIVER MILE 11.7 - DENTON CREEK Drainage Area = 694 sq. mi.

El. in: ft-msl:	0	1	2	3	4	5	6	7	8	9	
		,		4	AREA IN ACI	RES					
450					0	ľ	2	3	6	8	
460	10	15	20	25	30	34	. 39	44	49	54	
470	59	72	86	99	113	126	139	153	166	180	
480	190	270	340	415	490	560	635	710	780	855	
490	930	1,050	1,165	1,280	1,400	1,520	1,635	1,755	1,870	1,990	
500	2,110	2,260	2,420	2,580	2,730	2,890	3,045	3,200	3,360	3,510	
510	3,670	3,810	3,955	4,095	4,235	4,380	4,520	4,660	4,800	4,945	
520	5,085	5,220	5,360	5,490	5,6 <u>3</u> 0	5,765	5,900	6,040	6,175	6,310	
530	6,445	6,630	6,820	7,005	7,190	7,375	7,565	7,750	7,940	8,120	
540	8,310	8,500	8,695	8,890	9-085	9,280	9,475	9,670	9,860	10,055	
550	10,250	10 , 500	10,750	10,995	11,245	11,495	11,745	11,990	12,240	12,490	
560	12,740	13,020	13,300	13,585	13,865	14,150	14,430	14,710	14,990	15,270	
570	15,550	15 , 895	16,240	16,580	16,920	17,265	17,610	17,950	18,295	18,640	
580	18,980	19,425	19 , 870	20 , 310	20,760	21,200	21,650	22,090	22,540	÷	
				CAPAC	CITY IN AC	RE-FEET					
450			· .	, i	0	1	1	4	. 9	16	
460	25	37	55	77	105	135	175	21.5	260	315	
470	370	435	515	610	715	830	1,015	1,210	1,420	1,645	
480	1,880	2,160	2,515	2,940	3,440	4,015	4,665	5,385	6,180	7,050	
490	7,990	9,030	10,180	460 لَو 11	12,850	14,360	15,990	17,730	19,595	21,580	
500	23,675	25,860	28,205	30,700	33,360	36,170	39,135	42,260	45,540	48,970	
510	52,565	56,305	60,190	64,210	68,375	72,680	77,130	81,720	86,450	91,320	
520	96,335	101,490	106,775	112,200	117,700	123,460	129,290	135,260	141,365	147,610	
530	153,985	160,525	167,250	174,160	181,260	188,540	196,010	203,670	211,510	219,540	
540	227,755	236,160	244,760	253,555	262,540	271,720	281,100	290,670	300,430	<u>310,390</u>	
550	320,545	330,920	341,545	352,415	363,540	374,910	386,530	398,400	410,515	422,880	
560	435,495	448,375	461,540	474,980	488,700	502,710	516,995	531,560	546,410	561,540	
570	576,950	592,670	608,740	625,150	641,900	658,990	676,430	694,210	712,330	730,800	
580	749 , 605	768,810	788 , 455	808,545	829,080	850,060	871,490	893,360	915,675		

52-704 O-65 (Vol. III)-6

ΤA	BLE	21
TA	مطيلك	21

AREA AND CAPACITY DATA - AUBREY RESERVOIR SITE RIVER MILE 60.0 - ELM FORK TRINITY RIVER Drainage Area = 682 Sq. Mi.

El. in ft-msl		l	2	3	4	5	6	7	8	9
					AREA IN AG	CRES				
520									C	1
530	6	10	13	16	19	22	25	; 29		
540	38	46		62	70	78	85	93		
550	117	166	214	263	310	360				
560	600	770	940	1,120	1,290	1,460	1,630			
570	2,320	2,540	2,770	2,990	3,220	3,450	3,670			
580	4,580	4,850	5,120	5,390	5,660	5,930	6,200			
590	.7,280	7,630	7,990	8,340	8,690	9,040		9,740		
600	10,800	11,250	11,700	12,150	12,600	13,050	13,510			14,8
610	15,310	15,870	16,420	16,980	17,540	18,090		19,200		
620	20,850	21,490	22,120	22,760	23,390	24,030				
630	27,200	27,910	28,620	29,330	30,040	30,750				
640	34,300	35,050	35,800	36,550	37,300	38,050				
650	41,800	42,520	43,280	44,050	44,820	45,560				
660	49,400									·
			·	CAPA	CITY IN AC	RE-FEET				
520									0	
530	6	14	26	40	58	78	102	128	159	19
540	230	270	320	380	450	520		690	790	
550	1,000	1,150	1,340	1,570	1,860	2,200				
560	4,600	5,290	6,150	7,180	8,390	9,760			14,910	16,9
570	19,190	21,620	24,280	27,160	30,270	33,600			44,960	49,1
580	53,660	58,370	63,360	68,610	74,130	79,930			98,940	105,8
	112,960	120,420	128,230	136,390	1.44,900	153,760				
500	203,340	214,370	225,840	237,760	250,140	262,970			304,160	
510	333,880	349 , 750	365,620	382,330	399,580	417,400	435,760		174,160	
520	514,750	535,920	557 , 720	580,160	603,230	626,940				728,1
530	755,000	782,560	810,820	839,740	869,480	899.880	930,980	962,800	995,320	1.028.5
	,062,500	1,097,180	1,132,630	1 68,830 :	1,705,750	1.243.380	1,281,800	1.320.980	1.360.900	1,401,5
	443,000	1,485,160	1,528,060	1,571,730 I	1,616,160	1,661,360	1,707,300	1,754,010	1,801,450	1,849,6
560 l,	,898,660						•	-		

	н 1919 - Эл		RIVI	ER MILE 30.0 Drainage	P = ELM FORMArea = 1,65	K TRINFTY R 8 Sq. M1.	IVER			
El. in: ft-msl:	0	1	2	3	4	5	6	7	8	9
				A	REA IN ACRE	S				
430						. 0	3	6	8	. 11
440	14	17	20	22	25	28	31	34	37	4
450	43	54	66	77	- 89	100	112	123	135	14
460	160	310	460	620	770	920.	1,080	1,230	1,380	1,53
470	1,690	2,010	2,340	2,670	2,990	3,320	3,650	3,970	4,300	4,63
480	4,960	5,310	5,650	6,020	6,380	6,740	7,100	7,460	7,820	8,310
490	8,810	9,180	9,540	9,920	10,300	10,820	11,340	11,680	12,010	12,39
500	12,770	13,360	13,950	14,440	14,940	15,500	16,410	17,060	17,700	18,39
510	19,080	19,830	20,580	21,400	22,230	22,970	23,710	24,490	25,260 34,840	26,29 35,73
520	27,310	28,320	29,370	30,120	30,910	32,220 42,290	33,090 43,430	33,900 44,560	45,690	46,82
530 510	36,640	37,770	38,920	40,040	41,170 53,510	54,910	56 , 310	57,710	59,110	60,51
540	47,910	49,310	50,710 64,710	52,110 66,110	67,510	68,910	70,310	71,710	73,110	74,51
550 560	61,910 75,910	63,310	04) (10	0110	01010	00,910	010	17,170	10,120	
500	1),910									•
				CAPAC	TTY IN ACRE	-FEET				
430							1	6	13	2
440	- 35	50	69	90	113	140	170	200	240	28
450	320	370	430	500	580	680	780	900	1,030	1,17
460	1,320	1,550	1,940	2,480	3,170	4,020	5,020	6,170	7,470	8,93
470	10,540	12,390	14,560	17,060	19,890	23,050	26,530	30,340	34,480	38,94
480	43,740	48,870	54,350	60,190	66,390	72,940	79 , 860	87 , 130	9 ⁴ ,770	102,84 206,83
490	111,400	120,390	129,750	139,480	149,590	160,160	171,240 306,090	182,750 322,790	194,290 340,150	358,25
500	219,330	232,430	246,080 416,590	260,290 437,560	274,940 459,460	290,240 481,970	505,300	529,460	554,330	580,12
510 520	377,000	396,430 634,710	410,590 663,500	693,300	723,810	755,330	787,970	821,520	855,880	891,15
520 530	606,930 927,330	964,540	1,002,870	1,042,340	1,082,940	1,124,680	1,167,540	1,211,530	1,256,660	1,302,92
540	1,350,200	1,398,800	1,448,800	1,500,200	1,553,000	1,607,200	1,662,800	1,719,800	1,178,200	1,838,10
550	1,899,300	1,962,000	2,026,000	2,091,400	2,152,800	2,226,400	2,296,000	2,367,000	2,439,400	2,513,20
560	2,588,400	_,,,			/-/-/-/-	,,	* * * *	/ /		

Area-capacity based on resurvey of Lake Dallas in 1952.

TABLE 22

AREA AND CAPACITY DATA - GARZA-LITTLE ELM RESERVOIR (LEWISVILLE DAM)

AREA AND CAPACITY DATA - LAVON RESERVOIR RIVER MILE 55.9 - EAST FORK TRINITY RIVER Drainage Area = 777 Sq. Mi.

El. in ft-msl		l	2	3	ų	5	6	7	8	9
					AREA IN AC	RES				<u></u>
430 440 450 460 470 480 490 500 510 520	17 2,000 5,520 10,090 15,030 20,050 26,940 34,190 43,890	26 2,350 5,980 10,590 15,530 20,740 27,670 35,160	35 2,700 6,430 11,080 16,030 21,430 28,390 36,130	0 90 3,050 6,890 11,570 16,540 22,120 29,120 37,100	2 220 3,410 7,350 12,070 17,040 22,810 29,840 38,070	3 470 3,760 7,810 12,560 17,540 23,500 30,570 39,040	5 720 4,110 8,260 13,050 18,040 24,190 31,290 40,010	6 1,060 4,460 8,720 13,550 18,550 24,880 32,020 40,980	8 1,390 4,820 9,180 14,040 19,050 25,560 32,740 41,950	1,690 5,170
				CAP/	ACITY IN ACF	E-FEET				
430 440 450 460 470 480 490 500 510 520	44 6,760 44,340 122,400 247,990 423,390 658,360 964,040 1,354,430	66 8,930 50,090 132,730 263,260 443,780 685,670 998,710	96 11,450 56,290 143,560 279,040 464,870 713,690 1,034,360	0 160 14,330 62,960 154,890 295,330 486,640 742,450 1,070,980	1 320 17,560 70,080 166,710 312,110 509,110 771,930 1,108,560	4 660 21,140 77,650 179,020 329,400 532,260 802,130 1,147,120	8 1,250 25,080 85,690 191,830 347,190 556,100 833,060 1,186,640	13 2,140 29,370 94,180 205,130 365,490 580,630 864,720 1,227,130	20 3,370 34,010 103,130 218,920 384,280 605,850 897,100 1,268,600	30 4,910 39,000 112,530 233,210 403,580 631,760 930,210 1,311,030

TABLE 23

AREA AND CAPACITY DATA - BARDWELL RESERVOIR RIVER MILE 6.0 - WAXAHACHIE CREEK

Drainage Area = 171 Sq. Mi.

							1. A.			
El. in: ft-msl:	0	l	2	3	4	5	6	7	8	9 🗤
				. <u> </u>	REA IN ACF	ES				
380 390 400 410 420 430 440	1 75 790 1,800 2,870 4,000 5,560	8 146 891 1,910 2,990 4,160 5,730	15 218 992 2,010 3,100 4,310 5,900	23 289 1,090 2,120 3,210 4,470 6,070	30 361 1,190 2,230 3,330 4,630 6,240	37 432 1,290 2,340 3,440 4,780 6,410	45 504 1,400 2,440 3,550 4,940 6,570	52 575 1,500 2,550 3,670 5,090 6,740	60 647 1,600 2,660 3,780 5,250 6,910	67 718 1,700 2,770 3,890 5,400 7,080
450 460 470	7,250 9,500 12,280	7,480 9,770	7,700 10,050	7,930 10,330	8,150 10,610	8,370 10,890	8,600 11,160	8,820 11,440	9,050 11,720	9,270 12,000
				CAPAC	CITY IN ACE	E-FEET				
380 390 400 410 420 430 440 450 460 470	1 381 4,710 17,660 41,050 75,450 123,300 187,300 271,100 379,900	6 492 5,550 19,520 43,980 79,530 128,900 194,700 280,700	18 6,490 21,480 47,020 83,770 134,700 202,300 290,600	37 928 7,530 23,550 50,180 88,160 140,700 210,100 300,800	64 1,250 8,680 25,730 53,450 92,710 146,900 218,200 311,300	98 1,650 9,920 28,010 56,840 97,420 153,200 226,400 322,000	139 2,120 11,270 30,400 60,330 102,300 159,700 234,900 333,000	188 2,660 12,720 32,900 63,940 107,300 166,300 243,600 344,400	244 3,270 14,260 35,510 67,670 112,500 173,200 252,600 355,900	308 3,950 15,910 38,220 71,500 117,800 180,200 261,700 367,800

				Draina	ge Area = 3	316 Sq. M1	•			
El. in: ft-msl:	0	1	2	3	4	5	6	7	8	9
			:	4	AREA IN ACI	<u>es</u>				
370 380 390 400 410 420 430 440 450 460	2 40 530 1,950 4,200 6,870 10,080 15,000 19,920	4 50 610 2,130 4,420 7,170 10,600 15,510 20,440	7 65 2,310 4,600 7,470 11,150 16,000 20,960	11 90 760 2,500 4,780 7,770 11,700 16,480 21,510	16 124 830 2,690 4,970 8,060 12,230 16,960 22,120	0 20 170 910 2,900 5,170 8,360 12,750 17,450 22,700	0.3 24 230 1,070 3,100 5,420 8,670 13,250 17,920	0.7 28 310 1,250 3,350 5,730 8,980 13,730 18,420	1.1 32 380 1,460 3,610 6,120 9,300 14,160 18,900	1.5 36 460 1,690 3,900 6,510 9,650 14,600 19,400
·				CAPAC	CITY IN AC	RE-FEET				
370 380 390 400 410 420 430 440 450 460	5 204 2,370 12,900 42,400 95,700 179,600 306,300 480,800	8 2,940 14,900 46,700 102,700 189,900 321,600 501,000	13 306 3,580 17,100 51,300 110,000 200,800 337,300 521,700	22 384 4,300 19,500 55,900 117,600 212,200 353,600 542,900	36 491 5,100 22,100 60,800 125,600 224,200 370,300 564,700	0 54 638 5,970 24,900 65,900 133,800 236,700 387,500 587,100	0.1 76 838 6,960 27,900 71,200 142,300 249,700 405,200	0.6 102 1,110 8,120 31,100 76,800 151,100 263,200 423,300	1.5 132 1,450 9,470 34,600 82,700 160,300 277,100 442,000	2.8 166 1,870 11,000 38,400 89,000 169,700 291,500 461,100

AREA AND CAPACITY DATA - NAVARRO MILLS RESERVOIR RIVER MILE 63.9 - RICHLAND CREEK

TABLE 25

Note: Elev. 375.3 area & capacity = 0

AREA AND CAPACITY DATA - TENNESSEE COLONY RESERVOIR SITE RIVER MILE 339.2 - TRINITY RIVER Drainage Area = 12,687 Sq. Mi.

El. in: ft-msl:	0	1	2	3	4	5	6	7	8	9
		· · · · ·		<u>A</u>	REA IN ACRE	<u>s</u>				. *
190 200 210 230 240 250 250 260 270 280 290 300	60 140 230 5,760 21,440 42,190 67,610 90,390 107,800 133,200 157,200	0 68 150 300 6,960 23,330 44,330 70,000 92,150 109,800 135,700	6 76 160 440 8,350 25,330 46,730 72,330 93,850 112,000 137,800	$10 \\ 84 \\ 168 \\ 710 \\ 9,900 \\ 27,330 \\ 49,190 \\ 74,750 \\ 95,700 \\ 114,400 \\ 140,000 \\ 140,000 \\ 140,000 \\ 100 \\ 140,000 \\ 10$	18 92 176 990 11,350 29,330 51,690 76,990 97,350 116,800 142,500	25 100 185 1,510 12,830 31,400 54,330 79,250 99,330 119,500 145,000	31 109 195 1,990 14,550 33,500 57,350 81,550 100,900 121,900 147,700	39 117 204 2,800 16,200 35,690 59,950 83,750 102,700 124,800 150,000	46 125 213 3,650 18,030 37,750 62,610 85,950 104,400 127,800 152,400	54 134 221 4,600 19,950 39,950 65,190 88,330 106,300 130,600 154,800
-				CAPAC	ITY IN ACRE	-FEET				
190 200 210 230 240 250 260 270 280 290 300	260 1,270 3,120 23,100 154,800 470,200 1,016,500 1,808,400 2,800,100 3,998,200 5,449,300	320 1,410 3,390 25,500 177,200 513,500 1,085,300 1,899,600 2,908,900 4,132,700	3 395 1,570 3,760 37,100 201,500 559,000 1,156,500 1,992,600 3,019,800 4,269,400	10 475 1,730 4,340 46,300 227,900 607,000 1,230,000 2,087,400 3,133,000 4,408,300	25 560 1,900 5,190 256,200 657,400 1,305,900 2,183,900 3,248,600 4,549,600	50 660 2,080 6,440 69,000 286,600 710,400 1,384,000 2,282,300 3,366,800 4,693,300	75 760 2,270 8,190 82,700 319,000 766,300 1,464,400 2,382,400 3,487,500 4,839,700	110 880 2,470 10,600 98,000 353,600 824,900 1,547,000 2,482,400 3,610,800 4,988,500	150 1,000 2,680 13,800 115,100 390,300 886,200 1,631,900 2,587,700 3,737,100 5,139,700	200 1,130 2,900 17,900 134,100 429,200 950,100 1,719,000 2,693,000 3,866,300 5,293,300

87. DETERMINATION OF RESERVOIR INFLOWS. - Monthly flows were estimated at existing and investigated reservoir sites in the Trinity River Basin for the period 1924 through 1957. Preliminary estimates of flows were generally based on observed flows at gaging stations in the basin. Inflows to the existing reservoirs, during their period of operation, were computed from the observed change in storage, releases, and evaporation at the reservoirs. However, since the flow estimates described above reflect the varying degree of basin development that was taking place throughout the 1924-1957 period, it was necessary to adjust these estimates in order to reduce all flows throughout the period to the basis of existing (1958) conditions of basin development. The estimated monthly and annual flows at Benbrook, Grapevine, Garza-Little Elm, Lavon, Bardwell, and Navarro Mills Reservoirs and at Lakeview, Roanoke, Aubrey, and Tennessee Colony Damsites under existing (1958) conditions of basin development are given in tables 27 through 36.

88. The monthly flows for the period 1924-1940 were adjusted to 2020 conditions of basin development in the same manner as the flows under existing conditions of basin development. However, monthly flows under 2010 conditions of basin development had previously been determined for the 1941-1957 period by the United States Bureau of Reclamation for the United States Study Commission - Texas. In view of the uncertainty as to the actual degree of basin development that will be accomplished by the year 2020, it was concluded, after an analysis of the data, that the flows for the 1941-1957 period, as published by the United States Study Commission - Texas for 2010 conditions would generally also be applicable to 2020 conditions of basin development and were so adopted in this report. The one exception was at Lakeview Reservoir where records maintained by the Dallas Power and Light Company at the existing Mountain Creek Dam were used, and applicable adjustments were made to estimate flows under 2020 conditions of basin development for the 1941-1957 period.

YEAR	JANUARY	FEBRUARY	MARCH	APRIL	MAY	JUNE	JULY	AUGUST	SEPTEMBER	OCTOBER	NOVEMBER	DECEMBER	TOTAL
1924	400	300	9,300	4,300	5,500	1,300	100	200	. 0	0	0	0	21,40
25	400	100	100	1,000	5,200	-,_0	0	0	0	500	100	0	7,00
25 26	600		600	2,200	1,900	300	400	1,400	1,800	300	0	100	9,60
27	0	100	1,000	1,000	100	200	0	· 0	0	500	0	0	2,90
28	100	1,500	600	8,300	400	1,200	100	100	0	0	0	1,900	14,20
29	1,200	5,400	3,900	3,200	5,500	1,200	0	0	0	0	0	0	20,40
1930	1,200	<i>,</i> ,o	100	<i>,</i>	8,100	200	0	0	0	900	200	1,000	10,50
31	300	2,700	3,900	2,100	700	300	200	0	0	0	0	0	10,20
32	15,500	15,300	3,400	800	2,100	2,300	3,100	0	4,800	200	200	1,500	49,20
33	2,400	2,200	6,600	1,600	4,000	600	800	400	200	0	0	0	18,80
34	100	200	800	700	500	0	0	0	0	0	0	0	2,30 34,70
35	600	200	300	300	26,400	5,300	200	0	300	200	200	700	34,70
35 36	200	200	100	0	1,300	0	0	0	7,600	2,300	900	1,800	14,40
37	1,800	400	3,400	600	200	1,300	0	0	0	300	200	1,500	9,70
38	10,200	15,000	10,400	6,300	2,500	400	300	0	· 0	0	0	0	45,10
39	0	0	0	1,000	1,100	300	200	0	0	0	. 0	. °	2,6
1940	ō	0	0	100	1,000	1,000	1,900	200	0	0	2,400	12,400	19,0
41	7,800	38,000	12,700	11,600	17,400	28,900	2,800	3,700	200.	2,300	800	1,500	127,70
42	1,100	700	800	100,600	41,900	15,100	1,200	1,000	1,600	17,500	3,700	3,100	188,30
1 <u>1</u> 2	2,000	1,200	6,500	5,700	14,100	5,700	1,900	0	1,800	0	0	200	39,10
43 հեր	400	6,200	4,400	3,200	22,900	2,200	300	800	600	1,300	700	2,000	45,00
45	4,500	48,600	62,400	40,000	9,200	3,400	3,500	300	200	1,300	800	700	183,90
45 46	2,500	8,300	6,000	2,800	11,300	4,000	200	2,000	500	1,200	20,800	17,700	77,34 44,70
47	7,800	3,600	8,300	8,300	3,300	6,600	400	1.00	700	500	400	4,700	44,70
48	5,700	26,400	13,300	2,600	3,600	1,400	1,700	0	0	0	0	0	54 ,7 0
49	400	5,400	13,500	6,000	101,500	18,100	1,900	600	600	8,500	900	1,100	158,50
1950	5,500	20,600	4,900	21,100	26,500	3,900	6,800	4,600	15,500	1,500	900	1,100	112,90
	900	2,000	1,000	700	1,900	9,700	1,300	0	0	0	τo	100	17,6
52	200	500	400	2,500	4,900	200	-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ō	.0	0	200	0	9,0
ユ ジ ジ 外	0	0	200	400	1,500	0	ō	Ó	0	600	100	0	2,8
73 Eh	200	ŏ	100	400	200	ŏ	100	Ō	ò	0	0	0	. 9
55	200	ő	100	100	1,500	1,600	200	õ	500	200	0	0	4,20
55 56	100	800	100	900	6,800	200	200	200	õ	1,400	100	600	11,30
20 1957	200	1,200	600	49,300	122,500	34,000	2,600	800	1,700	2,900	5,800	3,100	224,7
Fotal	72,700	207,100	179,700	298,700	457,500	150,900	32,400	16,400	38,600	44 , 400	39,400	56,800	1,594,6
Mean	2,140	6,090	5,280	8,790	13,450	4,440	950	480	1,140	1,310	1,160	1,670	46,9

TABLE 27

ESTIMATED MONTHLY AND ANNUAL FLOWS IN ACRE-FRET AT BENEROOK RESERVOIR - EXISTING (1958) CONDITIONS

Ľ

-

YEAR	JANUARY	FEBRUARY	MARCH	APRIL	MAY	~ JUNE	JULY	AUGUST	SEPTEMBER	OCTOBER	NOVEMBER	DECEMBER	TOPAL
1924	1,200	1,300	1,4,500	5,600	4,800	1,300	200	100	100	0	o	0	29,1.00
	-,0	0	0	500	15,600	0	0	0	700	1,100	4,200	0	22,100
25 26	6,300	100	. 500	11,900	2,900	3,000	3,600	0	0	Ó Q	´ 0	0	28,300
27	0	0	7,100	7,000	7,500	1,200	0	0	200	10,200	0	100	33,300
28	100	3,800	1,500	6,200	0	19,200	5,800	0	0	0	. 0	32,500	69,100
29	6,000	4,600	6,500	17,000	16,900	1,700	0	0	1,200	1,200	700	500	56,300
1930	100	1,000	1,600	3,900	55,700	1,700	0	0	100	2,300	0	4,800	71,200
31	400	5,300	12,200	2,400	2,200	1,100	200	100	0	200	0	100	24,200
32	33,600	24,300	7,600	6,400	15,600	900 ,	800,3	0	8,300	0	0.	9,200	109,700
33	12,100	7,400	13,500	4,300	22,500	1,100	11,800	0	0	0	300	1,400	74,400
31 32 33 34	2,600	3,300	9,600	14,900	300	. 0	0	0	. 0	0	0	0	30,700
35	1,200	1,800	300	400	24,900	26,400	400	0	400	600	-1,200	2,100	59,700
35 36 37 38	200	0	0	0	3,700	0	0	0	22,100	. 0	2,000	1,200	29,200
37	11,000	0	11,400	1,200	400	5,400	200	0	700	4,200	2,900	20,700	58,100
	47,400	0	21,200	8,300	1,300	1,200	2,500	100	0	200	0	300	82,500
39 1940	0	2,600	3,500	5,800	4,300	8,200	0	100	400	0	0	300	25,200
3 1940	•	1,200	100	4,000	12,700	30,100	26,300	200	800	1,100 400	12,300	16,900	105,700
- 41 42	3,900 500	20,500	1,200	3,900 80,300	11,200 39,800	35,700 21,200	2,000	4,600 0	0	10,800	0 600	1,300	84,200
42	200	500	5,700	2,100	2,200	7.000	1,500 1,000	500	2,500	10,000	. 0	2,000	160,900 19,500
4.3 h.h	ő	4,700	4,600	2,300	38,400	1,200	200	1,600	200	ő	1,900	500	55,600
44 45 46	1,100	~, joo	50,900	11,100	1,500	800	500	500	200	200	300	500	67,100
16	3,200	12,400	900	11,100	31,900	2,900	0	00	200	200	11,800	5.800	68,900
47	. 0	12,400	900	ŏ	<u>, 500</u>	2,500	ŏ	11,300	1.400	ő	11,000	24,900	37,700
48		2,300	ŏ	1,500	1,500	800	õ	200	1,400	100	900	24,900	7,300
49	4,900	43,500	800	500	38,300	800	õ	300	0	8,100	900	- 200	97,400
1950	3,700	45,900	2,600	12,900	24,100	2,300	4,100	400	2,300	0,100	õ	0	98,300
-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	300	1,100	0	1,200	900	14,000	100	.200	400	ŏ	700	ŏ	18,900
51 52 53 54	400	300	600	4,100	8.400	1,,000	1,200	100	600	ŏ	4,200	2,800	22,700
53	400	300	2,300	4,800	27,100	õ	1,200	100	300	400	200	600	37,600
54	0	900	100	400	2,300	õ	1,300	100	100	400	300	400	6,300
55	200	200	700	700	7,300	2,800	~,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1,500	0	õ	800	500	14,700
55 56	300	1,100	200	Ö	7,600	1,200	800	600	ŏ	ŏ	ő	1,100	12,900
1957	100	200	1,900	80,900	50,000	2,400	1,200	100	ŏ	700	19,600	4,900	162,000
Total	141,200	190,600	184,300	306,500	483,800	195,600	69,900	22,600	43,300	42,200	65,000	135,800	1,880,800
Mean	4,150	5,610	5,420	9,020	14,230	5 ,7 60	2,060	660	1,270	1,240	1,910	3,990	55,320

ESTIMATED MONTHLY AND ANNUAL FLOWS IN ACRE-FEET AT LAKEVIEW DAMSITE - EXISTING (1958) CONDITIONS

YEAR	JANUARY	FEBRUARY	MARCE	APRIL	MAY	JUNE	JULY	AUGUST	SEPTEMBER	OCTOBER	NOVEMBER	DECEMBER	TOTAL
				12,400	7,000	12,700	200	200	0	o	200	0	73,600 26,300 76,900 107,000 136,600
1924 25 26 27 28	3,400	2,200	35,300	6,600	16,500	200	0	200	Ó	2,200	200	<u>,</u> 0	26,300
25	0	200	200	10,400	10,300	14,800	11,100	5,400	2,000	1,500	200	7,100	76,900
26	3,100	0	11,000 26,600	46,600	3,900	1 000	2,700	1,000	500	2,900	· 0'	5,500	107,000
27	5,800	10,500	20,000	40,000 53,000	11,200	1,000	4,400	300	0	0	1,400	29,800	136,600
28	3,600	16,200	4,900	53,400 11,800	75,000	12,400	1,000	0	Ó	200	700	500 6,400	159,300
29	23,900	18,300	15,500 900	4,800	47,100	1,100	500	ō	0	200	200	6,400	63,000
1930	300	1,500	14,300	7,400	5,000	1,100 6,600	Ö	200	0	700	0	1,100	41,200 242,200
31	500	4,500	8,200	2,400	5,900 8,400	3,000	25,900	6,300	2,800	900	200	19,500	242,200
32	109,100	55,500	0,200	8,900	23,800	5,500	200	1,000	1,000	200	1,000	700	105,700 64,000
31. 32 33 34	23,900	7,000	32,500 20,500	18,200	11,800	1,100	0	· · · o	í 0	. 0	700	0	64,000
34	4,800	6,900 2,800	3,000	8,700	72,600	89,500	1,600	0	2,300	3,500	11,100	16,700	218,100
35	6,300	2,300	1,500	500	2,700	900	0	·· ŏ	2,300 4,900	12,800	4,700	8,300	41,700
30	3,100	5,100	14,400	7,100	2,000	900	. 0	4,400	500	1,500	2,700	16,400	86,500
37	31,500 57,000	84,400	46,100	35,100	3,000	7,800	200	0	0	0	0	0	41,700 86,500 233,600 17,300
35 36 37 38 39 1940	51,000	1,000	2,900	11,100	1,700	300	300	0	0	O .	. 0	0	17,300
39	ő	1,000	200	3,000	9,000	17,400	37,100	5,800	. 0	0	20,600	39,000	132,100
1940	7,300	28,000	11,100	33,900	12,900	120,000	3,400	3,800	600	32,900	10,100	8,500	272,500
41 42 43 44	4,000	3,200	5,000	226,900	60,300	47,200	2,000	1,400	4,400	7,700	5,000	2,400	369,500
42	1,600	1,800	27,800	6,900	33,500	10.100	400	0	0	200	0	400	82,700
43	1,000	27,200	13,900	17,900	36,500	3,400	400	800	1,400	800	2,800	5,600	111,700
44	6,000	72,800	77,000	17,900 44,400	6,000	6,000	14,700	400	3,800	16,300	1,800	1,800	251,000
45 46 47 48	18,200	31,100	12,700	5,200	28,600	28,200	1,000	400	1,600	0	22,000	28,800	177,800
40	5,600	2,400	7,300	15,300	14,500	1,800	0	0	0	0	200	12,100	59,200
47	12,100	40,100	10,100	2,400	3,000	1,600	2,200	0	0	0	0	0	71,500 98,500
40	0,100	1,400	7,100	1,000	42,200	17,700	7,900	0	2,000	18,000	600	600	98,500
49	5,200	17,000	2,400	11,900	61,100	14,300	43,000	4,600	28,800	1,800	800	1,200	192,100 31,800
1950	1,000	1,800	1,800	1,200	2,200	17,500	6,100	· 0	200	O .	0	0	31,800
겄	1,000	1,000	200	7,300	5,800	2,400	0	· o	0	0	600	200	16,500
~	. 0	ŏ.	600	8,500	10,700	200	800	200	400	7,500	2,400	1,000 600	32,300 16,700
53	2,600	800	600	2,000	4,800	3,400	200	400	600	600	100	600	16,700
54	2,000	600	1,000	400	7,300	6,300	0	200	1,000	200	200	0	17,400
丸 22 53 55 55 55 55	200	3,200	1,000	1,000	7,700	200	400	400	´ 0	600	600	1,200 3,400	15,900 422,400
50 1957	400	1,400	1,800	140,800	196,200	52,400	1,200	0	1,800	3,000	20,000	3,400	422,400
Total	341,700	451,200	418,800	775,400	845,200	518,300	168,900	37,400	60,600	116,200	111,100	218,800	4,064,600
Mean	10,050	13,270	12,320	22,810	24,860	15,240	4,970	1,100	1,780	3,420	3,270	6,440	119,550

ESTIMATED MONTHLY AND ANNUAL FLOWS IN ACRE-FEET AT ROANCKE DAMSITE EXISTING (1958) CONDITIONS

YEAR	JANUARY	FEBRUARY	MARCH	APRIL	may	JUNE	JULY	AUGUST	SEPTEMBER	ÓCTOBER	NOVEMBER	DECEMBER	TOTAL
1924	3,900	2,500	40,600	14,300	8,100	14,600	200	200	0	0	200	0	84,600
25	0	200	200	7,600	19,000	200	0 -	200	0	2,500	200	0	30,100 88,400
25 26	3,600	0	12,600	12,000	11,800	17,000	12,800	6,200	2,300	1,700	200	8,200	88,400
27	6,700	12,100	30,600	53,600	4,500	1,200	3,100	1,200	600	3,300	0	6,300	123,200 156,900
28	4,100	18,600	5,600	61,400	32,900	13,100	5,000	400	0	0	1,600	34,200	156,900
29	27,500	21,000	17,800	13,600	86,200	14,200	1,200	0	0	200	800	600	183,100
1930	400	1,700	1,000	5,500	54,100	1,300	600	0	0	200	200	7,300	72,300 47,400
	600	5,200	16,400	8,500	6,800	7,600	0	200	0	800	0	1,300	47,400
31. 32	125,400	63,800	9,400	2,800	9,600	3,400	29,800	7,200	3,200	1,000	200	22,400	278,200
33	27,500	8,100	37,300	10,200	27,400	6,300	200	1,200	1,200	200	1,200	800	121,600
33 34	5,500	7,900	23,600	20,900	13,600	1.300	0	0	0	0	800	0	73,600 250,600
35	7,200	3,200	3,400	10,000	83,500	102,900	1,800	0	2,600	4,000	12,800	19,200	250,600
35 36 37	3,600	2,700	1,700	600	3,100	1,000	0	0	5,600	14,700	5,400	9,500	47,900
37	36,200	5,900	16,600	8,200	2,300	1,000	0	5,000	600	1,700	3,100	18,800	_ 99,400
38	65,500	97,000	53,000	40,300	3,400	9,000	200	0	0	0	0	0	47,900 99,400 268,400 20,100
39	0	1,200	3,300	12,800	2,000	400	400	. 0	0	0	0	0	20,100
1940	0	0	200	3,500	10,400	20,000	42,700	6,700	0	0	23,700	44,800	152,000
41	8,500	32,100	12,700	38,900	14,900	137,900	4,000	4,200	600	37,900	11,700	9,700	313,100 424,600
42 43 44	4,600	3,600	5,800	260,800	69,200	54,300	2,200	1,600	5,000	8,900	5,800	2,800	424,600
43	1,800	2,000	31,900	7,900	38,500	11,700	400	0	0	200	0	400	94,800 128,400 288,000
44	1,200	31,100	16,100	20,600	41,900	4,000	400	1,000	1,600	1,000	3,200	6,300	120,400
45 46	6,700	83,700	88,500	51,200	6,900	6,700	16,900	400	4,400	18,600	2,000	2,000	203,000 204,700
	21,000	35,900	14,700	6,000	32,900	32,300	1,200	400	1,800	0	25,400	33,100	204,700
47	6,300	2,800	8,300	17,600	16,700	2,000	0	0	0	0	200	13,900	67,800 82,200 113,200
48	13,900	46,000	11,700	2,800	3,400	1,800	2,600	0	0		. 800	600	112,200
49	0	1,600	8,100	1,200	48,600	20,200	9,100	0	2,200	20,800			113,200
1950	6,000	19,600	2,800	13,700	70,200	16,500	49,400	5,400	33,100	2,000	1,000	1,400	221,100 36,500
27	1,200	2,000	2,000	1,400	2,600	20,000	7,100	o	200	0	600	200	18,800
52 52 53 54	0	0	200	8,500	6,500	2,800	0	0	0			1,200	37,100
23	0	0	600	9,700	12,300	200	1,000	200	400	8,700 600	2,800 200	600	19,200
24	3,000	1,000	600	2,200	5,600	4,000	200	400	800			000	20,200
55 56	200	800	1,200	400	8,500	7,300	0	200	1,200	200	200 600		17,900
	200	3,600	400	1,200	8,900	200	400	400	0	600		1,400 3,800	485,100
1957	400	1,600	2,000	161,900	225,500	60,100	1,400	0	2,000	3,400	23,000	3,000	. 405,±00
Total	392,700	518,500	480,900	891,800	971,800	596,500	194,300	42,700	69,400	133,200	127,900	250,800	4,670,500
Mean	11,550	15,250	14,140	26,230	28,580	17,540	5,710	1,260	2,040	3,920	3,760	7,380	137,370

ESTIMATED MONTHLY AND ANNUAL FLOWS IN ACRE-FEET AT GRAPEVINE RESERVOIR - EXISTING (1958) CONDITIONS

TEAR	JANUARY	FEBRUARY	MARCH	APRIL	MAY	JUNE	JULY	AUGUST	SEPTEMBER	OCTOBER.	NOVEMBER	DECEMBER	TOTAL
1924	4,600	3,200	53,300	22,800	10,400	1,200	600	200	100	100	0	700	97,200 36,90
	200	200	200	13,100	12,100	200	0	700	4,000	5,200	900	100	36,90
25	8,000	400	3,700	19,500	32,300	17,800	49,200	15,000	1,600	5,800	1,000	14,400	168,70
27	14,400	29,800	53,800	44,800	20,800	8,100	12,100	400	500	10,200	3,100	22,900	220,90
.27 28	3,200	3,500	900	8,600	10,200	13,800	3,500	800	200	1,700	1,900	8,000	56,30
29	7,100	5,700	5,300	6,200	73,600	17,300	900	700	3,600	7,100	1,400	14,100	143,00
30	1,300	1,600	1,200	1,400	45,400	3,000	1,100	1,100	600	8,000	8,200	24,100	97,00
31	5,800	13,700	31,500	12,900	3,200	3,600	2,500	2,000	1,460	5,700	1,700	3,300	56,30 143,00 97,00 87,30 283,10 125,00
31 32 33 34	96,300	85,500	26,900	7,100	12,700	5,000	25,200	2,600	5,100	2,700	3,300	10,700	283,10
33	8,800	6,000	36,000	5,500	26,300	12,000	6,700	8,000	6,400	5,000	2,700	1,600	125,00
34	3,400	3,400	11,200	12,300	8,600	1,600	1,600	1,400	1,300	1,300	2,300	1,300	49.70
35	3,400	2,500	3,400	3,200	170,900	60,000	5,800	6,400	5,700	5,000	8,100	33,900	308,30 115,20
36	7,500	3,700	2,100	1,600	11,500	2,400	2,000	1,700	24,800	34,900	18,000	5,000	115,20
35 36 37 38 39	22,100	6,400	8,300	3,700	3.100	5,800	2,000	11,700	8,000	2,100	2,600	7,500	83,30 244,50
38	21,200	74,300	80,800	45,800	4,300 2,800	3,900	2,400	6,300	2,300	1,600	900	700	244,50
39 -	700	800	3,200	15,900	2,800	2,900	2,900	3,000	2,400	2,100	3,700	1,400	41,80
1940	1,400	1,400	1,900	13,600	15,500	28,100	24,300	4,300	3,200	3,200	17,200	54,700	168,80
41	16,200	12,300	22,100	41,800	26,400	169,500	8,600	4,400	4,400	14,200	16,600	5,200	168,80 341,70 428,10
42	4,700	3,300	2,900	272,000	60,100	42,200	7,000	6,800	8,600	10,600	3,900	6,000	428,10
43 44	4,300	6,300	25,800	13,500	25,800 56,200	19,800	4,400	4,100	4,200	2,900	1,800	2,000	114,90 162,50
կկ	2,400	12,000	26,100	14,900	56,200	12,100	6,200	6,600	6,100	4,600	4,400	10,900	162,50
45 46	5,800	88,200	156,200	90,700	9,300	34,200	36,500	5,700	9,600	36,100	7,700	5,700	485,70
46	13,500	51,600	23,700	15,700	44,800	106,800	6,000	6,200	6,300	5,500	50,200	60,500	390,80 120,90 175,70
47	12,500	5,900	10,900	10,800	9,300	18,500	8,100	9,000	7,300	5,000	4,400	19,200	120,90
48	12,200	47,600	39,100	3,500	20,300	10,600	12,500	9,800	9,100	5,500	3,000	2,500	175,70
- 49	7,500	15,600	10,300	4,200	38,300	23,700	4,000	3,200	3,900	19,600	10,500	2,300	143,10 349,60 68,80
1950	29,500	57,700	9,600	5,700	80,400	25,700	11,300	22,300	89,700	9,700	4,700	3,300	349,60
51	1,800	2,700	2,000	2,200	3,000	23,600	10,500	7,100	6,000	4,800	2,400	2,700	68,80
51 52 53 55 55 55	2,000	1,700	2,200	10,700	5,400	3,400	4,100	5,500	:4,200	100	1,800	1,500	42,60
53	700	700	2,600	29,100	26,400	0	900	100	400	4,100	5,500	2,400	72,90 42,30
54	4,700	1,500	600	1,500	16,400	7,000	3,000	0	500	4,800	700	1,600	42,30
55	1,100	6,400	3,000	3,400	25,100	15,900	200	0	2,300	200	100	300	58,00
56	1,700	5,200	1,900	2,500	8,400	1,200	1,300	2,700	1,600	2,300	2,800	4,700	36,30
957	2,400	8,200	11,200	242,300	245,100	68,100	25,300	20,500	7,500	2,900	83,300	8,300	725,10
otal	332,400	569,000	673,900	1,002,500	1,164,400	769,000	292,700	180,300	242,900	234,600	280,800	343,500	6,086,0
ean	9,780	16,740	19,820	29,490	34,250	22,620	8,610	5,300	7,140	6,900	8,260	10,100	179,0

ESTIMATED MONTHLY AND ANNUAL FLOWS IN ACRE-FEET AT AUEREY DANSITE - EXISTING (1958) CONDITIONS

TABLE 31

YEAR	JANUARY	FEBRUARY	MARCH	APRIL	мат	JUNE	JULY	AUGUST	SEPTEMBER	OCTOBER	NOVEMBER	DECEMBER	TOPAL
1924	11,100	7,700	130,000	55,600	25,300	3,000	1,500	600	200	200	0	1,700	236,900
25 26	600	400	400	32,000	29,500	400	0	1,700	9,800	12,600	2,100	200	89,700
26	19,600	1,000	9,000	47,500	78,700	43,300	120,100	36,600	3,900	14,100	2,500	35,200	411,500
2 <u>7</u>	35,000	72,800	131,200	109,300	50,800	19,800	29,400	1,000	1,200	24,800	7,500	55,800	538,600
28	7,700	8,600	2,100	20,900	24,900	33,700	8,500	1,900	600	4,200	4,600	19,400	137,100
29	17,400	13,900	12,900	15,200	179,400	42,100	2,100	1,700	8,800	17,200	3,300	34,400	348,400
1930	3,200	3,800	3,000	3,400	110,800	7,300	2,800	2,700	l,500	19,600	20,100	58,800	237,000
31 32 33 34	14,200	33,500	76,900	31,400	7,700	8,800	6,200	4,800	3,400	14,000	4,200	8,100	213,200
32	234,800	208,500	65,700	17,200	30,900	12,200	61,400	6,400	12,400	6,600	8,100	26,100	690, 300
33	21,500	14,600	87 ,7 00	13,300	64,200	29,200	16,400	19,600	15,600	12,300	6,500	3,900	304,800
34	8,200	8,400	27,400	30,000	21,000	3,900	3,900	3,300	3,100	3,100	5,600	3,100	121,000
35 36	8,300	6,000	8,300	7,900	416,800	146,400	14,200	15,600	13,800	12,200	19,800	82,600	751,900
36	18,200	9,000	5,100	3,800	28,100	5,800	4,800	4,200	60,500	85,200	43,900	12,100	280,700
37	53,900	15,700	20,300	9,000	7,500	14,200	4,900	28,600	19,600	5,100	6,400	18,200	203,400
38 39	51,600	181,200	197,000	111,600	10,600	9,400	5,800	15,400	5,600	3,900	2,100	1,900	596,100
39	1,700	1,900	7,900	38,700	6,900	7,100	7,100	7,300	5,800	5,200	9,000	3,300	101,900
1940 41	3,500 39,500	3,500	4,700	33,100	37,700 64,400	68,500	59,300	10,600	7,700	7,700	41,900	133,400	411,600
41	11,400	29,900 8,000	53,800 7,000	102,000	146,700	413,300	21,000 17,100	10,700	10,700	34,600	40,500 9,400	12,600 14,600	833,000
	10,400	15,300		663,300		102,900 48,300		16,500	21,000	25,900	4,400		1,043,800
ե3 44	5,800	29,200	62,900 63,700	33,000 36,400	62,900	29,600	10,700	10,000 16,200	10,200 14,800	7,100 11,200	10,800	4,900	280,100 396,500
45	14.200	215,000	381,000	221,300	137,000 22,800	83,300	15,200 89,100	14,000	23,400	88,000	18,800	14.000	1,184,900
46	33,000	125,800	57,700	38,300	109,200	260,600	14,600	15,100	15,300	13,400	122,400	147,500	952,900
47	30,600	14,500	26,600	26,400	22,700	45,200	19,800	21,900	17,800	12,300	10,800	46,900	295,500
48	29,700	116,200	95,300	8,500	49,400	25,900	30,500	23,900	22,100	13,300	7,400	6,100	428,300
49	18,300	38,100	25,100	10,200	93,500	57,700	9,700	7,900	9,500	47,900	25,700	5,600	349,200
1950	71,900	140,800	23,300	13,900	196,200	62,600	27,600	54,400	218,700	23,600	11,500	8,100	852,600
	4,400	6,700	4,800	5,400	7,400	57,500	25,700	17,200	14,600	11,600	5,800	6,500	167,600
5	4,800	4,200	5,400	26,100	13,100	8,300	10,100	13,400	10,200	300	4,400	3,700	104,000
63	1,700	1,600	6,300	70,900	64,500	0,500	2,300	200	1,000	9,900	13,400	5,900	177,700
54	11,500	3,700	1,400	3,700	39,900	17,100	7,400	200	1,200	11,600	1,700	3,900	103,100
51 52 53 54 55 56	2,700	15,500	7,200	8,300	61,200	38,700	600	0	5,500	400	200	700	141,000
56	4,200	12,600	4,700	6,100	20,500	2,900	3,100	6,500	4,000	5,600	6,800	11,500	88,500
19 <i>5</i> 7	5,900	19,900	27,200	591,000	597,900	166,100	61,800	50,100	18,400	7,000	203,200	20,300	1,768,800
Total	810,500	1,387,500	1,643,000	2,444,700	2,840,100	1,875,100	714,700	440,000	591,900	571,700	684,800	837,600	14,841,600
Mean	23,840	40,810	48,320	71,900	83,820	55,150	21,020	12,940	17,410	16,810	20,140	24,640	436,520

ESTIMATED MONTHLY AND ANNUAL FLOWS IN ACRE-FRET AT GARZA-LITTLE ELM RESERVOIR (LEWISVILLE DAM) RETETING (1958) CONDITIONS

YEAR	JANUARY	FEBRUARY	MARCH	APRIL	MAY	JUNE	JULY	AUGUST	SEPTEMBER	OCTOBER	NOVEMBER	DECEMBER	TOTAL
1924	11,800	9,950	65,680	28,450	36,360	8,410	880	0	0	0	0	· 0	161,530
1924	70	1,120	60	6,920	28,760	1,230	80	0	· 0	1,040	560	0	39,840
25 26	5,440	510	10,150	36,500	43,860	61,750	177,970	10,060	3,030	10,250	8,710	47,730	39,840 415,960 426,360 289,810 332,920 134,260
27	34,600	32,360	79,550	112,360	29,030	22,740	77,210	1,780 820	840	18,960	1,830	15,100	426,360
28	7,490	34,340	10,150	112,990	23,570	23,930	9,070	820	30	40	2,790	64,590	289,810
29	50,160	38,110	32,540	24,720	156,400	25,530	2,260	30	80	370	1,540	1,180	332,920
1930	710	3,070	1,730	10,040	100,380	2,410	1,160	0	0	μio	500	13,820	134,260
31	1.180	9,400	29,720	15,420	12,460	13,950	100	1440	140	1,230	0	2,300	86.340
5	227,400	115,950	17,080	5,110	17,520	6,100	54,200	13,040	5,780	1,900	31.0	40,530	504,920 222,580
32 33 34	50,260	14,770	68,950	18,770	49,910	11,750	410	1,970	1,970	230	2,220	1,370	222,580
31	10,210	14,790	43,760	38,650	25,270	2,300	10	0	10	0	1,490	60	136,550
35	13,130	5,790	6,140	18,010	167,450	185.340	3,220	90	4,470	7,110	23,030	35,030	468,810
35 36	6,720	4,820	3,260	1,130	5,650	1.560	130	0	10,090	26,550	9,750	17,230 34,650	86,890
37	67,180	10,880	30,340	15,110	4,100	1,840 16,260	30	9,200	1,020	3,150	5,530	34,650	183,030
37 38	119,000	175,990	96,000	73,700	6,220	16,260	230	10	0	0	0	0	130,950 468,810 86,890 183,030 487,410 142,540 317,270 503,870 543,430
39	0	2,260	10,530	109,790	4,380	14,760	450	_30	0	300	0	40	142,540
1940	90	1,380	770	90,690	74,060	47,590	48,030	1,630	220	0	16,180	96,630	377,270
41	30,190	38,020	30,780	78,820	77,580	192,350	18,570	8,440	810	3,780	7,690	16,840	503,870
42	4,830	4.610	6,930	347,750	64,400	68,210	2,920	640	5,230	6,380	14,690	16,840	543,430
	8,450	6,640	73.830	41,620	55,130	60,800	1,710	0	0	240	- 30	140	240.740
43 44	590	10,710	44,980	16,820	112,620	7,710	360	0	650	70	1,990	19,610	216,110
	21,210	185,420	207,560	86,170	13,750	119,400	48,300	930 1,760	3,470	52,330	10,220	3,790	216,110 752,550 854,930
45 46	25,950	102,960	45,530	16,040	167,070	106,780	1,710	1,760	1,320	470	254,140	131,200 61,380	854,930
47	27.640	7,160	26,690	28,490	42,230	24,590	860	8,280	1,510	960	4,330	61,380	234,120
48	38.660	75,270	45,870	6,620	76,770	7,380	8,810	90 40	0	0	0	10	259,480
49	93,480 66,900	76,710	52,140	23,250	50,850	26,010	570		0	22,170	2,050	1,540	348,810
1950	66,900	165,980	16,930	19,710	149,820	38,870	39,010	12,680	72,920	3,970	1,480	1,480	589,750
	1,540	21,320	5,730	5,140	13,000	172,130	12,350	120	10	0	0	20	231,360
51 52 53 54	40	1,50	՛կկօ	39,730	27,420	4,130	0	0	0	0	1,490	4,050	234,120 239,480 348,810 589,750 231,360 179,690 144,700
53	2,280	1,090	11,470	65,780	88,410	1,350	0	0	0	1,350	3,930	4,030	179,690
54	20,560	6,680	2,600	22,380	62,250	12,070	0	1,370	2,050	10,390	3,840	510	144,700
55	2,470	11,730	19,950	13,630	10,750	6,210	3,160	720	4,680	1,750	880	520	(0,4)0
55 56	2,100	13,830	2,370	5,710	31,170	950	2,070	2,210	430	1,490	4,260	1,770	68,360 847,770
1957	1,700	2,120	12,690	276,510	380,260	56,450	280	2,890	4,010	4,380	85,220	21,260	847,770
Total	954,030	1,205,890	1,112,900	1,812,530	2,208,860	1,352,840	516,120	79,270	124,770	181,300	470,680	655,250	10,674,440
Mean	28,060	35,470	32,730	53,310	64,970	39,790	15,180	2,330	3,670	5,330	13,840	19,270	313,950

ESTIMATED MONTHLY AND ANNUAL FLOWS IN ACRE-FEET AT LAVON RESERVOIR - EXISTING (1958) CONDITIONS

YEAR	JANUARY	FEBRUARY	MARCH	APRIL	мах	JUNE	lorx	AUGUET	SEPTEMBER	OCTOBER	NOVEMBER	DECEMBER	TOPAL
1924	10,390	7,120	19,310	7,120	5,400	10,190	20	60	2,740	140	150	270	62,910
25 26	100	60	10	150	830	0	80	80	190	1,450	6,140	240	9.330
	7,260	1,020	12,050	12,250	14,210	2,720	4,520	3,800	3,240	1,160	1,240	7,310	9,330 70,780
27 28	6,750	7,080	11,860	12,050	13,920	8,180	780	370	210	4,580	330	760	66.870
28	220	4,260	4,950	5,010	3,180	6,640	3,510	1,610	180	0	690	6,040	36,290 78,550 90,880
29	8,880	1,520	7,400	5,210	7,030	38,61.0	760	120	620	250	2,050	6,100	78,550
1930	1,800	8,180	3,270	1,310	54,200	7,860	480	20	0	2,890	870	10,000	90,880
31 32 33 34 35 36 37 38	3,060	6,630	6,650	4,350	5,910	1,040	460	50	190	590	280	420	29,630 126,300
32	20,790	46,330	32,770	1,270	10,990	5,590	420	210	7,450	300	0	180	126,300
33	11,450	1,410	7,920	3,850	3,910	7,51.0	190 80	300	290	140	190	190	37,350 39,920
34	3,860	1,790	9,300	18,330	2,700	770		0	200	50	1,220	1,620	39,920
35	4,310	6,380	3,880	4,030	22,730	20,780	6,020	360	1,570	2,410	1,950	8,790	82 210
36	890	740	740	330	5,740	3,910	3,080	180	4,940	8,880	4,340	8,740	42,510
37	13,520	3,690	12,540	3,520	1,060	1,220	200	0	0	0	1,090 250	5,320	42,160
30	18,420	15,480	8,740	43,710	5,100	3,600	970	410	270	150		280	97,380
39 1940	1,240	4,010	2,480 140	1,110	1,900	14,690	680	20	0	0	0	0	42,510 42,160 97,380 26,130 85,680
41		850		13,230	6,430	10,090	15,480	250	0	10	21,850	17,350 2,280	85,680
42	8,350 750	23,810 1,810	12,050	8,250	14,010	18,230	10,290	2,220	130	3,200	920	5,580	103,740
	2,040	840	2,210	66,030	18,910	11,090	680	3,810	13,860	10,100	4,840	6,480	140,570
43 կկ	4,980		5,870 6,240	5,570 2,600	15,330 48,410	7,810	400	10	12,220	3,460	80	740	54,370 95,990 147,380
45	10,890	14,950 22,370	46,030	24,950	40,410 2,070	26,730	980	40	60	140	1,240	9,690	95,990
45 46	4,790	15,190	5,230	24,950	12,540		8,520 320	370	80	3,090 140	1,940	340	147,380
40 h7	8,300	1,510	5,310	8,800	1,430	8,930 11,660	180	1,920 890	330		8,100	3,580	63,640
47 48	4,330	5,200	4,690	2,930	18,520	1 340	2,440	090	1,930	130	630	6,950	47,720
49	2,560	10,660	5,110	4,070	5,810	1,340 2,410	210	110	0	0	20	40	39,510
1950	560	17,360	1,220	7,590	10,380	800	740	60		350	30	20	39,510 31,340 38,840
51	100	720	40	60	700	8,260	041 40	00	130	0	0	0	38,840
	Ő	260	290	18,350	10,790	340	10	0	0	0	0	0	9,920
52 53 54 55 56	1,560	270	4,750	1,920	16,920	70	200	10	20	210	2,220 110	6,780	39,040
54	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	60	0	120	2 200	0	200	0	20		470	790	26,830
55	ĩ	660	1,170	1,250	2,290 1,660	1,630	ŏ	960	1,540	310 20	410	0	3,760
56	150	1,620	10	-,-,0	2,700	590	ŏ	100	20	20 60		140	8,890
1957	250	1,450	950	44,910	2,720 36,440	5,810	90	30	130.		2,020		7,510 119,980
	•						90	. 30	L3U.	7,610	20,720	1,590	119,980
Total	163,060	235,290	245,180	336,880	384,170	255,760	62,830	18,370	52,540	51,820	85,980	ш3,030	2,004,910
Mean	4,800	6,920	7,210	9,910	11,300	7,520	1,850	540	1,550	1,520	2,530	3,320	58,970

ESTIMATED MONTHLY AND ANNUAL FLOWS IN ACRE-FEET AT BARDWELL DAMSITE - EXISTING (1958) CONDITIONS

52-704 O-65 (Vol. III)--7

YEAR	JANUARY	FEBRUARY	MARCH	APRIL	MAY	JUNE	JULY	AUGUST	SEFTEMBER	OCTOBER	NOVEMBER	DECEMBER	TOTAL
			-0 (1.0		9,640	19,310	30	1.00	4,910	240	260	480	119,160 16,410
1924	19,800	12,840	38,610	12,940 270	1,460	19,510	120	140	330	2,570	10,810	410	16,410
25 26	190	90	20		27,740	4,850	8,060	6,790	5,800	2,070	2,220	13,330	132,940 126,240
26	13,130	1,820	23,320	23,810		15,090	1,400	660	360	8,170	600	1,370	126,240
27	12,250	12,840	23,030	23,320	27,150 5,670	11,930	6,260	2,880	310	0	1,220	10,770	64,820
28	390	7,600	8,830	8,960	5,010	78,890	1,270	220	1,110	430	3,640	10,880	151,180
29	16,460	2,700	13,430	9,310	12,740	14,500	1,370 860	30	0	5,160	1,550	18,820	179,140
1930	3,220	14,990	5,850	2,340	111,820	1,840	810	80	340	1,070	500	760	53,380
31.	5,480	12,030	12,130	7,770	10,570	10,000	770	3ĕõ	13,560	530	0	320	252,250
32	41,580	95,140	66,730	2,270	20,990	10,000	340	540	520	240	340	340	69,060
33	22,020	2,520	14,550	6,890	6,980	13,780	150	0	340	- 80	2,160	2,890	75,730
32 33 34	6,890	3,200	17,350	36,460	4,820	1,390	10,780	650	2,810	4,310	3,490	16,170	158,710
35 36	7,690	11,470	6,940	7,180	45,770	41,450	5,500	310	8,820	16,470	7,740	16,070	77.010
36	1,590	1,330	1,300	600	10,290	6,990	340	. 0	0,0.0	10,410	1,950	9,500	79,560
37 38	26,460	6,590	24,400	6,270	1,880	2,170	1,740	730	. 500	260	430	510	192,570
38	36,550	30,480	16,170	89,670	9,100	2,170 6,430 40,840	900	Ő	õ	0	ō	0	61,870
39	2,240	7,250	4,460	1,170	5,010	40,040	13,330	50	ŏ	· ŏ	73,890	31,160	143,150
1940	0	720	_ 30	17,840	2,030	4,100	36,950	990	190	3,130	460	1,300	212,950
41.	10,580	45,080	29,890	15,190	29,890	39,300 8,450	30,950	700	30,390	6,440	8,620	12,180	181,430
42 43 44	610	850	1,150	102,370	9,160	0,470	510 240	20	330	14,750	50	1,500	102,320
43	3,250	830	8,420	10,770	53,450	8,710	400	20	0	1,1,0°	1,510	14,060	206,650
44	18,810	37,130	12,570	6,810	106,720	8,620		3,220	1,480	21,580	3,900	10,790	299, 790
45 46	28,510	36,930	94,640	51,980	2,410	15,540	28,810 480		100	150	10,780	5,900	299,790 170,140
46	1.4, 310	28,910	13,520	6,120	80,850	8,290		730	70	-~~~	10,100	230	116,200
47	48,220	4,480	30,580	22,930	6,380	3,280	30	ŏ	0	ŏ	.õ	 0	87,850
48	840	2,720	16,760	2,920	61,740	650	2,220	260	ŏ	2,280	20	ŏ	23,310
49	1,080	1,520	4,130	4,140	5,660	2,240	1,980		190	2,200	- 0	ŏ	57,200
1950	1,720	30,360	1,360	15,620	6,040	1,060	850	0	3,860	ŏ	· ŏ	· Õ	15,750
51	100	1,270	- 80	120	1,610	8,690	20	0	. 3,000	ŏ	1,810	10,200	55,960
52	0	1,640	,2,930	19,700	19,110	460	110	0		-	500	7,340	131,870
52 53 54 55 55	3,530	680	28,610	5,840	80,490	320	450	0	1,400	2,710 140	490	10	14,020
5Å	3,960	50	30	210	9,100	20	0	10			-+	õ	18,19
55	- 410	4,410	4,380	1,500	2,540	3,140	230	760	590	230	5,330	410	40,470
56	650	5,620	0	50	26,170	2,260	10	0	0	. 0	0,330	+10	260,590
1957	250	6,730	8,230	167,110	62,570	15,540	160	· 0	0	Ū	0	v	
otal	352,770	432,820	534,430	690,420	877,550	400,130	<u>1</u> 26,210	20,250	78,310	93,010	144,270	197,700	3,947,870
Mean	10,380	12,730	15,720	20,310	25,810	11,770	3,710	600	2,300	2,730	4,240	5,810	116,11

TABLE 35

ESTIMATED MONTHLY AND ANNUAL FLOWS IN ACRE-FEEP AT NAVARRO MILLS DAMSITE - EXISTING (1958) CONDITIONS

EAR	JANUARY	FEBRUARY	MARCH	APRIL	MAY	JUNE	JULY	AUGUST	SEPTEMBER	OCTOBER	NOVEMBER	DECEMBER	TOTAL
1924	312,000	215,300	875,000	296,200	229,400	289,100	2,000	3,000	71.,300	4,000	4,500	6.200	2,308,000
25	11,800	8,300	11,900	. O	208,500	5,600 141,600	3,800	1,400	0	60,600	173,300	6,900	492,100
26	212,300	29,100	340,300	397,000	296,100	141,600	134,200	163,500	160,000	45,100	29,100	215,700	2,164,00
27	212,700	283,700	575,800	672,200	453,200	228,300	97,500	10,000	9,500	165,300	0	21,300	2,729,50
28	52,400	104,300	130,400	190,600	121,000	299,300	143,100	61,200	5,200	1,900	27,700	250,900	1,388,00
29	268,400	119,400	257,100	198,700	673,200	1,162,800	18,800	4,800	23,100	15,800	51,900	177,100	2,971,10
1930	49,300	220,700	89,900	34,300	1,765,100	279,000	10,900	1,600	2,000	166,200	27,700	342,000	2,988,70
31	1.03,200	247,100	330,700	193,900	168,900	29,200	16,600	6,100	7,000	17,500	33,900	66,700	1,220,80
32	810,200	1,819,900	1,149,400	63,100	408,900	192,700	124,800	0	285,900	10,400	11,800	19,400	1,220,80 4,896,50
33	371,200	57,600	481,200	148,400	288,600	284,900	7,100	54,500	45,800	8,200	3,300	20,200	1,771,00
34	105,000	41,300	236,700	489,100	74,000	18,200	3,900	2,100	7,400	2,500	33,500	42,600	1,056,30
- 35	109,400	166,300	106,900	99,600	917,900	1,026,900	354,300	40,000	50,300	69,900	49,000	341,000	3,331,50
36	47,800	20,300	18,100	8,500	204,600	135,100	85,900	2,900	7,600	596,300	200,600	233,800	1,561,50
37	383,700	111,900	364,500	93,500	26,900	57,400	5,300	0	15,900	16,700	37,600	157,900	1,271,30 4,028,60
38	564,700	841,400	638,700	1,601,200	200,800	87,700	34,800	22,500	9,300	10,500	9,000	8,000	4,028,60
39	44,800	104,500	65,300	7,700	93,600	188,700	29,100	3,800	1,400	1,300	2,700	5,200	548,10
1940	5,300	21,000	12,800	117,800	204,000	215,900	387,200	15,700	7,400	3,200	450,600	790,700	2,231,60
41	632,900 63,600	431,800	656,200	272,700	765,900	1,340,700	1,036,800	123,300	51,800	152,800	148,300	102,500	5,715,70
42 43	152,100	79,200	74,200	1,630,200	2,479,900	1,001,500	319,000	155,000	205,900	180,200	177,000	114,300	6,480,00
43 44	204,400	45,100	59,500	413,400	525,300	654,600	19,000	4,000	33,000	156,100	11,300	23,600	2,097,00
44	452,800	322,100	567,600	117,200	1,875,600	405,800	24,900	4,900	25,000	18,000	31,000	120,200	3,716,70
45		333,300	1,821,100	2,698,100	395,400	676,100	591,300	49,900	44,900	275,300	90,900	129,700	7,558,80
	278,300	643,100	575,700	164,900	612,800	1,160,900	106,100	50,800	94,100	26,800	896,500	516,900	5,126,90
47	376,000	102,000	287,900	488,600	137,700	148,300	68,100	15,200	109,700	26,600	43,900	263,100	2,067,10
48	238,900	146,800	756,700	139,500	579,800	54,300	93,600	12,600	13,100	10,700	7,600	14,200	2,067,800
49	0	121,400	558,500	227,200	360,800	523,100	40,100	12,300	12,400	42,500	120,800	34,800	2,053,90
1950	181,500	1,194,300	151,600	367,300	974,400	167,900	104,000	167,700	394,400	70,900	48,600	22,200	3,844,80
51	26,300	46,600	36,700	28,600	58,200	272,600	18,900	5,700	15,600	4,800	11,400	11,000	536,40
52	15,500	29,100	42,300	99,300	274,000	1.46,500	5,200	0	0	6,200	35,600	135,500	789,20
53	95,200	26,400	283,800	4,100	776,300	22,700	14,800	11,000	13,800	11,200	13,300	68,600	1,341,20
54	50,000	19,400	15,300	25,400	74,200	. 0	0	11,600	5,500	80,300	68,300	26,300	376,30
53 54 55 56	44,400	85,000	84,800	82,900	94,300	50,700	14,000	17,100	24,300	15,700	9,000	13,800	536,00
	21,700	59,400	14,700	15,000	180,600	21,600	6,400	4,700	6,500	6,900	45,500	14,000	397,00
1957	12,600	58,000	61,000	676,700	2,107,900	1,870,300	462,200	385,600	50,400	268,900	630,100	199,700	6,783,40
lotal	6,510,400	8,155,100	11,732,300	12,062,900	18,607,800	13,160,000	4,383,700	1,424,500	1,809,500	2,549,300	3,535,300	4,516,000	88,446,80
Mean	191,480	239,860	345,070	354,790	547,290	387,060	128,930	41,900	53,220	74,980	103,980	132,820	2,601,38

ESTIMATED MONTHLY AND ANNUAL FLOWS IN ACRE-FEET AT TENNESSEE COLONY DAMSITE - EXISTING (1958) CONDITIONS

89. SEDIMENT DEPOSITION IN RESERVOIRS .- Estimates of average annual rates of sediment deposition for Corps of Engineers Reservoirs, existing or under construction, in the Fort Worth District were made in connection with definite project studies or the preparation of preconstruction design memoranda for the respective projects. In each case, the estimates of sediment inflow to the reservoirs were based on the latest data available at the time of these studies. Generally, the average rate of sediment production was estimated for the contributing watershed area above each reservoir. This was based on the results of reservoir resurveys by federal agencies (Reservoir Sedimentation Data Summary Sheets), published by the Subcommittee on Sedimentation, Federal Inter-Agency Committee on Water Resources, and published results of suspended sediment measurements such as "The Silt Load of Texas Streams," (annual reports by the Texas Water Commission, formerly known as the Texas Board of Water Engineers). In some instances, these were augmented by suspended sediment samples obtained by the Corps of Engineers. For some of the reservoir projects the anticipated average rate of sediment production and deposition was coordinated with the Soil Conservation Service, United States Department of Agriculture, and adjusted to reflect the effects of authorized major soil conservation programs. Sufficient storage space was originally provided in each reservoir for about 50 years of sediment deposition from beginning of deliberate impoundment. The most recent data contained in the publication, "Inventory and Use of Sedimentation Data in Texas," (Bulletin 5912, Texas Water Commission) were used to estimate sediment deposition for the new reservoir projects considered in this report. Methods set forth in Bulletin 5912 were also used to compare provisions for sediment deposition in the existing projects. The recomputed values were found to be generally in close agreement. Where required, allowances were made for the effects of existing and proposed land improvements and reservoirs on the watersheds. Subsequent to the completion of detailed hydrologic studies it was determined desirable that adequate storage be provided for accumulation of 100 years of sediment. However, only in Lakeview and Tennessee Colony Reservoirs were sediment allowances increased to meet 100-year requirements. The 50-year allowances for sediment deposition in the other reservoirs were not changed but will be reconsidered and proper revisions in sediment deposition will be made at the time of preconstruction planning. At that time, it is proposed to allocate sufficient storage for 100 years of sediment deposition in all new reservoirs and to recompute the effects of the 50-year sediment storage provided in existing reservoirs on the yields of these reservoirs.

90. SEDIMENT - UNCONTROLLED DRAINAGE AREA. - A study of the uncontrolled drainage area above Tennessee Colony was made assuming that the presently existing, under construction, and recommended reservoirs would be in the system upstream from Tennessee Colony under the multipurpose project conditions. The sediment production rate for the uncontrolled drainage area between the existing and recommended system of reservoirs and Tennessee Colony Reservoir was computed utilizing methods set forth in Bulletin 5912. The sediment production rates from the uncontrolled areas above the Livingston and Wallisville Reservoirs were likewise obtained. The sediment contributed from the uncontrolled area was augmented by estimates of sediment passed through the upstream reservoirs. The amount of sediment contributed by the upstream reservoirs was computed by determining the average trap efficiency for each reservoir ("The Trap Efficiency of Reservoirs," G. M. Brune, A. G. U., Volume 3⁴, No. 3, June 1953) and applying this ratio to the sediment inflow estimated for the respective reservoirs. The combined total average annual sediment contribution above Tennessee Colony Reservoir, for example, was thus determined to be 1,900 acrefeet per annum; and 522 and 277 acre-feet per annum for the Livingston and Wallisville Reservoirs, respectively.

91. SEDIMENT DISTRIBUTION.- The total sediment inflow estimated for each reservoir was distributed throughout the entire range of reservoir storage using the methods presented by W. M. Borland and C. R. Miller in Paper 1587 entitled "Distribution of Sediment in Large Reservoirs," Journal of the Hydraulics Division, Proceedings of the A. S. C. E., Volume 84, No. HY2, April 1958. These methods make it possible to distribute sediment in reservoirs of all shapes and sizes and facilitate the computation of new bottom elevations after deposition of the anticipated sediment.

92. SEDIMENT STORAGE. - Table 37 presents pertinent data as to the amount of sediment storage provided in acre-feet and its distribution between the water conservation and flood-control pools of the existing and recommended Corps of Engineers reservoir projects.

	California store and forme fort						
• • • • • • • • • • • • • • • • • • •	: Sediment storage (acre-feet						
• • • • • • • • • • • • • • • • • • •		: In conserva-					
Reservoir :	Total	: tion pool	: control pool				
Lakeview (1)	45,600	43,100	2,500				
Roanoke	26,200	·	26,200				
Grapevine	16,000	14,300	1,700				
Aubrey	37,800	35,200	2,600				
Garza-Little Elm	40,700	32,900	7,800				
Tennessee Colony (1)	190,000	160,500	29,500				
Lavon (enlarged)	47,800	41,300	6,500				
Wallisville	12,800	12,800					
Benbrook (2)	15,750	12,250	3,500				
Grapevine (2)	36,000	27,300	8,700				
Garza-Little Elm (2)	53,500	40,100	13,400				
Lavon (2)	47,800	41,300	6,500				
Bardwell (2)	8,700	6,000	2,700				
Navarro Mills (2)	15,800	10,100	5,700				

SEDIMENT STORAGE PROVIDED IN CORPS OF ENGINEERS PROJECTS ON TRINITY RIVER BASIN

(1) 100-year sediment storage provided in this reservoir.

(2) Existing project or project considered as existing.

93. CONSERVATION STORAGE.- In determining the conservation storage capacity which should be provided in reservoirs investigated in the Trinity River Basin, cognizance was taken of the requests of local interests and of probable future water requirements of the region. Yield versus storage relationships were established and cost estimates were developed for varying increments of conservation storage. The storage allocations in the existing Grapevine and Garza-Little Elm Reservoirs were revised in accordance with requests from local interests assuming that comparable amounts of flood-control storage would be provided upstream in Roanoke and Aubrey Reservoirs.

94. A flood-prevention program, including floodwater-retarding structures for the Trinity River Basin has been prepared under authority of the Flood Control Act of December 22, 1944 (Public Law 534, 78th Congress, 2d Session). Data presented by the Soil Conservation Service in March 1961 indicate that a total of 1,200 retardation structures are proposed in the Trinity River Basin. Data as of January 1, 1961 indicated that 288 of these structures had been completed. The 1,200 structures in the Trinity River Basin, if constructed, would have a total detention storage of 1,072,621 acre-feet, a combined release rate of 31,828 second-feet, and would retard runoff from 3,679 square miles of drainage area. In addition, the 1,200 structures would contain 229,345 acre-feet of sediment storage. The number of existing and proposed retardation structures, the drainage area controlled, the sediment storage, detention storage, and combined release rates of the proposed retardation structures above each existing and proposed Corps of Engineers reservoir are shown in table 38. The completed structures, present land treatment practices and existing small ponds are reflected in the runoff utilized in determining dependable yields from the reservoirs under existing conditions of basin development. The completion of the proposed Soil Conservation Service land treatment practices, small ponds and retardation structures upstream from the reservoirs will result in an additional depletion of runoff into the reservoirs. The dependable yields from the reservoirs under 2020 conditions of basin development reflect this additional reduction in runoff.

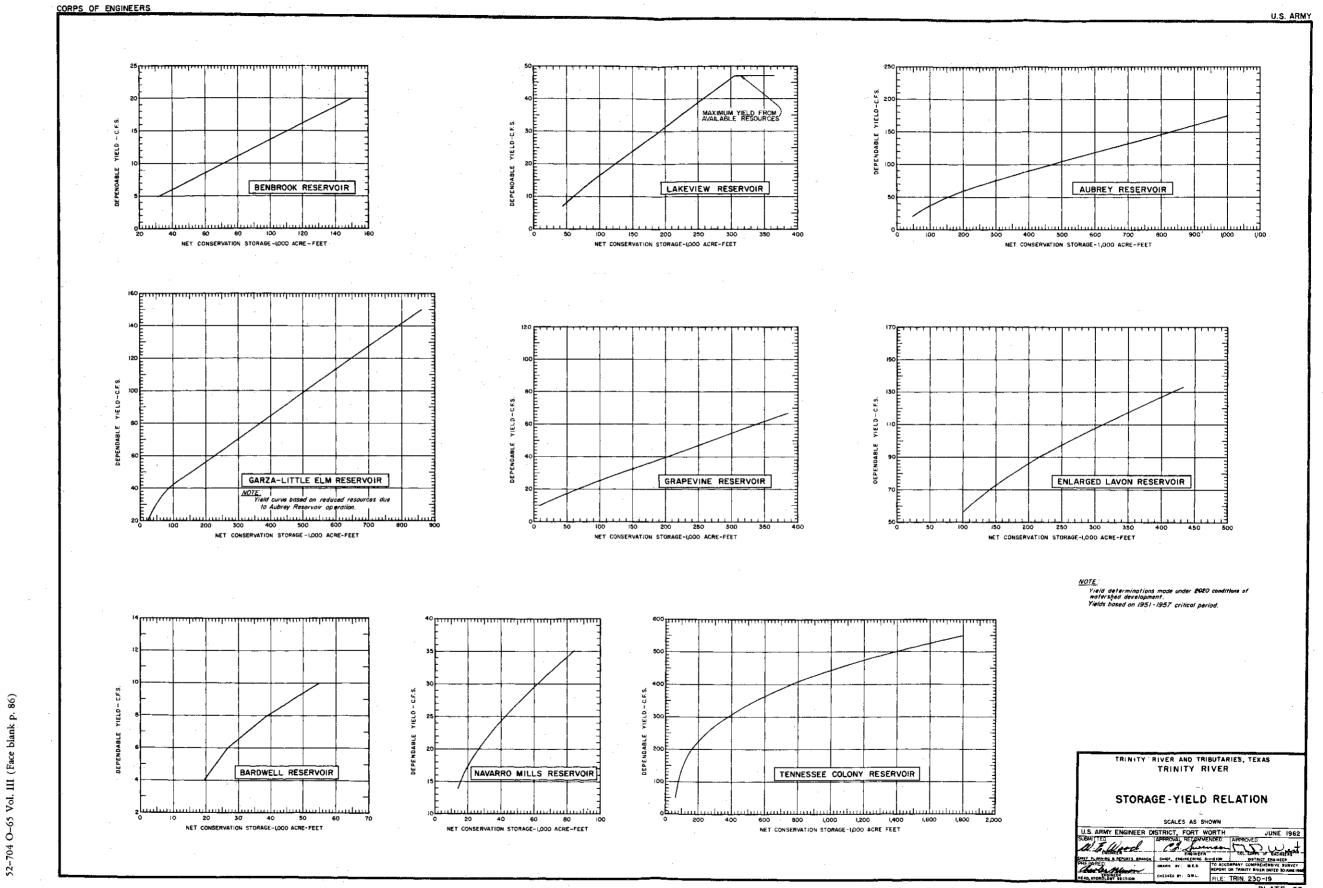
TABLE 38

	:Numb	er of	: Tot	al proposed	structures	above reser	voir
	:stru	ctures	35	: Draina		0 0 • 0	•
Reservoir	: comp	leted	• •	: area	:Sediment	:Detention:	Combined
	: abov	e res-				: storage :	
	:ervo	ir(1)	:Number	(2): (sq.mi.	.) :(ac-ft)	: (ac-ft) :	: (cfs)
Benbrook		34	34	79.5	4,359	21,106	400
Grapevine		0	56	169.7	14,407		914
Aubrey		28	37	108.0	5,664	29,567	
Garza-Little	m F.H	28	120	439.3	24,457	122,125	
Lakeview		-3	27	115.3	9,902	34,160	925
Lavon		63	193	331.1	27,087		2,708
Bardwell		22	24	60.6	4,081		306
Navarro Mill	g	.2	- 66	150.4	12,431	40,139	1,511
Tennessee Co		285	1,132				27,794
Wallisville	•	288	1,200	3,679.0			31,828
				and the second			

SUMMARY OF PERTINENT DATA FOR EXISTING AND PROPOSED SOIL CONSERVATION SERVICE RESERVOIRS

(1) As of January 1, 1961.

(2) Includes completed structures.


95. The net conservation storages and yields from the existing and recommended Corps of Engineers reservoirs are shown in table 39 under existing and 2020 conditions of basin development as noted. Yield curves for these reservoirs under 2020 conditions of basin development are shown on plate 22. Refer to table 15 for dependable yields from existing and proposed local interest projects under 2020 conditions of basin development. The dependable yields shown in table 39 are based on recurrence of the 1950-1957 drought period on the basin. Under the 2020 conditions of basin development it is assumed that the proposed program of the Soil Conservation Service would be completed.

RESERVOIR YIELDS CORPS OF ENGINEERS RESERVOIRS

Reservoir	Conservation storage	Yi	leld
ilebet volt	(acre-feet)	: (cfs)	: (MGD)
XISTING RESERVOIRS UNDER EXISTING	(1958) CONDIT	ions of basi	N DEVELOPMENT
Benbrook	72,500	10	6.5
Grapevine	161,250	32	20.7
Garza-Little Elm	436,000	167	107.9
Lavon	100,000	71	45.9
Bardwell	29,500	8.4	5.4
Navarro Mills	53,200	32	20.7
Tennessee Colony (1)	1,032,500	735	475.0
Total	1,884,950	1,055.4	682.1
EXISTING AND RECOMMENDED RESERVOIR	5 UNDER EXISTI	NG (1958) CO	ONDITIONS OF
BAS	IN DEVELOPMENT		
Benbrook	72,500	10	6.5
Lakeview	306,400	52	33.6
Grapevine-Roanoke system	372,200	66	42.7
Garza-Little Elm -			
Aubrey system	1,234,400	291	188.0
Lavon (enlarged)	362,300	139	89.8
Bardwell	29,500	8.4	5.4
Navarro Mills	53,200	32	20.7
Tennessee Colony	1,032,500	705	455.7
Wallisville		(2)	(2)
Total	3,463,000	1,303.4	842.4
EXISTING & RECOMMENDED RESERVOIRS			
	72,500	10	6.5
Benbrook	306,400	47	30.4
Lakeview	372,200	65	42.0
Grapevine-Roanoke system	312,200	. 07	74.0
Garza-Little Elm -	1 aph had	الده	151.3
Aubrey system	1,234,400	234 121	78.2
Lavon (enlarged)	362,300 29,500	6.5	4.2
Bardwell Neuronne Mille		28	18.1
Navarro Mills	53,200	450	290.8
Tennessee Colony	1,032,500	(2)	(2)
Wallisville	3,463,000	961.5	621.5
Total	3,403,000	AOT • 2	021.0

(1) Recommended project included in tabulation so that the overall effect of the recommended upstream development on the yield at Tennessee Colony may be evaluated.

(2) See footnote 4, table 4.

-____

-

blank (Face Ξ Vol. -63

-704 O-

PLATE 22

-- --

96. FLOOD-CONTROL STORAGE. - Routings of the major floods of record (under 2020 conditions of basin development) were made through the system of reservoirs, assuming that all reservoirs would be at the top of the conservation pools at the beginning of the floods, and that releases would be regulated to the recommended operating discharges. Under these routing conditions the maximum flood-control storage utilized at Lakeview Reservoir was 135,600 acre-feet during the floods of April-July 1942 and the maximum flood-control storage utilized at Tennessee Colony Reservoir was 2,133,000 acre-feet during the floods of April-July 1957. Under the same routing conditions, the maximum flood-control storage was utilized in the recommended system of reservoirs on the Elm Fork watershed during passage of the floods of April-July 1957. The maximum flood-control storages utilized in the Elm Fork reservoirs were as follows: Garza-Little Elm Reservoir, 298,100 acre-feet; Aubrey Reservoir, 232,200 acre-feet; Grapevine Reservoir, 42,500 acre-feet; and Roanoke Reservoir, 216,100 acre-feet. Based on the above analysis, sufficient flood-control storage was provided in Lakeview, Tennessee Colony, Garza-Little Elm, Aubrey, Grapevine, and Roanoke Reservoirs to control the maximum flood of record. Period of record routings, based upon maximum utilization of conservation water, indicate that the conservation pool of Lakeview Reservoir would be filled infrequently. However, there is a possibility that conservation water in Lakeview Reservoir would not be used at the maximum rate, especially during its earlier operating period and that major floods could occur on a full conservation pool. A regional analysis of flood-control storage requirements was also made for the Trinity River Basin. The requirements for the 50-year flood-control storage taken from frequency curves based upon the regional analysis were in close agreement with the adopted flood-control storages for the recommended reservoirs. It is, therefore, considered that 50-year flood-control storage has been provided in the Lakeview, Tennessee Colony, Garza-Little Elm, Aubrey, Grapevine, and Roanoke Reservoirs. The flood-control storage provided in existing reservoirs on other subwatersheds was considered adequate in conjunction with the recommended increase in channel capacities downstream from these reservoirs. The storage allocations in the existing Grapevine and Garza-Little Elm Reservoirs were revised in accordance with requests from local interests assuming that comparable flood-control storage would be provided upstream in Roanoke and Aubrey Reservoirs. As a result of these studies the following net flood-control storages (in acre-feet and inches) have been provided in the existing and recommended reservoirs.

		°,	Flood-con	trol storage
Kese	ervoir		(acre-feet)	: (inches)
Tennes Lavon Bardwe	iew xe /ine / Little Elm ssee Colony (enlarged)		76,550 (1) 136,700 223,700 47,300 258,300 331,600 2,144,300 275,600 79,600 143,200	3.3 9.4 6.9 9.9 7.1 6.4 6.3 6.7 8.7 8.5

(1) Controlled storage at elevation 710.0. At the emergency spillway crest elevation 724.0 there is 170,350 acre-feet or 7.4 inches of flood-control storage provided.

Flood-control storage capacities provided in local interest projects are shown in table 4.

STANDARD PROJECT FLOODS. - The standard project floods for 97. Aubrey, Garza-Little Elm, Roanoke, Grapevine, and Lakeview Reservoirs were determined in accordance with procedures set forth in EM 1110-2-1411 (Civil Works Engineer Bulletin No. 52-8, dated March 26, 1952, subject: "Standard Project Flood Determinations"). The standard project rainfall for the areas above each of the reservoirs was determined and loss rates applied as discussed in paragraph 102 to obtain rainfall excess values of 13.0 inches above Aubrey Reservoir, 11.5 inches above Garza-Little Elm Reservoir, 11.4 inches above Roanoke Reservoir, 10.9 inches above Grapevine Reservoir, and 13.1 inches above Lakeview Reservoir. The six-hour rainfall excess values were applied to the appropriate unit hydrographs given in tables 45 and 46 and the rainfall on the reservoir surfaces added to develop standard project flood hydrographs at each of the above damsites. In the case of Tennessee Colony Reservoir, it was estimated the standard project flood would be equivalent to one-half of the spillway design flood for the purposes of this report. The adopted standard project flood for each of the reservoirs was routed through the reservoir under the following conditions: (1) The reservoir level in each reservoir was assumed to be at the top of conservation pool at the beginning of the flood; (2) local runoff at downstream gages was assumed to be as computed for the flood of April-May 1957; and (3) the outlet works at each reservoir were assumed operative during the passage of the flood. Results of routing the standard project flood through each of the reservoirs under the above conditions are summarized in the following tabulation:

	¢	Standa	ard project	:Maximum:	Maximum
	0 6		flood	:routed :	reservoir
· ·	Reservoir :	Peak inflow	: Volume	:outflow:	elevation
	• •	<u>(cfs)</u>	: (acre-feet): (cfs) :	(ft-msl)
	• • • • • • • • • • • • • • • • • • •				
	Lakeview	168,400	194,500	69,400	528.7
	Roanoke	159,300	372,200	129,400	619.0
	Grapevine	89,700	429,000	29,200	565.7
	Aubrey	250,400	482,800	176,400	635.7
	Garza-Little Elm	317,600	1,045,200	42,400	538.3
	Tennessee Colony	475,900	5,017,400	289,000	285.0
			-		

98. FLOOD-CONTROL EFFECTS. - In order to evaluate the floodcontrol effects of both existing and recommended Corps of Engineers reservoirs in the Trinity River Basin, the peak discharges for the damaging floods of record were determined at the principal gaging stations within the affected areas on the Trinity River and its tributaries by use of observed and estimated reservoir inflows, streamflow records, and routing procedures. The reductions in peak discharges were determined under two conditions of basin development: (1) Existing conditions resulting from presently existing basin improvements such as diversions, return flows, land treatment, ponds and minor reservoirs, and major existing reservoirs including Navarro Mills Reservoir (under construction) and Bardwell Reservoir (authorized); and (2) 2020 conditions resulting from basin improvements as outlined above, that were assumed would be effective in the year 2020. The existing reservoirs and the reservoirs assumed in operation by the year 2020 are listed in tables 4, 15 and 16 and shown on plate 13.

99. Releases from all Corps of Engineers reservoirs in the system, under both existing and 2020 conditions of basin development, were limited, where possible, to such rates as would produce flows not to exceed downstream channel capacities (existing or recommended) on those tributary streams where the reservoirs are located and on the Trinity River between Dallas and the mouth. Operating discharges at key gaging stations under existing and 2020 conditions are shown in the following tabulation:

Streamgaging station	: Existing operating : : discharge (cfs) :	2020 operating discharge (cfs)
Clear Fork at Fort Worth	6,000	6,000
West Fork at Grand Prairie	6,000	12,000
Elm Fork near Carrollton	8,000	12,000(1)
Trinity River at Dallas	13,000	20,000
East Fork near Crandall	2,000	5,000
Trinity River near Rosser	15,000	25,000
Trinity River at Romayor	35,000	35,000

(1) Recommended operating discharge 12,000 cfs. In actual operation releases regulated to 8,000 cfs.

In addition, releases from Lakeview Reservoir on Mountain Creek were limited to 4,000 second-feet or less, releases from Bardwell Reservoir were limited to such rates as would produce flows not to exceed 4,000 second-feet at the mouth of Chambers Creek nor 2,000 second-feet on Waxahachie Creek, and releases from Navarro Mills Reservoir were limited to such rates as would produce flows not to exceed 3,000 second-feet on Richland Creek above the mouth of Chambers Creek.

100. The reservoirs in the system, under both existing and 2020 conditions, were regulated insofar as practicable, to maintain approximately the same percentage of flood-control storage utilized in each reservoir. Also, whenever possible, releases were made from one or more of the reservoirs in order to fully utilize the recommended operating discharges shown above.

101. Three of the maximum known general floods on the Trinity River Basin, April-July 1942, February-May 1945, and April-July 1957 were routed through the reservoirs under existing and 2020 conditions of basin development following the plan of reservoir regulation set forth in the preceding paragraphs. The reservoir elevations at the beginning of the floods were established by continuous routings for the entire 1924-1957 period. The results of these flood routings are summarized on tables 40, 41, and 42. The reservoir regulations during these flood periods are shown graphically on plates 23 through 37.

RESULTS OF ROUTING FLOODS OF APRIL-JULY 1942

Reservoir :	Max. res		: Peak di		cfs)
or :	elev. (f	t-msl)	:	:Modified	:Modified
stream gage :	Existing:	2020	:Historical	:existing	: 2020
Devlement	7700	709.0	· ·		
Benbrook	710.0	109+0	19,000	6,100	6 000
Fort Worth (Clear Fork)		-	18,200	•	6,000
Fort Worth (West Fork)		~	23,700	16,400	13,200
Grand Prairie	·	-	27,200	15,100	13,700
Lakeview	-	516.9	-	-	
Roanoke		609.0	100		
Grapevine	560.0	558.5		-	
Aubrey	-	633.0	-	-	- .
Garza-Little Elm	533.6	531.0	-		
Carrollton	***	**	90,700	24,100	
Dallas	-	-	111,000	53,000	48,000
Lavon	490.0	499.0	-	-	-
Crandall	-	· 🛥	99,200	48,000	37,400
Rosser	-	.	133,000	93,000	82,300
Bardwell	431.1	429.5	-	-	-
Mouth of Chambers Creek	c – 2	-	39,500	35,700	(2)
Navarro Mills	434.0	432.0		-	-
Richland Creek above mo	outh	-	· · · · · · · · · · · · · · · · · · ·		
of Chambers Creek		 .	44,800	31,900	(2)
Tennessee Colony	-	274.0	-		
Oakwood	-		153,000	93,500	35,000
Riverside	-	-	121,000	74,700	35,000
Romayor	-		111,000	69,600	36,500
				-//	5-77

This routing to 8,000 cfs. Recommended operating discharge subsequently increased to 12,000 cfs.
 In Richland Creek Reservoir.

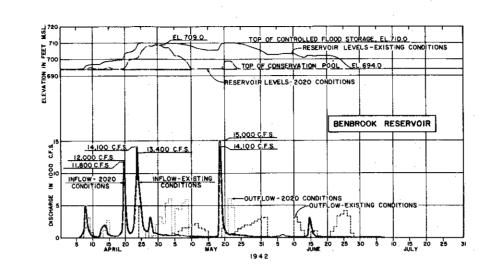
RESULTS OF ROUTING FLOODS OF FEBRUARY-MAY 1945

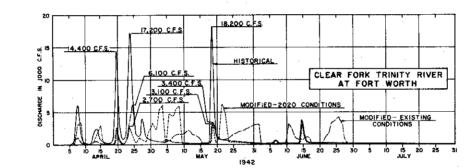
Reservoir	: Max. res				<u>fs)</u>
or		t-msl)		Modified:M	
stream gage	:Existing:	2020	:Historical:	existing:	2020
Benbrook	710.0	704.3	_		
Fort Worth (Clear Fork)	1	10100	27,000	14,900	13,100
Fort Worth (West Fork)	_		31,200	15,600	14,900
Grand Prairie	-	_	29,500	17,500	16,800
	~	- 	29,500	T []] []	то,000
Lakeview	. –	515.1		· .	-
Roanoke	0	601.1	-	-	••••
Grapevine	555.8	557.2		-	. –
Aubrey	·	630.0	-	-	(**
Garza-Little Elm	533.1	527.8	-	-	
Carrollton	-	***	37,800	11,200	8,000(1
Dallas	-		52,900	35,600	26,200
Lavon	490.0	495.0			-
Crandall			64,000	34,200	5,000
Rosser	-	-	66,600	53,200	44,500
Bardwell	436.0	429.2	-	-	-
Mouth of Chambers Creek	-		34,800	31,400	(2)
Navarro Mills	438.7	435.9	=		-
Richland Creek above mouth	9 • 1	0, ,			
of Chambers Creek	••		62,200	44,300	(2)
Tennessee Colony		281.2	_	-	-
Oakwood	-		140,000	123,000	35,000
Riverside	_	_	116,000	103,800	36,000
Romayor		_	106,000	93,000	38,000

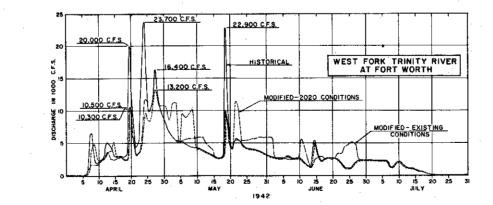
This routing to 8,000 cfs. Recommended operating discharge subsequently increased to 12,000 cfs.
 In Richland Creek Reservoir.

a .

TABLE 42


RESULTS OF ROUTING FLOODS OF APRIL-JULY 1957


Reservoir or stream gage:reservoir :::::Benbrook(ft-msl) :::::::Modifi :Fort Worth (Clear Fork)46,80014,20013,90Fort Worth (West Fork)58,80026,80015,10Grand Prairie68,80059,20047,70LakeviewRoanokeGrapevine560.8549.0AubreyGarza-Little Elm535.6522.0CarrolltonDallasRosserBardwell431.3418.0Mouth of Chambers CreekNavarro Mills440.7			
Reservoir of stream gage: (ft-msl):Existing: 2020Benbrook?13.3702.5:reservoirs: (1): 202Fort Worth (Clear Fork)46,80014,20013,90Fort Worth (West Fork)58,80026,80015,10Grand Prairie68,80059,20047,70Lakeview498.6RoanokeGrapevine560.8549.0Aubrey-619.0Garza-Little Elm535.6522.0LavonCarrolltonDallasLavon491.5496.4CrandallMouth of Chambers CreekMouth of Chambers CreekLavonRosserBardwell431.3418.0Bardwell <th></th>			
stream gage <th :exist.cofe:torical="" :modified="" colspan="2" int<="" integral="" td=""><td></td></th>	<td></td>		
:Extisting: 2020 :reservoirs: (1) : 202 Benbrook 713.3 702.5 -	ied		
Fort Worth (Clear Fork) - 46,800 14,200 13,90 Fort Worth (West Fork) - 58,800 26,800 15,10 Grand Prairie - 498.6 - - 68,800 59,200 47,70 Lakeview - 498.6 -	20		
Fort Worth (Clear Fork) - 46,800 14,200 13,90 Fort Worth (West Fork) - 58,800 26,800 15,10 Grand Prairie - 498.6 - - 68,800 59,200 47,70 Lakeview - 498.6 -			
Fort Worth (West Fork) 58,800 26,800 15,10 Grand Prairie 498.6 Lakeview 498.6 Roanoke 595.2 Grapevine 560.8 549.0 Aubrey 619.0 Garza-Little Elm 535.6 522.0 Carrollton 164,100 13,700 8,4 Dallas 491.5 496.4 Lavon 491.5 496.4 Rosser 142,000 56,000 29,8 Bardwell 431.3 418.0 Mouth of Chambers Creek 24,500 22,200 (3)	00		
Fort worth (west Fork) 68,800 59,200 47,70 Grand Prairie 498.6 Lakeview 595.2 Roanoke 595.2 Grapevine 560.8 549.0 Aubrey 619.0 Garza-Little Elm 535.6 522.0 Carrollton 164,100 13,700 8,4 Dallas 222,000 75,300 54,0 Lavon 491.5 496.4 Crandall 431.3 418.0 Mouth of Chambers Creek 431.3 418.0			
Grand Frainle 498.6 -			
Bakevicw 595.2 Roanoke 560.8 549.0 Grapevine 560.8 549.0 Aubrey 619.0 - Garza-Little Elm 535.6 522.0 Carrollton - 164,100 13,700 Dallas - 222,000 75,300 54,0 Lavon 491.5 496.4 - - Crandall - 142,000 56,000 29,8 Bardwell 431.3 418.0 - - - Mouth of Chambers Creek - 24,500 22,200 (3)			
Grapevine 560.8 549.0 -			
Aubrey 619.0 Garza-Little Elm 535.6 522.0 Carrollton 164,100 13,700 8,4 Dallas 222,000 75,300 54,0 Lavon 491.5 496.4 40,800 33,000 5,0 Crandall 142,000 56,000 29,8 Bardwell 431.3 418.0 24,500 22,200 (3)			
Garza-Little Elm 535.6 522.0 Carrollton 164,100 13,700 8,4 Dallas 222,000 75,300 54,0 Lavon 491.5 496.4 40,800 33,000 5,0 Crandall 142,000 56,000 29,8 Bardwell 431.3 418.0 24,500 22,200 (3)			
Carrollton 164,100 13,700 8,4 Dallas 222,000 75,300 54,0 Lavon 491.5 496.4 - - Crandall 142,000 56,000 29,8 Bardwell 431.3 418.0 - - Mouth of Chambers Creek 24,500 22,200 (3)			
Carrollton 222,000 75,300 54,0 Dallas 491.5 496.4 40,800 33,000 5,0 Lavon 491.5 496.4 40,800 33,000 5,0 Crandall 142,000 56,000 29,8 Bardwell 431.3 418.0 24,500 22,200 (3)	bo(2)		
Dallas 491.5 496.4 40,800 33,000 5,0 Crandall - 40,800 36,000 29,8 Rosser - 142,000 56,000 29,8 Bardwell 431.3 418.0 - - Mouth of Chambers Creek - 24,500 22,200 (3)			
Inavoin 40,800 33,000 5,0 Crandall 142,000 56,000 29,8 Bardwell 431.3 418.0 Mouth of Chambers Creek 24,500 22,200 (3)	••		
Crandall 142,000 56,000 29,8 Rosser 431.3 418.0 Bardwell 24,500 22,200 (3	00		
Rosser Bardwell 431.3 418.0			
Mouth of Chambers Creek - 24,500 22,200 (3	~~		
Mouth of Chambers Creek)		
Nov m_{0} Mills 443.0 440.7			
INCART O MITTO			
Richland Creek above mouth	١		
OT CHAMPELS CLEER	/		
Tennessee Colony - 262.5	00		
Tennessee corony 137,100 81,300 27,3 Oakwood -			
Riverside			
Romayor - 125,900 89,000 23,5			

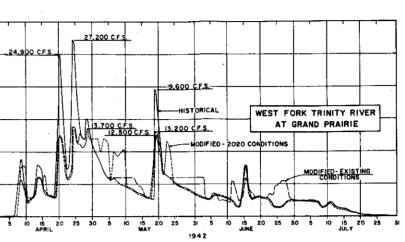

(1) Historical or modified existing conditions.

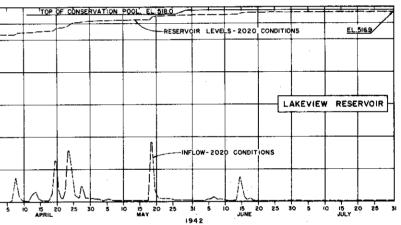
(2) This routing to 8,000 cfs. Recommended operating discharge subsequently increased to 12,000 cfs.
 (3) In Richland Creek Reservoir.

CORPS OF ENGINEERS

ŭ. 2

NOTES.


I. Historical flow is the streamflow which actually occurred or was estimated to have occurred at a particular point or station under the watershed conditions existing at the time of the flood. 2. Modified - existing conditions, shows the hydrographs resulting from presently existing watershed improvements including major reservoirs, diversions, return flows, land treatment, ponds and minor reservoirs, flood water retording structures, etc. In addition to reservoirs presently in operation, Navarro Mills Reservoir (under construction) and Bardwell Reservoir (authorized) are also assumed to be existing reservoirs in this study. 3. Modified - 2020 conditions, shows the hydrographs resulting from watershed improvements, including major reservoirs, diversions, return flows, land treatment, ponds and minor reservoirs, floodwater retarding structures, etc., that are assumed to be effective in the year 2020. 4. The existing reservoirs and the reservoirs assumed operative under 2020 conditions are listed on tables 2, 4, 15 and 16 and shown on


Plate 13. 5. Reservoir elevations at the beginning of the flood under both existing and 2020 conditions were established by period of record routings.

6. The plans of reservoir regulation under existing and 2020 conditions of watershed development are summarized in this appendix.

7. Reservoirs, under "modified-existing conditions," regulated to obtain discharges equal to existing channel capacities (refer to text) and under "modified-2020 conditions," to obtain discharges equal to proposed operating capacities as shown.

ů. 94) Å, Ŀ, ola F Ξ Vol. 5 Ò 704

GAGING STATION	PROPOSED CHANNEL CAPACITY (C.F.S.)	PROPOSED OPERATING DISCHARGE (C.F.S.)
Clear Fork at Fort Worth West Fark at Fort Worth West Fork at Grand Prairie	B,000 15,000 15,000	6,000 12,000 12,000
L	<u>.</u>	<u>. </u>

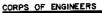
TRINITY RIVER AND TRIBUTARIES, TEXAS TRINITY RIVER

RESERVOIR REGULATION

FLOOD OF APRIL - JULY 1942

IN 5 SHEETS	SCALES AS SHO	WN SHEET	NQ. I
U.S. ARMY ENGINEER D			1962
Al La Wood		- they	L.A.
PREPARED MING	CHIEF, EMEMILERING DI DRAMM BY: Q.A.R.	TO ACCOMPANY COMPREMENSIV REPORT ON TRINITY RIVER	
HEAD NYDROLDAY MECTION	CHECKED BY: O.W.L.	FILE: TRIN. 230-19	

PLATE 23


U.S. ARMY

ł

4

A second state production of the second state of the

-13

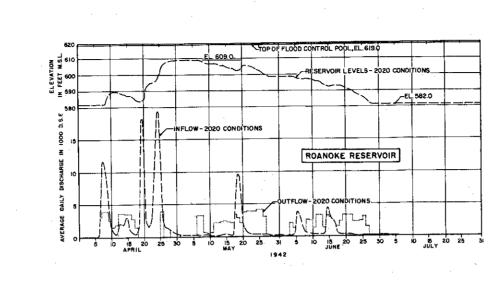
Ŋ.

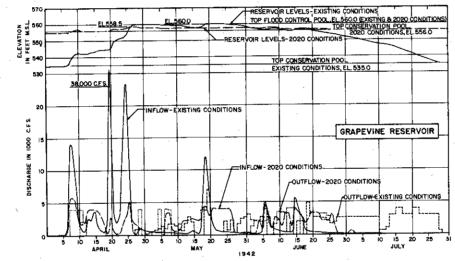
94)

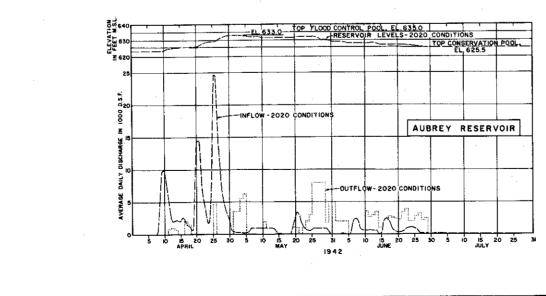
ġ

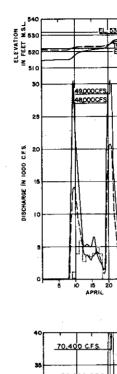
뇑

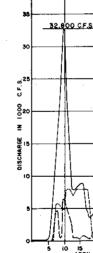
blai


(Face


Ш


Vol.


65


9 52-704

NOTE:

I. See general notes on sheet (

* Reservoir regulation hereon to 8,000 C.F.S.

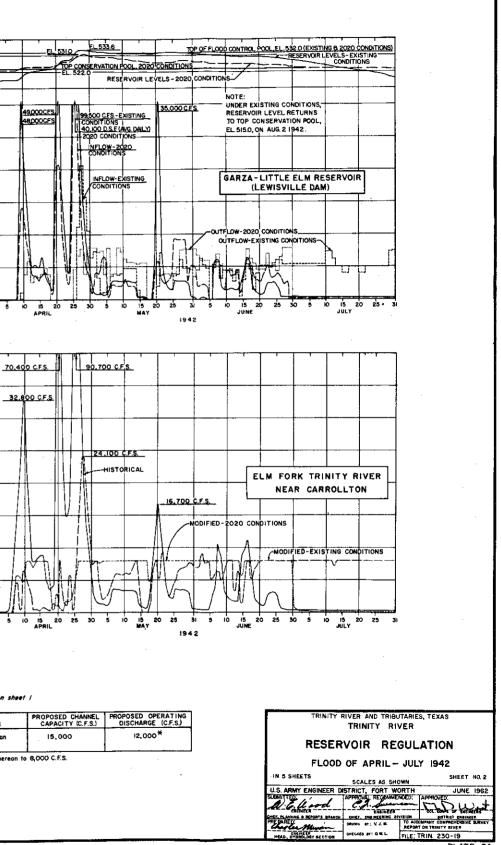
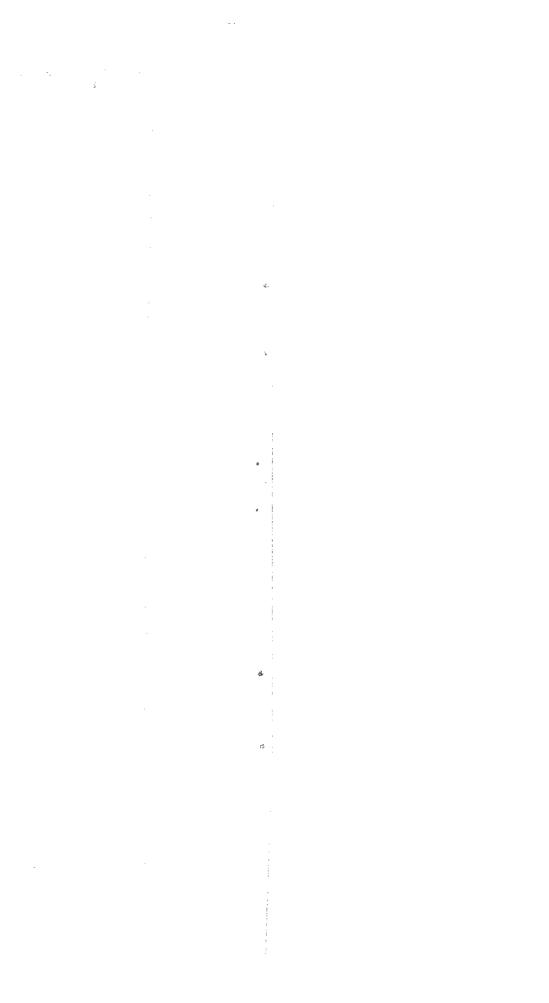
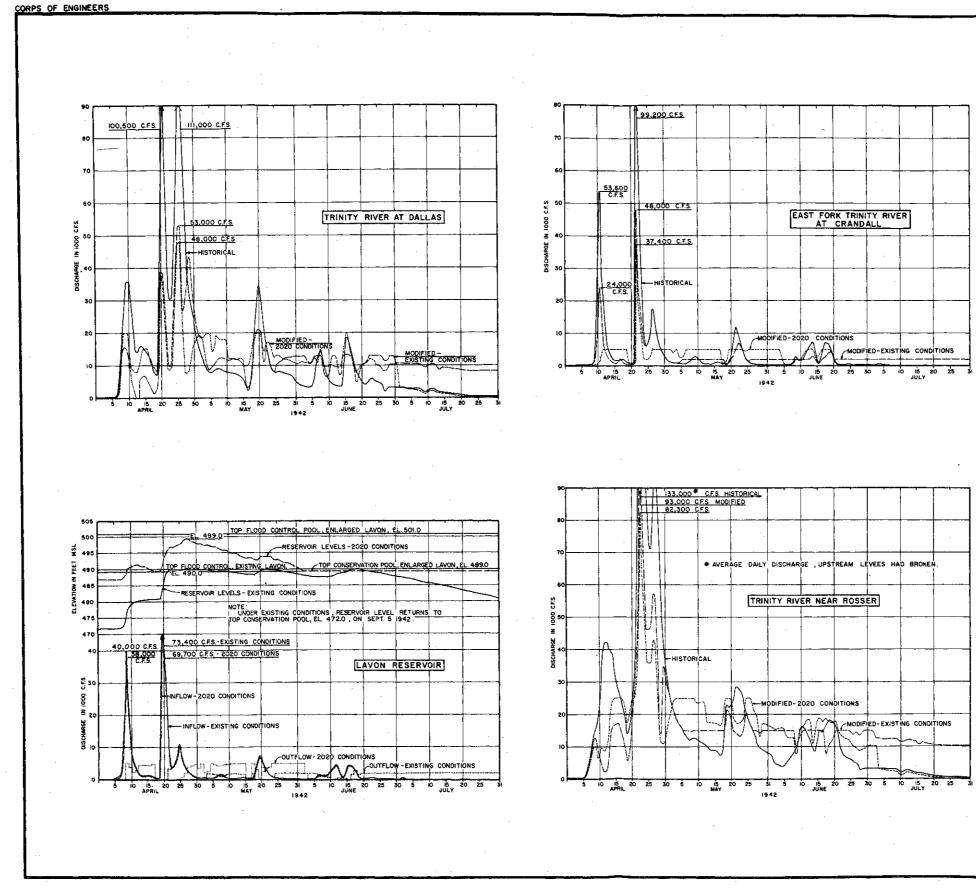
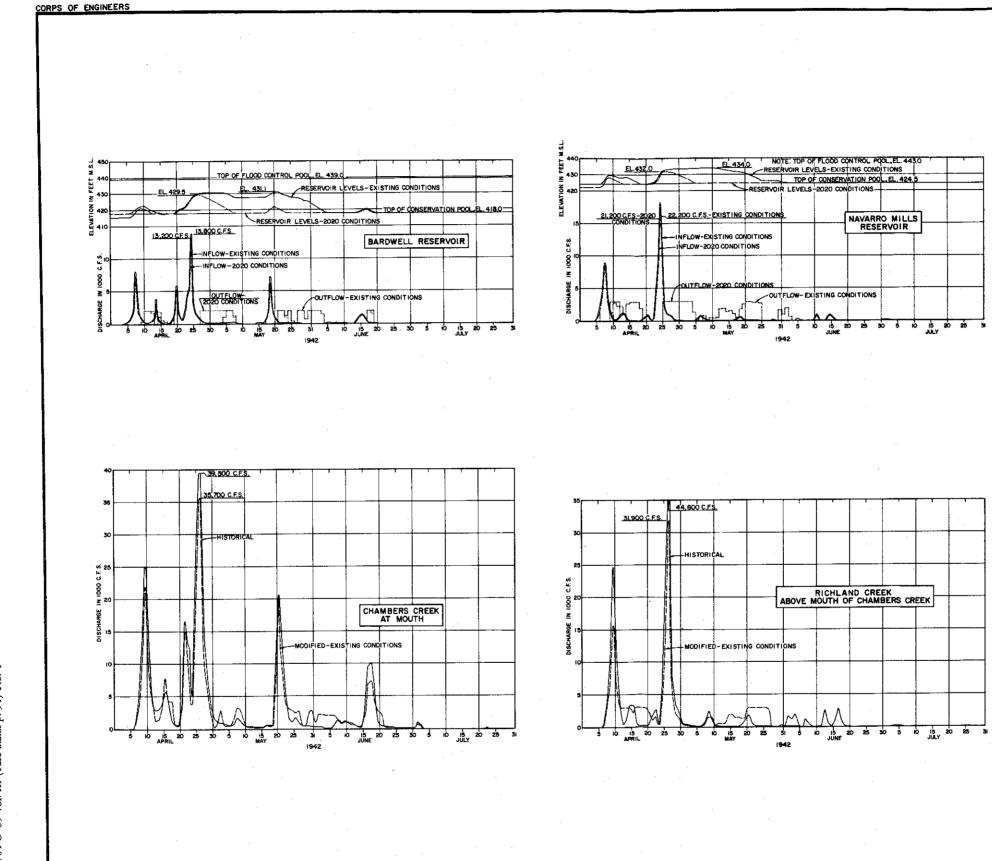




PLATE 24

ŝ No. 94) ė, blank (Face Ш Vol. 63 Ó 52-704

U.S. ARMY

NOTES


I. See general notes on sheet 1.

2. The enlarged Lavon Reservoir , as recommended in report lited "Review of Reports on Trinity River and Tri-butaries , Texas, Covering East Fork Watershed," was in-cluded in the 2020 system of reservoirs in lieu of the existing Lavon Reservoir.

GAGING STATION		PROPOSED OPERATING DISCHARGE { C.F.S. }
Trinity River at Dallos	25,000	20,000
East Fork at Crandali	5,000	5,000
Trinity River or Rosser	32,000	25,000

TRINITY	RIVER AND TRIBU	
RESER	VOIR RE	GULATION
FLOOD	OF APRIL-	JULY 1942
IN 5 SHEETS	SCALES AS SHO	SHEET NO.3
U.S. ARMY ENGINEER D		
W. T. Word	APPROVAL RECOMME	NDED: APPROVED:
ENGINEER CHEF PLANNING & REPORTS BRANCH	ENGINEER	IS ICH. DESTRICT ENGINEER
PREPARED	DRAWN BT: H.E.C.	TO ACCOMPANY COMPREHENSIVE SURVEY REPORT ON THISITY RIVER
HEAD , HYDROLOBY SECTION	CHECKED BY: OWL	FILE: TRIN. 230-19
		PLATE 25

ø ÷

-704 O-65 Vol. III (Face blank p. 94) No. 4

52-704

I. See general notes on sheet I.

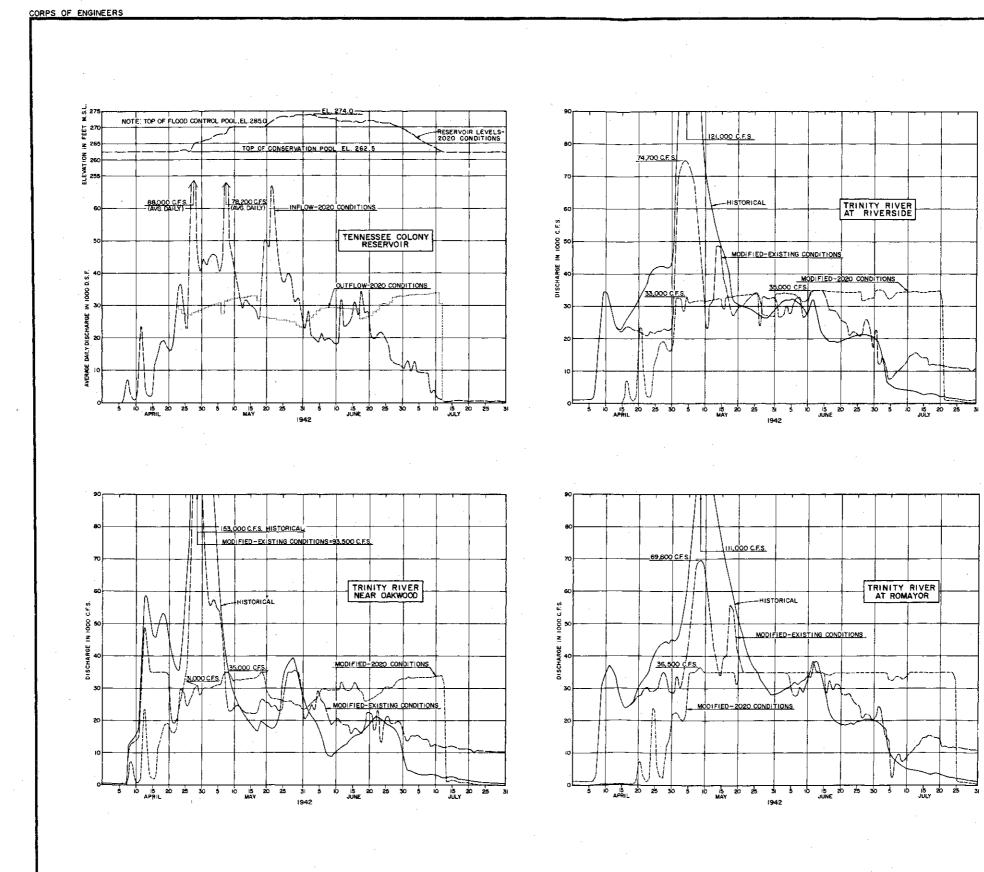
TRINITY	RIVER A	ND TR	IBUTARIES,	TEXAS
	TRI	YTIN	RIVER	

RESERVOIR REGULATION

FLOOD OF APRIL - JULY 1942

IN 5 SHEETS			SHEET NO. 4
	SCALES AS SHO	WN N	
U.S. ARMY ENGINEER D	STRICT, FORT WO	RTH	JUNE 1962
SUBMITTED O	APPROVAL RECOMMEN	IDED:	APPROVED:
h & Ward	Co. am		
CRCDWEY!	The realized the		COL. COMPLET PRESERVE
CHRIT FLADING & REPORTS BRANCH	CHIEF, ENGINEERING OF		DETTINET EXCOMPTER
PREPARED	CRAWN BY: M.R.F.		WHAT COMPREMENTIVE SURVEY
Charles Altering		REPORT	ON TRIBITY RIVER
ENDING IN MATIN	CHECKED UT: G.B.L.	FILE: 1	RIN. 230-19

PLATE 26


U.S. ARMY

an a		 ÷ .	en andre second
• • :			
:			
		-	

and the second secon Second second

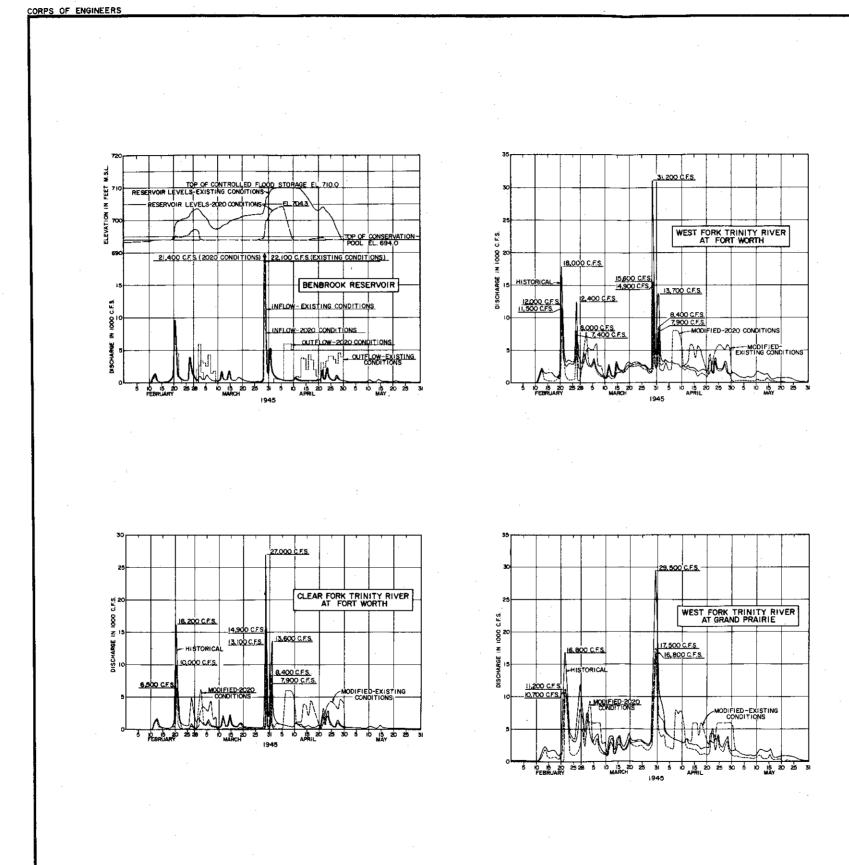
四 æ č

Ño. 26 ġ. 52-704 O-65

blank (Face Ш Vol.

5

GAGING STATION PROPOSED CHANNEL PROPOSED OPERATING

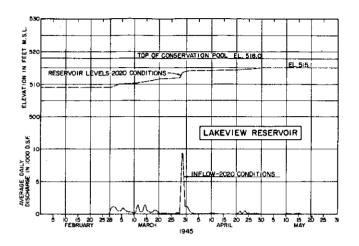

NOTE: See general notes on sheet I.

CAPACITY (C.F.S.)	DISCHARGE (C.F.S.)
45,000	35,000
45,000	35,000
45,000	35,000
	45,000 45,000

	TRINITY RIVER AND TRIBUTARIES, TEXAS			
	TRINITY RIVER			
	RESERVOIR REGULATION			
1				
	FLOOD OF APRIL-JULY 1942			
	IN 5 SHEETS SCALES AS SHOWN SHEET NO. 5			
	U.S. ARMY ENGINEER DISTRICT, FORT WORTH JUNE 1962			
1	SUBMITTED APPROVAL REDDMMENDED APPROVED			
1	ENGINEER ENGINEER COLLEGER OF ENGINEER			
I	CHEF PLANNING & REPORTS BRANCH CHIEF, ENGINEERING DIVISION DISTRICT ENGINEER			
I	PREPARED DRAWN BY: N.B.A TO ACCOMPANY DOMPRENEMATIVE SURVEY ALL ACCOMPANY DOMPRENEMATIVE SURVEY			
	ENGINEER CHECKLO ME ONE CHECKLO ME OWL FILE: TRIN. 230-19			

PLATE 27

ρ.



d. Ä olai 3 ò 20

9 ž 94) Ξ Vol.

U.S. ARMY

NOTES.

I. Historical flow is the streamflow which actually occurred or was estimated to have occurred at a particular point or station under the watershed conditions existing at the time of the flood. 2 Modified -existing conditions, shows the hydrographs resulting from presently existing watershed improvements including major reservoirs, diversions, return flows, land treatment, ports and minor reservoirs, flood-water relarding structures, etc. In addition to reservoirs presently in operation, Naverro Mills Reservoir (under construction) and Bardwell Reservoir (authorized) are

olso assumed to be existing reservoirs in this study. 3. Modified-2020 conditions, shows the hydrographs resulting from watershed improvements, including major reservoirs, diversions, return flows, land treatment, ponds and minor reservoirs,

Hoodwater-relarding structures; etc.,that are assumed to be effective in the year 2020. 4. The existing reservoirs and the reservoirs assumed operative under 2020 conditions are listed on tables 3, 4, 15 and 16 and shown on Plate 13.

5. Reservoir elevations at the beginning of the flood under both existing and 2020 conditions were established by period of record routings.

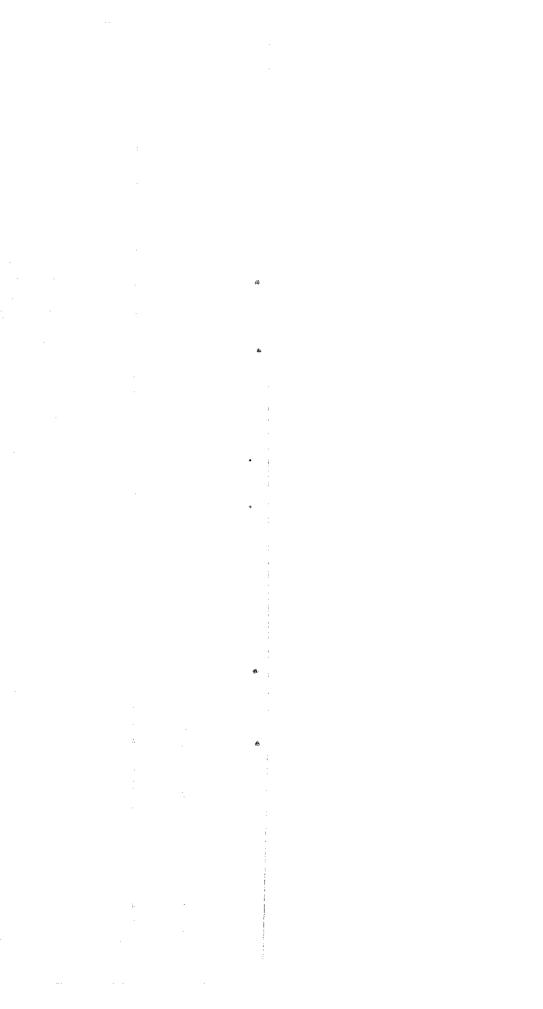
6. The plans of reservoir regulation under existing and 2020 conditions of watershed development are summarized in this appendix.

7. Reservairs, under "modified-existing conditions," regulated to obtain discharges equal to existing channel capacities (Refer to text.) and under "modified-2020 conditions," to obtain discharges equal to proposed operating capacities as shown.

GAGING STATION	PROPOSED CHANNEL CAPACITY (C.F.S.)	PROPOSED OPERATING DISCHARGE (C.F.S.)
Clear Fork at Fort Worth	6,000	6,000
West Fork at Fort Worth	15,000	12,000
West Fork at Grand Prairie	15,000	12,000

-. .

TRINITY RIVER AND	TRIBUTARIES, TEXAS Y RIVER
RESERVOIR	REGULATION


FLOOD OF FEBRUARY - MAY 1945 CHECT NO

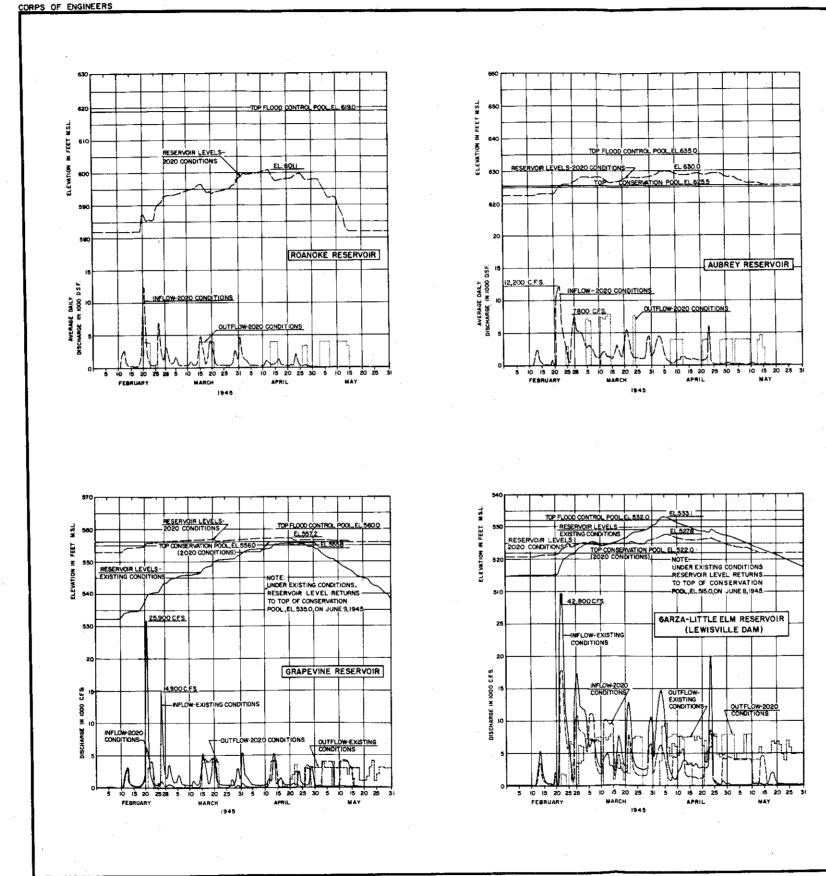
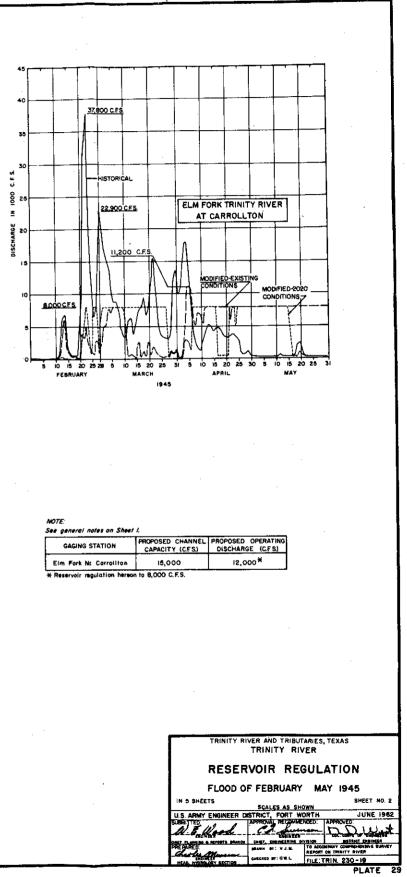

	SCALES AS SHO	WN
U.S. ARMY ENGINEER DI		
W.E. Wood	APPROVAL RECOMMEN	m D West
ENGINEER CHEF PLANNING & REPORTS WAANGH	CHIEF, ENGINEERING DIS	COL COMPS OF ENGINEERS
Charles Mirin	DRAWN BY: M.B.F.	TO ACCOMPANT COMPREHENSIVE BURVEY REPORT ON TRINITY RIVER
ENGINEER HEAD, HTANLOGY SECTION	CHECKED BY: O.W.L.	FILE: TRIN, 230-19

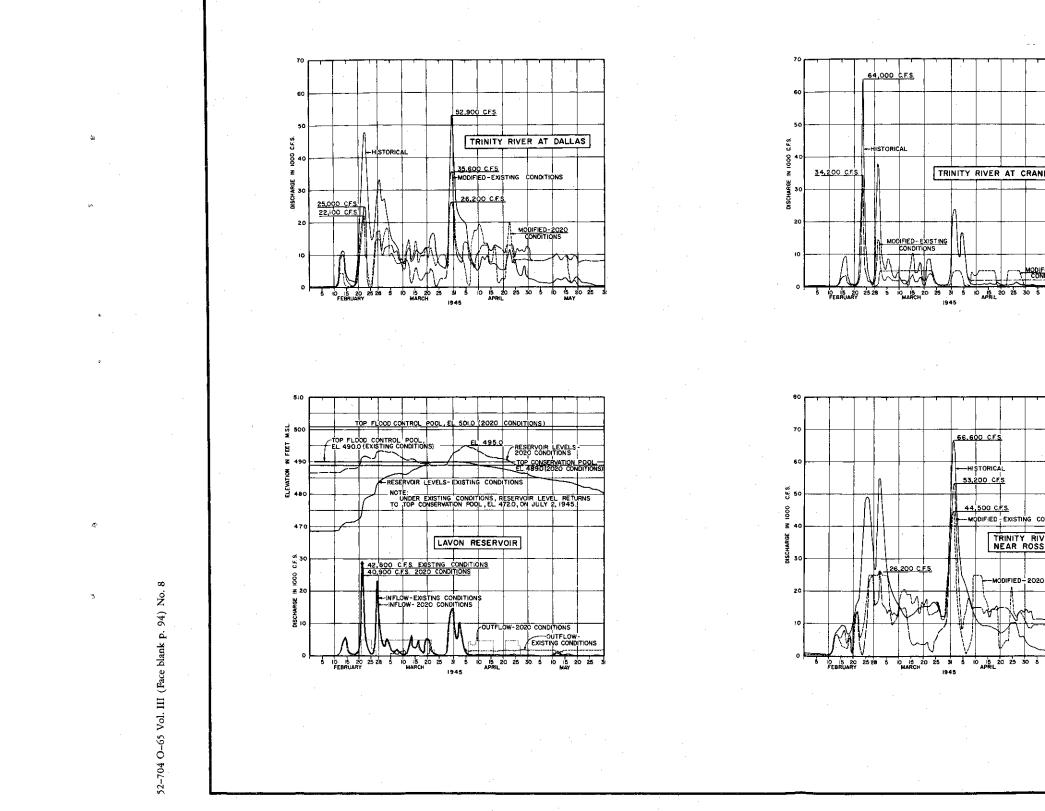
PLATE 28


		·	

e al construction de la construc

ŝ 94) blank p. (Face Vol. III 0-65 52-704

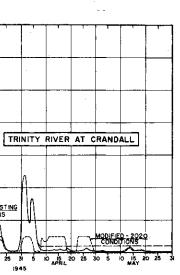
U.S. ARMY


• .

.

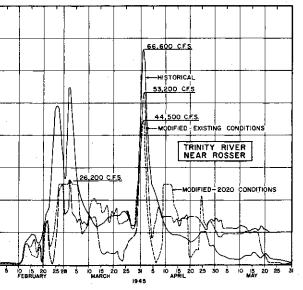
and the second of the

Q 4 . . 5 4 .


- 9

....

CORPS OF ENGINEERS

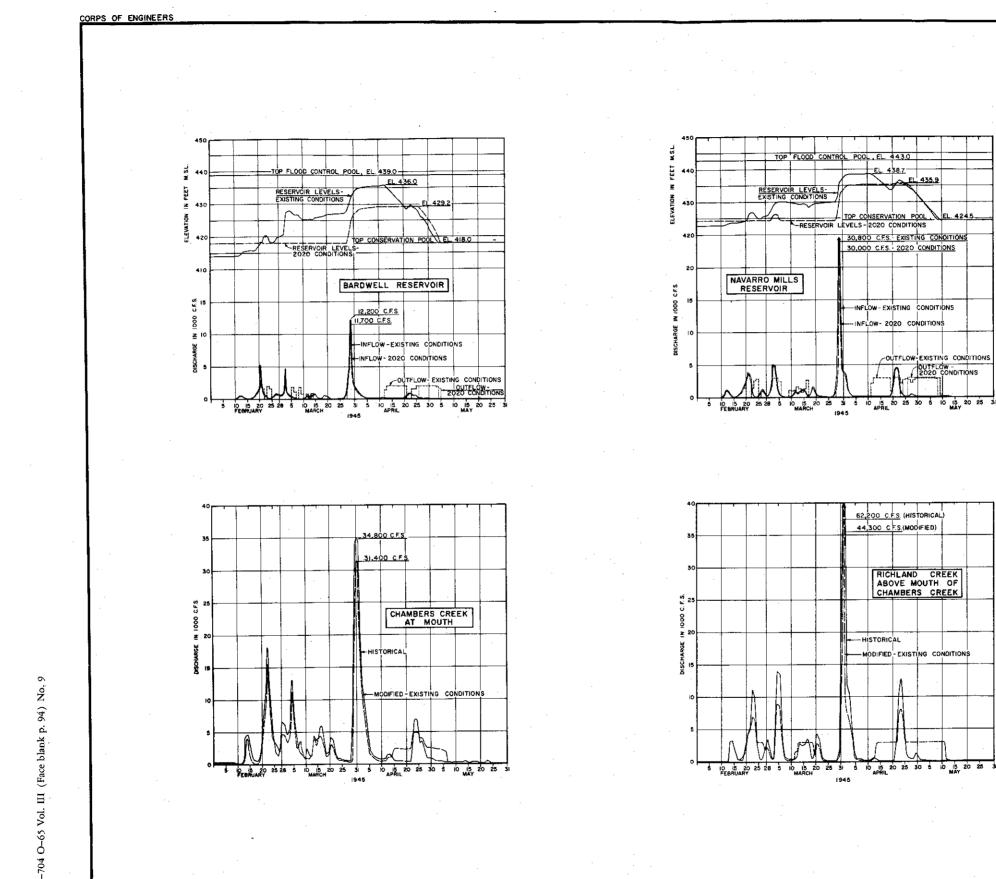

١Æ

1

U I

1945

1945


NOTES

L See general notes on sheet 1. 2.The enlarged Lavon Reservoir , as recommended in report titled " Review of Reports on Trinity River and Tributaries, Texas, Covering East- Fork Watershed," was in-cluded in the 2020 system of reservoirs in lieu of the existing Lavon Reservoir.

GAGING STATION		PROPOSED OPERATING DISCHARGE (C.F.S.)
Trinity River of Dallas	25,000	20,000
East Fork of Crandall	5,000	5,000
Trinity River nr. Rosser	32,000	25,000

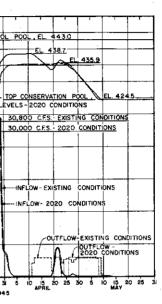
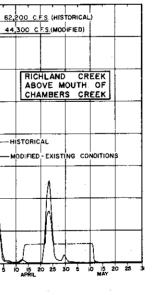

	RIVER AND TRIBL	
	TRINITY RIV	•
RESER	VOIR RE	GULATION
FLOOD O	F FEBRUAR	Y-MAY 1945
IN 5 SHEETS	SCALES AS SHO	SHEET NO.
U.S. ARMY ENGINEER D	STRICT, FORT WO	ORTH JUNE 196
a Eiler	APPROVAL RECOMMEN	NDED: APPROVED
CHEF PLANNING & REPORTS BRANCH	CHRFF, ENGINEERING DI DRAWN BY: M.E.C.	VISION DISTRICT ENGINEEA TO ACCOMPANY COMPREMENSIVE SURV REPORT ON TRIVITY RIVER
ENDINE IN HEAD, HYDROLOGY SECTION	CHECKED BY: Q.W.L.	FILE: TRIN 230-19

PLATE 30

52-704

*5

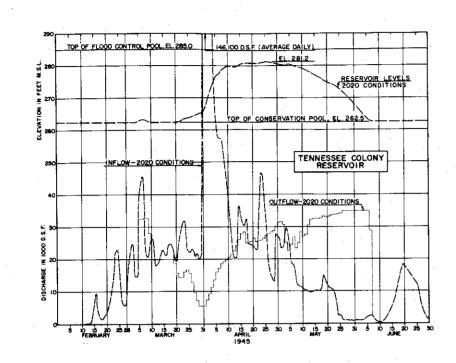


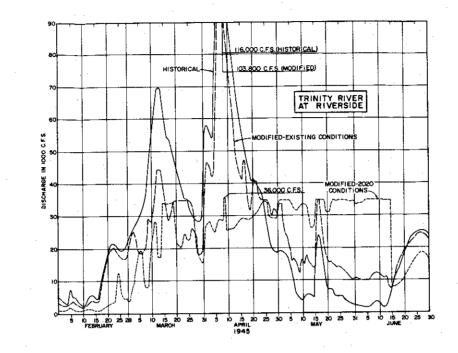
1. See general notes on sheet I.

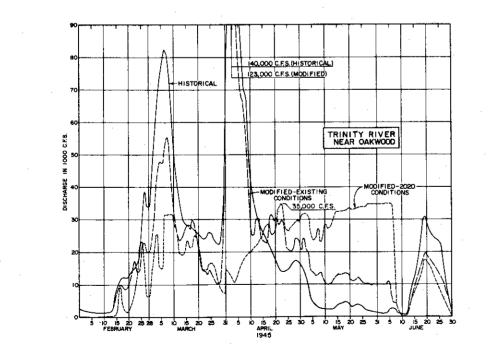
2. Operating discharges on Chambers Creek at its mouth and on Richland Creek above the mouth of Chambers Creek are 4,000 and 3,000 c.f.s., respectively. Under 2020 conditions, these control points would be inundated by water stored in Richland Creek Reservoir, a proposed local interest reservoir on Richland Creek below the mouth of Chambers Creek. Therefore, modified hydrographs are not shown at these points under 2020 conditions.

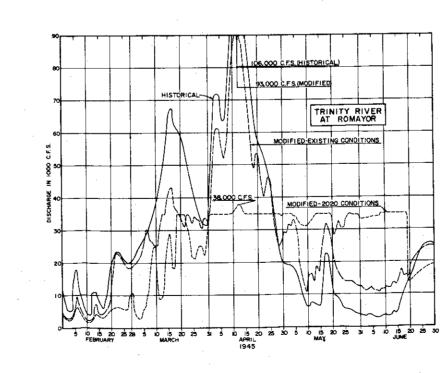
3. Releases from Bardwell and Novarro Mills Reservoirs, under 2020 conditions, were held to a maximum of 2,000 and 3,000 c.f.s., respectively.

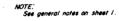
TRINITY	RIVER	AND	TRIBUTARIES,	TEXAS
	TRI	NITY	RIVER	


RESERVOIR REGULATION

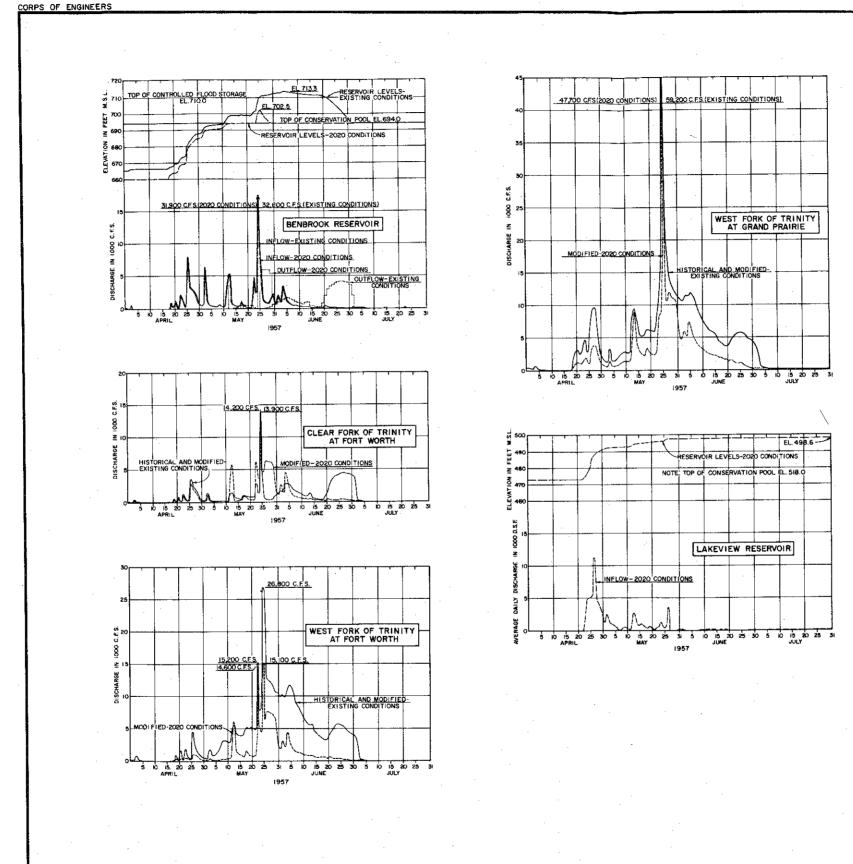

FLOOD OF FEBRUARY-MAY 1945


IN 5 SHEETS	SCALES AS SHO	SHEET NO.4
U.S. ARMY ENGINEER D		
N.E. Wood	APPROVAL RECEMMEN	
CHICE PLANNING & REPORTS BRANCH	ENDINEER CHIEF, ENDINEERING DI	VISION DISTRICT ENGINEER
PREPARES	DRAWN BY: MEC	TO ACCOMPANY COMPREHENSIVE SURVEY REPORT ON TRIMITY RIVER
LNOTHEER HEAD HYDROLUGY SECTION	CHECKED BY: O.W.L.	FILE: TRIN. 230-19


PLATE 31


CORPS OF ENGINEERS

11 5	ARM
U.a.	ALLW


	PROPOSED CHANNEL CAPACITY (C.E.S.)	PROPOSED OPERATING DISCHARGE {C.F.S.}
ood	45,000	35,000
de	45,000	35,000
OF	45,000	35,000

TRINITY RIVER AND TRIBUTARIES, TEXAS
TRINITY RIVER
RESERVOIR REGULATION
FLOOD OF FEBRUARY-MAY 1945
EETS SCALES AS SHOWN SHEET NO. 5
Y ENGINEER DISTRICT, FORT WORTH JUNE 1962
APPROVAL RECOMMENDED APPROVED

Work	CJ. Jun			"Su	الدر	FT
NELT BRANCH	CHEF, ENGINEERING OF		-660.	DETRICT ENDIN		
Minin	DRAWN BY: M.R.F.	TO ACCON		NITY RIVER	BURY C	۲.
HECA SECTION	CHECKED BT: S.W.L.	FILE: TE	RIN.	230-19		
				PLAT	E	32

·

.

52-704 O-65 Vol. III (Face blank p. 94) No.

Ц

:-704 O-65 Vol. III (

NOTES:

L Historical flow is the streamflow which actually accurred or was estimated to have accurred at a particular point or station under the watershed conditions existing at the time of the flood.

2. Modified-existing conditions, shows the hydrographs resulting from presently existing watershed improvements including major reservoirs, diversions, return flows, land treatment, pands and minor reservoirs, flood water retarding structures, etc.. In addition to reservoirs presently in operation, Novarra Mills Reservoir (under construction) and Bardweil Reservoir (authorized) are also assumed to be existing reservoirs in this study.

3 Modified-2020 conditions, shows the hydrographs resulting from watershed improvements, including major reservoirs, diversions, return Hows, land treatment, pands and minor reservoirs, floodwater retording structures, etc., that are assumed to be effective in the year 2020.

4 The existing reservoirs and the reservoirs assumed operative under 2020 conditions are listed on tables 2,4,15 and 16 and shown on Plate 13.

5 Reservoir elevations under existing conditions are as actually observed during the 1957 flood period with the exception of Bardwell and Navarro Mills Reservoirs which were started at elevations established by period of record routings. Under 2020 conditions, all reservoir elevations at the beginning of the flood were established by period of record routings. 6 The plans of reservoir regulation under existing and 2020 conditions

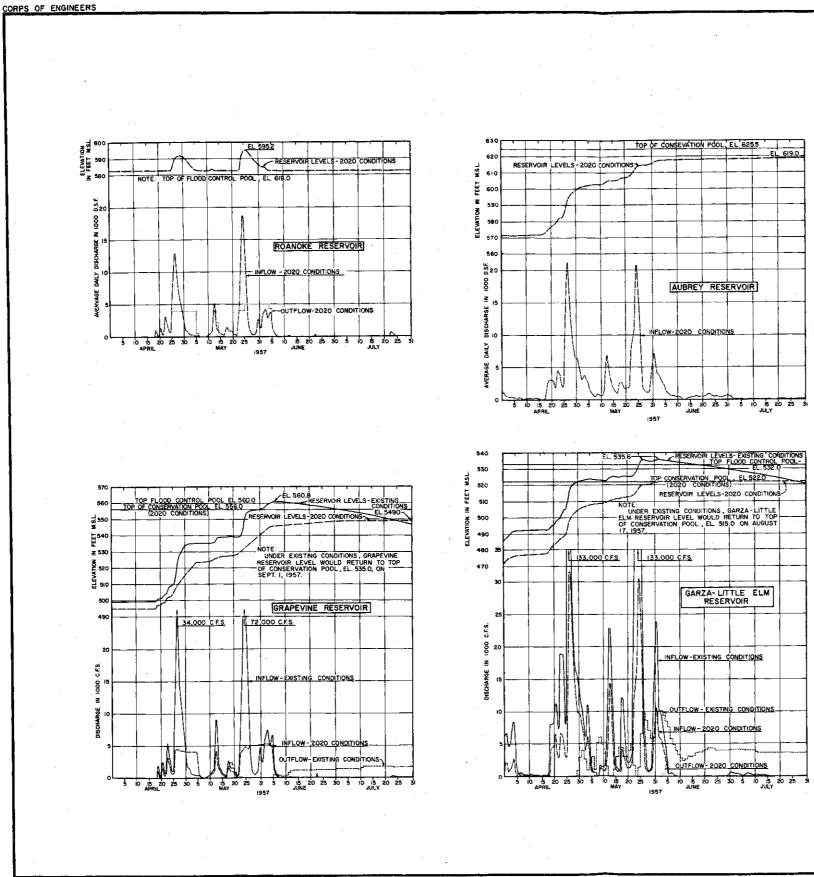
of watershed development are summorized in this oppendix. 7. The observed peak discharges at stream gaging stations in the

Trinity River Basin and the estimated peak discharges that would have occurred if the existing Corps of Engineers' reservoirs had not been in operation are presented in the following tabulation:

LOCATION	OBSERVED DISCHARGE	ESTIMATED PEAK DISCHARGE C.E.S.
Clear Fork at Fort Worth	14, 200	46,800
West Fork at Fort Worth	26, 800	58, 800
West Fork at Grand Prairie	59, 200	68, 800
Elm Fork near Carrollton	13,700	164,100
Trinity River at Dallas	75,300	222,000
East Fork at Crandall	33,000	 40, 800
Trinity River near Rosser	56,000	142,000
Trinity River neor Ockwood	91,800	137,100
Trinity River at Riverside	97, 700	130, 500
Trinity River at Romayor	93,000	125, 900

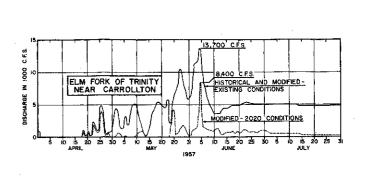
B. Reservoirs, under "modified-existing conditions," regulated to obtain discharges equal to existing channel capacifies (refer to text) and under "modified-2020 canditions," to obtain discharges equal to proposed operating capacifies as hown.

GAGING STATION	PROPOSED CHANNEL CAPACITY C.F.S.	PROPOSED QPERATING DISCHARGE C.F.S.
Clear Fork at Fort Worth	6,000	6,000
West Fork of Fort Worth	15,000	12,000
West Fork at Grand Proirie	15,000	12,000


TRINITY RIVER AND TRIBUTARIES, TEXAS

RESERVOIR REGULATION

FLOOD OF APRIL - JULY 1957


IN 5 SHEETS	SCALES AS SHO	WN	SHEET NO. I
U.S. ARMY ENGINEER D		RTH	JUNE 1962
W.E. Wood	APPROVAL RECOMMEN	NDED.	APPROVED
REF PLANNING & REPORTS BRANCH	CHIEF, ENGINEERING DI	15 101	DISTRICT ENGINEER
Cherly Muran	DRAWN OT : W.S.F.		WALNY COMPREHENDINE SURVEY ON TRINITY RIVER
HEAD, HYDROLOGY SECTION	CHECKED BY: D.W.L.	FILE	RIN. 230-19

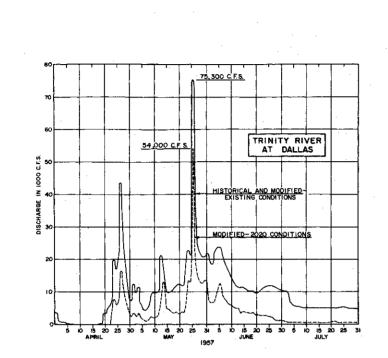
P

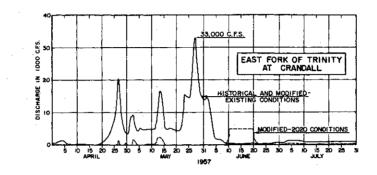
°Z 94) á, blank (Face III Vol. ŝ ¢ 704 52-

12

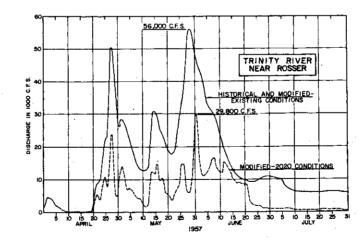
NOTES:

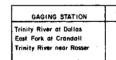
.

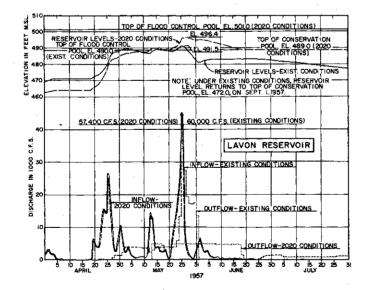

NOTCS. I See general notes on Sheet I. 2.Garca-Little Elm Reservoir operation assumes Garza Dam breached at the time of the flood under both existing and 2020 conditions.


GAGING STATION	PROPOSED CHANNEL CAPACITY (C.F.S.)	PROPOSED OPERATING DISCHARGE (C.F.S.)			
Elm Fork Nr. Carrollian	15,000	*000, SI			
Reservoir regulation herean to 8,000 C.F.S.					

_
TRINITY RIVER AND TRIBUTARIES, TEXAS TRINITY RIVER
RESERVOIR REGULATION
FLOOD OF APRIL - JULY 1957
IN 5 SHEETS SCALES AS SHOWN SHEET NO. 2
U.S. ARMY ENGINEER DISTRICT, FORT WORTH JUNE 1962
STEMPTED APPROVAL RECOMMENCES APPROVED
PREPARED. DRAWN BY: M.E.C. TO ACCOMPANY COMPREMENSIVE SURVEY
MEAD, NTROLOGY SECTION CHECKED IN: OWL. FILE: TRIN, 230-19


PLATE 34

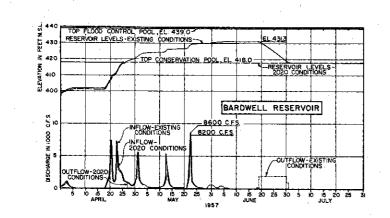

CORPS OF ENGINEERS

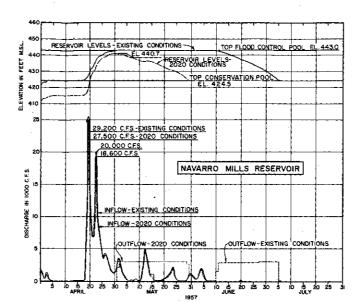


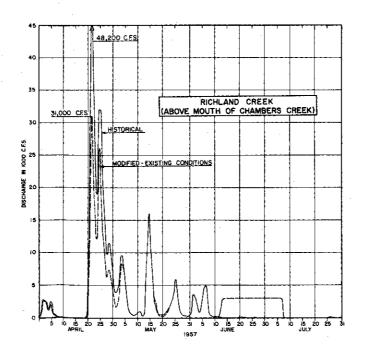
NOTES: in filling Forney Heservoir and do not appear of the Lrandair gage until Forney Reservoir (11/s June 9) 3 The enlarged Lavon Reservoir as recommended in report filled "Review of Reports on Trinity River and Tributaries, Texas, Covering East Fark Wolvershed", two included in the 2020 system of reservoirs in lieu of the existing Lavon Reservoir.

12

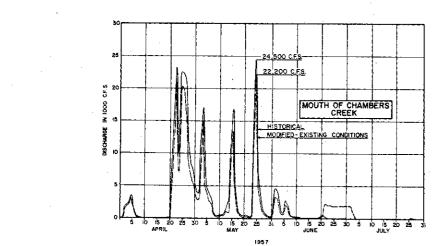
l. See general nales on sheet l. 2 Under 2020 conditions, releases from Lavon Reservoir are utilized in filling Forney Reservoir and do not appear at the Crandall gage


1	PROPOSED CHANNEL CAPACITY C.F.S.		ED OPERATING]
	25,000	1	0,000	
	5,000		5,000	}
r ·	32,000		25,000	
-				
Γ	TRINITY RIVER /	AND TRIBUT NITY RIV		
	RESERVO			1
	FLOOD OF	APRIL -	JULY 1957	
IN	5 SHEETS SC	ALES AS SHO		HEET NO. 3
U.S	ARMY ENGINEER DISTRIC			JUNE 1962
1	E. Wood C.	AL RECOMME		م الروبي ال
	PLANNING IN REPORTS BRANCH CHIEF	ENGINE CRING OF		T ENGINEER
2	aola Muran	er: N.G.F.	REPORT ON TRIMITY A	WER
. HU	ENSINE (A CHECKI	D W: GWLL,	FILE: TRIN. 230	-19

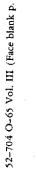

PLATE 35


U.S. ARMY

CORPS OF ENGINEERS



1


NOTES:

IN 5 SHE U.S. ARM SURMITTED MILLING PREDARED HEAD, HT

•

14 Ň 94)] U.S. ARMY

NOTES: I See general notes on sheet I. 2 Operating discharges on Chambers Creek at its mouth and on Richland Creek above the mouth of Chambers Creek are 4,000 and 3,000 cf.'s res-pectively. Under 2020 conditions, these control points would be inundated by water stored in Richland Creek Reservoir, a proposed local interest reservoir on Richland Creek below the mouth of Chambers Creek. Therefore, modified hydrographs are not shown at these points under 2020 conditions, chambers Creek. Insertine, mounted synchronized are not shown at these points under 2020 conditions. 3.Releases from Bardwell and Navarro Mills Reser-voirs, under 2020 conditions, were heid to a maxi-mum of 2,000 and 3,000 c.t.s respectively.

TRINITY F	RIVER AND TRIBL	ITARIES	S, TEXAS	\$	
	TRINITY RI	VER			
DECED	VOIR RE	сни	ATIO	ы	
REJER	VUIN RE	901	ATTO		
FLOOD	OF APRIL -	- յսս	Y 1957	,	
HEETS				SHEET	
	SCALES AS SH	DWN			10. 7
WY ENGINEER DI	STRICT, FORT W	ORTH		JUNE	1962
-1.1	APPROVAL RECOMME	NDED:	APPROVED	5. 1	. 1
and	Ch Juin		$\tau \tau \tau$	200	للسعد
NG B REPORTS BRANCH	CHUNCEN	VIE104	001.000	NOT ENGINEE	9 C F S -
Missin	DRAWA BY: M.E.C	70 4000	ON TRINITY		URVEY
TOROLOBY SECTION	CHECKED BY: O.W.L.	FILE: T	BIN. 230	0-19	
				PLATE	3

.

_ ·

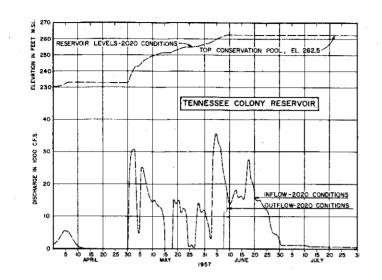
CORPS OF ENGINEERS

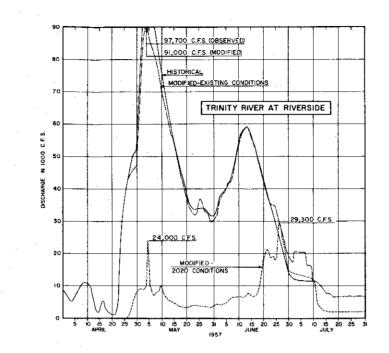
15

No.

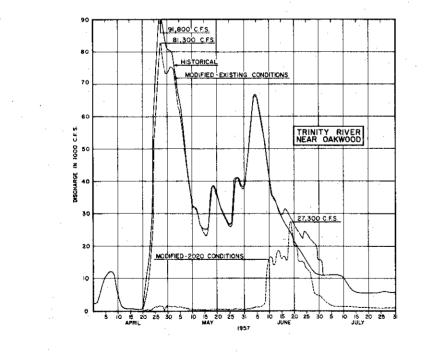
94)

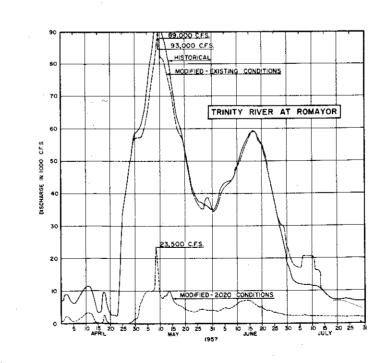
d


Ъķ Ã


Ê III

Vol.


0-65


52-704

NOTES: See general notes an sheet I.
 Under 2020 conditions, releases from Tennessee Colony Reservair are utilized in filling Livington Reservoir and do not appear at the Romayor Gage.

GAGING STATION	PROPOSED CHANNEL CAPACITY (C.F.S.)	PROPOSED OPERATING DISCHARGE (C.F.S.)
Trinity River nr. Ookwood	45,000	35,000
Trinity River of Riverside	45,000	35,000
Trinity River at Romayor	45,000	35,000

U.S. ARMY

	TRINITY	TRINIT			S, TE	XAS	
	RESER	VOIR	RE	GUL	ATI	ION	
	FLOOD	OF AP	RIL -	JUL	Y 19	957	
	IN 5 SHEETS	SCALES	AS SHO	WN		SHEET	ND.
	U.S. ARMY ENGINEER D					JUNE	196
	SUBMITTED			***	APPRC	NED THE THE	iden i
İ	PRE BARED	DRAWN BY:		70 400		COMPREHENSIVE RITY RIVER	SUH
	HEAD HYDROLOGY SECTION	GHECKER BY:	0 W. L.	FILE: 1	RIN.	230-19	
						C () **	

PLATE 37

,

ì

102. MINIMUM INFILTRATION INDICES .- Previous studies of initial losses and infiltration indices were made in conjunction with the preparation of definite project reports on Benbrook, Grapevine, Garza-Little Elm (Lewisville Dam), and Lavon Reservoirs, and the Fort Worth and Dallas Floodways; interim reports covering Richland, Chambers, and Cedar Creeks, and Big Fossil Creek; design memoranda covering Bardwell and Navarro Mills Reservoirs; and reviews of reports covering the East Fork and West Fork watersheds. Studies were also made pertaining to the Mountain Creek watershed and the Trinity River Basin above Tennessee Colony Damsite and submitted to the Office, Chief of Engineers with letter SWFGP dated February 17, 1961, subject "Maximum Probable Floods, Proposed Reservoirs, Trinity River Basin, Texas." All such studies were brought up-to-date in accordance with EM 1110-2-1405, "Flood Hydrograph Analyses and Computations." The initial loss and infiltration rate for the area above each of the major upstream projects was based upon the above studies and adopted for use in the determination of spillway design flood hydrographs or design flood hydrographs for the investigated projects. The initial losses and infiltration rates adopted for the major reservoir projects on the Trinity River Basin above the Tennessee Colony Damsite are presented in table 43. Based upon the studies referred to above, and additional studies made in connection with the preparation of definite project reports for projects in the adjacent basins of the Neches Rivers and Buffalo Bayou, an initial loss of 1.0 inch and an infiltration rate of 0.05 inch per hour were adopted for use in the preparation of the spillway design flood hydrograph from the uncontrolled land areas above the Tennessee Colony Damsite.

TABLE 43

Reservoir or reservoir site	Initial loss (inches)	: Infiltration rate : (inch per hour)
Parideonout	1.0	0.10
Bridgeport Eagle Mountain	1.0	0.10
Benbrook	1.4	0.10
Lakeview	1.0	0.05
Roanoke	0.6	0.10
Grapevine	0.6	0.10
Aubrey	0.5	0.05
Garza-Little Elm (Lewisville Da	m) 0.5	0.05
Lavon	0.5	0.05
Navarro Mills	1.0	0.05
Bardwell	1.0	0.05

MINIMUM INFILIRATION RATES

52-704 O-65 (Vol. III)-8

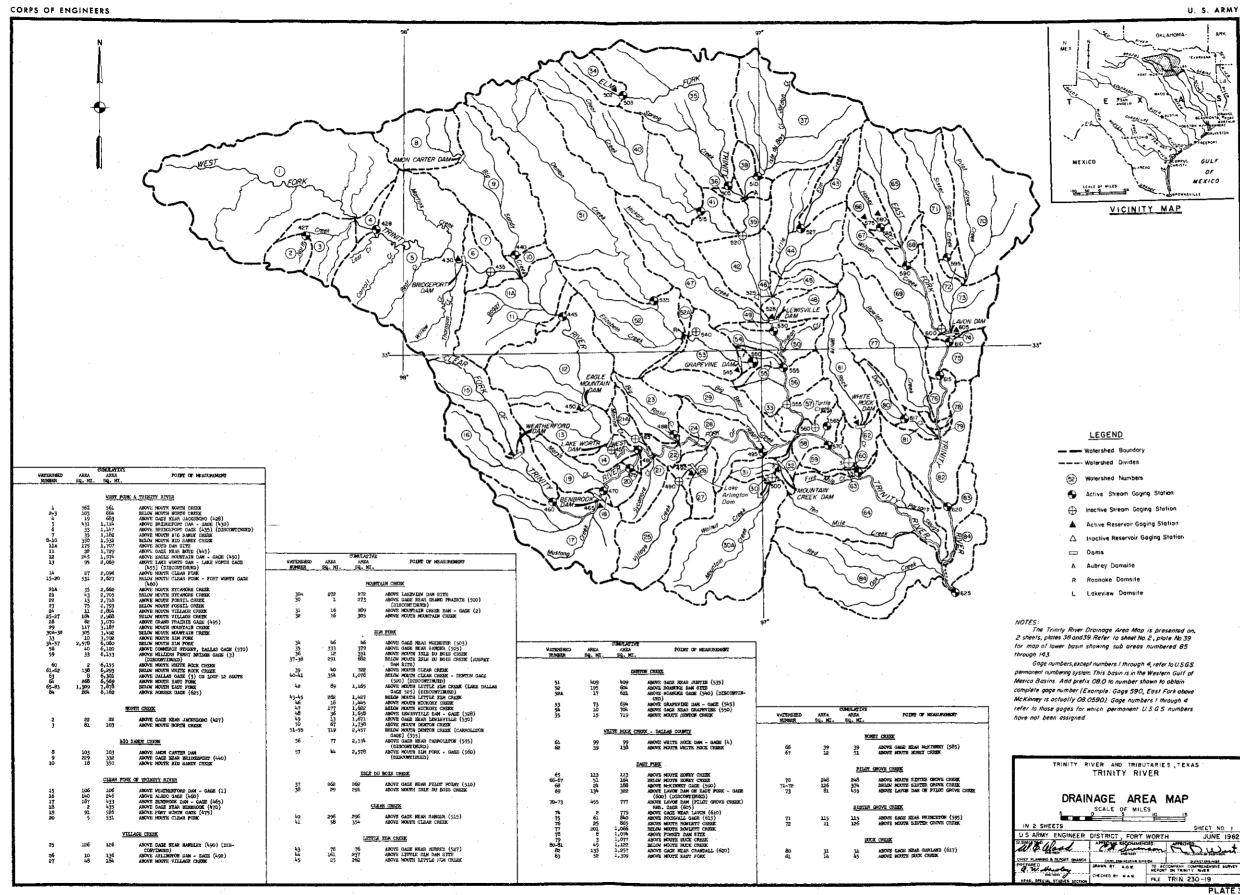
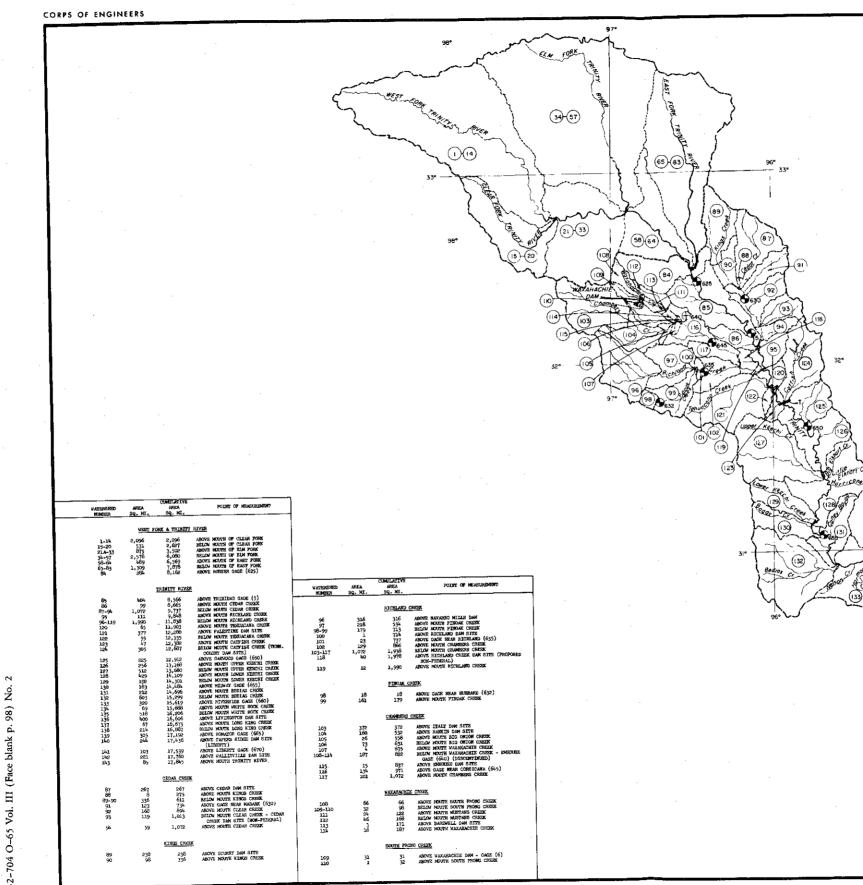

103. UNIT HYDROGRAPH STUDIES AND SYNTHETIC UNIT HYDROGRAPHS .-Unit hydrograph determinations were previously made in conjunction with the preparation of the reports referred to in paragraph 102. above. Also, unit hydrograph studies pertaining to the Mountain Creek watershed were submitted to OCE with letter SWFGP dated November 29, 1960, subject "Unit Hydrograph Compilation, Mountain Creek near Grand Prairie, Texas." All unit hydrograph data were brought up-to-date in accordance with EM 1110-2-1405. Coefficients were adopted for use in Synder's equations for the derivation of 6-hour synthetic unit hydrographs for flow into full reservoir for each of the reservoir projects above Tennessee Colony Damsite in accordance with data presented in previous reports and subsequent studies. These reservoirs control the runoff from a total drainage area of 6,295 square miles. The uncontrolled drainage area of 6,392 square miles above the proposed Tennessee Colony Damsite was divided into 9 land areas and the 195-square mile reservoir area. Table 44 presents the coefficients which were adopted for use in Snyder's equations for the derivation of the synthetic 6-hour unit hydrographs for these 9 land areas. The locations of these areas are shown on the drainage area maps of plates 38 and 39.

TABLE 44

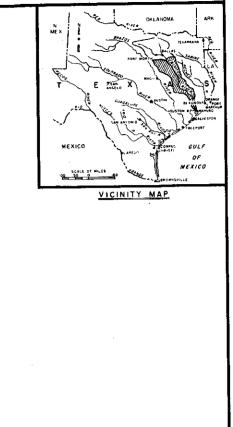
SYNTHETIC UNIT HYDROGRAPH COEFFICIENTS FOR UNCONTROLLED AREAS

Stream and description of area	: <u>Coeff</u> : ^C t :		1: D. A. :(sq.mi.)
West Fork - Reservoirs to mouth of Elm Fork Elm Fork below Reservoirs and Trinity River to	1.5	500	823
mouth of East Fork East Fork - Lavon Dam to mouth	1.8 2.0	500 440	715
Trinity River - Mouth of East Fork to head of	2.0		532
Tennessee Colony Reservoir Cedar Creek above head of Tennessee Colony	2.9	460	645
Reservoir Chambers Creek - Bardwell Damsite to head of	4.5	530	764
Tennessee Colony Reservoir	3.0	530	871
Richland Creek - Navarro Mills Damsite to head of Tennessee Colony Reservoir	3.0	530	542
Tehuacana Creek above head of Tennessee Colony Reservoir	3.0	530	248
Small tributary areas and area adjacent to Reservoir (composite)	3.0	530	1,057

The 6-hour synthetic unit hydrographs described above are given in table 45. Additional synthetic unit hydrographs were developed for incremental areas other than those given in table 45 for use in connection with standard project flood hydrographs for the design of floodways. The 6-hour unit hydrographs for the uncontrolled area of the Elm Fork and the incremental areas on the Trinity River from the confluence of the West and Elm Forks to below the mouth of White Rock Creek are given in table 46. The synthetic 1-hour unit hydrographs used in computing standard project floods on Duck Creek are also given in table 46.



			_		
R	VER AND TRINIT			S , T E	XAS
18	LACE	ADE			
ur	AGE	-		MAP	·
	SCALE	OF WILE	is Io		
	Ē	1	ΞĒ-		
_		_			SHEET NO.
R	DISTRICT	FORT	WORT	н	JUNE IS
	AMERICA	ECOMMEN	665: •	1 miles	Bu
сн	CHAIN, IN	Gin[]jhint (cm)	-04		DSTRICT OF SHERE
	DROWN BY	4.0.1	TO A	COMPANY T ON TRIN	COMPRENENSIVE SUP
KON	CHECKED BY		FILE	TRIN	230-19


PLATE 38

,* :

	۰.	
:		
the second s		
-		
• • •		

°Z 98) à nk ĥ (Face Ш Vol. 0-65 52-704 U. S. ARMY

LEGEND

Wotershed Divides Wotershed Numbers

- Active Stream Gaging Station
- Inactive Stream Goging Station
- Active Reservoir Gaging Stations
- Tennessee Colony Damsite

NOTES:

The Trinity River Droinage Area Map is presented on 2 sheets, Plates 38 and 39 Refer to Sheet No I Plate 38 for map of Upper Basin showing Sub Areas numbered I through 84.

Goge numbers, except numbers 5 and 6, refer to U.S.G.S. permonent numbering system This basin is in the Western Guif of Mexico Basins, Add Prefix 2004 in the mere House obtain complete gage number (Exomple: Gage 625, Trinity River near Rosser, is actually 08.0625). Gage numbers 5 and 6 refer to those gages for which permanent USGS numbers have not been assigned.

TRINITY RIVER AND TRIBUTARIES, TEXAS TRINITY RIVER
DRAINAGE AREA MAP
SCALE IN MILES
IN 2 SHEETS SHEET NO 2 U.S. ARMY ENGINEER DISTRICT, FORT WORTH JUNE 1962
SUBMITYED APROVED APROVED APROVED APPROVED PPROVEDAPPROVE
PERPARED PARE PARENCE OF THE PARENCE

. .

.

	Small tributary areas, area adjacent to Reservoir, and Reservoir surface area D, A. = L,SSS eq. M.	ૡઙૻૡૻઌ૾ૺૡૻઌ૿ઌૡૡૡૡૡૡ ૱ૢૡૻૡૢૢૢૢૢૢૢૡૢઌૢૡૡૡૡૡૡ ૱૱૱૱૱૱૱૱૱૱૱૱
	Fehnerge Creek - Area from the store have the of the secret from the second of Teamseoe Colony Reservoir D . A. = 245 ag. md.	282828282829292828282828282828282828282
	H chland Creek - Mavarro H chland Creek - Mavarro Milla Demsite to head of Tennessee Coloty Neservoir D. A. = 542 sq. mi.	ઌઌૻઌઌૺૺૡૺૡૻઌૣૡઌ૾ઌ૾ઌ૾ઌ૽ઌ ૹૹૹૢૹૢૢૹૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢ
	* Thensie of the set o	Huga www.egd/g/g/g/g/g Huga www.egd/g/g/g/g S8841 S841
	Delar Creek - Aree Brows haed of Transese Colory Meservoir D. A. = 764 ag. mt.	° 888888888888888888888888888888888888
	Trinity Hver - mouth of Back Fork to head of Tennessee Colony Heaervoir D. A. a G45 aq. mi.	2,093 1,1,600 600 1,400 2,000 1,1,600 2,000 1,1,000 1,400 2,000 2,507 2,5000 1,1,000 1,5000 2,000 2,507 2,5000 1,1,000 1,5000 1,400 2,507 2,5000 1,1,000 1,5000 1,400 2,700 3,5000 1,1,000 1,5000 1,400 2,700 3,5000 1,1,000 1,5000 1,400 2,700 3,5000 1,1,000 1,5000 1,400 2,700 3,5000 1,1,000 1,5000 1,400 2,700 3,5000 1,1,000 1,5000 1,400 2,700 3,5000 1,1,000 1,5000 1,400 2,700 3,5000 1,1,000 1,5000 1,4000 2,700 1,1,000 1,1,000 1,000 1,000 2,700 1,1,000 1,1,000 1,000 1,000 2,700 1,1,000 1,000 1,000
	Show North Trinity Short Fork Trinity Short - Lavon Dan to month D, A. = 532 sq. mi.	الله
	Rim Fork below Reserved rs and Trinity River to mouth of Bact Fork D. A. = 715 ag. mi.	4444 688 689 689 689 689 689 689 689
	Wast Fork - Reservoire to moth of Eim Fork Trinty Hiver D. A. = 823 aq. mi.	년 1.4.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.
	Hichland Creek - Area above Mavarro Mille Dararise D. A. = 316 sq. ml.	۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲
	D. A. = ITL sq. ml. Regress Creek - Area source	
CU DALIYONT TO	Гавер Рол% - Алеа Бол% - Алеа Боле - Мал В. А. * ТГГ яд. лц.	TT 13.37 13.37 13.37 13.37 13.37 14.37
TININ UNOU-D	The Fork - therey Damatte to Levisville Jama D. A. = 976 ag. mil.	ૡૡૺૡ૿ૡ૿ૡ૿ૡૻૡૻઌૻઌૻઌૡૡઌ૾ઌઌૡૡ ૡૡૡૡૡૡૡૡૡૡૡૡૡૡૡૡૡૡૡૡૡૡ
AT IMUM TO	Жл Рогк Аботе hotsylfeaste Л.А.» (S3 a. л.	2,200 2
	Denton Creek - Rognoke Dematte to Gruperine Dem D. A. = 90 aq. mi.	त्र भूत न मिल्ला स्टब्स स्ट स
	Denton Creek Above Rouncke Damaite D. A. = 504 sq. mi.	9,600 9,600 9,600 9,600 11,700 11,700 11,700 11,700 11,700 11,700 11,700 11,700 11,700 11,700 11,700 11,700 11,700 10,000 10
	- Xeek - Maa above Lakeviev Damaite D, A. = 272 aq. mi.	•
	West Fork - Bridgerort Dem to Bridge Wountein Dem Brei A A. a 860 sq. mi.	ૡ ૡૡૡૡૡૡૡૡૡૡૡૡૡૡૡૡૡૡૡૡૡૡૡ ૡૡૡૡૡૡૡૡૡૡૡૡ
	Меаф Рогк - Агеа вроче Биіддеронф Dman D. A. = 1,114 вд. жі.	ૡઌૡૻૺઽ૿ઌૻૡૻઽૺૡ૾ઌૹૡૡૻઌઌઌૡૡૡ ૹૢૡૼૢૼૼૹ૾ૢૹૣૡૢૡઌૹૡૡૹૡઌઌૡૡૡ ૹૡૡૹૹૡૡૹૡૡૹૹૡૡૹૹૡૡૹૡૡ
	Слеят Ротк - Агеа вроче Вельтосі: Лала Л. А. « 433 ве, ші.	ୡୢୠୢଢ଼ୢୢଌୄଢ଼ୄୡୢୡଽୄୡୢଌୢଌୢୡଢ଼ୄୡୡୢୡୢଌୢଌୢୡଢ଼ୄୡୢ ୶୷ଽ୷୳୷୕୶୶ୡୄୡୡୄଌୢଌୢୢଌୢୡଢ଼ୄୡୡୢୡୢଌୢଌୢ
	3- Hour Periods	<i>ᠳ᠌᠔᠃ᡆ᠊ᢦᡊᡄᢁᢀ</i> ᡦ᠋ᡰᢔᢆᡅ᠍ᢋ᠋ᡕᢅ᠍ᡒ᠋᠋ᡶ᠌᠍ᡖᡃᢨᡦ᠋ᡏ᠋᠋᠋᠋ᡌ᠋ᡱᢟᡘᢟᢟᢟᢟᢨᢂᢍᡩᡈᢜᡆᢆᢋᡷ᠍ᡷᡷᡷᡷᡒᢐ

TAKLE 45 W. SUBWATERSHE

ŝ

100

		ы.	AND 1-HOUR UNIT H	YDROGRAPHS - DUCK C			
	3-hour periods	: Uncontrolled : area above : mouth of : Elm Fork :D.A. = 226 sq.m	: Trinity River : mouth of Elm : Fork to : Dallas Gage i.:D.A. = 40 sq.mi.	: Trinity River :Dallas Gage to : mouth of White : Rock Creek :D.A. = 173 sq.mi.	: : 1/2 : hour : periods	: Duck Creek at head of improvement D.A. = 9.4 sq.mi.	: Duck Creek at lower end of improvement D.A. =24.3 sq.m
100	1 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 8 9 0 11 2 8 9 0 11 2 8 9 0 11 2 8 9 0 11 2 8 9 0 11 2 8 9 0 11 2 8 9 0 11 2 8 9 0 11 2 8 9 0 11 2 8 9 0 11 2 8 9 0 11 2 8 9 0 11 2 8 9 0 11 2 8 9 0 11 2 8 9 0 11 2 8 9 0 11 2 8 9 0 11 2 8 9 0 11 2 8 9 0 1 1 2 8 1 9 0 1 2 8 1 2 8 9 0 1 1 2 8 1 2 8 1 2 8 1 2 8 1 2 8 1 2 8 1 2 8 1 2 8 1 2 8 1 2 8 1 2 8 1 2 8 1 8 9 0 1 8 9 0 1 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2	$\begin{array}{c} 980\\ 6,350\\ 11,890\\ 9,310\\ 6,220\\ 3,510\\ 2,170\\ 1,450\\ 1,120\\ 960\\ 800\\ 680\\ 570\\ 480\\ 410\\ 350\\ 290\\ 240\\ 210\\ 180\\ 150\\ 120\\ 70\\ 440\\ 30\\ 20\\ 10\\ 0\end{array}$	3,740 2,100 1,060 700 450 260 150 80 30 20 10 0	1,100 6,750 5,200 6,670 5,650 4,000 2,420 1,440 1,020 800 600 500 400 300 200 100 60 0	1 2 3 4 5 6 7 8 9 10 11 12 13 14 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 10 11 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	410 1,240 3,180 2,650 1,550 940 690 510 370 260 180 100 50 0	550 1,440 2,590 3,940 4,690 4,210 3,320 2,460 1,850 1,440 1,110 850 670 520 420 340 270 210 170 130 100 60 20 0

TABLE 46 SYNTHETIC 6-HOUR UNIT HYDROGRAPHS - ELM FORK & TRINITY RIVER

8

104. SPILLWAY DESIGN STORMS. - The spillway design floods previously presented in definite project reports for Benbrook, Garza-Little Elm, Grapevine, and Lavon Reservoirs were based on probable maximum storm rainfall values determined by the Hydrometeorological Section of the United States Weather Bureau and furnished this office by OCE letter SPEWE dated February 11, 1946, subject "Preliminary Estimates of Maximum Possible Storm Precipitation for the Upper Trinity River, Texas." A summary of these spillway design storm data is given in the following tabulation:

Reservoir	:of storm: :(hours) :	Total	l(inches):Ra :Maximum: :6-hours:	Total	: Maximum : 6-hours	
enbrook arza-Little Elm	60	28.2	15.6	21.5	14.7	:
(Lewisville Dam) rapevine	60 60	23.2 26.5	11.0 14.1	20.3 21.5	10.7 13.5	
avon	60	26.2	13.7	23.3	13.4	

105. The spillway design storms adopted in the present report for use in the design of spillways at Lakeview, Aubrey, and Roanoke Reservoirs, and for testing the existing spillways at Garza-Little Elm and Grapevine Reservoirs were computed following a method described in the U.S. Weather Bureau Hydrometeorological Report No. 33, dated April 1956, subject "Seasonal Variations of the Probable Maximum Precipitation East of the 105th Meridian for Areas From 10 to 1,000 Square Miles and Durations of 6, 12, 24, and 48 Hours." Computations of basin shape factors for each reservoir were analyzed. As a result of these studies a basin shape reduction factor of ten percent was used for all 5 reservoir projects. Two storm patterns were considered for Garza-Little Elm Reservoir. One pattern assumed the storm centered over the total area above the Garza-Little Elm Reservoir and the other assumed the storm centered on the local area between Aubrey and Garza-Little Elm Reservoirs. Two storm patterns were likewise considered for Grapevine Reservoir - one with the storm centered on the total area and the other with the storm centered on the area between Roanoke and Grapevine Reservoirs. Routings of hydrographs resulting from these storm patterns through the recommended reservoirs, indicated that at both Garza-Little Elm and Grapevine Reservoirs the storm centered over the local area was more critical and was adopted for the spillway design storm. Based on the above criteria, the total rainfall for the design storms for these projects was as follows: Lakeview, 31.32 inches; Aubrey, 28.55 inches; Roanoke, 28.88 inches; Garza-Little Elm, 26.33 inches (27.45 inches over the area between Lewisville Dam and Aubrey Damsite and 24.71 inches above Aubrey Damsite); and Grapevine, 28.55 inches (33.82 inches over the area between Grapevine Dam and Roanoke Damsite, and 27.77 inches above Roanoke Damsite).

106. The spillway design storm rainfall for Tennessee Colony Reservoir is based on the curves furnished with letter SWFGP dated February 17, 1961, subject "Maximum Probable Floods, Proposed Reservoirs, Trinity River Basin, Texas," and recommended changes in indorsements thereto as approved by OCE. The storm duration of 48-hours indicated on the referenced curves was considered inadequate for the drainage area above Tennessee Colony Damsite. Therefore, the duration of the spillway design storm was increased to 108 hours, based on the areadepth-duration curves of the June 27-July 1, 1899 storm prepared in connection with storm study GM 3-4. Transposition of the 1899 storm over the basin above Tennessee Colony Damsite produced a basin shape factor of 93 percent. With the storm centered over the uncontrolled area below the upper Trinity River reservoirs, and the total rainfall determined as outlined above, the average depth of rainfall over the 6,392 square miles of uncontrolled drainage area was 25.13 inches. The rainfall, loss, and rainfall-excess for the spillway design storms described in the preceding paragraphs are given in tables 47 and 48.

SPILLMAY DESIGN STORM RAINFALL AND RAINFALL-EXCESS

	Design s over above La	total a	rea	Design s over above Ro	total a	rea	: ove	storm ce r total e Grapevine	irea
6- hour	Area above			Area above	Roanoka	e Damsite	•	ve Grapev	rine Dam
period	: increment : of rainfall;	Loss (inches	: :Rainfall- : excess):(inches)	of rainfall:	Loss (inches	: Rainfall- : excess):(inches)	• • • • • • • • • • • • • • • • • • • •		: :Rainfall- : excess):(inches)
1	0.92	0.92	0.00	0.84	0.60	0.24	0.92	0.60	0.32
2	0.97	0.38	0.59	0.99	0.60	0.39	0.99	0.60	· 0 •39
3	1.11	0.30	0.81	1.13	0.60	0.53	1.17	0.60	0.57
4	1.30	0.30	1.00	1 43	0.60	0.83	1.42	0.60	0.82
5	1.59	0.30	1.29	2,32	0.60	1.72	2.17	0.60	1.57
6	4.72	0.30	4.42	15.87	0.60	15.27	15.43	0.60	14.83
7	18.58	0.30	18.28	4.58	0.60	3.98	4.72	0.60	4.12
8	2.13	0.30	1.83	1.72	0.60	1.12	1.73	0,60	1.13
Total	31.32	3.10	28.22	28.88	4.80	24.08	28.55	4.80	23.75

-			esign storn over area ne Dem and	between Roanoke Damsi	te		: over	storm cen total are ubrey Der	88.
6- : hour :	Area above	Roanoke	Damsite	: Area betwee and Roar			Area above	Aubrey	Damsite
period:	increment : of rainfall:	Loss (inches)	: :Rainfall- : excess :(inches)	: 6-hour : : increment : : of rainfall: : (inches)::	Loss inches		: 6-hour : increment :pf rainfall : (inches)		: :Rainfall- ; excess):(inches)
l	0.93	0.60	0.33	0.88	0.60	0.28	0.92	0.50	0.42
2	1,00	0.60	0,40	0.94	0.60	0.34	0.99	0.30	0.69
3	1.19	0.60	0.59	1.04	0.60	0.44	1.17	0.30	0.87
- ц	1.47	0.60	0.87	1.10	0.60	0.50	1.37	0.30	1.07
5	2.25	0.60	1.65	1.67	0.60	1.07	2.30	0.30	2.00
6	14.49	0.60	13.89	21.69	0.60	21.09	4.72	0.30	4.42
7	4.67	0.60	4.07	5.08	0.60	4.48	15.48	0.30	15.18
8	1.77	0.60	1.17	1.42	0.60	0.82	1.60	0.30	1.30
Total	27.77	4.80	22.97	33.82	4.80	29.02	28.55	2.60	25.95

6-	over above	storn ce total are Lewisvill	e Dami	: : : Area above		over ar ville Dam a	orm centered eabetween nd Aubrey Dan : Area betwe	en Levís	
period:	increment	: : : Loss	: :Rainfall-	: 6-hour : : increment : : of rainfall	: Loss	:Rainfall- : excess):(inches)	: 6-hour : increment :of rainfall	rey Dems Loss (inches	: Rainfall- : excess):(inches)
1	0.95	0.50	0.45	1.00	0.50	0.50	0.90	0.50	0.40
2	1.12	0.30	0.82	1.25	0,30	0.95	1.03	0.30	0.73
3	1.17	0.30	0.87	1.25	0.30	0.95	1.13	0.30	0.83
4	1.44	0.30	1.14	1.59	0.30	1.29	1.33	0.30	1.03
5	2.97	0.30	2.67	3.48	0.30	3.18	2,50	0.30	2.20
6	4.05	0.30	3.75	3.64	0.30	3.34	4.45	0.30	4.15
7	12.78	0.30	12,48	10.49	0.30	10.19	1.4.38	0.30	14.08
, 8	1.85	0.30	1.55	2.01	0.30	1.71	1.73	0.30	1.43
Total	26.33	2.60	23.73	24.71	2,60	22.11	27.45	2.60	24.85

TAHLE 48

SPILLMAY DESIGN STORM RAINPALL AND RAINPALL-EXCESS TENNESSEE COLONY RESERVOIR

	<u> </u>	= 433 8	q. m.	: D. A.	= 1,114 s	iq. =1.	. D. J	A. = 860	sq.ml.	: D. A	- 694	8Q. ±1.	1 D. A	= 1.658	80. m	D. A.	- 7777										
1		Area abo abrook D	929 -		Ares abo idgeport	Dem		Area abu çle Mounte	in Dem	, G	Area ab	ove Dem	:	Area ab Lewisvill)¥e	. <u></u>	Area al Levon l	bove	:	Area al Bardwell	bowne		Area abou		: West F : Reserv	voirs to a	nty River mouth of
house	1 10 10 10 10 17	. Tore	:Rainfall : excess			:Rainfall : excess				:Average :rminfall		:Reinfall	-:Average	: Loss	Rainfall	Average :		:Rainfall				<u> </u>				ork Trinf	
FIGES	(Tucnes)	; (inches	/:[linches]	:(inches)	:(inches)	:[inches]	:(inches)	:(inches)	:(inchea)	:(inches)	(inches):(inches)	(inches)	:(inches	;(inches)	:rainfall; :(inches):	(inches)	: excess):(inches)	: (inches)	Loss (inches)	: excass):(inches)	:reinfal) :(inches)	: Loss :(inches)	: excess :(inches)	:reinfell :(inches)	: Loss):(inches	: excess);(inches
1	0.31 0.48	0.31	0	0.07	0.07	0	0.18	0,18	0	0.24	0.24	0	0.12	0.12	0	0.19	0.19	0	0.23		•				,		
3	0.85	0.61	0.24	0.19	0.19	. o	0.27 0.49	0.27	°,	0.38	0.38	0.07	0.16	0.16	0	0.30	0.30	ŏ	0.36	0.23 0.36	0	0.16	0.16 0.25	° °	0.10	0.10	0
5	1.36	0.60	0.52	0.24 0.30	0.24 0.30	0	0.64	0.60	0.04	0.87	0.60	0.27	0.31	0.30	0.01	0.68	0.30	0.22	0.64 0.83	0.41 0.30	0.23	0.44	0.44	0,28	0.13	0.13	0
Ť	1.45	0.60	0.85	0.32 0.34	0.32	0	0.83	0.60	0.23	1.14	0.60	0.54	0.96	0.30 0.30	0.60	0.84	0.30	0.54	1.02	0.30	0.72	0.71	0.30	0.41	0.81	0.49	0.32
8	1.67	0.60	1.07	0.37	0.37	ŏ	0.96	0.60	0.31 0.36	1.24	0.60 0.60	0.64 0.71	1.04	0.30	0.74 0.80	0.97	0.30	0.67	1.18	0.30	0.88	0.82	0.30	0.52	0.93 0.98	0.30 0.30	0.63 0.68
10 11	3.08	0.60	2.48	.0.67	0.37 0.60	0.07	1.76	0.60	0.38	1.34	0.60 0.60	0.74 1.81	2.03	0.30	0.83	1.05	0.30	0.75	1,27	0.30	0.95 0.97	0.87 0.88	0.30 0.30	0.57 0.58	1.03	0.30	0.73
12	1.71	0.60	1.11	1.54 0.38	0.60 0.38	0.94	4.03	0.60	3.43 0.36	5.52	0.60	4.92 0.75	4.64 1.13	0.30	4.34	4.31	0.30	1.59 4.01	2.30 5,26	0.30	2.00	1.60	0.30	1.30 3.35	2.19 5.00	0.30	1.89
13	2	Ξ.		-	-	-	-	-	-		-		0.74	0.30	0.83 0.44	1.05	0.30	0.75	i.28	0.30	0.98	ō.89	0.30	0.59	1.69	0.30	1.39
15 16	-	:	:	-	-	-	-	÷	-	-	2	-	0.56	0.30	0,26		-	-	-	-	•	-	-	2	0.60	0.30 0.30	0.30
17 18	-	· -	• .	-	2	-	-	-	-	2	:		:	:		-	-	-	-	. -	-	-			0.34 0.23	0.30	0.04
	-	-		-	-	-	-	-	-	-	-	-	-	-	-	· -	Ξ.	-	2	-	-	:	-	2	0.11	0.11	0
tal.	22.33	6.80	15.53	4.89	3.88	1.01	12.81	6.34	6.47	17.54	6.62	10.92	15.03	3.79	11,.24	13.71	3.49	10.22	16.71	3.70	13.01	11.60	3-59	8.05	16.64	4,45	12,19
	•						-								· · · ·	· · · · · · · · · · · · · · · · · · ·										7.4)	12129
	D. A. =	715 sq.	mi.	: D. A.	= 272 sq.	nd.	: D. A.	= 532 aq	. #1.	: D. A.	- 645 as			. = 764 s													
	low Rese	rvoirs &	River be- Trinity		Area abov		East F	ork Trini:	ty River-	Trinity R	lver-mou	th of East	: Cedar	Treek to	head of	Chambers (= 871 s Treek	Bardwell	: D. A. Richland	Creek -	Navarro	Tebuac	= 246 sq. ans Creel		Small Tri	- 1,252	sq. mi
te in t	River to :	mouth of	East Fork		keviev De	Animali-		a Dama to 1	increase in	Fork to h Colo	ty Resar	voir	: 1	essee Cal. Reservoir	ony	: Donsite :Tennessee	to hea	1 01	Mills De	maite to	To head of		and of				
	mainfall.	Loga							Rainfall-		Loss	:Rainfall-	:Average :rainfall	LOBS													
****** ·	(secold).	(100000)	(Lucims)	(Tricues):	(inches);	(Inches)	:[inches]	(inches)	(inchea)	(inches):	(inches)	:(inches)	:(inches)	(inches)	(inches)	<pre>:reinfall: :(inches):(</pre>	(inches)	(inches)	(inches);	(inches)	(inches)	(inches):	Loss ; (inches):	(inches)	:rsinfall: :(inches):	: Loss :(inches)	: excess
1	0.14	0.14	0	0.10	0.10	0	0.13	0.13	٥.	0.21	0,21	o	0.17	0.17	0	0.17	0.17	.0		0.00				• • • • • • •		Jan 1000	-Trucines

104

.

																											·
	DA.	= 715 sq	. m1.	: D. A.	= 272 s	q. nd.	: D. A.	= 532 ø	u. <u>m</u> t.	: 3. 4.	= 645 8			= 764 1													
	Kim Fork	Trinty	River be-	:	Area ab	me			ty River-		iver-mo	th of East			head of			sq. mi.	<u>р. л.</u>	5421	ig. ≣1.	. D. A.	= 246 ec		: D. A.	= 1.2%	8q. m1
	·River to	month of	East Fork			Demaite		Dam to		:Fork to h	ead of 5	fennessee		ssee Col	Lonv	Chambers Demain	e to he	BEZOWELL nd of	: Michiels	d Creek	- Navarro to head of		cana Cree		Small Tri	Loutary A	reas. Area
Time in	Average		Rainfall-			78-7-0-11	·: Average :			: Calo	ny Resa;		: F	cservoi		:Tennessee	Colony	Reservoir	:Tennessee	e Coloma	CO Mesa or	: i	head of	B	:adjacent	to Reser	voir and
6-hour	rainfall						rainfall:			:Average :		Raimall-	:Average :		Rainfell	-: Average :		:Rainrall	Average		Bainfall	-: Average	e corony	Reservoir	Average :	Surface	
periods	:{inches}	:(inches)	:(inches)	(inches);	finches	l:(inches)	(inchez)	LOBE	: excess	:reinfall:	LOSS	: excess	rainfall:	LOSS	сехсевв	:reinfall;	Losa	: excess	:rainfall;	: Loss	: excess	- Average	Tore	: AYotag	:Average :		:Reinfall-
			-		(manut	/1/11/11/0/	. (Inches /	Trucnea	(Tinchea)	:(inchee):	(inches	(inches)	:(inches):	inches):(inches)	<pre>:reinfall; :(inches):</pre>	(inches)):(inches)	:(inches)	:(inches):(inches)	:(inches)	(inches)	(inches)	(inches)	LOSS	excess
1	0.14	0.14	0	0.10	0.10	0															· · · ·		1		. (Tuches).	Tructues)	(Inches)
5	0.14	0.14	ŏ	0.10	0.10	ŏ	0.13 0.14	0.13 0.14	0.	0.21	0.21	0	0.17	0.17	· 0	0.17	0.17	-0	0.20	0.20	0	0.17	0.17	~	• • •	a al	_
.3	0.18	0.18	· o	0.13	0.13	ň	0.17	0.17		0.21	0.21	0	0.18	0.18	0	0.18	0.18	o.	0.21	0.21	õ	0.18	0.18		0.14 0.15	0.14	0
4	0.22	0.22	. 0	0.16	0.16	õ.	0.21	0.21	. 0	0.33	0.28	0	0.23	0.23	0	0.22	0.22	0	0.26	0.26	ō	0.23	0.23	ŏ	0.20	0.20	0
: 5	1.29	0.32	0.97	0.77	0.51	0.26	1,24	0.35	0.89	1.62	0.30	0.03	0.28 1.35	0.28 0.30	1	0.28	0.28	0	0.32	0.32	0	0.29	0.29	ŏ	0.23	0,23	ő
5	1.38	0.30	1.08	0.89	0.30	0.59	1.32	0.30	1.02	1.88	0.30	1.58	1.56	0.30	1.06 1.26	1.34	0.30	1.04	1.56	0.30	1.26	1.36	0.30	1.06	1.13	0.30	0.83
i i	1.49	0.30	1.19	0.92	0.30	0.62	1.43	0.30	1.13	1.93	0.30	1.63	1,61	0.30	1.31	1.55	0.30	1.25	1.80	0.30	1.50	1.56	0.30	1.26	1.31	0.30	1.01
ă	1.62	0.30	1.28	0.98	0.30	0.68	1.51	0.30	1.21	2.07	0.30	1.77	1.72	0.30	î	1.70	0.30	1.30	1.86 1.98	0.30	1.56 1.68	1.62	0.30	1.32	1.36	0.30	1.06
10	2.01	0.30	2.61	2.08	0.30	0.94	1.55	0.30	1.25	2.62	0.30	2.32	2.19	0.30	1.89	2.17	0.30	1.87	2.51	0.30	2.21	1.72	0.30	1.42	1.4	0.30	1.14
1,1	2.91 6.65	0.30	6.35	£.74	0.30	1.10 4,44	2.80 6.37	0.30	2.50	4.37	0.30	4.07	3.65 8.33 2.81	0.30	3.35	3.61	0.30	3.31	4.20	0.30	3.90	3.65	0.30 0.30	1.90	1.83	0.30	1.53
12	1.62	0.30	1.32	1.60	0.30	1.30	1.55	0.30	6.07	10.00	0.30	9.70	8.33	0.30	8.03	8.26	0.30	7.96	9,59	0.30	9.29	8.35	0.30	3-35	3.06 6.99	0.30	2.76
13	1 05	0.30	0.75	0.76	0.30	0.46	1.01	0.30	0.71	3. <u>3</u> 8 1.59	0.30	3.08	2.81	0.30	2.51	2.79	0.30	2.49	9.59 3.24	0.30	2.94	2.62	0.30	2.52	2,36	0.30	6.69
14	0.81	0.30	0.51	0.57	0.30	0,27	0.77	0.30	0.47	1.21	0.30	0.91	1.32 1.01	0.30	1.02	1.31	0.30	1.01	ī.52	0.30	1.22	1.33	0.30	1.03	1.11	0.10	0.81
15	0.45	0.30	0.15	0.32	0.30	0.02	9.43	0.30	0.13	0.69	0.30	0.39	0,58	0.30	0.71	1.00	0.30	0.70	1.17	0.30	0.87	1.01	0.30	0.71	0.85	0.30	0.55
17	0.30	0.30	0	0.21	0.21	• 0	0.29	0.29	õ	0.44	0,30	0.14	0.36	0.30	0.26	0.57	0.30	0.27	0.65	0.30	0.35	0.57	0.30	0.27	0.48	0.30	0.18
18	0.15	0.15	0	0.11	0.11	٥.	0.14	0.14	0	0.22	0,22	0	0.18	0.18	0	0.36 0.18	0.30	0.06	0.43	0.30	0.13	0.36	0.30	0.06	0.31	0.30	0.01
20	~.74	0+14	U	0.10	0.10	0	0.14	0.14	0	0.21	0.21	ō	0,18	0.18	ő	0.18	0.18	Ň	0.21	0.21	0	0.18	0.18	0	0.15	0.15	0
Total	22.12	4.59	17.53	15.78	4.42	ц.≼	~ ~	1							•		000	U	0.20	0.20	o	0.18	0.18	0	0.15	0.15	0
			*:•20	A.7+10	7.40	H*20	21,20	4.57	16.63	33-26	5.03	28.23	27.72	4.82	22.90	27.47	4.81	22.66	31.91	5.00	26.91	27.78	4.83	22.95	23.25	4.62	18.63

107. SPILLWAY DESIGN FLOOD HYDROGRAPHS .- The spillway design hydrographs representing flow into full reservoir were determined for Lakeview, Roanoke, Grapevine, Aubrey, and Garza-Little Elm Reservoirs by applying the appropriate rainfall-excess values given in table 47 to the appropriate unit hydrographs given in table 45, and adding to the resultant flood hydrographs the runoff from the reservoir surfaces (assumed at a rate equal to the rate of rainfall). The resulting spillway design flood hydrographs have peak discharges of 372,400; 325,600; and 483,100 second-feet and volumes of 413;400; 780,000; and 952,000 acre-feet for Lakeview, Roanoke, and Aubrey Reservoirs, respectively. The spillway design flood hydrograph for Lakeview Reservoir has been revised subsequent to approval by OCE in February 1961 due to the larger basin shape factor applied to the spillway design rainfall. The spillway design flood hydrograph used to test the adequacy of the existing spillway at Grapevine Reservoir was obtained by combining the flood hydrograph originating between Grapevine and Roanoke Reservoirs with the outflows from Roanoke Reservoir produced by passage of the flood originating above Roanoke Damsite. This flood hydrograph has a peak discharge of 375,000 second-feet and a volume of 888,600 acre-feet. The spillway design flood hydrograph used to test the adequacy of the existing spillway at Garza-Little Elm Reservoir (Lewisville Dam) was obtained by combining the flood hydrograph originating between Garza-Little Elm and Aubrey Reservoirs with the outflows from Aubrey Reservoir produced by passage of the flood originating above Aubrey Reservoir. The resulting flood hydrograph has a peak discharge of 856,900 secondfeet and a volume of 2,114,100 acre-feet.

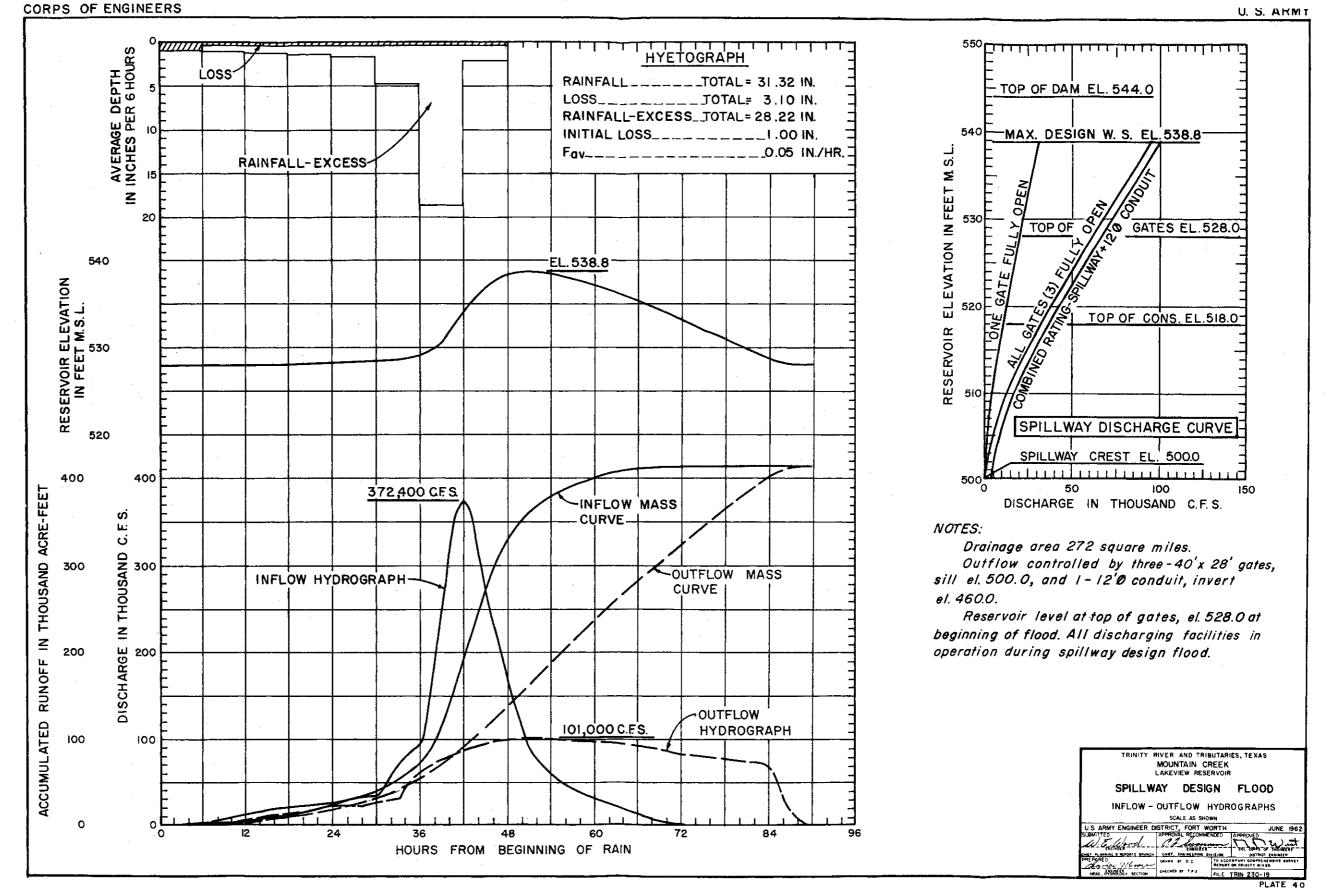
In determining the spillway design flood for Tennessee 108. Colony Reservoir, the initial elevation at the upstream reservoirs was established under the assumption that the standard project flood would occur prior to the spillway design flood. An investigation showed that all of the flood-control storage space in the upstream Corps of Engineers reservoirs would be filled by this antecedent Therefore, an initial elevation at top of flood-control pool flood. was adopted for all Corps of Engineers reservoirs and an initial elevation at spillway crest was adopted for the Bridgeport and Eagle Mountain Reservoirs. There are local interest reservoirs other than Bridgeport and Eagle Mountain Reservoir in the Trinity River Basin above Tennessee Colony Reservoir. These reservoirs have also been assumed full in determining the spillway design flood for downstream Corps of Engineers reservoir projects. Also, because of the uncertainty as to the plan of operation for these local interest reservoirs and based upon the usual operation of similar structures in the past, it has been assumed that such projects (except for Bridgeport and Eagle Mountain Reservoirs) would be operated so that the outflow approximates the inflow when the reservoirs are full. In addition, in view of the magnitude of the spillway design flood,

no modifications of flows due to the Soil Conservation Service reservoirs has been assumed during its passage. The spillway design flood hydrographs for incremental areas above Tennessee Colony Reservoir were obtained by applying the appropriate spillway design storm rainfall-excess values given in table 48 and to the appropriate unit hydrographs given in tables 45 and 46. Where these incremental areas included reservoirs, the runoff from the reservoir surface (assumed at a rate equal to the rate of rainfall) was added. The hydrographs above upstream reservoirs were then routed through these reservoirs, the outflows progressively combined with incremental downstream hydrographs and routed to Tennessee Colony where the hydrograph was further increased by the runoff from the surface of Tennessee Colony Reservoir. The resulting spillway design flood hydrograph for flow into full reservoir at Tennessee Colony Reservoir has a peak discharge of 951,800 second-feet, a volume of 10,033,400 acre-feet and includes an estimated base flow of 1,000 second-feet.

109. Spillway design flood hydrographs for natural flow at the damsites were also computed at the proposed reservoirs. The peak discharge for natural flow at Tennessee Colony Damsite reflects the modification resulting from major upstream reservoirs including Navarro Mills Reservoir (under construction) and Bardwell Reservoir (authorized). The spillway design floods for natural flow at Lakeview and Tennessee Colony Damsites were submitted to OCE in February 1961 and approved by OCE in April 1961, subject to certain comments. In accordance with these comments, the 24-hour rainfall curve was modified and, in the case of the Lakeview Reservoir, a ten percent reduction factor was adopted in adjusting the storm rainfall for basin shape. These changes account for the differences between peak discharges at Lakeview and Tennessee Colony Reservoirs as submitted to OCE in February 1961 and those presented in this report. The recommended peak discharges for natural flow at the damsites are given in the following tabulation:

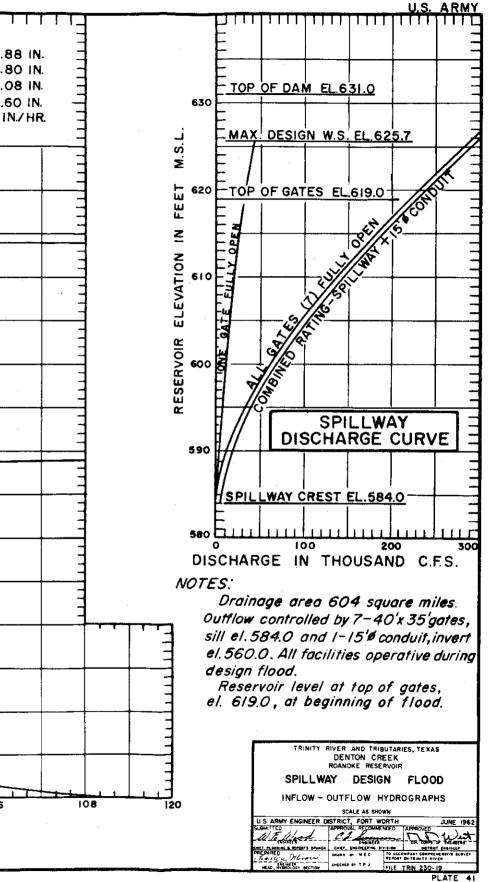
: Reservoir :	Peak discharge (cfs)
Lakeview	341,700
Roanoke	313,600
Grapevine (with Roanoke in)	327,300
Aubrey	438,900
Garza-Little Elm (with Aubrey in)	640,000
Tennessee Colony	575,600

SPILLWAY DESIGN FLOODS - NATURAL FLOW AT DAMSITES

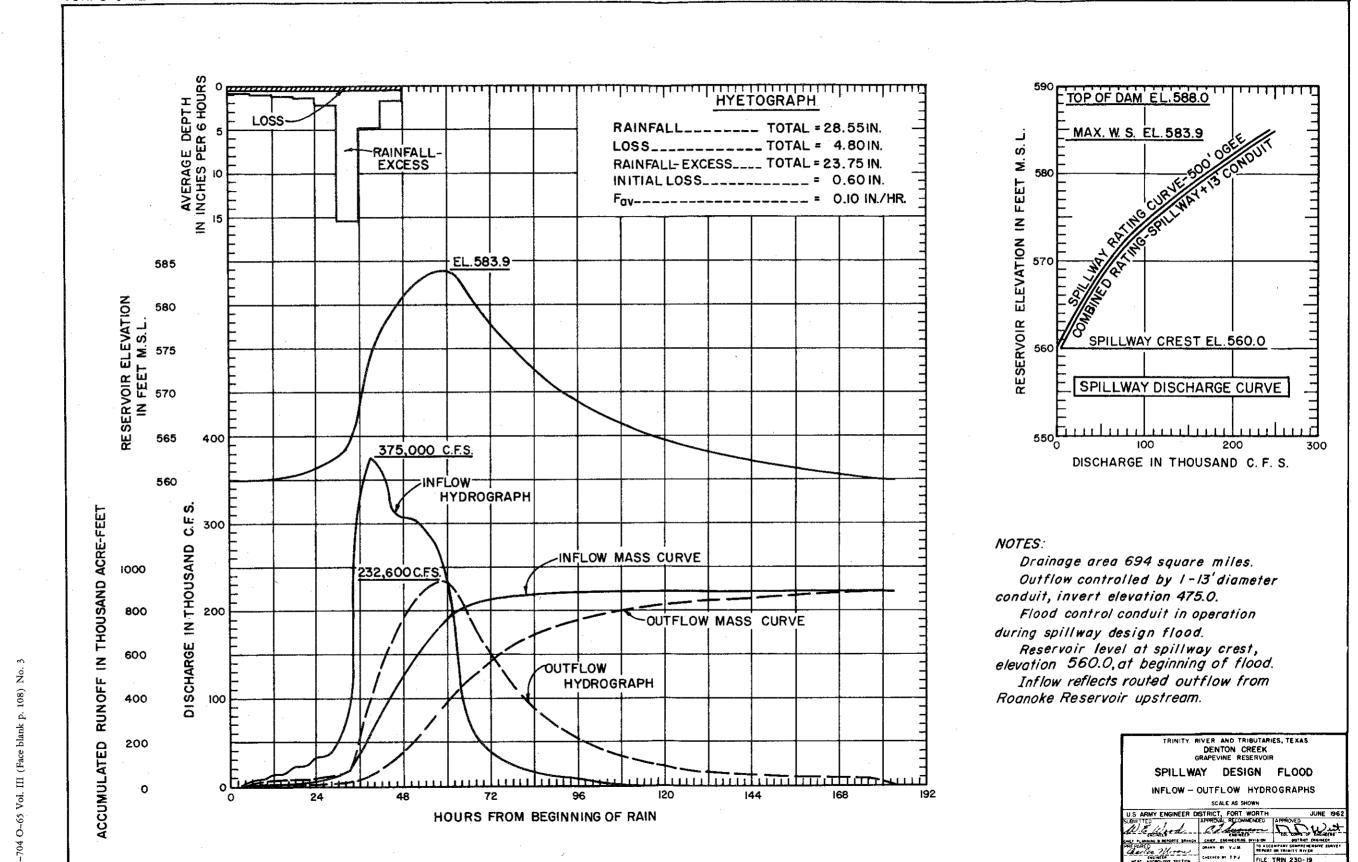

110. SPILLWAY DESIGN FLOOD ROUTINGS. - The spillway design flood hydrographs for flow into full reservoir were routed through the recommended reservoirs assuming that the reservoir levels at the beginning of the flood would be at the top of the flood-control storage. These routings were made under an induced surcharge storage method of operation for the gated projects and utilized the full capacity of the flood-control outlet works at each reservoir. Spillway design flood routings were made under the above assumptions. The resultant maximum design water surfaces and peak outflows from the recommended reservoirs are shown in the following tabulation:

Reservoir	: Ma : wa :	ximum design ter surface (ft-msl)	:	Peak outflow (cfs)	
Lakeview Roanoke Grapevine (with Roan Aubrey Garza-Little Elm (wi Aubrey in) Tennessee Colony		538.8 625.7 583.9 640.3 556.6 297.8		101,000 297,000 232,600 350,800 290,000 556,000	

111. The spillway design flood inflow-outflow hydrographs and reservoir elevations for the Lakeview, Roanoke, Grapevine, Aubrey, Garza-Little Elm, and Tennessee Colony Reservoirs are shown on plates 40 through 45. The spillway design flood hydrographs for flow into full reservoir are tabulated on table 49.


.

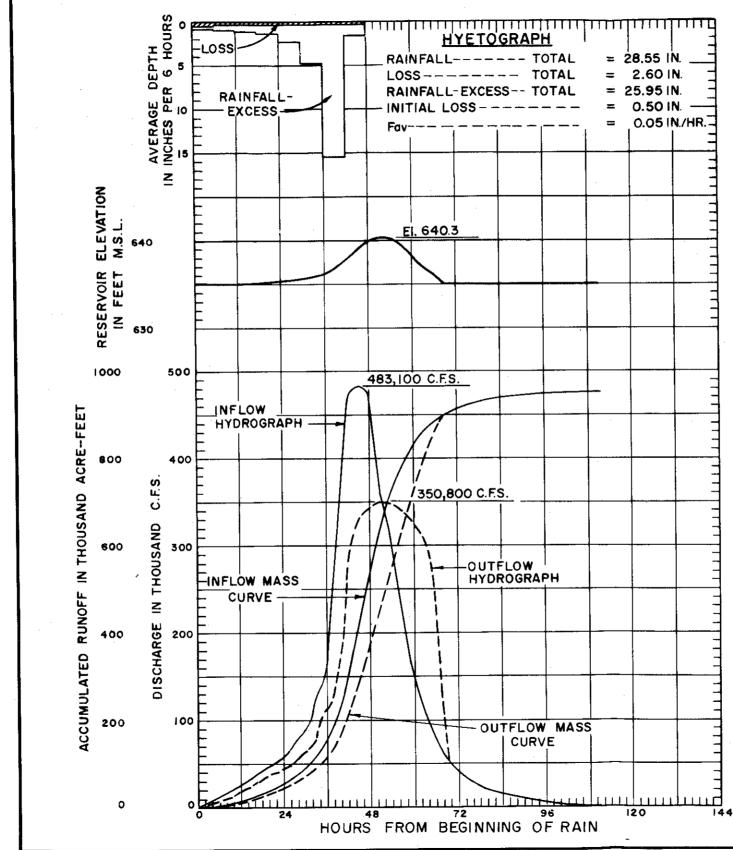
őZ Ξ Vol. Ó .0



. T CORPS OF ENGINEERS $\mathbf{k} \perp \mathbf{k}$ AVERAGE DEPTH IN NCHES PER 6 HOURS LOSS HYETOGRAPH RAINFALL ----- TOTAL = 28.88 IN. LOSS ----- TOTAL = 4.80 IN. RAINFALL-EXCESS----- TOTAL = 24.08 IN. RAINFALL INITIAL LOSS-----0.60 IN. EXCESS Fov----- 0.10 IN/HR. ELEVATION M.S.L. EL.625.7 350 625 325,600 C.F.S. -297,000 C.F.S. 250 INFLOW OUTFLOW HY DROGRAPH-HYDROGRAPH 200 ACRE-FEET 800 ŝ Ċ INFLOW AND MASS CURVE-THOUS/ 150 IN THOUSAND 600 Z NGE 00 400 DISCHA RUNOFF OUTFLOW MASS CURVE ACCUMULATED 200 50 0 0 1 1 1 24 36 48 60 72 84 96 12 HOURS FROM BEGINNING OF RAIN

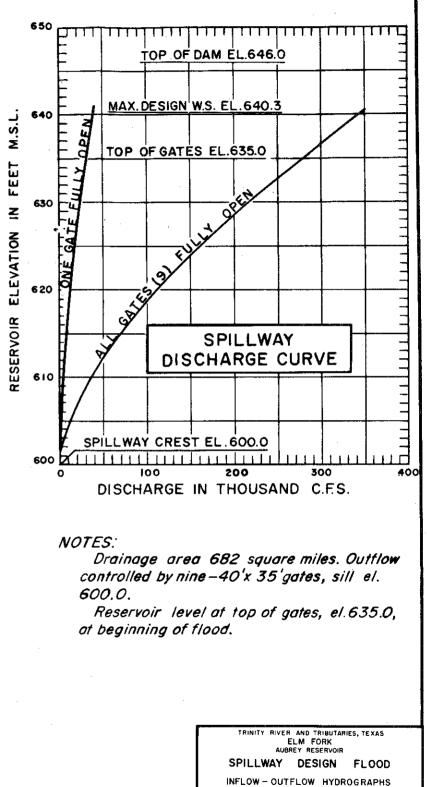
2-704 O-65 Vol. III (Face blank p. 108) No.

\$

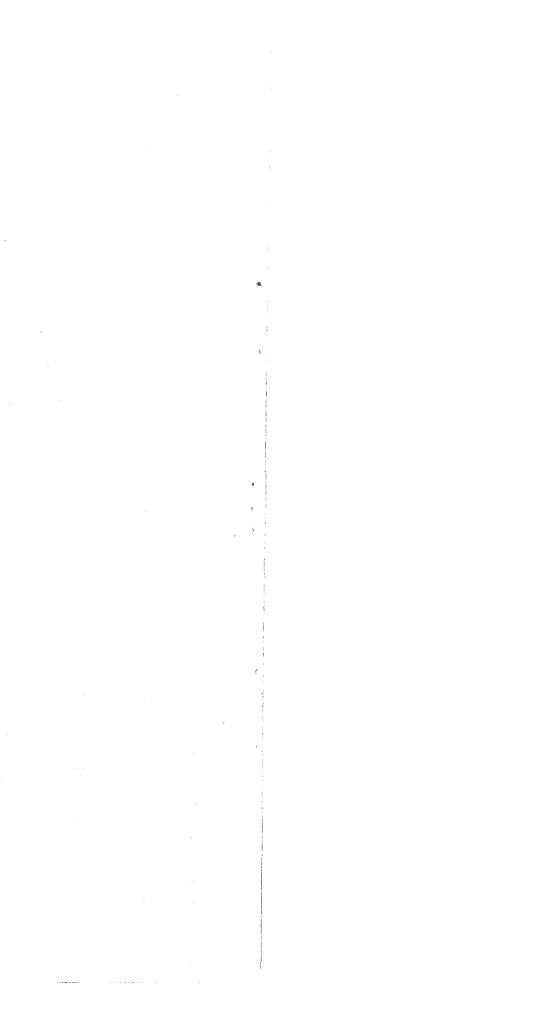


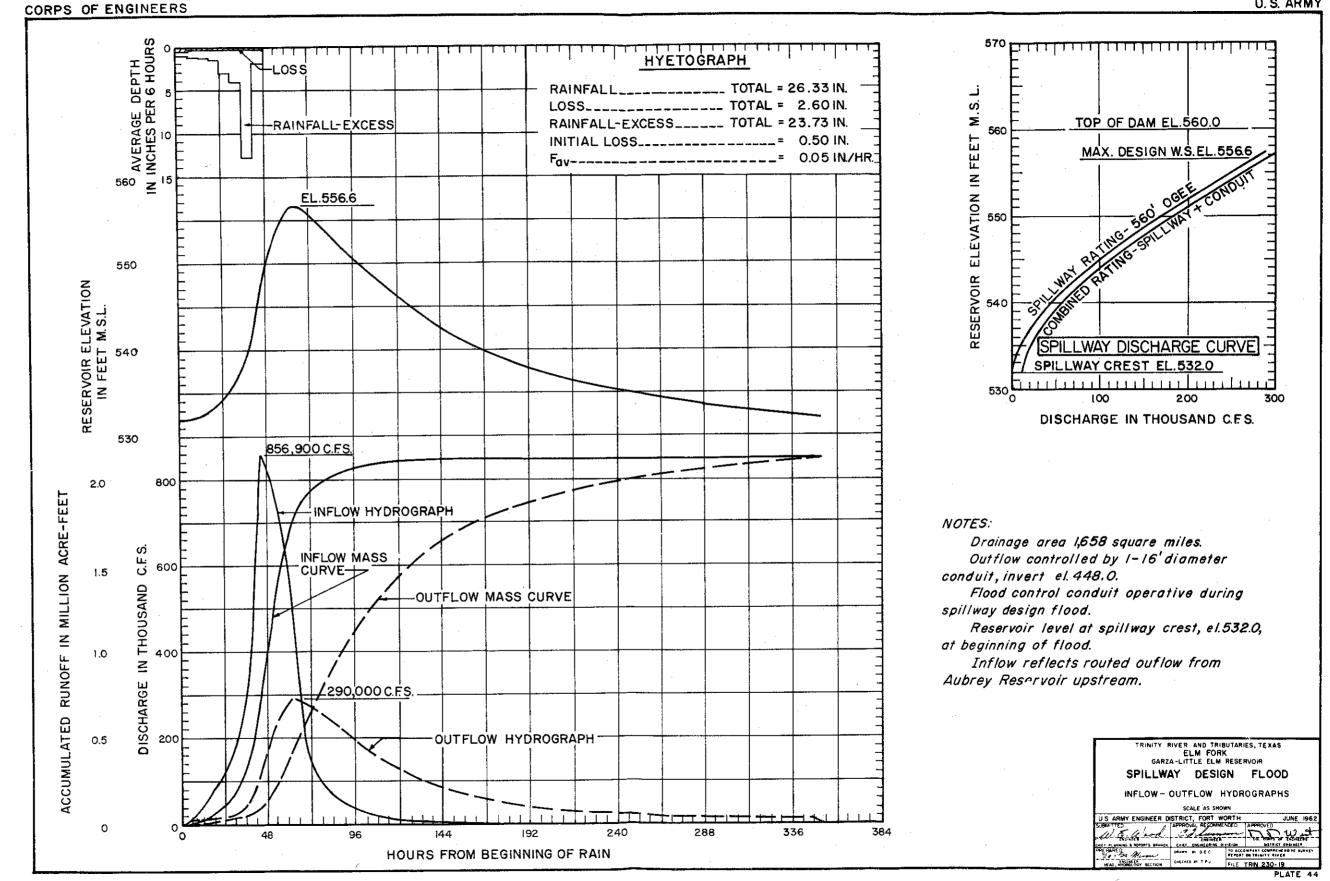
CORPS OF ENGINEERS

PLATE 42


) -

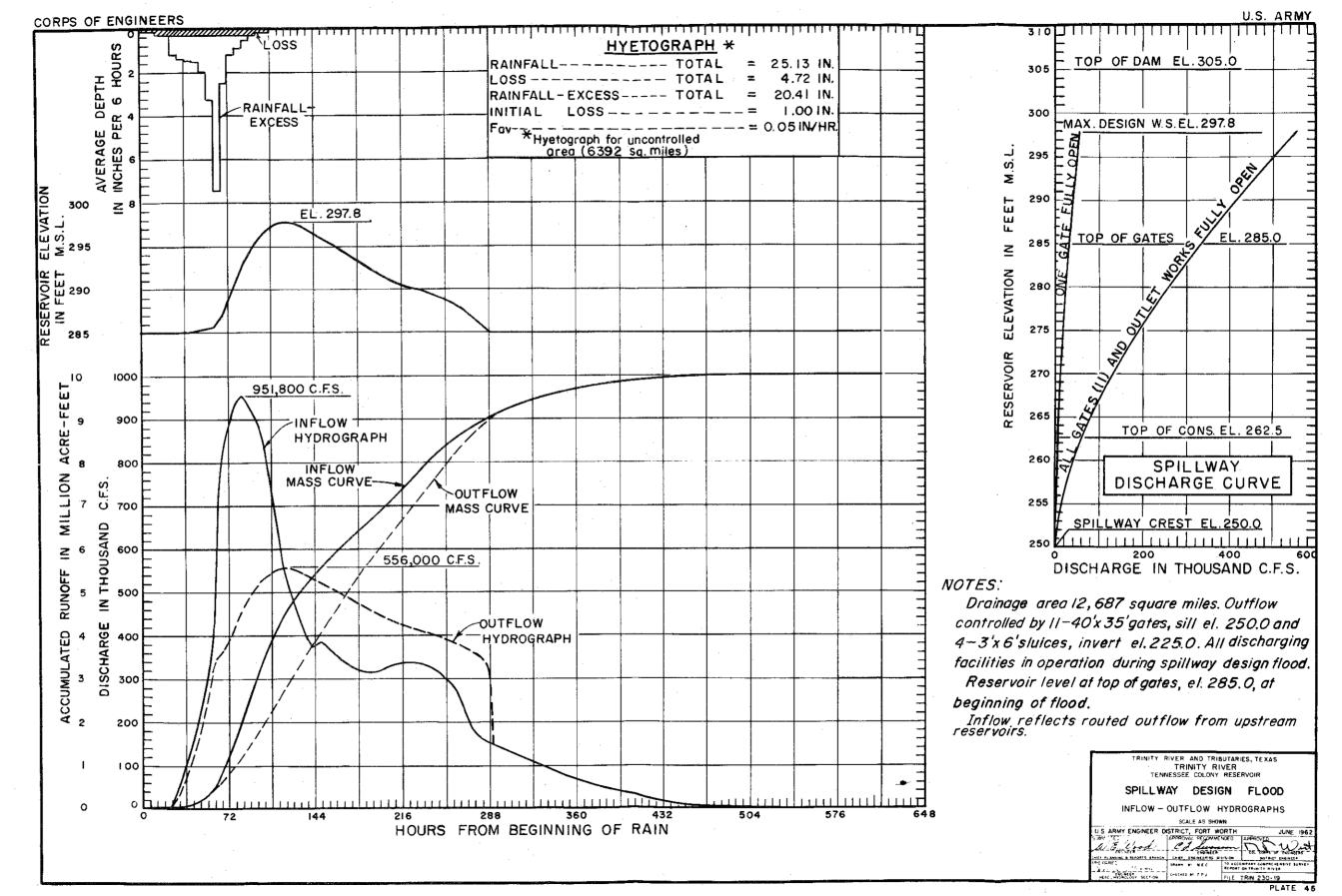
CORPS OF ENGINEERS




704 O-65 Vol. III (Face blank p. 108) No.

U.S. ARMY

SCALE AS SHOWN U.S. ARMY ENCINEER DISTRICT, FORT WORTH JUNE 1962 SIMMITED
PLATE 43


ő. (80) Ξ Vol. 0-65

-704

.

704 O–65 Vol. III (Face blank p. 108) No. 6

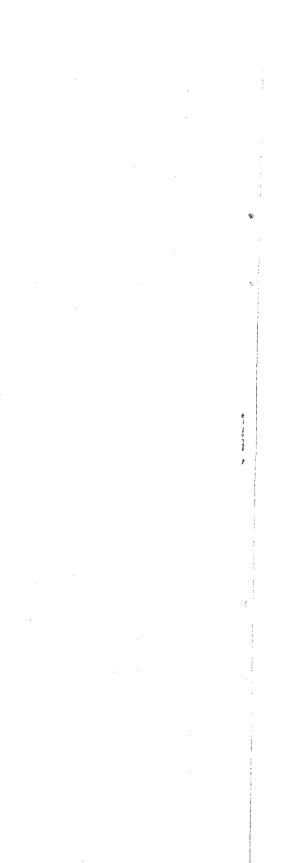


TABLE 49

SPILLWAY DESIGN FLOOD HYDEOGRAPHS FOR TRINITY RIVER RESERVOIRS FLOM INTO FULL RESERVOIR (CFS)

2,200 2,300 7,000 11,800 23,500 23,500 35,500 35,500 35,500 37,50	3,900 4,560 9,100 9,500 17,460 27,200 28,300 47,600 28,300 47,600 26,500 26,500 30,500 20,500 20,500 20,500 20,500 21,500 24,400 26,800 66,800 66,800 25,600 25,600 25,600 25,600 25,600 26,300 26,500 25,600 25,700 25,600 25,700 25	1,200 1,700 1,7100 1,7000 1,7000 1,7000 1,7000 1,7000 1,7000 1,7000 1,7000 1,7000 1,7000	6,900 11,400 18,500 25,700 34,900 44,900 45,800 15,800 15,800 164,	3,500 17,600 28,500 46,200 96,600 115,100 137,100 137,100 136,500 236,500 236,500 236,500 255,	3,900 3,900 4,200 5,200 5,200 5,200 5,200 5,200 32,500 32,500 32,500 32,500 32,500 32,500 32,500 32,500 32,500 32,500 33,100 134,300 225,700 268,700 309,300 368,100 499,300 648,200 835,600 535,600 535,600 535,600 535,600 535,600 545,700 545,7000 545,700 545,7000 545,7000	3,900 4,200 5,220 5,220 5,220 5,220 5,220 5,220 5,220 5,220 5,220 5,220 5,220 5,220 5,220 5,220 5,220 5,220 5,200 5,	101 102 103 104 105 106 107 108 110 111 112 113 114 115 116 117 120 120	53,000 52,000 51,000 51,000 51,000 51,000 51,000 50,000 49,900 49,000 44,000 44,000 51,000 51,000 53,000	135,000 139,000 123,100 123,1000 112,000 112,000 112,000 112,000 126,000 96,000 95,000 95,000 95,000 95,000 88,400 81,000 76,000 76,000 76,000 74,000 75,000 76,0000 76,0000 76,0000000000
· ·	7,500 5,300 1,300 4,400 200 1,00 0 0	14,900 12,600 10,300 6,100 6,100 2,200 2,200 1,000 200 200 0 0	23,000 12,500 10,500 7,700 3,600 1,900 1,900 1,900 0 0	93,500 76,700 67,200 98,100 98,100 14,5500 31,700 82,100 12,100 12,100 11,100 6,600 10,100 6,000 1,2,000 6,000 1,2,000 1,000	885,700 908,760 937,500 944,200 924,400 931,400 931,400 831,200 831,200 831,200 751,500 674,100 674,100 674,100 674,100 674,100 674,100 554,300 355,200 835,200 825,30	857,200 911,500 973,400 973,400 973,400 973,400 973,400 973,400 973,400 973,400 973,400 973,400 974,400 975,400 975,400 976,400 977,400 976,400 977,4000 977,400 977,400 977,400 977,400 977,400 977,400 97	1401 2 34 556 78 90512 354 55 1 456 78 90512 355 1 555 1 555	31,000 39,000 39,000 27,000 24,000 24,000 24,000 24,000 14,000 15,000 14,000 15,000 14,000 2,000 1,000 2,000 1,000 2,000 2,000 1,000 2,000 1,000 2,000 1,000 2,000 1,000 2,000 1,000 2,000 1,0	65,000 66,000 57,000 53,000 43,000 44,000 44,000 44,000 44,000 44,000 38,000 38,000 38,000 38,000 38,000 38,000 30,000 22,000 12,000 12,000 13,000 13,000 11,100 11,100 11,000 10,000 10
					171, 300 163, 500 155, 500 155, 700 155, 500 155, 500 155, 500 155, 500 155, 500 155, 500 155, 500 155, 600 153, 600 123, 600 123, 600 124, 400 123, 600 124, 400 123, 600 124, 400 124, 400 124, 400 124, 400 125, 500 126, 500 126, 500 126, 500 126, 500 127, 200 126, 500 126, 500 126, 500 127, 200 126, 500 126, 500 127, 200 126, 500 127, 200 126, 500 127, 200 126, 500 127, 200 126, 500 127, 200 126, 500 126, 500 127, 200 126, 500 127, 200 126, 500 126, 500 127, 200 126, 500 127, 200 126, 500 127, 200 126, 500 127, 200 126, 500 126, 500 127, 200 126, 500 127, 200 126, 500 127, 200 126, 500 126, 500 127, 200 126, 500 127, 200 126, 500 126, 500 127, 200 126, 500 126, 500 126, 500 127, 200 126, 500 126, 500 126, 500 126, 500 127, 200 126, 500 127, 200 126, 500 126, 500 126, 500 126, 500 126, 500 126, 500 126, 500 126, 500 127, 200 126, 500 126, 500 126, 500 126, 500 127, 200 126, 500 127, 200 126, 500 127, 200 126, 500 127, 200 126, 500 126, 500 127, 200 126, 500 127, 200 126, 500 127, 200 126, 500 127, 200 127, 200 126, 500 127, 200 126, 500 127, 200 127, 200 126, 500 127, 200 127, 200 127, 200 126, 500 127, 500 126, 500 127, 500 127, 500 126, 500 127, 500 126, 500 127, 500 127, 500 126, 500 127, 500 126, 500 127, 500 126, 500 127, 500 126, 500 127, 500 127, 500 126, 500 127, 500 126, 500 127, 500 126, 500 127, 500 127, 500 126, 500 127, 500 126, 500 127, 500 126, 500 127, 500 126, 500 127, 500 126, 500 126, 500 127, 500 126, 500 127, 500 126, 500 127, 500 126, 5	336,300 339,500 339,500 339,500 337,500 337,500 337,500 337,500 337,500 337,500 337,500 337,500 333,500 333,500 333,500 333,500 333,500 333,500 333,600 33,	1557 1559 1661 1663 1665 1667 1665 1676 1677 1777 1798 1682 1984 16667 1688 999 1997 1999 200	1,600 1,000 1	10,000 9,000 9,000 7,000 7,000 7,000 7,000 7,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 8,000 2,000

112. GUIDE TAKING LINE. - The guide taking line for the recommended reservoirs has been based upon the policy for real estate acquisition set forth in Change 9, dated March 9, 1962, of EM 405-2-150. The upper guide contour has been established at three feet above the top of flood-control storage at all reservoirs except Roanoke where a freeboard of five feet was used. The upper guide contours thus established have been adopted throughout the entire reservoirs areas. More detailed studies will be made during preconstruction planning stages to evaluate the backwater effects on the upper reaches of the reservoirs. The adopted elevations for the upper guide contour are summarized in table 50.

TABLE 50

Reservoir	: Upper guide contour : (ft-msl)
Roancke	624.0
Grapevine (with Roanoke in)	563.0
Aubrey	638.0
Garza-Little Elm (with Aubr	rey in) 535.0
Lakeview	531.0
Tennessee Colony	288.0

UPPER GUIDE CONTOUR LEVELS

113. RELOCATION CRITERIA.- The criteria for alterations and relocations is based on the maximum elevation of the 50-year reservoir operation, resulting from flood occurences on a full conservation pool after 50 years of sediment deposition, plus freeboard. In the upper portions of the main part of a reservoir and on tributary arms the foregoing criterion or the envelope curve of the backwater profile for the 50-year reservoir operation plus freeboard will be adopted. For the purpose of this report the same elevations adopted for the upper guide taking line in paragraph 112 have been adopted as the basis for relocation estimates. More detailed studies will be made during preconstruction planning stages.

114. FREEBOARD REQUIREMENTS. - Freeboard requirements for the recommended projects were determined in accordance with the method set forth in the minutes of a "Conference on Determination of Freeboard Requirements for McGee Bend Dam, Angelina River, Texas," held in the Fort Worth District Office on June 15, 1956. Computations for wave heights and wave runup were based on the computed effective fetch at the maximum water surface for each reservoir site. The computed wave height and total freeboard for an overland velocity of 40 miles per hour (52 miles per hour over water) was adopted as a basis for design. The results of these computations are summarized in table 51.

Reservoir	:Max.water: : surface : :elevation: : (ft-msl):	fetch	: Total : e:required : :freeboard: :(feet)(1):	freeboard provided	of dam
Roanoke Grapevine (with Roanoke Aubrey Garza-Little Elm (with	625.7 in) 583.9 640.3	3.6 4.0 5.6	4.5 4.8 5.5	5•3 4.1 5•7	631.0 588.0(2) 646.0
Aubrey in) Lakeview Tennessee Colony	556.6 538.8 297.8	7•3 2•9 9•2	5.6 4.3 7.4	3.4 5.2 7.2	560.0(2) 544.0 305.0

FREEBOARD REQUIREMENTS

(1) Based on an overland wind velocity of 40 miles per hour (52 miles per hour over water) and computed wind tide.

(2) As built.

115. The freeboards originally provided at the existing Grapevine and Garza-Little Elm Reservoirs were based upon spillway design storm rainfall data furnished by the Hydrometeorological Section of the United States Weather Bureau on February 11, 1946. Under these spillway design criteria, the freeboards at these two reservoirs are adequate either with or without the Roanoke and Aubrey Reservoirs upstream. However, as indicated in table 51, when the spillway design storm is based upon Hydrometeorological Report No. 33, the freeboards available at Grapevine and Garza-Little Elm Reservoirs are less than the minimum of 5 feet that is usually considered desirable for earthen dams.

116. To further check the adequacy of the freeboard, spillway design flood routings (based upon present criteria) were made for Grapevine and Garza-Little Elm Reservoirs with the initial elevations established at the maximum reservoir levels reached in period of record routings for the flood of April-June 1957 under 2020 conditions of watershed development. Under these routing conditions, the maximum water surfaces produced at Grapevine and Garza-Little Elm Reservoirs were at elevations 583.5 and 553.2, respectively, and would provide freeboards of 4.5 and 6.8 feet, respectively. Based upon the foregoing the available freeboards at Grapevine and Garza-Little Elm Reservoirs are considered adequate.

117. HYDROLOGIC NETWORK. - It is proposed to supplement the existing rainfall and streamflow stations by expanding the hydroclimatic and hydrologic reporting networks on the Trinity River Basin. The records and reports will be used to update hydrologic design criteria for preconstruction planning; in connection with construction activities; to prescribe flood-control regulations for the reservoir system; and in connection with the navigation project. The **expanded** network will include inflow and outflow stations and reservoir level gages at **each reser**voir and headwater and tailwater gages at each of the navigation locks and dams. Evaporation and recording rainfall stations will also be provided at each of the recommended reservoirs. Construction of the recommended multiple-purpose channel would involve relocation of some of the existing stream-gaging stations as well as establishment of new stations. Additional stream-gaging stations will also be established on selected tributaries of the Trinity River downstream from the reservoir projects to assist in the regulation of the floodcontrol storage. Detailed requirements for the complete hydrologic network will be presented in connection with preconstruction planning studies.

LOCAL PROTECTION

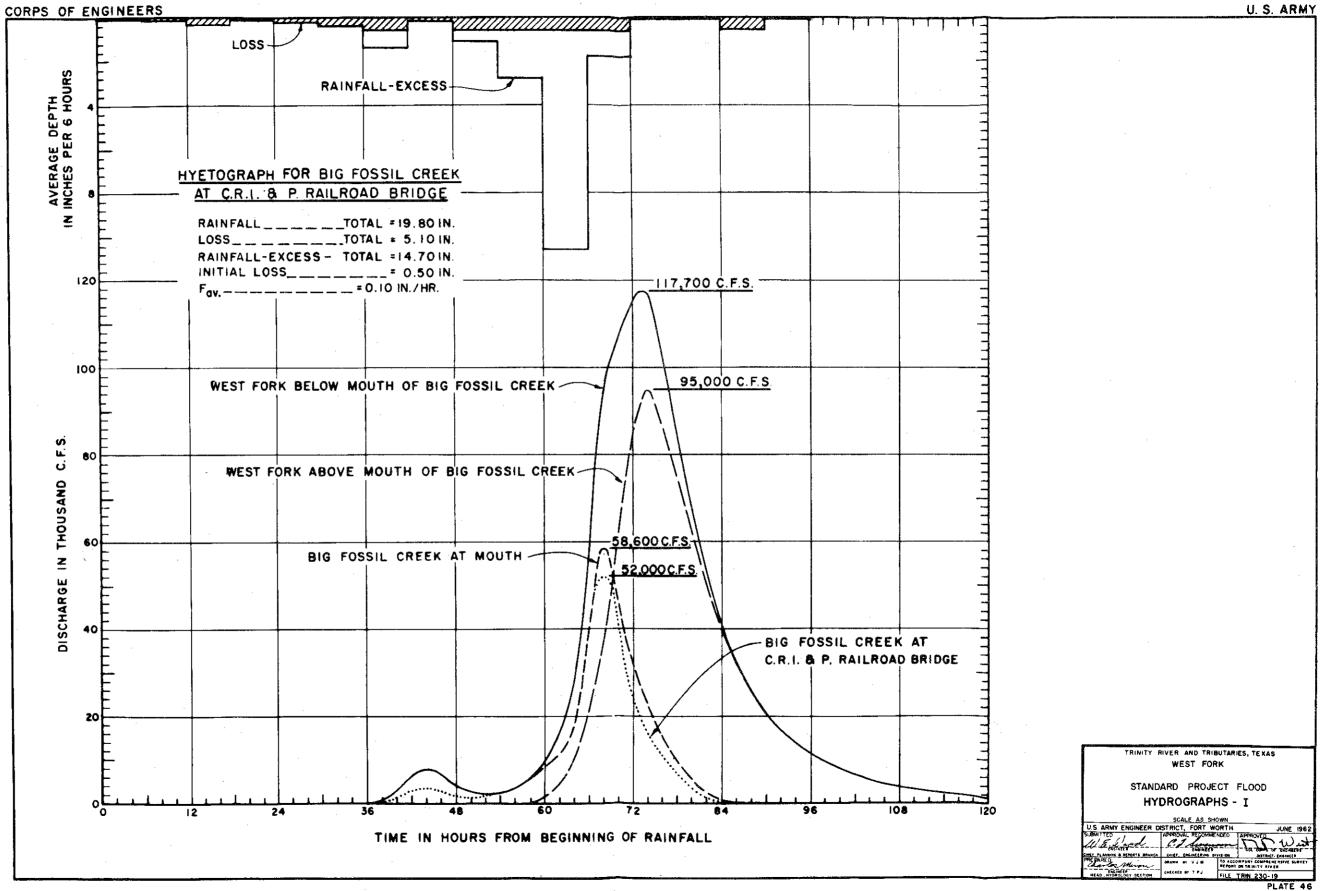
118. DESIGN STORM FOR FLOODWAY AND CHANNEL IMPROVEMENT. -Standard project storms were developed and adopted as the design storms for the recommended West Fork Floodway, Elm Fork Floodway, extension of the Dallas Floodway, and the channel improvement on Duck Creek. A standard project storm was not developed for the Liberty project. In lieu thereof, the standard project flood hydrograph was assumed equal to 50 percent of the probable maximum flood hydrograph. Except for the Liberty project, located in the lower basin, standard project storms for the various areas studied were determined in accordance with procedures set forth in EM 1110-2-1411 (Civil Works Engineer Bulletin No. 52-8 dated March 26, 1952). The standard project storm was centered at various locations on the West Fork, Elm Fork, Mountain Creek, and Duck Creek watersheds to obtain the most critical transposition. The most critical transposition with respect to each project was then adopted as the design storm for that project. The adopted standard project storm rainfall and rainfall-excess used to determine design floods for the West Fork Floodway, Elm Fork Floodway. the extension of Dallas Floodway, and Duck Creek Channel Improvement are shown in table 52.

TABLE 52

STANDARD PROJECT STORM RAINFALL AND RAINFALL-EXCESS

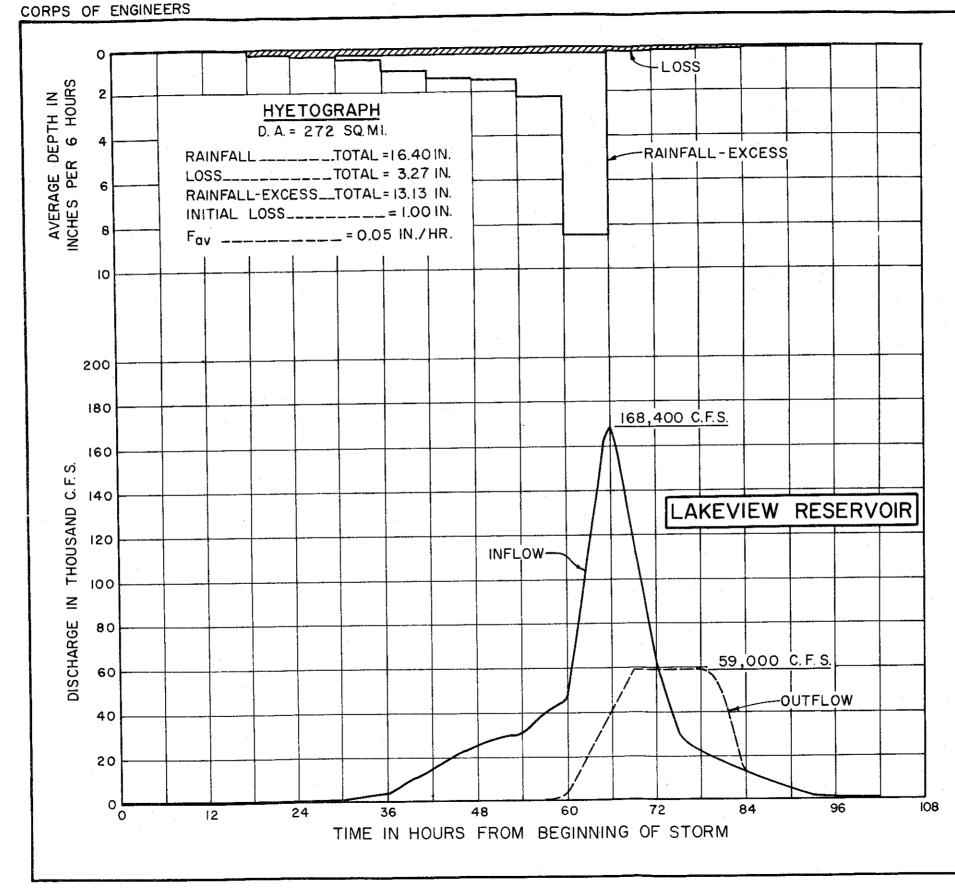
	Drainage:	Total	•	Rainfall-
Incremental area :	area :	rainfall	: Loss	: excess
	(sq.mi.):	(inches)	:(inches)	:(inches)
Storm centered over uncontrolled	area of	West For	k watershe	ed
(Used for design of lower West Fork F				
West Fork Trinity River above				
Bridgeport Dam	1,114	11.15	4.93	6.22
Bridgeport Dam to Boyd Damsite	593	11.83	5.07	6.76
Boyd Damsite to Eagle Mtn Dam	267	14.41	5.44	8.97
Clear Fork Trinity River above				
Benbrook Dam	433	12.19	5.13	7.06
Mountain Creek above Lakeview Damsite	272	13.42	3+39	10.03
Denton Creek above Roanoke Damsite	604	12.20	5.13	7.07
Roanoke Damsite to Grapevine Dam	90	15.05	5.52	9.53
Elm Fork Trinity River above Aubrey	2			
Damsite	682	9.25	2,98	6.27
Aubrey Damsite to Lewisville Dam	976	10.61	3.17	7.44
West Fork uncontrolled area	823	15.64	7.16	8.48
Elm Fork uncontrolled area	226	14.18	6.83	7.35
Trinity River from Elm Fork to				(* 0)
Dallas Gage	40	16.43	3.66	12.77
Trinity River from Dallas Gage to			5.40	
below mouth of White Rock Creek	173	13.50	3.42	10.08
			-	
Storm centered over uncontrolle				ed
(Used for design of E				
Denton Creek above Roanoke Damsite	604	11.60	4.20	7.40
Roanoke Damsite to Grapevine Dam	90	15.20	4.70	10.50
Elm Fork Trinity River above Aubrey				
Damsite	682	12.90	3.00	9.90
Aubrey Damsite to Lewisville Dam	976	13.40	3.10	10.30
Elm Fork uncontrolled area	226	18.30	6.80	11.50
Storm centered on Mountain Creek w	etershed	above La	keview Dau	nsite
(Used for design of West Fork Floodwa Creek Dam)	dentil de la constant			
Mountain Creek watershed	305	16.40	3.27	13.13
Storm centered on Duck Creek watershe ment (Used for design of Duck Creek				l improve-
Duck Creek watershed above mouth of Long Branch	24.3	21.40	3.20	18.20

119. DESIGN FLOOD FOR PROPOSED FLOODWAYS AND CHANNEL IMPROVEMENTS .- Studies indicated that, for a flood of the magnitude of the standard project flood, the highest discharge at Liberty would result from releases from Tennessee Colony Reservoir rather than from floods generated on the area between Tennessee Colony Damsite and Liberty. Therefore, 50 percent of the spillway design flood hydrograph for Tennessee Colony Reservcir shown in table 49, was used as the standard project flood hydrograph above the reservoir. A flood hydrograph was also developed for the area between Tennessee Colony Damsite and Liberty. However, because of the length of travel time from Tennessee Colony Reservoir to Liberty, the local area was found to contribute little flow at the time that maximum releases from Tennessee Colony Reservoir would reach Liberty. The standard project flood hydrograph for Duck Creek was determined by applying one-hour increments of the appropriate standard project storm rainfall-excess shown in table 52 to the appropriate unit hydrograph shown in table 46. The standard project flood hydrographs for all other projects considered were obtained as follows. Six-hour increments of the appropriate standard project storm rainfall-excess shown in table 52 for the areas above upstream reservoirs and for increments of the uncontrolled drainage areas between the upstream reservoirs and the projects considered were applied to the respective unit hydrographs shown in tables 45 and 46 to determine standard project flood hydrographs originating on each incremental area. Where the incremental areas included reservoirs, the runoff from the reservoir surface (assumed at a rate equal to the rate of rainfall) was added. The flood hydrographs above existing and proposed reservoirs were routed through the reservoirs and the outflows and hydrographs for incremental downstream areas were progressively combined and routed downstream to the site of each of the projects considered. A study of system routings of the major floods on the basin indicated the probable occurrence of a flood antecedent to the standard project flood of sufficient volume to fill approximately one-third of the flood-control storage provided in the reservoirs. Therefore, in all of the standard project flood routings referred to above, it was assumed that the flood-control pools of upstream reservoirs would be one-third full at the beginning of the standard project flood. Peak discharges for the standard project flood for the recommended floodway and channel improvement projects are shown in table 53 and the hydrographs at selected locations are shown on plates 46 through 51.


TABLE 53

DESIGN FLOOD DISCHARGES

FLOODWAYS AND CHANNEL IMPROVEMENTS


Location	•	Discharge (cfs)
West Fork at Fort Worth Gage		95,000 (1)
West Fork below mouth of Big Fossil Creek		117,700 (1)
West Fork below mouth of Village Creek		138,000
West Fork at Grand Prairie Gage		148,000
West Fork above mouth of Mountain Creek		160,000
Elm Fork at Carrollton (State Hwy 114 bridge)		58,000
Elm Fork at mouth		61,000
Trinity River at Dallas		163,800
Trinity River below mouth of White Rock Creek		174,600
Mountain Creek, Lakeview Damsite to mouth		59,000
Duck Creek at head of improvement		21,500
Duck Creek at downstream end of improvement		40,700
Trinity River at Liberty		180,000

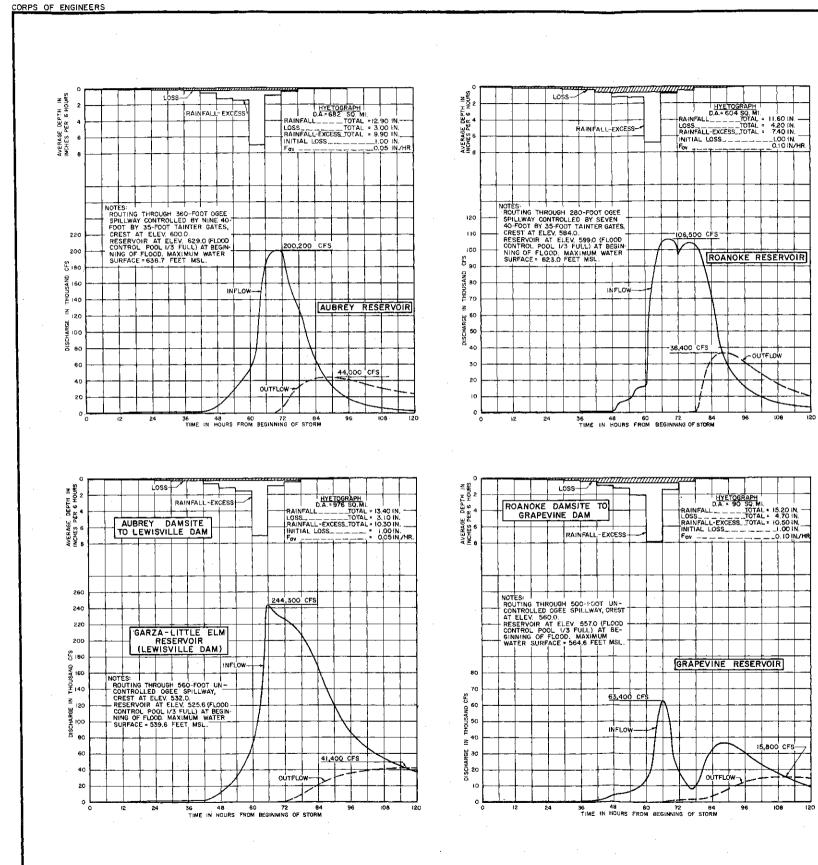
 (1) Standard project flood discharges previously determined in conjunction with the design of the existing Fort Worth Floodway and the authorized local protection project on Big Fossil Creek.

No. 116) പ് III Vol. 52-704 O-65 ----

-

52-704 O-65 Vol. III (Face blank p. 116) No.

Routing through 120-foot ogee spillway controlled by three 40-foot by 28-foot tainter gates, crest at el. 500.0, and 12-foot diameter conduit, intake invert at el. 460.0.


Reservoir at el. 521.6 (flood control pool 1/3 full) at beginning of flood. Maximum water surface= 530.0 feet M. S. L.

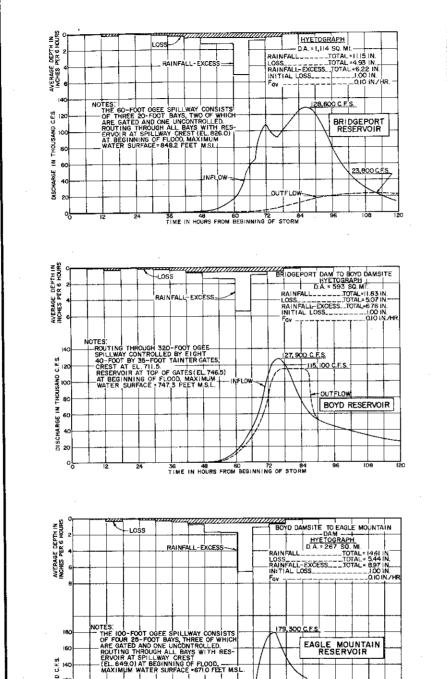
RINITY	RIVER	AND	TRIBUTARIES, TEXAS	
	MOUN	INTAI	N CREEK	

STANDARD PROJECT FLOOD HYDROGRAPHS - II

	SCALE AS SHOW	<u>VN</u>		
U.S. ARMY ENGINEER DI	STRICT, FORT WO	HTR	JU	NE 1962
SUBMITTED	APPHOVAL RECOMME	NDED	APPROVED	1 Just
CHET PLANNING & REPORTS BANKCH	ENGINEER CHIEF, ENGINEERING P	1.5.150	COL COMP OF TO	ISHAEE91 INALE#
PREPARED.	ORANN BI DEC			
HEAD, HTDAOLOGY SECTION	CHECKED BY TPJ	FILE	TRIN 230-19	_
			PLA	TE 47

· .

Ŷ


No 116) ġ blank (Face Ш Vol. 3 Ó 704 52-

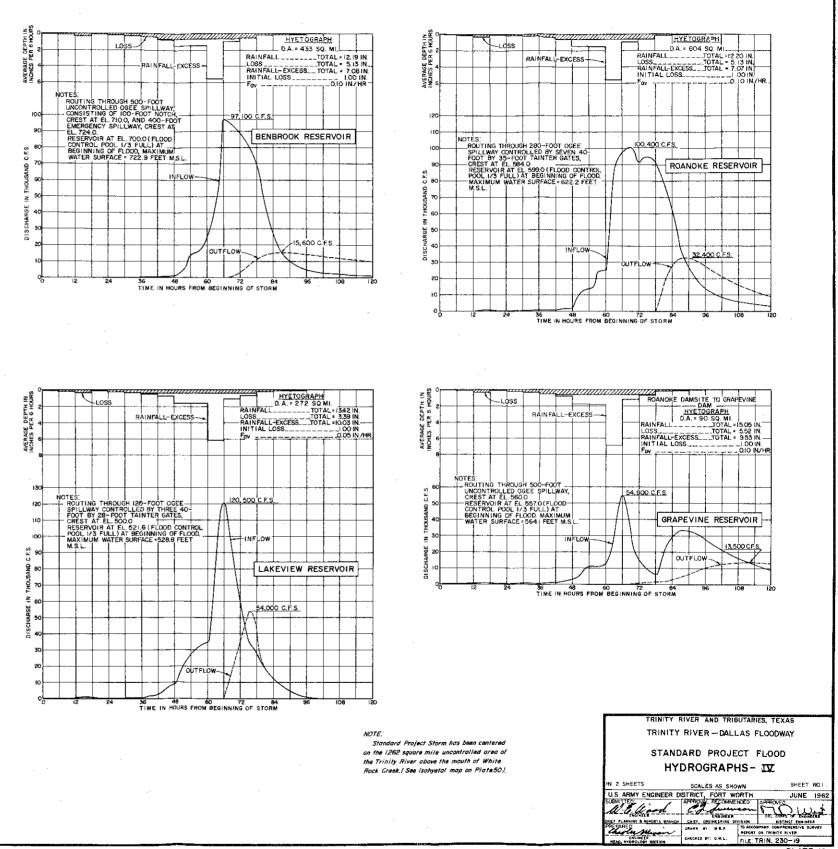
LOSSчШ. H H FOURS 984 100 RAINFALL-EXCESS AVERAGE INCHES P UNCONTROLLED AREA ELM FORK NOTE: SECONDARY PEAK OF 56,300 CFS OCCURS AT 124 HOURS. 61.000 CFS 50 ELM FORK AT MOUTH ۰Ļ 36 48 60 72 84 TIME IN HOURS FROM BEGINNING OF STORM 24 96 108 120 ELM FORK OF VER 6 SEX AUBRE À GARZA-LITTLE ELM RESERVOIR ġ. DAMSITE - CARL ROANOKE DAMSITE-APEVINE RESERVOIR Strenviry , WEST FORK OF TRINITY RIVER イト ISOHYETAL MAP OF STANDARD PROJECT STORM-IL SCALE IN MILES RINITY RIVER AND TRIBUTARIES, TEXAS NOTE ELM FORK NOTE: Standard Project Storm has been centered on Elm Fork of Trinity River uncontrolled area of 226 square miles. STANDARD PROJECT FLOOD HYDROGRAPHS - III SCALES AS SHOWN U.S. ARMY ENGINEER DISTRICT, FORT WORTH JUNE 1962 SLEMITTEC. APPROVED. APPROVED. APPROVED. THE STATE OF
.....

U.S. ARMY

PLATE 48

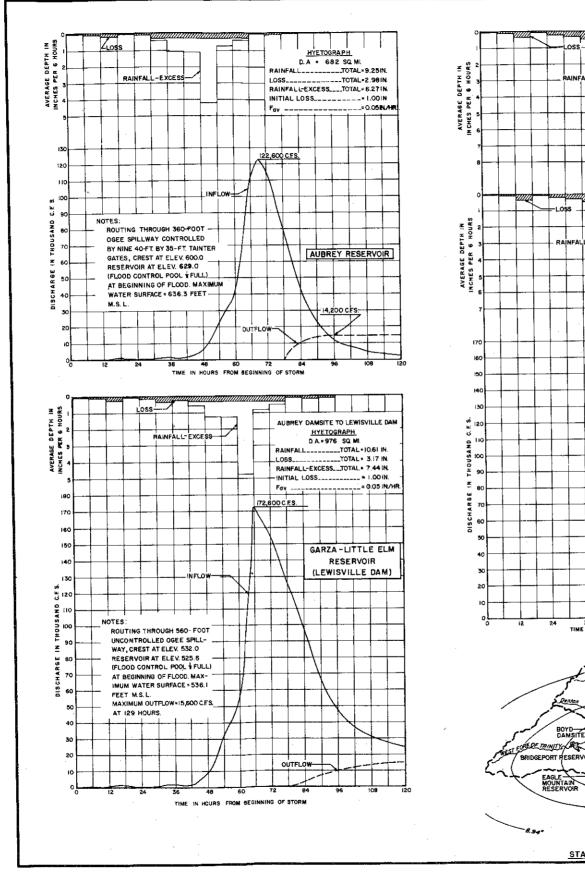
INFLOW

36 48 50 72 84 TIME IN HOURS FROM BEGINNING OF STORM


OUTFLOW

38,300 C.F.S

108



U.S. ARMY

PLATE 49

CORPS OF ENGINEERS

INFALL-EXCESS:

uu (ji

ALL-EYCES

DALLAS FLOODWAY

36 48 60 72 TIME IN HOURS FROM BEGINNING OF STORM

博入

~~

SCALE IN MILES

0 0 10 20

ISOHYETAL MAP OF STANDARD PROJECT STORM

\^a

AUBREY-

24

UNCONTROLLED AREA WEST FORK

HYETOGRAPH

D.A.+B23SQ ML

RAINFALL-EXCESS__TOTAL = 8.48IN

UNCONTROLLED AREA ELM FORK

HYETOGRAPH D.A. = 226 SQ ML

INITIAL LOSS

163,800 C.F.S.

Fav _____

For -----

84

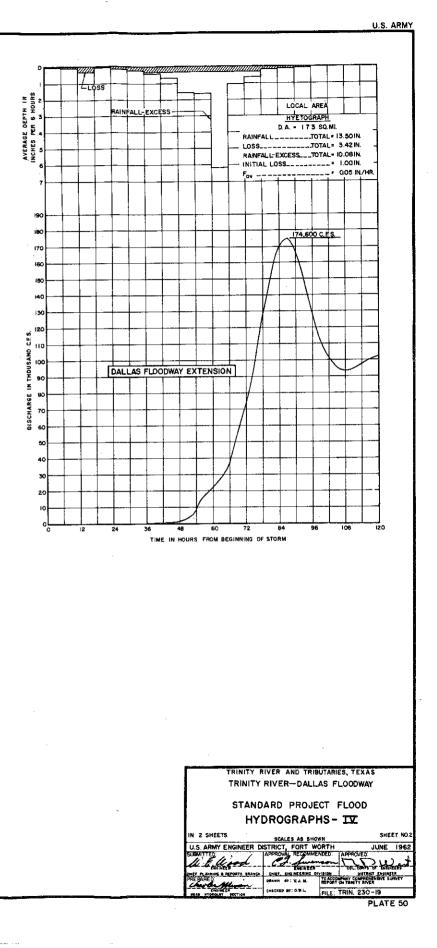
-GARZA-LITTLE ELM RESERVOIR (LEWISVILLE DAM)

TRINTYAR

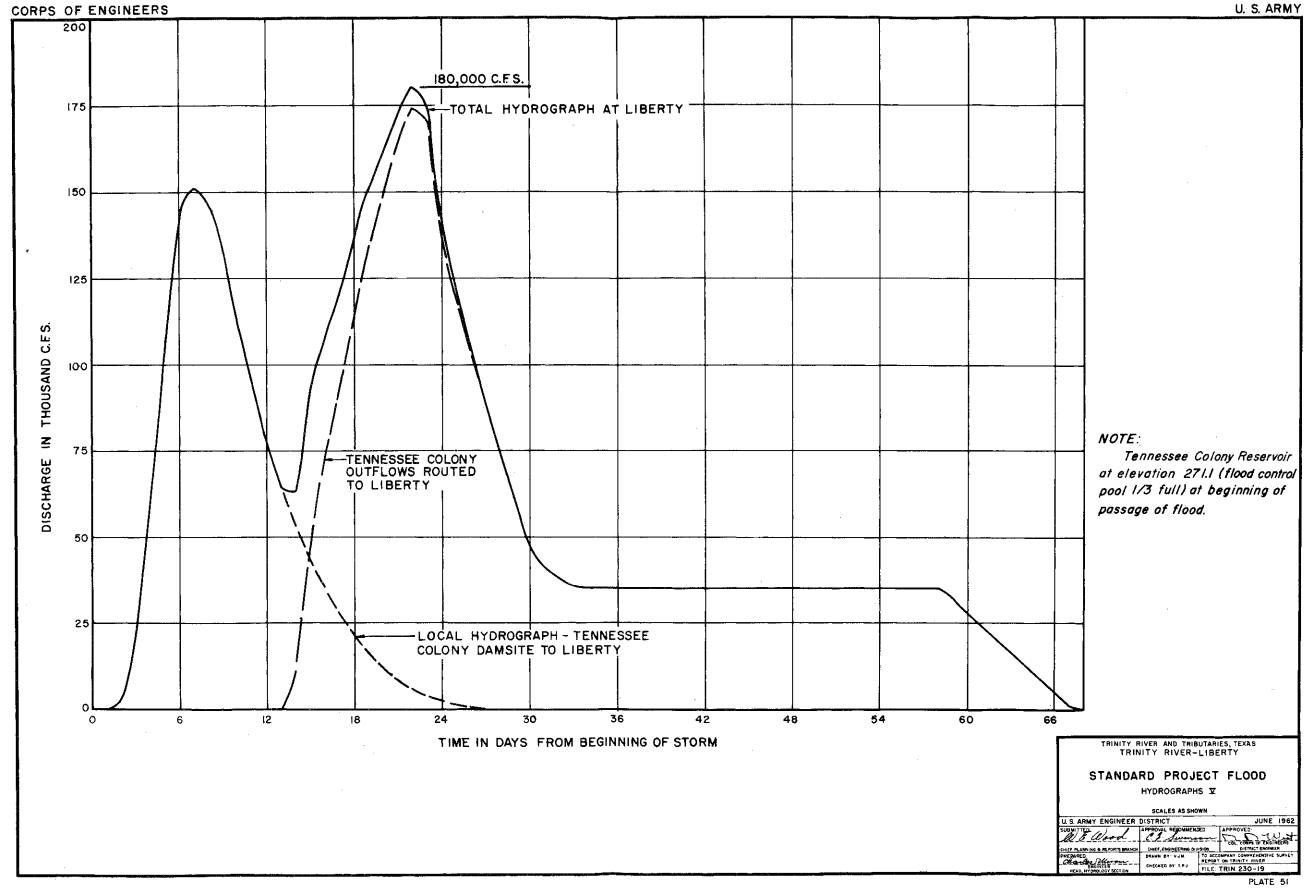
GRAPE VINE RESERVOIR

BENBROOK RESERVOIR

108


96

HOUNTAIN CREEK


=0.15 IN./HR

= 0.15 IN/HR

No. 116). å E Ξ Vol. Ó 704 2

.

9 52–704 O–65 Vol. III (Face blank p. 116) No.

8

120. The standard project flood was also adopted as the design flood for all tributary channel improvements considered in connection with the West Fork and Elm Fork Floodways and the Dallas Floodway Extension. These tributaries and their design discharges are given in the following tabulation:

Tributary	: : Main Stem :	: Approximate : :multiple-purpose: : channel mile :	
Five Mile Creek	Trinity River	321.50	63,500
Honey Springs Branch White Rock Creek	Ħ	326.15 326.62	4,100 72,100
Elm Fork Mountain Creek	" West Fork	338.80 340.89	61,000 59,000
Delaware Creek	5 7	341.20	17,700
Bear Creek Unnamed Creek	82 87	346.83 355.13	72,500 10,200
Sulphur Branch	**	356.08	8,100
Walker Branch Unnamed Creek	17	359:79 361.13	25,800 1,890
Big Fossil Creek Little Fossil Creek	12	362.92	52,000
White Lake Outfall	n .	363.68 364.71	17,400 2,000

These discharges were adopted for developing backwater profiles, for establishing the grades of levees and overbank fill areas, and for determining the sizes of proposed flood-control channels and floodways.

121. SYNTHETIC UNIT HYDROGRAPHS - INTERIOR DRAINAGE AREAS. - The unit hydrograph studies for the Upper Trinity River Basin discussed in paragraph 103 were used as a basis for the selection of Snyder's coefficients used in the development of synthetic one-hour unit hydrographs for interior drainage areas of the recommended West Fork and Elm Fork Floodways and extension of the Dallas Floodway. The adopted coefficients for the interior drainage areas are as follows: West Fork Floodway and Dallas Floodway Extension, Ct = 0.90 and $C_p640 = 420$; Elm Fork Floodway, $C_t = 1.0$ and $C_p = 450$. Unit hydrograph studies for Buffalo Bayou, a tributary of the San Jacinto River which is located adjacent to the Lower Trinity River, were used as a basis for the selection of Snyder's coefficients used in the development of synthetic two-hour unit hydrographs for interior drainage areas of the recommended flood protection for the city of Liberty, Texas. The adopted coefficients for the interior drainage areas are $C_t = 3.0$ and $C_p 640 =$ 300. The adopted synthetic unit hydrographs developed from the foregoing coefficients for interior drainage areas for the West Fork and Elm Fork Floodways, the Dallas Floodway extension and the city of Liberty flood protection project are shown in tables 54 through 57. Plates 52 through 58 show the locations of the various areas considered.

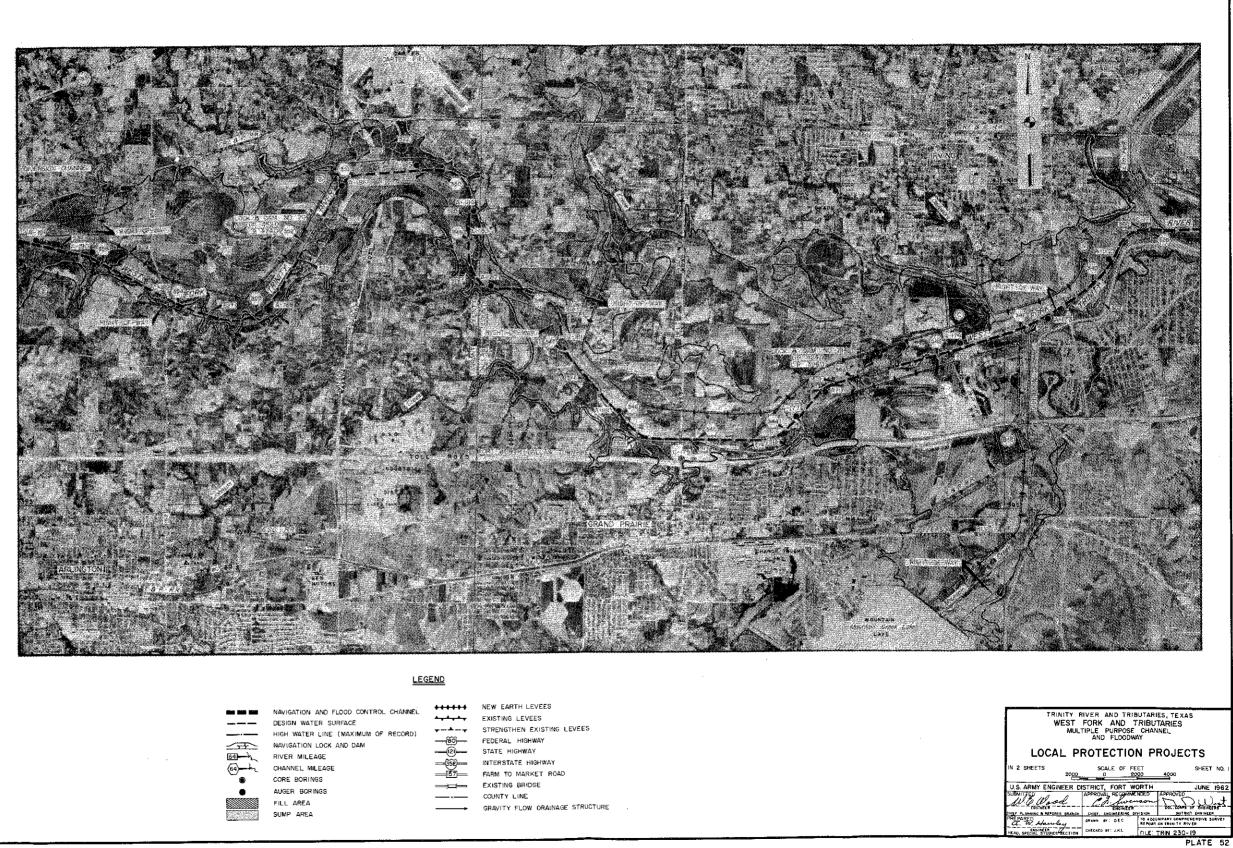
Time in :					Discharge	e in seco	ond-feet					
1/2 hour:					Interio		ge area					
periods :	A	B-1	B-2	C	D	E	F	G	H	<u> </u>	J	K
periods : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	A 85 280 590 350 180 110 75 40 20 0	B-1 70 170 365 295 180 105 70 50 30 15 0	40 110 230 570 1,130 900 550 340 230 160 130 100 70 50 30 20 10	275 590 930 1,270 1,270 1,260 985 790 635 515 410 320 250 185 135 90 50	D 60 145 270 520 850 775 580 420 300 220 175 125 80 50 20 0	E 60 175 380 790 600 350 215 155 155 115 70 50 30 10 0	F 60 175 530 975 770 470 275 195 150 115 90 60 40 20 10 0	G 140 390 520 430 305 215 150 100 60 35 20 10 5 0	H 40 95 180 400 445 385 245 165 115 70 45 25 10 0	1 60 150 260 425 540 400 280 200 140 100 65 35 15 0	5 180 290 195 115 65 40 25 10 5 0	k 205 525 700 520 350 245 165 115 75 45 15 0
19 20			0	30 10 0								

TABLE 54

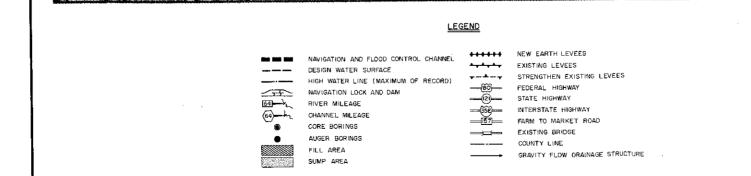
SYNTHETIC ONE-HOUR UNIT HYDROGRAPHS FOR INTERIOR DRAINAGE FACILITIES - WEST FORK

Time in :			Discha	rge i	n second	l-feet			
1/2-hour:		•	Inter		rainage				
periods :	A	В	C	D	E ·	F	G	H	
1	55	50	40	50	50	50	70	70	
2	200	130	110	130	110	120	160	180	
3	590	260	370	270	210	250	400	470	
<u>)</u>	385	560	700	570	480	480	720	780	
5	205	950	490	800	800	800	1,030	600	
6	155	860	270	710	1,060	1,130	820	420	
7	100	730	180	550	980	980	610	260	
8	60	560	130	400	830	810	420	190	
9	40	440	100	300	680	660	290	140	
10	20	340	70	230	540	530	230	110	
11	10	260	50	190	400	410	180	80	
12	0	200	30	150	290	310	150	60	
13		150	20	120	240	240	120	40	
14		120	10	100	190	190	90	20	
15		100	<u> </u>	80	160	160	70	10	
16		80		60	130	120	60	Q	
17		60		40	110	100	40		
18	•	40		30	90	70	20		
19		30		20	70	50	10		
20		20		0	50	30	0		
21		10			40	20			
22		0			20	0			
23				•	10				
24					Ō				

TABLE 55 SYNTHETIC ONE-HOUR UNIT HYDROGRAPHS FOR INTERIOR DRAINAGE FACILITIES - ELM FORK

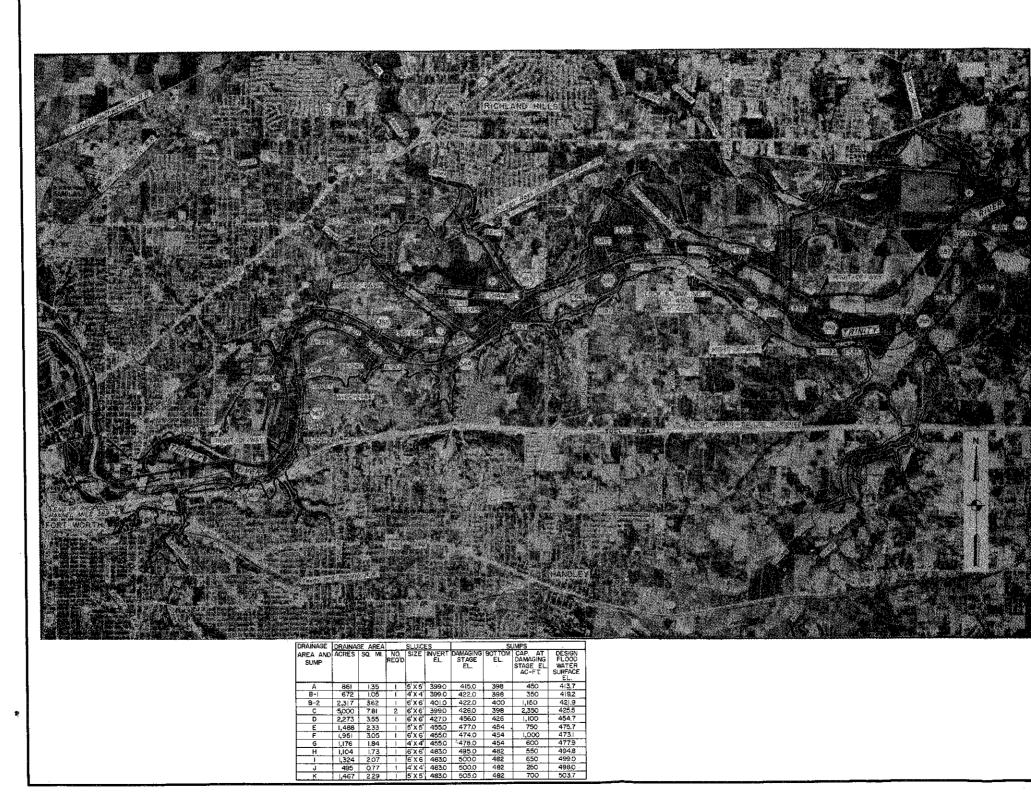

TABLE 56 SYNTHETIC ONE-HOUR UNIT HYDROGRAPHS FOR INTERIOR DRAINAGE FACILITIES - DALLAS FLOODWAY EXTENSION

Time in	•	I	Discharge	in second-feet		······································
1/2-hour: periods	: A	В	Interior C-1	drainage area C-2		D 0
					D_1	D~2
1	170	60	160	50	105	40
2	450	130	500	150	235	90
3	1,080	380	1,750	360	440	190
4	2,070	675	1,060	190	800	400
5	1,670	535	600	110	1,230	600
6	1,160	355	320	70	150, 1	520
7	820	21.5	200	50	920	415
. 8	570	150	130	40	590	300
9	44O	105	. 80	30	500	205
10	360	75	40	20	380	148
1.1	310	50	20	10	305	110
12	270	30	0	0	250	90
13	220	15			205	70
<u>ב</u> 4	190	0			160	50
15	160	n Na aga			125	40
16	130				90	20
17	100				55	10
18	80		·		0	0
19	50					~
20	30				t	
21	20					
22	0					
	~					

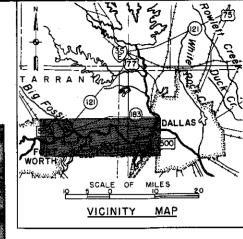

TABLE 57

SYNTHETIC TWO-HOUR UNIT HYDROGRAPHS FOR INTERIOR DRAINAGE FACILITIES FLOOD PROTECTION - CITY OF LIBERTY

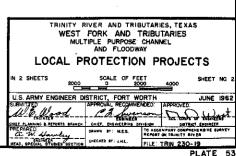
Time in: 2-hour :	Discharge in second-feet								
periods:	Big Bayou	÷	Clayton Bayou						
1.	50		40						
2	108		104						
3	140		175						
4	128		217						
5	116		223						
6	98		199						
7	84		169						
8	70		143						
9	58		117						
10	48		96						
11	38		78						
12	28		63						
13	16	•	48						
14	8		35						
15	0		24						
16			14						
17			5						
18		• •	0						
×									

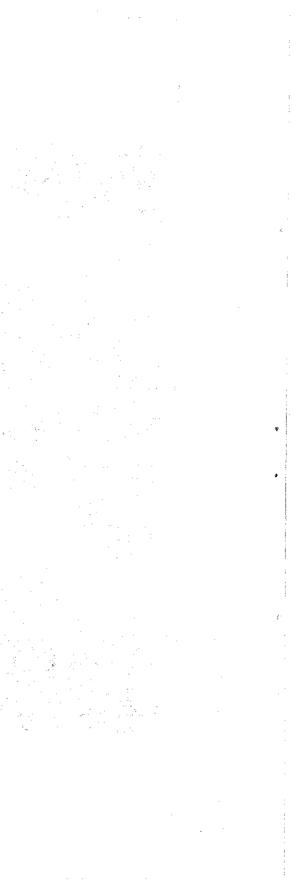


_ No. 122) പ Ř (Face ш Vol. 65 Ó 704

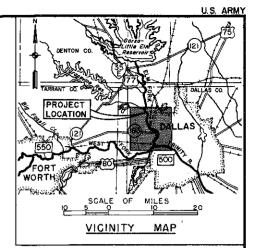

''

,

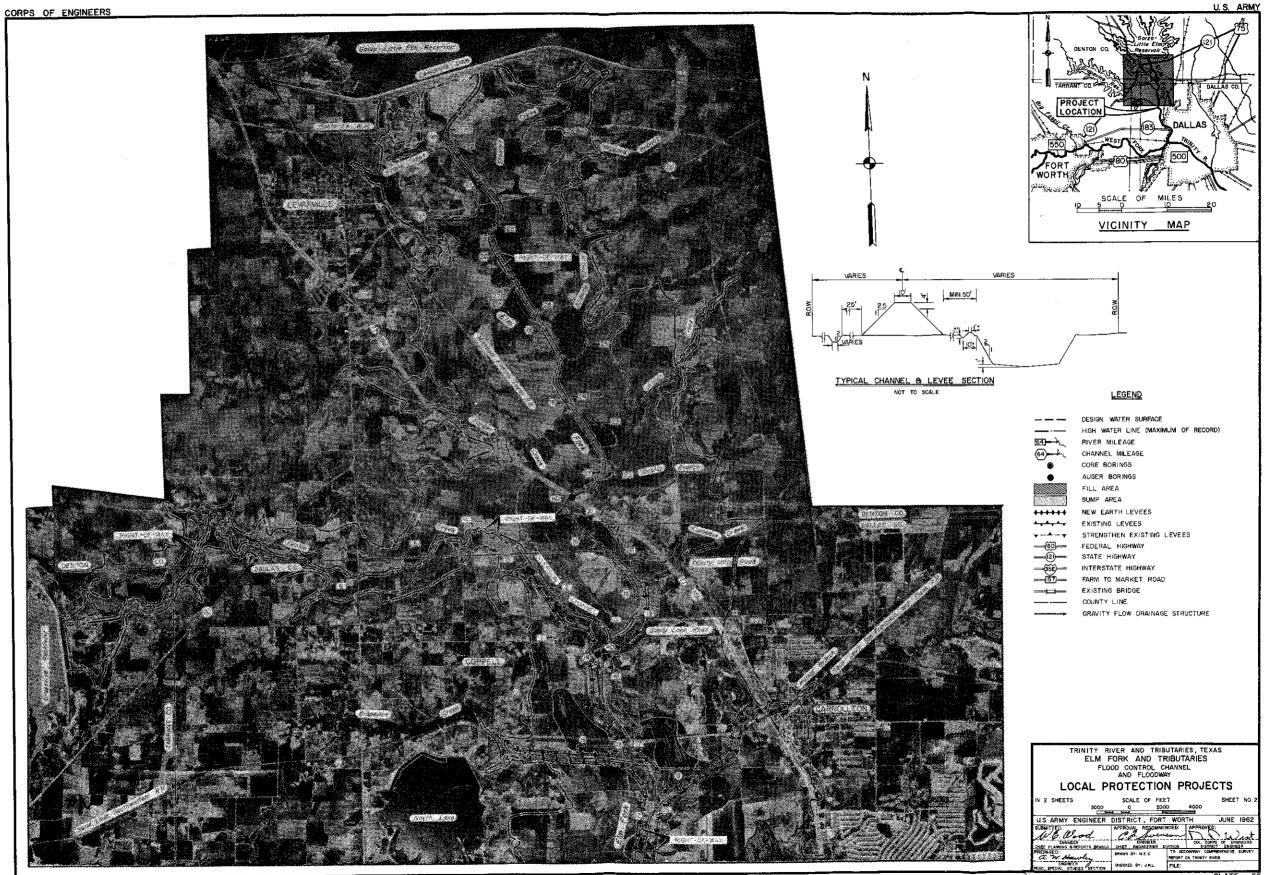



U. S. ARMY

	NAVIGATION AND FLOOD CONTROL CHANNEL
	DESIGN WATER SURFACE
<u> </u>	HIGH WATER LINE (MAXIMUM OF RECORD)
<u>~</u>	NAVIGATION LOCK AND DAM
64 - · ·	RIVER MILEAGE
(64)-+	CHANNEL MILEAGE
	CORE BORINGS
•	AUGER BORINGS
	FILL AREA
	SUMP AREA
+++++	NEW EARTH LEVEES
****	EXISTING LEVEES
- +	STRENGTHEN EXISTING LEVEES
<u>—;;;;</u>	FEDERAL HIGHWAY
<u> </u>	STATE HIGHWAY
	INTERSTATE HIGHWAY
<u> </u>	FARM TO MARKET ROAD
	EXISTING BRIDGE
	COUNTY LINE
	GRAVITY FLOW DRAINAGE STRUCTURE



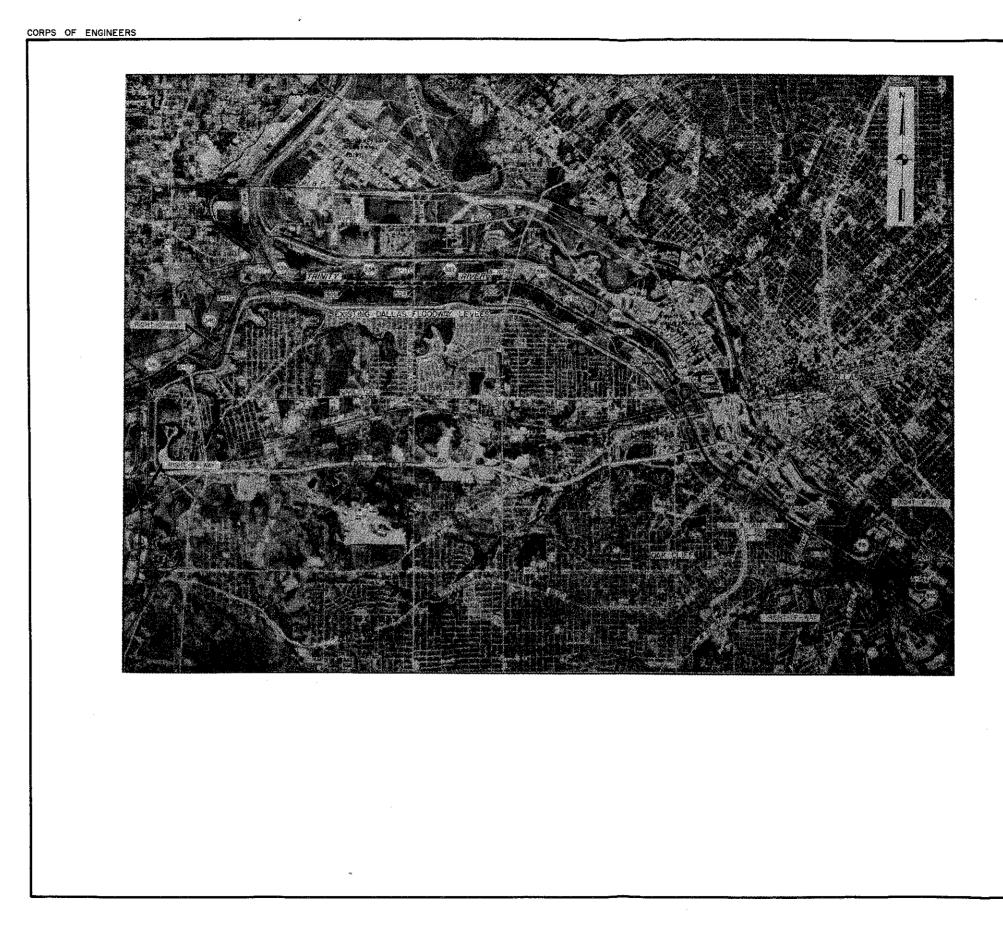
ŝ 122) No. ġ blank (Face Vol. III 52-704 O-65


ORAINAGE	DRAINAC	SE AREA		SLUICES SUMPS					[
AREA AND SUMP	ACRES	SQ. MI.	NO. RECID	SIZE	INVERT EL.	DAMAGING STAGE EL.	BOTTOM EL.	CAP. AT DAMAGING STAGE EL. AC FT.	DESIGN FLOOD WATER SURFACE EL.
Α	905	1.41	3	5' X 5'	401	415	400	250	414,2
9	2,952	4.61	6	5'X5'	401	416	400	800	415.9
° C	1,273	1.99	3	5 X 5'	405	421	404	350	421.0
D	2,361	3.72	3	6' X 6'	406	423	405	650	422.6
E	3,738	5.84	5	6 X 6	408	425	407	1000	424.4
F	3,724	5.82	5	6' X 6'	41	430,	410	1000	428.6
G	2,720	4.25	5	5' X 5'	417	435	416	750	434.8
н	1,700	2.66	3	6'X6'	418	437	417	460	435.2

LEGEND

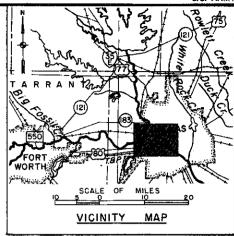
	NAVIGATION AND FLOOD CONTROL CHANNEL								
<u> </u>	DESIGN WATER SURFACE								
<u> </u>	HIGH WATER LINE (MAXIMUM OF RECORD)								
<u>~</u>	NAVIGATION LOCK AND DAM								
<u>6</u> 4 	RIVER MILEAGE								
(64)	CHANNEL MILEAGE								
6	CORE BORINGS								
•	AUGER BORINGS								
	FILL AREA								
	SUMP AREA								
	NEW EARTH LEVEES								
+++++	NEW EARTH LEVEES								
****** *****	NEW EARTH LEVEES EXISTING LEVEES								
****** ****** *-*-*									
+++++ ++++++ ++ 	EXISTING LEVEES								
+++++ + + + 	EXISTING LEVEES STRENGTHEN EXISTING LEVEES								
	EXISTING LEVEES STRENGTHEN EXISTING LEVEES FEDERAL HIGHWAY								
2	EXISTING LEVEES STRENGTHEN EXISTING LEVEES FEDERAL HIGHWAY STATE HIGHWAY								
- <u>-</u>	EXISTING LEVEES STRENGTHEN EXISTING LEVEES FEDERAL HIGHWAY STATE HIGHWAY INTERSTATE HIGHWAY								
- <u>-</u>	EXISTING LEVEES STRENGTHEN EXISTING LEVEES FEDERAL HIGHWAY STATE HIGHWAY INTERSTATE HIGHWAY FARM TO MARKET ROAD								

TRINITY RIVER AND TRIBUTARIES, TEXAS ELM FORK AND TRIBUTARIES, FLOOD CONTROL CHANNEL AND FLOODWAY LOCAL PROTECTION PROJECTS IN 2 SHEETS SCALE OF FEET 2000 4000 U.S. ARMY ENGINEER DISTRICT, FORT WORTH JUNE 1962. SUBDITME
FLOOD CONTROL CHANNEL AND FLOODWAY LOCAL PROTECTION PROJECTS N 2 SHEETS SCALE OF FEET 400 0 2000 4000 U.S. ARMY ENGINEER DISTRICT, FORT WORTH JUNE 1962
LOCAL PROTECTION PROJECTS
N 2 SHEETS SCALE OF FEET SHEET NO.1 0 2000 4000 U.S. ARMY ENGINEER DISTRICT, FORT WORTH JUNE 1962
U.S. ARMY ENGINEER DISTRICT, FORT WORTH JUNE 1962
U.S. ARMY ENGINEER DISTRICT, FORT WORTH JUNE 1962
SUBALLYED: 1 ACCOVAL RECOMMENDED: APPROVED
WE bood Co Swemon Dust
ENGINEER ENGINEER COL CORPS OF ENGINEERS CHIEF PLANNING & REPORTS BRANCH CHIEF, ENGINEERING DIVISION DESTRICT ENGINEER
PREPARED DRAWN BY. O.E.C. REPORT ON TRAINTY RIVER
HEAD, SPECIAL STUDIES SECTION CHECKED BY JHL FILE TRIN. 230-19



~

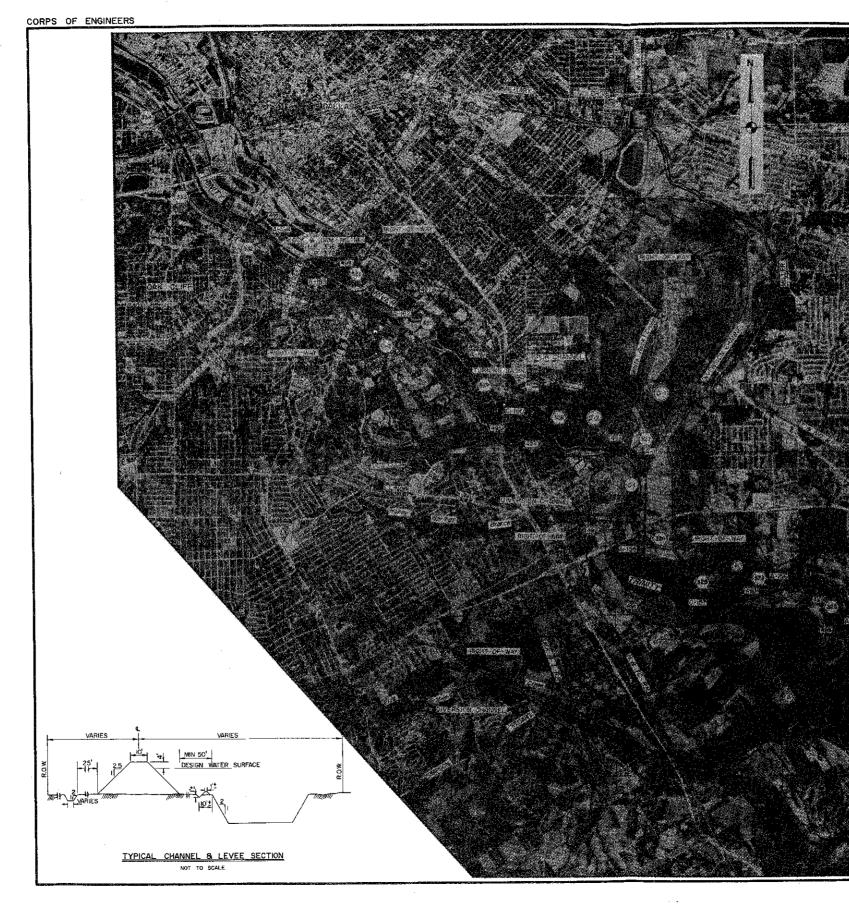
52-704 O-65 Vol. III (Face blank p. 122) No. 4


PLATE 5

 U_{-i}

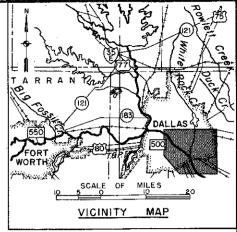
52-704 O-65 Vol. III (Face blank p. 122) No. 5

U.S. ARMY



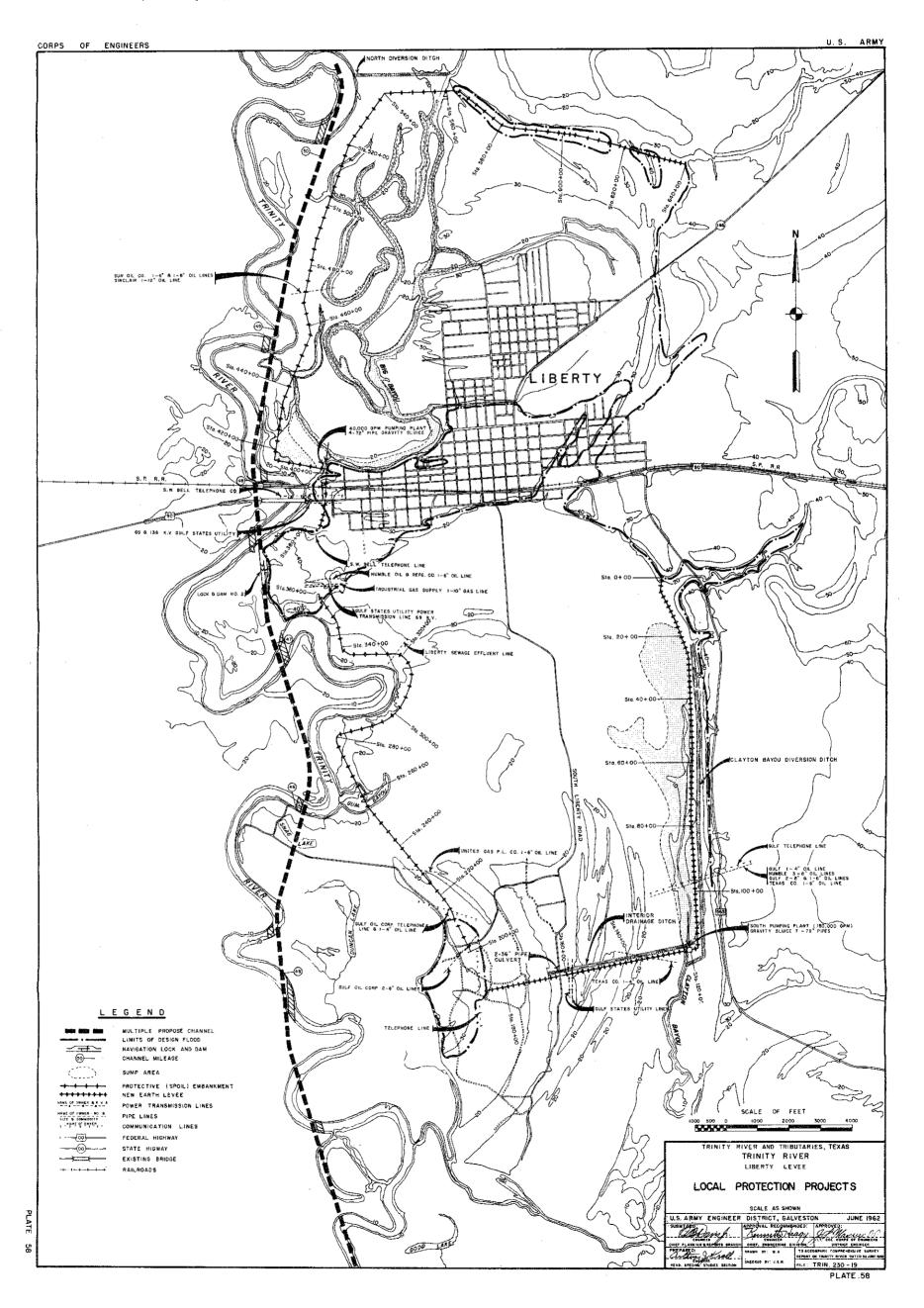
LEGEND

-	NAVIGATION AND FLOOD CONTROL CHANNEL
	DESIGN WATER SURFACE
	HIGH WATER LINE (MAXIMUM OF RECORD)
<u></u>	NAVIGATION LOCK AND DAM
<u>64</u>	RIVER MILEAGE
64)-+-	CHANNEL MILEAGE
` •	CORE BORINGS
•	AUGER BORINGS
	FILL AREA
	SUMP AREA
++++	NEW EARTH LEVEES
****	NEW EARTH LEVEES `EXISTING LEVEES
+++++ +	
· • • • • • • • • • • • • • • • • • • •	" EXISTING LEVEES
	* EXISTING LEVEES STRENGTHEN EXISTING LEVEES
w	* EXISTING LEVEES STRENGTHEN EXISTING LEVEES FEDERAL HIGHWAY
- <u>@</u> -	* EXISTING LEVEES STRENGTHEN EXISTING LEVEES * FEDERAL HIGHWAY STATE HIGHWAY
	* EXISTING LEVEES STRENGTHEN EXISTING LEVEES * FEDERAL HIGHWAY STATE HIGHWAY INTERSTATE HIGHWAY
 	* EXISTING LEVEES STRENGTHEN EXISTING LEVEES * FEDERAL HIGHWAY STATE HIGHWAY INTERSTATE HIGHWAY FARM TO MARKET ROAD


	TRINITY RIVER AND TRIBUTARIES, TEXAS DALLAS FLOODWAY
	MULTIPLE PURPOSE CHANNEL
	LOCAL PROTECTION PROJECTS
t	SCALE OF FEET
i	2000 0 2000 4000
	U.S. ARMY ENGINEER DISTRICT, FORT WORTH JUNE 1962
	WElload Approval RECOMMENDED APPROVED West
	ENGINEER COULS BRANCE CHEF, ENGINEER COL. CORPS OF CHEMEREN
	PREPARED
	HEAD SOCIAL STUNIES STOTION CHECKED BY: JHL. FILE TONI 230-10

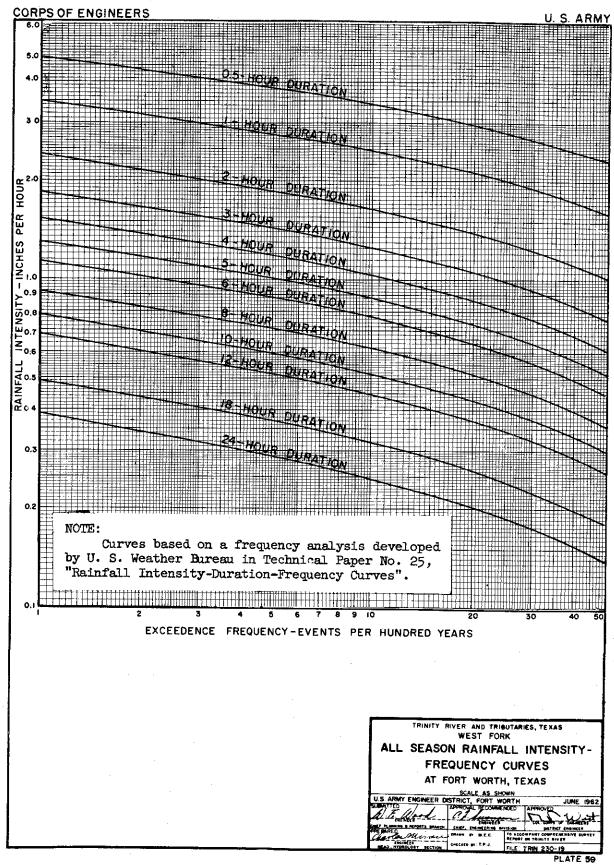
j. | د . 、 |

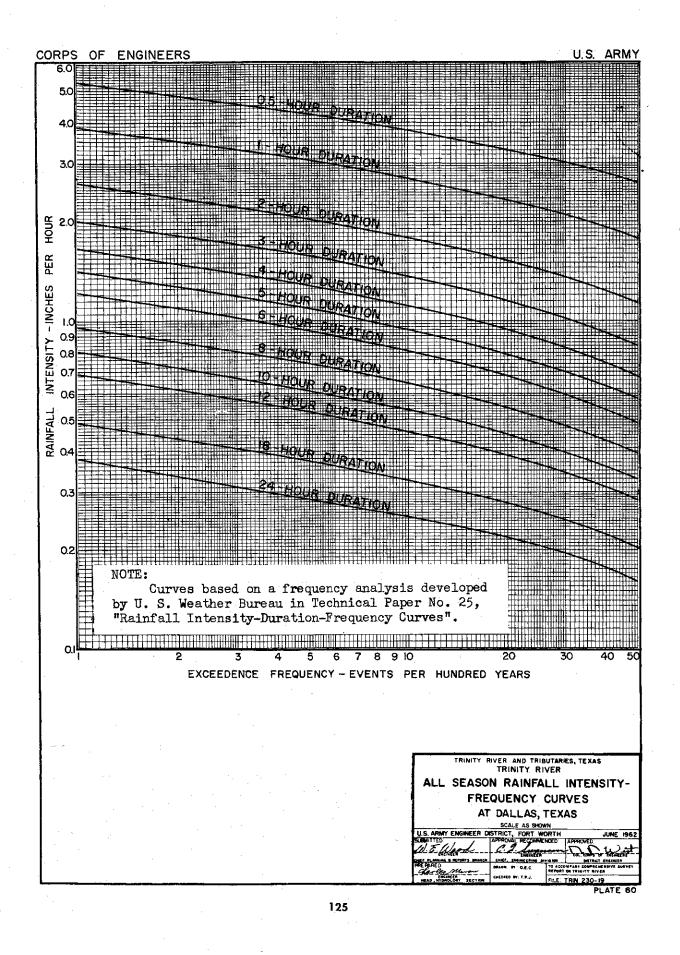
U.S. ARMY


DRAINAGE.	DRAINAGE AREA		SLUICES			SUMPS			
AREA AND SUMP	ACRES	SQ.MI.	NO. REQ'D	SIZE	INVERT EL.	DAMAGING STAGE EL.	BOT TOM EL.	CAP. AT DAMAGING STAGE EL. AC-FT	DESIGN FLOOD WATER SURFACE EL
Δ	5,114	7.99	5	6' X 6'	375	365	374	2,250	385.0
8	1,376	2.15	3	5' X 5'	375	385	374	620	384.5
C-I	2,41	3.77	4	5' X 5'	375	390	374	1,100	389.0
C-2	535	0.84	1	4 X 4	375	400	374	250	393.2
D-I	3,736	5.84	3	5 X 5	375	390	374	1,800	369.7
D-2	1,634	2.55	1	5' X 5'	375	390	374	800	388,0

LEGEND

	NAVIGATION AND FLOOD CONTROL CHANNEL
	DESIGN WATER SURFACE
<u> </u>	HIGH WATER LINE (MAXIMUM OF RECORD)
<u>∠</u> ∓≻	NAVIGATION LOCK AND DAM
64) }2_	RIVER MILEAGE
(64)-1-2	CHANNEL MILEAGE
~ @	CORE BORINGS
•	AUGER BORINGS
	FILL AREA
	SUMP AREA
*****	NEW EARTH LEVEES
**** *	EXISTING LEVEES
₩ - ≜ -7	STRENGTHEN EXISTING LEVEES
—@ —	FEDERAL HIGHWAY
<u>—@</u> —	STATE HIGHWAY
(35E)	INTERSTATE HIGHWAY
(<u>157</u>]	FARM TO MARKET ROAD
	EXISTING BRIDGE
<u> </u>	COUNTY LINE
— — —	GRAVITY FLOW DRAINAGE STRUCTURE


Channes and the									
TRINITY RIVER AND TRIBUTARIES, TEXAS									
MULTIPLE PUMPOSE CHANNEL									
LOCAL PROTECTION PROJECTS									
LOOPE I NOTEOTION ENOUEOIS									
SCALE OF FE	FT								
		1962							
APPROVAL RECOMME	NOED: APPROVED	· · · ·							
C. J. Swen	controlle).	.+							
ENGOVEEN		8							
0.0 C.C.	REPORT ON TRINITY RIVER								
CHECHED BY: J.H.L.	FILE: TRIN. 230-19								
	STRICT, FORT W APPROVAL FECTION SCALE OF FE STRICT, FORT W APPROVAL FECTION COLOR FECTION COLOR FECTION COLOR FECTION DESTRICT, FORT W APPROVAL FECTION COLOR FECTION DESTRICT, FORT W APPROVAL DESTRICT, FORT W APP	S FLOODWAY EXTENSION TIPLE PURPOSE CHANNEL PROTECTION PROJECTS SCALE OF FEET 2020000000000000000000000000000000000							


52-704 O-65 Vol. III (Face blank p. 122) No. 7

122. INITIAL LOSSES AND INFILTRATION INDICES - INTERIOR DRAINAGE AREAS. - The studies of initial losses and infiltration indices for the Upper Trinity River Basin previously discussed in paragraph 102 were used as a basis for adoption of an initial loss of 0.5 inch and an infiltration index of 0.05 inch per hour for the interior drainage areas of the West Fork and Elm Fork Floodways and the Dallas Floodway extension. An initial loss of 1.0 inch and an infiltration index of 0.10 inch per hour was adopted for the interior drainage areas for the flood protection at Liberty, Texas.

123. RAINFALL INTENSITY-DURATION. - All-season rainfall intensityfrequency curves for durations of from one-half to twenty-four hours for the U. S. Weather Bureau first-order stations at Fort Worth, Dallas, and Houston are shown on plates 59, 60, and 61, respectively. These curves are based on a frequency analysis developed by the U. S. Weather Bureau and presented in Technical Paper No. 25, "Rainfall Intensity-Duration-Frequency Curves, (December 1955).

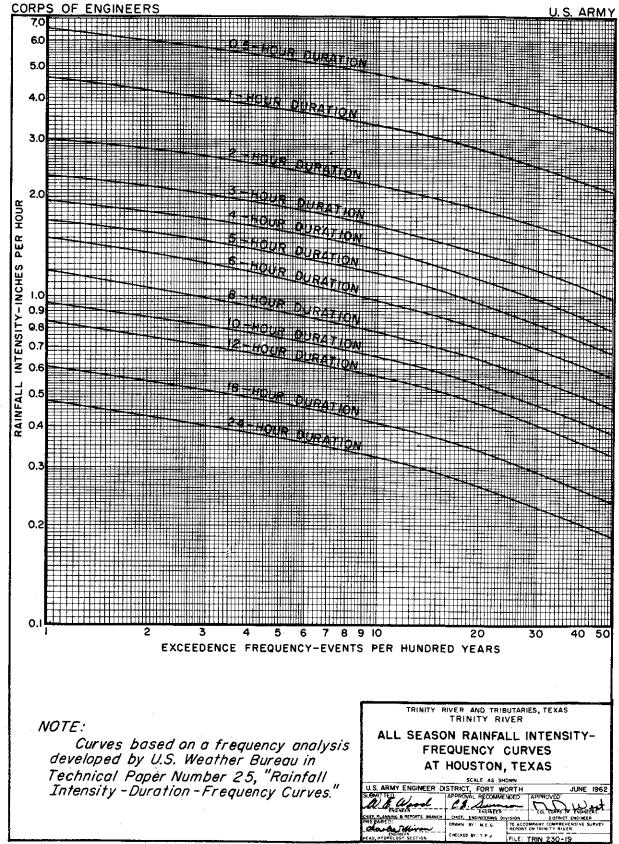


PLATE 61

124. Rainfall intensity-frequency studies were also made to determine the rainfall of 100-year frequency that might be expected to occur coincident with river flows at or above the gate-closing stages for proposed sluices in the three floodway areas. The recommended operating discharges on the West Fork, Elm Fork, and the Trinity River at Dallas are 12,000; 12,000, and 20,000 second-feet. respectively. During the passage of major floods, these flows will be experienced within the floodways for prolonged periods of time. The inverts of the gravity sluttes on the West Fork and the Trinity River at Dallas were established at or near the flow-line elevations resulting from the recommended operating discharges. In the case of the Elm Fork a discharge of 8,000 second-feet was used to establish the inverts of the gravity sluices; however, this will be adjusted during preconstruction planning stages to satisfy flow conditions for 12,000 second-feet. The stage produced by the operating discharge on each of these streams has been assumed to be the gate-closing stage for the gravity sluices. The periods when river flows were at or above the assumed gate-closing stages in each of the three floodway areas were determined from hydrographs (as modified by the existing and recommended upstream reservoirs) at Grand Prairie, Carrollton, and Dallas for the period 1924-1957. The daily increments of rainfall occurring during each of these periods of gate closure were determined from observed records at rainfall stations at or near each of the three floodway areas. Coincident rainfall intensity-frequency curves on the West Fork (Grand Prairie), the Elm Fork (Carrollton), and for the Dallas Floodway extension were then constructed from the above data in accordance with the graphical method set forth in Civil Works Engineer Bulletin 52-24, dated August 26, 1952 ("Statistical Methods in Hydrology," by Leo R. Beard). Coincident 100-year rainfall intensity curves for the West Fork and Elm Fork Floodways, and the Dallas Floodway extension are shown on plates 62, 63, and 64,respectively. Rainfall-frequency studies were also made to determine the rainfall that might be expected to occur coincident with river flows of 35,000 second-feet or more at Liberty, Texas. During the passage of major floods, flows of 35,000 second-feet or more would be experienced at Liberty for prolonged periods of time. The above discharge was, therefore, assumed to produce river stages at which the gravity drainage structures would be closed at Liberty. The periods when river flows were at or above a discharge of 35,000 second-feet were determined from hydrographs (as modified by existing and recommended upstream reservoirs) at Romayor, Texas, for the period 1924-1957. No frequency analysis was made at the Liberty gage, because this gage is affected by tidal conditions. The Romayor gage is located approximately 50 river miles upstream from Liberty with only a 400-square mile reduction in drainage area; it was therefore concluded that information relative to flows at the Romayor gage was applicable at Liberty. The daily incre-ments of rainfall occurring during each of the periods of flow of 35,000 second-feet or more were determined from records of observed rainfall at Liberty, Texas. A coincident rainfall-frequency curve for the Trinity River at Liberty was then constructed from the above data in accordance with the graphical method set forth in Civil Works Engineer Bulletin 52-24, and is shown on plate 65.

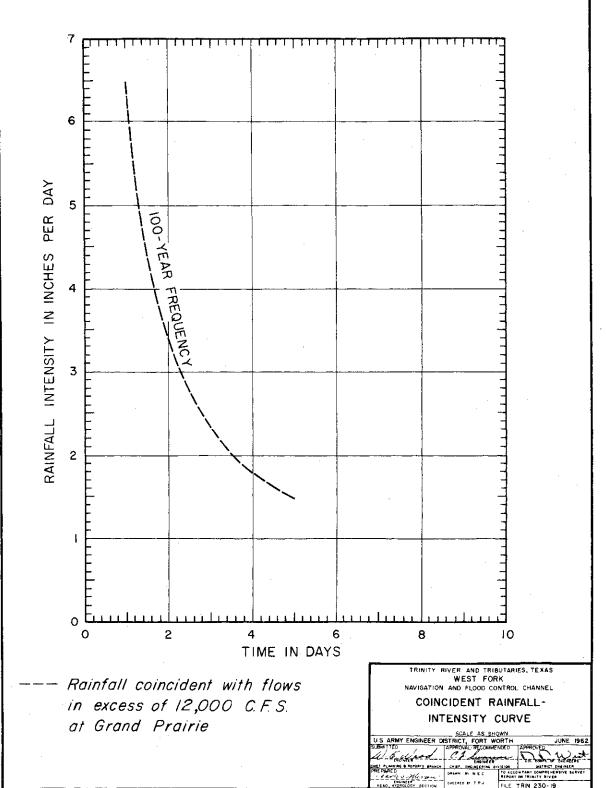
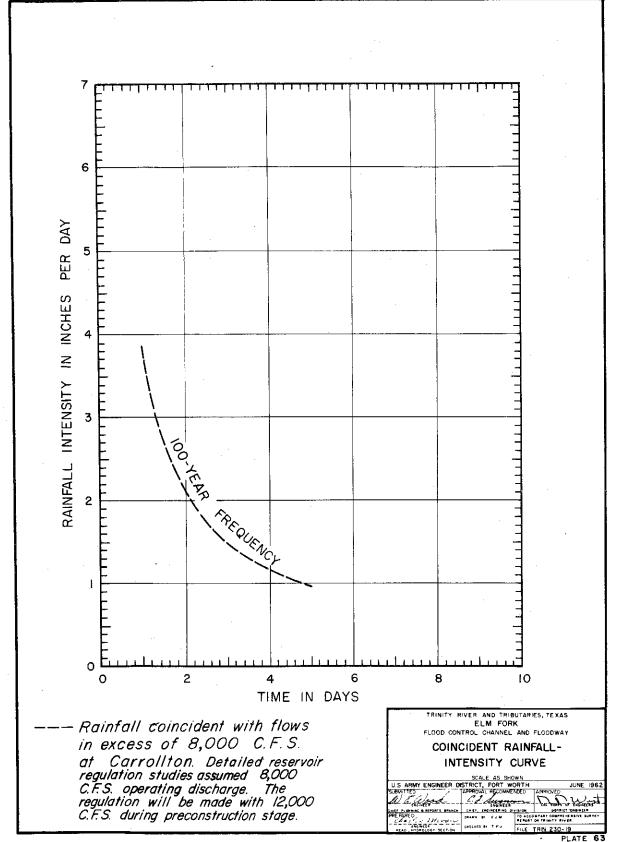
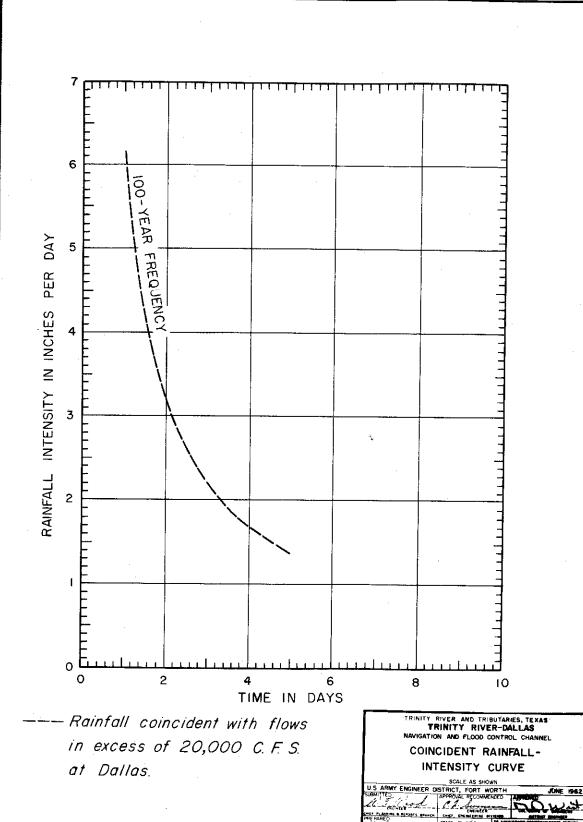
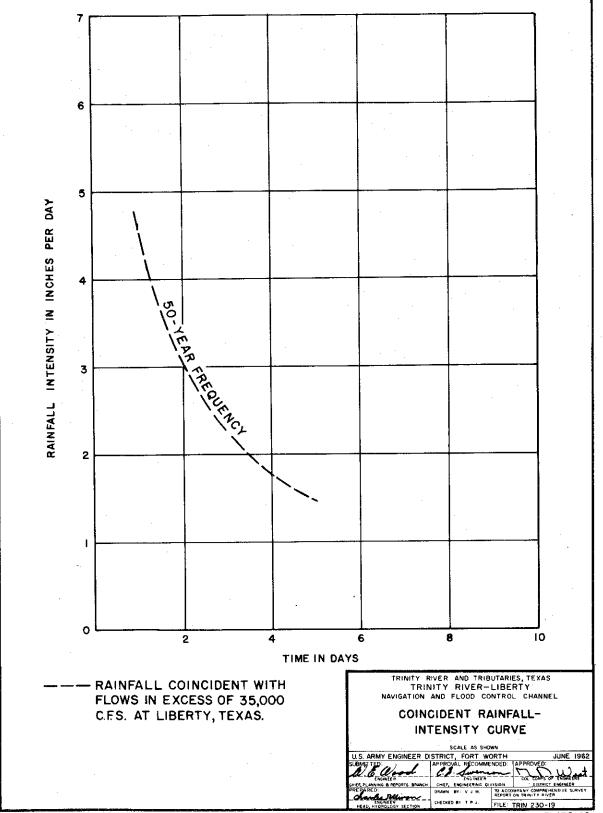




PLATE 62

CORPS OF ENGINEERS


U, S. ARMY

CORPS OF ENGINEERS

U.S. ARMY

PLATE 64

CORPS OF ENGINEERS

PLATE 65

U.S. ARMY

131

125. DESIGN STORM FOR INTERIOR DRAINAGE FACILITIES. -The urban development within the areas to be protected by recommended levees on the West Fork, Elm Fork, and the Dallas Floodway extension consists principally of high-valued, concentrated, commercial or industrial facilities with some moderate to high-valued residential sections in the vicinity of the Dallas Floodway extension. The criteria for design of interior drainage facilities in urban areas are set forth in a preliminary manuscript of EM 1110-2-1410 (Engineering Manual, Civil Works Construction, Part CXIV, Chapter 10, dated August 1955, subject "Interior Drainage of Leveed Urban Areas"). In accordance with information therein, the areas to be protected would be classified as class U-1 (urban commercial). The storm resulting from a 100-year frequency rainfall has, therefore, been adopted as the design storm for proposed gravity drainage facilities on the West Fork and Elm Fork Floodways, and the Dallas Floodway extension. The future urban development anticipated within the area to be protected by the recommended levee on the Trinity River at Liberty would consist of moderate to high-valued residential areas with some commercial and industrial sections. In accordance with the criteria set forth in the above referenced engineering manual, this area would be classified as class U-2 (urban, general). Interior drainage from the leveed areas would pass through gated outlet structures in the levees during periods when gravity drainage is feasible and by pumping during periods when the flow of the Trinity River is at or above 35,000 second-feet at Liberty. The excess rainfall resulting from the 100-year frequency rainfall has been adopted as the design storm for proposed gravity drainage facilities at Liberty during periods of low flows. The excess rainfall resulting from the 50-year coincident rainfall has been adopted as the design storm for pumping facilities at Liberty during periods when flows of 35,000 second-feet or more are experienced at Liberty.

126. Plates 59 and 60 show all-season rainfall intensity-frequency curves for Fort Worth and Dallas, respectively. However, for a storm of 100-year frequency there are only minor differences between the Fort Worth and Dallas curves. Therefore, all-season rainfall of 100-year frequency has been determined utilizing the Dallas curves and adopted for the design of gravity drainage facilities at the recommended Upper Trinity River floodway projects. The incremental rainfall amounts based upon the curves of plate 60 have been arranged substantially in accordance with the criteria presented on plates 10 and 11 of EM 1110-2-1411 ("Standard Project Flood Determinations"). An initial loss of 0.50 inch and an infiltration index of 0.05 inch per hour were used in determining the rainfall-excess. The rainfall amounts at Liberty were distributed in a similar manner. The losses given in paragraph 122 were used in determining the rainfall-excess at Liberty. The 100-year all-season rainfall and rainfall-excess adopted for the design of gravity drainage facilities are shown in tables 58 and 59.

TABLE 58

 Time in			0 6		9 8	Rainfall-	
l-hour		Rainfall	о. 0	Loss	*	excess	
periods	•	(inches)	n o	(inches)	¢ a	(inches)	
1		0.01		0.01		0	
2		0.02		0.02		0	
3		0.03		0.03		0	
2 3 4		0.04		0.04		Ö	
5 6		0.05		0.05		0	
6		0.06		0.06		0	
7 8		0.13		0.13		0	
8		0.14		0.14		0	
9		0.15		0.07		0.08	
10		0.16		0.05		0.11	
11		0.17		0.05		0.12	
12		0,20		0.05		0.15	
13		0.28		0.05		0.23	
14		0.64		0.05		0.59	
15		1.35		0.05		1.30	
16		3.87		0.05		3.82	
17		0.90		0.05		0.85	
18		0.35		0.05		0.30	
19		0.12		0.05		0.07	
20		0.11		0.05		0.06	
21		0.10		0.05		0.05	
22		0.09		0.05		0.04	
23		0.08		0.05		0.03	
24		0.07		0.05		0.02	
Total	۰.	9.12		1.30		7.82	

DESIGN STORM RAINFALL & RAINFALL-EXCESS FOR GRAVITY DRAINAGE FACILITIES UPPER TRINITY RIVER BASIN 100-YEAR FREQUENCY

TABLE 59

Time in : 2-hour : periods :	Rainfall (inches)	: Loss : (inches)	6 0 0 8 8 8	Rainfall- excess (inches)
1	0.10	0.10		0
2	0.14	0.14		õ
	0.18	0.18		Ō
3 4	0.26	0.26		0
5	0.40	0.32		0.08
5 6	0.62	0.20		0.42
7	1.80	0.20		1.60
8	6.00	0.20		5.80
9	1.00	0.20		0.80
10	0.50	0.20		0.30
11	0.30	0.20		0.10
12	0.22	0.20		0.02
Total	11.52	2.40		9.12

DESIGN STORM RAINFALL AND RAINFALL-EXCESS FOR GRAVITY DRAINAGE FACILITIES - LIBERTY 100-YEAR FREQUENCY

127. DESIGN FLOOD CRITERIA FOR INTERIOR DRAINAGE FACILITIES.-The interior drainage areas that will be created by construction of the recommended levees are shown on plates 52 through 58. The design flood hydrograph for gravity drainage of each interior drainage area was obtained by applying the rainfall-excess values shown in tables 58 and 59 to the appropriate unit hydrograph for each area shown in tables 54 through 57.

128. Gate-closing stage for each interior drainage area was established as set forth in paragraph 124. Sufficient sump storage has been provided in each interior drainage area of recommended floodways on the Upper Trinity River Basin to store the runoff resulting from the 100-year frequency storm rainfall that would occur coincident with the gate-closing stages on the individual streams without exceeding the damaging stage in each sump area. The capacity of the proposed sumps was established as follows: The coincident rainfall intensity curves described in paragraph 124 and shown on plates 62, 63, and 64 were used to determine the 100year storm rainfall, which was then arranged substantially in accordance with the criteria presented on plates 10 and 11 of EM 1110-2-1411. Application of an infiltration rate of 0.05 inch per hour to the storm rainfall produced runoff within the interior

drainage areas of the West Fork and Elm Fork Floodways and Dallas Floodway extension of 5.61; 3.14; and 5.18 inches, respectively. Sufficient sump and pump capacity has been provided in the Big Bayou and Clayton Bayou interior drainage areas of the Liberty project to handle the runoff resulting from the 50-year storm rainfall that would occur coincident with gate-closing stages without exceeding the damaging stages within the two sump areas. The coincident rainfall intensity curve shown on plate 65 was used to determine the 50-year storm rainfall and an arrangement was adopted similar to that used for the Upper Trinity River local protection projects. Application of an infiltration rate of 0.10 inch per hour to the storm rainfall produced runoff of 3.75 inches.

129. Utilizing the sump and pump capacities established by the methods set forth in the preceding paragraph, each gravity sluice was then sized to pass the design flood hydrograph resulting from 100-year all-season rainfall (see paragraph 125) with free discharge at the outfall without exceeding the minimum damaging stage within the sump areas. Tables 60 through 63 summarize pertinent data for each interior drainage area on the West Fork, Elm Fork, Dallas Floodway extension, and at Liberty, respectively.

·	a a	: Recon	mended	: Recom	mended sum	p
	:	: gravity	sluices	*	6 5	:Capacit
	:Drainage	2:	:Number	:	e 0	: at
Area	: area	: Invert	: and	: Bottom	:Damaging	:damagin
designation	:(square	elevation		:elevation	n: stage	: stage
	: miles)	:(ft-msl)	:(feet)	:(ft-msl)	:(ft-msl)	:(ac-ft)
A	1.35	399.0	1-5x 5	398.0	415.0	450
B-1	1.05	399.0	1-4x4	398.0	422.0	350
B-2	3.62	401.0	1-6x6	400.0	422.0	1,150
C	7.81	399.0	2-6x6	398.0	426.0	2,350
D	3.55	427.0	1-6x6	426.0	456.0	1,100
E	2.33	455.0	1-5x5	454.0	477.0	750
F	3.05	455.0	1-6x6	454.0	474.0	1,000
G	1.84	455.0	<u>1-4x4</u>	454.0	478.0	600
H	1.73	483.0	1-6x6	482.0	495.0	550
I	2.07	483.0	1-6x6	482.0	500.0	650
J	0.77	483.0	1-4x4	482.0	500.0	250
K	2.29	483.0	1-5x5	482.0	505.0	700

TABLE 60

WEST FORK INTERIOR DRAINAGE AREAS - PERTINENT DATA

	Invert elevation (ft-msl) 401.0			: :Damaging :stage :(ft-msl) 415.0	: stage):(ac-ft)
area : quare : diles) :	: Invert :elevation :(ft-msl) 401.0	: and h: size :(feet)	: Bottom :elevation :(ft-msl)	1: stage :(ft-msl)	: at g:damagin : stage):(ac-ft)
quare : iles) : 1.41	elevation (ft-msl) 401.0	n: size :(feet)	:elevation :(ft-msl)	1: stage :(ft-msl)	g:damagin : stage):(ac-ft)
<u>iles):</u> 1.41	401.0	:(feet)	:(ft-msl)	1: stage :(ft-msl)	: stage):(ac-ft)
1.41	401.0	<u></u>	:(ft-msl)	:(ft-msl)):(ac-ft)
		3-5×5	400.0		······
		3-5×5	400.0	has o	
4 67				-+LJ+U	250
4•0 <u>⊥</u>	401.0	6~5x5	400.0	416.0	800
1.99	405.0	3-5×5	404.0	421.0	350
3.72	406.0	3-6x6	405.0	423.0	650
5.84	408.0	5-6x6	407.0		1,000
5.82	411.0	5-6хб			1,000
4.25	417.0	- 5~5x5			750
2.66	418.0	3-6x6	417.0		460
	3.72 5.84 5.82 4.25	3.72 406.0 5.84 408.0 5.82 411.0 4.25 417.0	1.99 405.0 3-5x5 3.72 406.0 3-6x6 5.84 408.0 5-6x6 5.82 411.0 5-6x6 4.25 417.0 5-5x5	1.99 405.0 3-5x5 404.0 3.72 406.0 3-6x6 405.0 5.84 408.0 5-6x6 407.0 5.82 411.0 5-6x6 410.0 4.25 417.0 5-5x5 416.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

ELM FORK INTERIOR DRAINAGE AREAS - PERTINENT DATA

TABLE 62

DALLAS FLOODWAY EXTENSION INTERIOR DRAINAGE AREAS - PERTINENT DATA

	•	: Recomm	nended	: Reco	ommended a	sump
	6 6	: gravity	sluices	_:	¢	:Capacity
Area	:Drainage		:Number	• •	0 0	: at
designation	: area	: Invert	: and	: Bottom	: Damaging	g:damaging
	:(square	:elevation		:elevation		: stage
	<u>: miles)</u>	:(ft-msl)	:(feet)	:(ft-msl)		:(ac-ft)
A	7.99	375.0	5 - 6x6	374.0	385.0	2,250
в	2.15	375,0	3-5x5	374.0	385.0	620
C-1	3.77	375.0	4-5x5	374.0	390.0	1,100
C-2	0.84	375.0	1-4x4	374.0	400.0	250
D-1	5.84	375.0	3~5×5	374.0	390.0	1,800
D-2	2.55	375.0	1-5x5	374.0	390.0	800
					~ *	

	•	: Recomm		•	:Recomme	ended sump
	:	: gravity			0 9	:Capacity
Area	:Drainage	**	:Number	:Recommende	d:	: at
designation	1: area	: Invert	: and	: pumping	:Maximur	n:maximum
-	:(square	:elevatio	n: dia.	: capacity	: stage	
	: miles)	:(ft-msl)	:(feet)	: g.p.m.	:(ft-msl):(ac-ft)
Big Bayou	3.07	12.6	4 - 6	40,000	18.6	400
220 24/04	51		. –		_	
Clayton Ba	vou 5.43	5.3	7 - 6	150,000	11.3	290
	/ou /5		, –			

LIBERTY INTERIOR DRAINAGE AREAS - PERTINENT DATA

CHANNELS

130. GENERAL. - Three basic requirements must be met in the design of the channels on the Trinity River and tributaries. These requirements are navigation, reservoir regulation, and flood control. A channel for navigation would be of sufficient depth and width to accommodate the modern barge navigation required to transport the prospective commerce on the canal. Channels for reservoir regulation purposes would be of sufficient capacity to pass such reservoir releases as were necessary to accomplish evacuation of the flood-control storages in upstream reservoirs within a 30 to 40-day period. The objective with regard to flood control for agricultural areas would be, when economically feasible, to provide 50-year protection against floods originating on the uncontrolled areas below upstream reservoirs.

131. Channel capacities on the Trinity River below Dallas vary from about 9,000 second-feet in the vicinity of Rosser, up to 53,000 second-feet in the vicinity of Riverside, and then down to 20,000 second-feet in the vicinity of Liberty. Under present conditions of watershed development, with the existing reservoirs in operation, flows at or above bankfull capacity originating from runoff on the uncontrolled area are experienced on an average of once a year at Rosser and Liberty, and once about every 4 years at Riverside. Each year the operation of flood-control reservoirs in the Upper Trinity River Basin points up the deficiency of channel capacity prevalent in streams below the reservoirs. As a result of this channel deficiency, flooding is frequently produced by the occurrence of storms over the uncontrolled area and regulated flood releases from the reservoirs must be reduced or stopped entirely in order to keep flooding at a minimum. Thus, the effectiveness of the flood-control storage in upstream reservoirs is seriously impaired. The problems of flood control and reservoir regulation have been magnified by increased economic development in the flood plains. In addition to damages produced directly by overflow from the Trinity River, serious losses in numerous levee districts are sustained from interior flooding attributable to the inability of drainage structures to discharge local runoff into the river during high stages. Further details of these problems and the requirements necessary for their correction are set forth in the following paragraphs.

132. NAVIGATION CHANNEL. - Channel-size formulation studies for navigation show that a channel having a depth of 12 feet and a bottom width of 150 feet would be the most economical for modern barge navigation required to transport the prospective commerce on the canal. However, the conveyance capacity of such a navigation channel would be inadequate to appreciably reduce the water surface elevation of the Trinity River during major floods and, therefore, would not alleviate flooding in the problem areas. Also, the limited conveyance capacity of the navigation channel would not be of sufficient capacity for the anticipated operating discharges required to evacuate the flood-control storages of the multi-purpose reservoir system within a reasonable period after a major flood. Since channel requirements for flood control and reservoir regulation generally exceed the requirements for the navigation channel, no further consideration has been given to the requirements for navigation only.

133. CHANNEL REQUIREMENTS FOR RESERVOIR REGULATION.- In establishing channel capacities for reservoir regulation purposes, consideration was given to the period required for the evacuation of flood-control storages from upstream reservoirs. The retention of flood-storage accumulations in the reservoirs reduces their ability to control succeeding floods. Consequently, an increase in downstream channel capacities would make higher releases possible, would reduce the emptying time, and thus provide a more effective utilization of the flood-control capacity in the reservoirs. An emptying time of from 30 to 40 days is considered desirable for reservoirs in the Trinity River Basin.

134. A channel deficiency presently exists on the East Fork where the capacity is only 500 to 1,200 second-feet, although under the present plan for Lavon Reservoir, regulation is made to 2,000 second-feet on the East Fork downstream from the dam. However, a channel capacity of 5,000 second-feet has been recommended in the "Review of Reports on Trinity River and Tributaries, Texas, Covering the East Fork Watershed," dated November 1, 1961. Another critical area is on the Trinity River in the vicinity of Rosser where the existing channel capacity is only 9,000 second-feet. Under the present plan of regulation for the Upper Trinity River reservoirs, regulation is to 13,000 second-feet at Dallas and this discharge, when combined with the previously recommended 5,000 second-feet on the East Fork, would produce a regulated flow of 18,000 second-feet at Rosser. Under the plan of improvement set forth in this report, the recommended Lakeview Reservoir would contribute an additional 4.000 second-feet, thereby increasing the regulation at Dallas and Rosser to 17,000 and 22,000 second-feet, respectively. On the Trinity River below the recommended Tennessee Colony Reservoir the minimum bankfull capacity is 20,000 second-feet in the vicinity of Liberty.

135. During flood periods releases from the Corps of Engineers reservoirs will be augmented by releases from local interest reservoirs and by uncontrolled releases from Soil Conservation Service reservoirs. Among local interest reservoirs, the system of reservoirs on the West Fork above Fort Worth will probably make the largest contribution. During the 1957 floods Lake Worth spilled for over 2 months with the daily spills averaging about 5,000 second-feet. Investigations based upon preliminary data indicate that the combined releases from existing and proposed Soil Conservation Service reservoirs on the West Fork of the Trinity River upstream from Dallas will be about 2,000 second-feet with an additional contribution of about 3,000 second-feet between Dallas and Rosser. A similar investigation of the area below Tennessee Colony Reservoir indicates that combined releases from Soil Conservation Service reservoirs in this area will amount to about 4,000 second-feet plus an additional spill from the long-range water supply reservoirs of about 6,000 second-feet.

136. As set forth in paragraph 134, the present operating discharges at Dallas and Rosser, when corrected for releases from the recommended Lakeview and enlarged Lavon Reservoirs, would increase the regulation at Dallas and Rosser to 17,000 and 22,000 second-feet, respectively. Further increase in the channel capacities by 7,000 second-feet at Dallas and 10,000 second-feet at Rosser would provide additional capacity for releases from other reservoirs, as set forth in paragraph 135. The required channel capacities for reservoir regulation would then be 24,000 and 32,000 second-feet at Dallas and Rosser, respectively. A channel capacity of about 35,000 second-feet would be required below Tennessee Colony Reservoir for flood-control releases from that reservoir. The additional contribution of 4,000 second-feet from downstream Soil Conservation Service reservoirs plus the 6,000 second-feet from the long-range water supply reservoirs (see paragraph 135) would bring the total channel capacity required for reservoir regulation on the Lower Trinity River to 45,000 second-feet.

Based on the data presented in paragraphs 133 through 136, 137. it is concluded that the channel capacities shown in table 64 would meet the combined requirements for reservoir regulation. The existing channel capacities and the recommended operating discharges are also shown in table 64. Flood routing studies made for this report were based on a regulation to only 8,000 second-feet (existing channel capacity) on the Elm Fork at Carrollton. The recommended channel capacity was subsequently increased to 15,000 second-feet with a recommended operating discharge of 12,000 second-feet at Carrollton. Since the operating discharge of 20,000 second-feet at Dallas would not be changed, the principal effect of the additional channel capacity on the Elm Fork would be to provide for an increase in flood releases from the reservoirs on the Elm Fork watershed and a reduction in those from Benbrook and Lakeview Reservoirs on the West Fork watershed. Such a regulation would generally affect only the recession side of the modified hydrographs downstream and would have little, if any, effect on modified peak discharges below the reservoirs. For this reason, further routings are not considered necessary for the purposes of this report.

CHANNEL	REQUIREMENTS	FOR	RESERVOIR	REGULATION
---------	--------------	-----	-----------	------------

Reach	:bankf :city-	ge min. : ull capa- existing: cfs) :	Recommended channel capacity (cfs)	: Recommended : operating : discharge : (cfs)
Clear Fork Trinity		8,000	8,000	6,000
West Fork Trinity		•,		r
Fort Worth to mouth of Elm 1	Fork	7,000	15,000	12,000
Mountain Creek			~ ~	·
Lakeview Damsite to mouth		4,000	4,000	4,000
Elm Fork Trinity			•	-
Denton Cr, Grapevine Dam to	mouth	6,000	7,000	6,000
Elm Fork, Lewisville Dam to				
Carrollton Gage		8,000	10,000	8,000
Carrollton Gage to mouth of	Elm	-		
Fork		8,000	15,000	12,000(1)
Trinity River				
Dallas Gage	J	13,000	25,000	20,000
East Fork Trinity				
Forney Damsite to mouth	500	0-1,200	5,000	5,000
Trinity River				
Rosser Gage		9,000	32,000	25,000
Richland Creek				
Navarro Mills Dam to mouth		3,000	3,000	3,000
Chambers Creek)
Waxahachie Creek to mouth		4,000	4,000	4,000
Waxahachie Creek				0.000
Bardwell Damsite to mouth		2,000	2,000	2,000
Trinity River				ک ک ک ک ک ک
Oakwood Gage		24,000	45,000(2	
Liberty Gage		20,000	45,000	35,000

(1) Operating discharge of 8,000 second-feet used in flood-routing studies for this report.

(2) The proposed SCS plan of development does not provide for retardation structures on the Trinity River Basin below Romayor. Therefore, the full effect of combined releases from reservoirs in the SCS plan and the long-range water supply reservoirs would be experienced only in the reach of the river from Romayor to the mouth. This report recommends a channel capacity of 45,000 second-feet for reservoir regulation purposes in all reaches of the Trinity River below Tennessee Colony Damsite. However, in preconstruction planning studies, consideration will be given to varying the channel capacity from 45,000 second-feet in the vicinity of Romayor to about 35,000 second-feet immediately below Tennessee Colony Damsite. 138. The time required for the evacuation of the flood-control storage of the reservoirs in the recommended plan, based upon the recommended operating discharges of table 64, are shown in table 65.

TABLE 65

Reservoir	: : Flood-control : storage : (ac-ft)		: Time required :for evacuation :of flood-control : storage (days)
Benbrook Lakeview Roanoke	76,550(1) 136,700 223,700)	6,000 4,000	7 18
Grapevine Aubrey Garza-Little Elm	47,300) 258,300) <u>331,600</u>	- 12,000	
T	otal 860,900	12,000	37
Lavon (enlarged) Tennessee Colony	275,600 2,144,300	5,000 35,000	28 31

TIME REQUIRED FOR EVACUATION OF FLOOD-CONTROL STORAGE

(1) Flood-control storage below uncontrolled notch (elevation 710.0).

139. CHANNEL REQUIREMENTS FOR FLOOD CONTROL. - The objective with regard to the design of flood-control channels for agricultural areas in this report is to provide 50-year protection against floods originating on the uncontrolled area below upstream reservoirs, when economically feasible. The average minimum bankfull capacity of existing channels and the channel capacities required (in conjunction with the recommended reservoirs) to give varying degrees of flood protection to problem areas on the Trinity River and tributaries are given in table 66.

:m Reach :c :	um bankful] apacity of existing	L-: Channel c : required : agai : 10-year : s):frequency:	to provide nst flood 25-year	of 50-year
Elm Fork, Lewisville Dam				
to Carrollton	8,000	8,200	13,200	18,100
Denton Creek below		4		·
Grapevine Dam	6,000	4,600	7,000	9,000
Trinity River, Five Mile				
Creek to head of				
Tennessee Colony Reservoir	- /	36,000	50 ,00 0	61,000
Trinity River below Tennesse	e			·
Colony Damsite (2)	20,000	31,500	39,300	43,000

CHANNEL REQUIREMENTS FOR FLOOD CONTROL

(1) In conjunction with recommended reservoirs.

(2) Most critical area in vicinity of Liberty.

140. MULTIPLE-PURPOSE CHANNEL REQUIREMENTS. - After due consideration of the channel requirements for navigation, reservoir regulation, and flood-control purposes presented in the preceding paragraphs, it was concluded that the channel requirements for reservoir regulation, shown in table 64, would be adopted as the basis for design of the multiplepurpose channel. Further studies for the multiple-purpose channel revealed that realignment of the channel required for navigation should be made in certain reaches of the river in order to provide improved conveyance of flood flows.

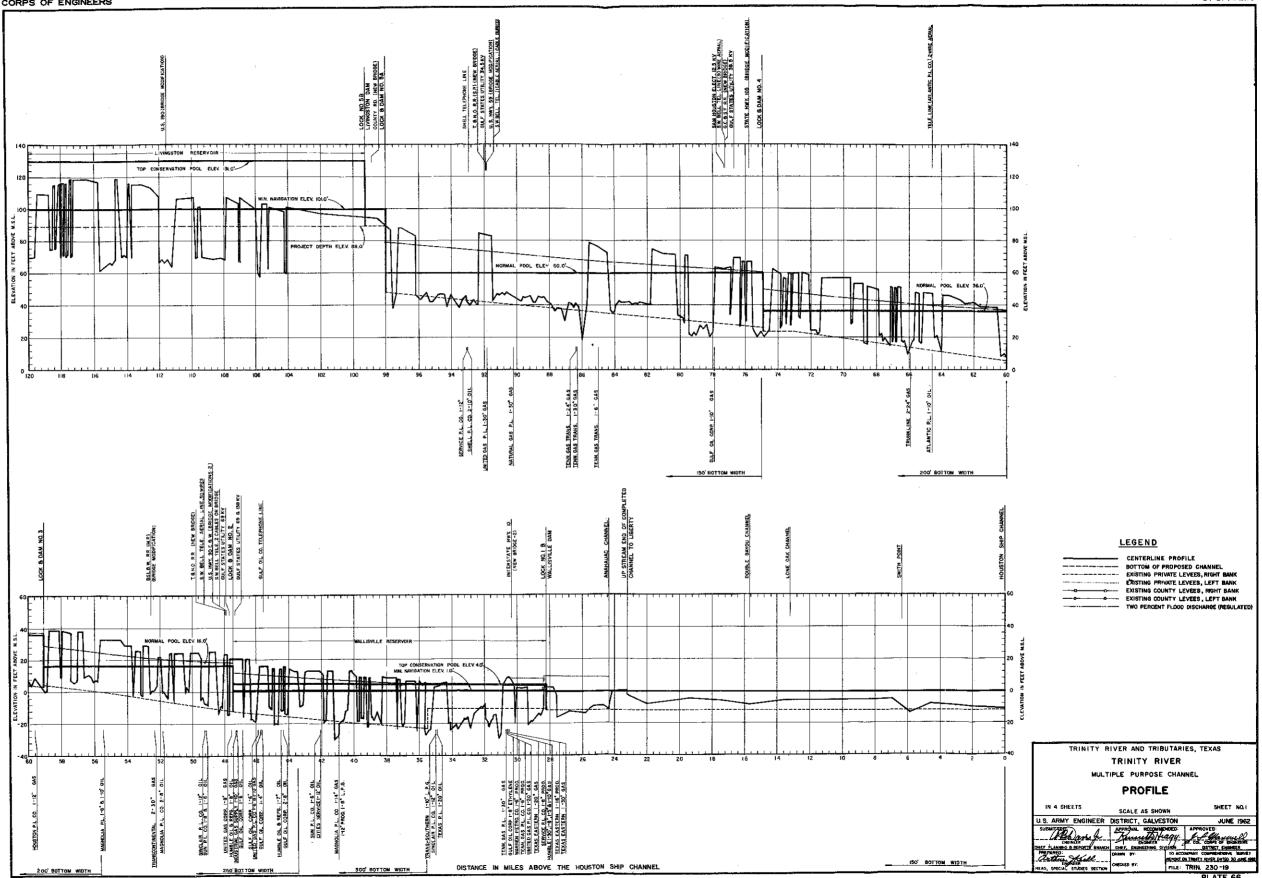

141. Generally, the channel requirements for reservoir regulation control in establishing the capacity of the multiple-purpose channel. However, greater channel capacities would be required for flood control rather than reservoir regulation purposes in the following reaches: the Elm Fork between Lewisville Dam and Carrollton, Denton Creek below Grapevine Dam, and the Trinity River between Five Mile Creek and the head of Tennessee Colony Reservoir. Consideration was given to affording greater flood protection to these areas by providing for additional channel enlargement or levees, but such a plan could not be economically justified. The recommended channel would provide for draining of leveed areas while flood-control releases from upstream reservoirs would be in progress and would afford varying degrees of protection against flooding which would result from storms originating on the uncontrolled area below the upstream Reservoirs. Table 67 shows the degree of flood protection presently afforded to agricultural areas on the Trinity River and tributaries by the existing channel and reservoirs, and the degree of protection that would be provided by the recommended multiple-purpose channel and reservoirs. Plates 66 through 69 show the Trinity River multiple-purpose channel profiles.

TABLE 67

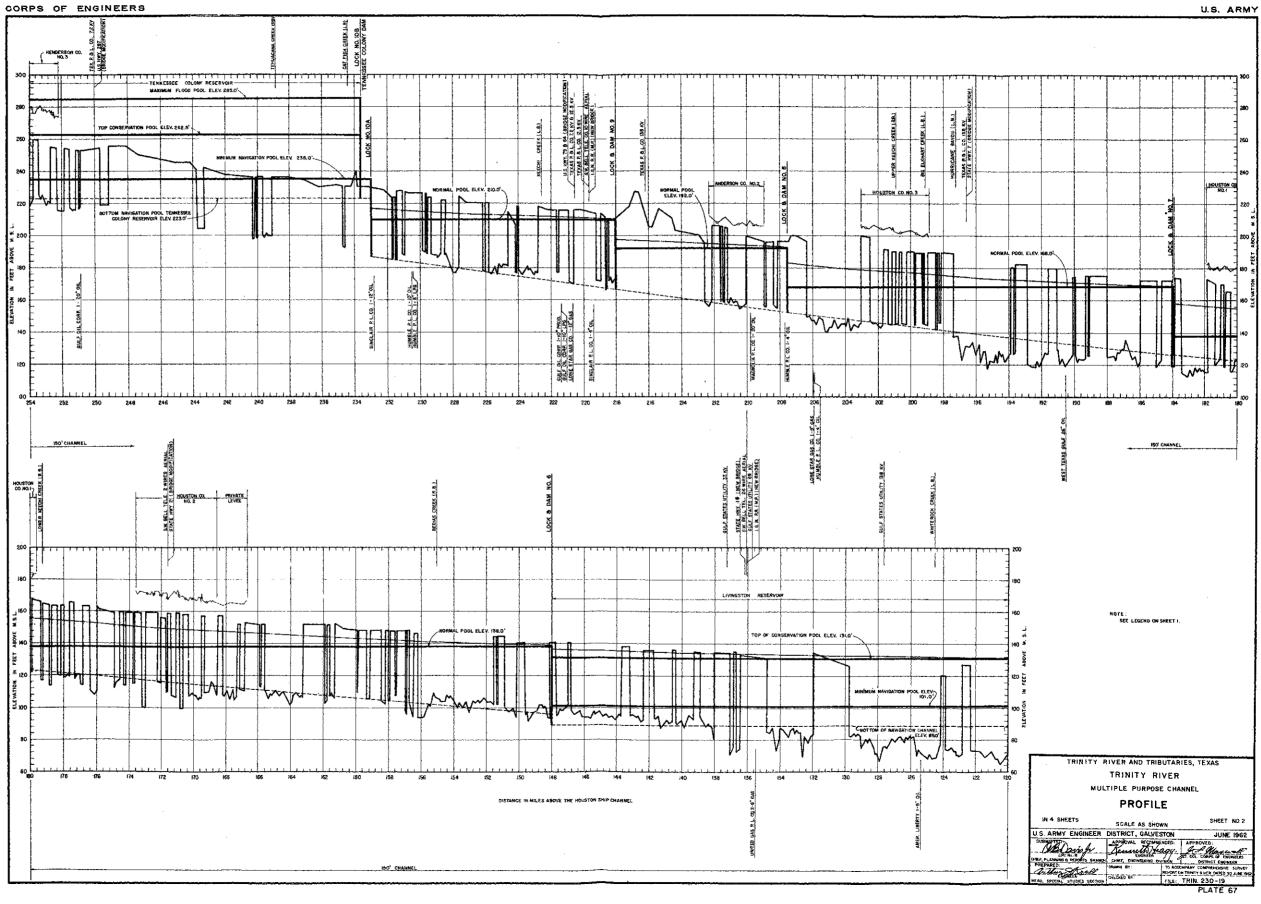
DEGREE	OF	PROTECTION	UNDER	EXISTING	CONDITIONS
		AND RECON	MENDEI) PLAN	

Reach	:Average : :minimum : :channel : :capacity:	conditions Frequency of floods at of above chan- nel capacit (years)	of: or: Channel y:capacity	:Frequency of :floods at or :above channel : capacity
	• (010/ •	(96213)	<u>° (стр)</u>	(years)
Elm Fork, Lewisville Dam to Carrollton	8,000	9	10,000	14
Denton Creek below Grapevine Dam	6,000	17	7,000	25
Trinity River Five Mile Creek to head of Tennessee Colony				
Reservoir	9,000	1	32,000	8
Tennessee Colony Damsite to river mile 313.4	24,000	l	45,000	90
River mile 313.4 to river mile 207.9	34,000	3	45,000	80
River mile 207.9 to river mile 96.4	53,000	· 14	45,000	70
River mile 96.4 to mouth of Trinity River	20,000	l	45,000	60

144

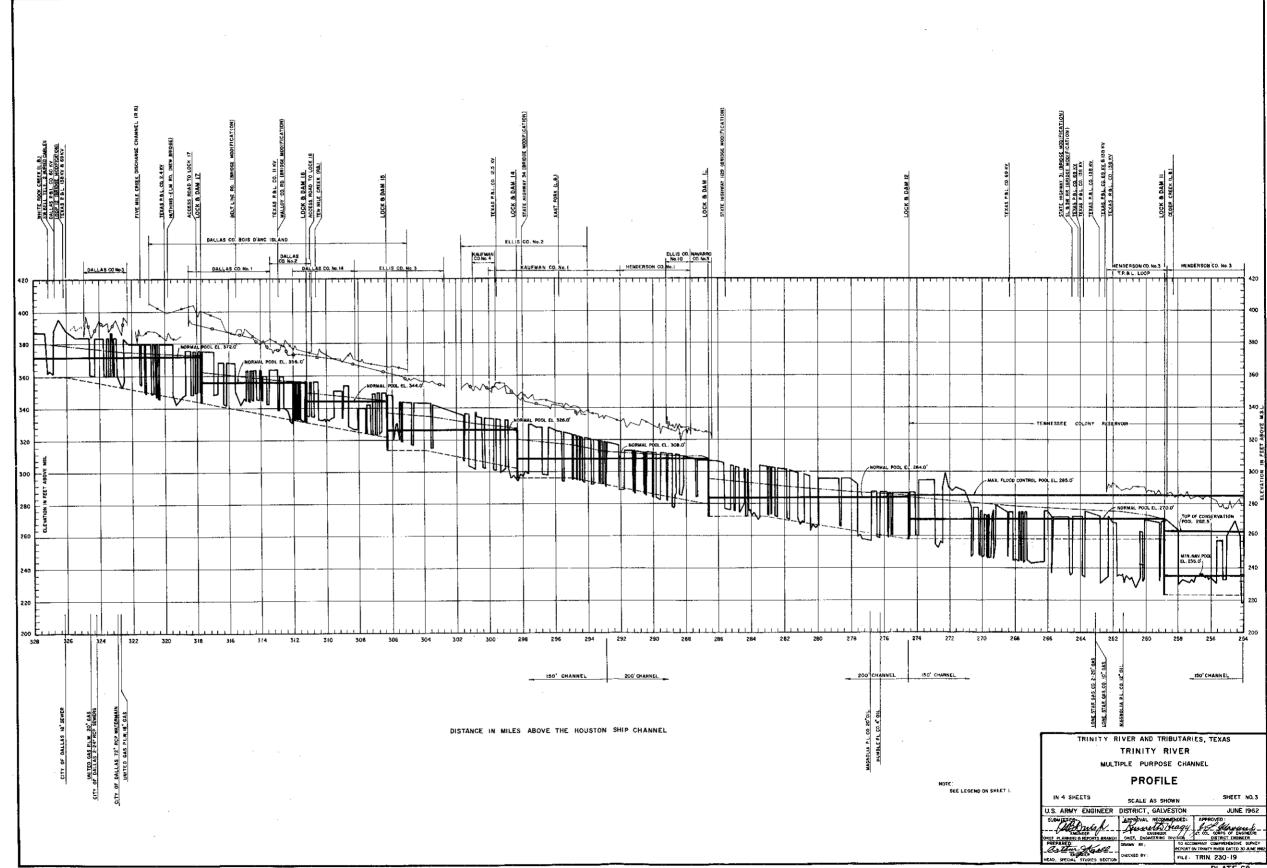
144) No. ġ, (Face III Vol. 0-65 52-704

-


CORPS OF ENGINEERS

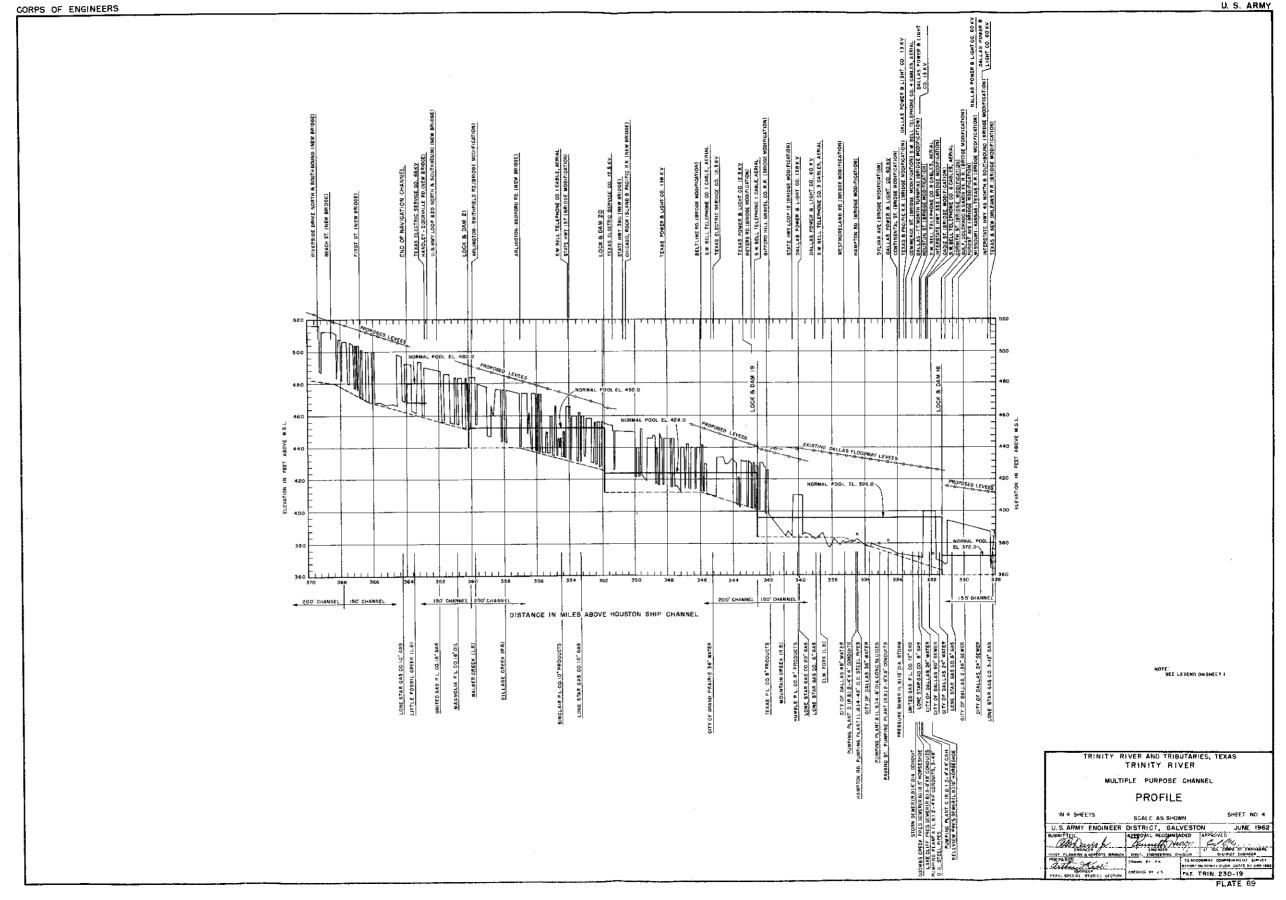
U. S. ARMY

PLATE 66


.

. .

No. 144) à (Fa Ш Vol. 65 Ó 704 52-


51

3 No. p. 144) (Face Η Vol. 0-65 J 52-704

CORPS OF ENGINEERS

PLATE 68

.

4 144) No. ġ, (Face Vol. III -65 ò 52-704

ά.

U. S. ARMY

- -- -----

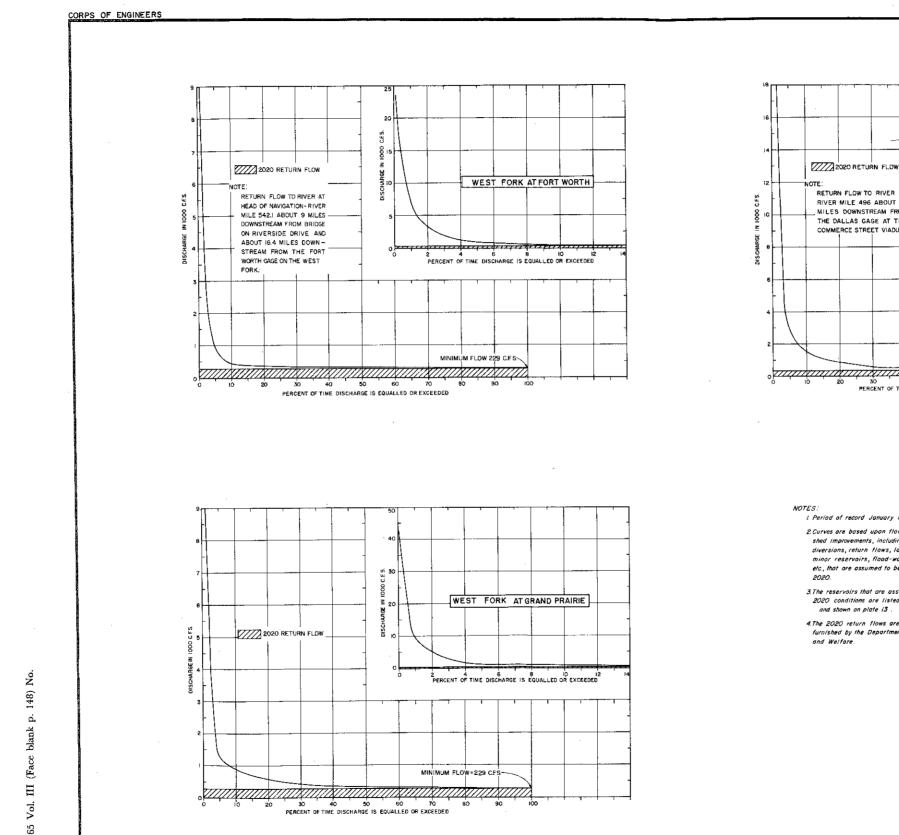
- .
-

- .

- .

- .
- - - - - *

142. INTERIOR DRAINAGE - EXISTING LEVEE DISTRICTS. - There are 16 operating levee districts adjacent to the Trinity River below Dallas. Pertinent data on these levee districts are presented in table 5. River discharges which would prevent operation of the gravity sluices in each of the levee districts were determined from discharge-frequency data at gages in the vicinity of the levee districts. Based on these studies, it was estimated that drainage through the gravity sluices would be blocked at each of the levee districts at least once a year under existing conditions.


143. Similar studies were made assuming the recommended multiplepurpose channel and recommended reservoirs in operation. With the recommended plan of development on the basin, it was found that several of the gravity sluices would be permanently blocked by the water impounded in the navigation pools. The levee districts thus affected would be as follows: Kaufman County No. 4; Dallas County No. 1; Dallas County No. 2; Ellis County No. 2; Kaufman County No. 1; Henderson County No. 1; Navarro County No. 3; Ellis County No. 10; and Houston County No. 2. In addition, the gravity sluice of the Henderson County District No. 3 would be below the operating level of Tennessee Colony Reservoir and would be blocked. Gravity sluices in the remaining levee districts above Tennessee Colony Reservoir would be provided with about 10-year protection against blocking at the recommended operating discharges in the channel. In the remaining levee districts below Tennessee Colony Reservoir, 40- to 50-year protection would be provided against the blocking of gravity sluices at the recommended operating discharges. Under the recommended plan of improvement, these levee districts which would be permanently blocked by the navigation pools would be provided with pumping facilities to evacuate floodwater from their interior areas.

144. SEDIMENT IN MULTI-PURPOSE CHANNEL. - The flow of the West Fork and the Trinity River from Fort Worth downstream will pass through the system of locks and dams recommended for the multiple-purpose channel. Under full development of the water resources these flows would be largely contained within the canalized multi-purpose channel consisting of a system of navigation pools formed by movable dams in the channel and in the Tennessee Colony, Livingston, and Wallisville Reservoirs. The sediment that will enter the proposed multiplepurpose channel will come from various sources. Some sediment will pass through upstream reservoirs. However, most of it would be contributed by uncontrolled drainage areas. An appreciable amount of sediment inflow would also originate as a result of propeller wash causing bank erosion or from bank slides occurring in the deeply entrenched channel sections. Sediment inflow from upstream reservoirs and from uncontrolled areas as determined as set forth in paragraph 90. Quantities of sediment inflow due to bank erosion or slides cannot be determined accurately; however, it is recognized that these may add up to considerable yardage.

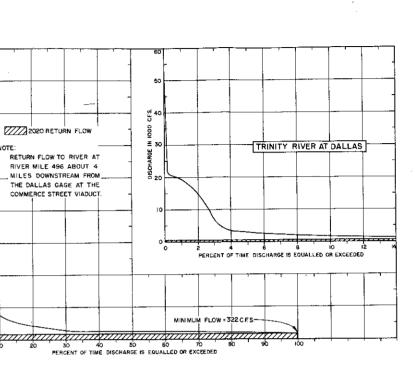
145. SEDIMENT DEPOSITION .- Flows in the recommended multiplepurpose channel would exceed bankfull capacities only on rare occasions. Inspection of tables 69 and 70 indicates that the operating discharges of the multiple-purpose channel would be equalled or exceeded only about 0.8 percent of the time upstream from Livingston Dam (Pool No. 5B) and 2.7 percent of the time downstream therefrom. The additional within bank capacity that would be available between the operating discharge and the recommended minimum channel capacities would result in even shorter durations. Consequently, only a minimum amount of sediment deposition would occur outside the channel. In the case of the reach above Lock and Dam No. 12, in Tennessee Colony Reservoir, it was assumed for the purpose of this study, that about 25 percent of the total sediment load produced in each reach between locks of the multiple-purpose channel would be deposited in the channel and that the remaining 75 percent of the sediment would be transported downstream. Total sediment inflow estimated above Lock and Dam No. 12 is 1,700 acre-feet per annum, of which 425 acre-feet per annum would be deposited in the channel and 1,275 acrefeet per annum would flow into Tennessee Colony Reservoir. An additional amount of sediment roughly estimated to equal at least 25 percent of the anticipated annual sediment yield (425 acre-feet per annum) would also be deposited in the channel as a result of bank erosion, slides, and propeller wash. It was assumed that about half of the total sediment deposited in the channel (425 acre-feet per annum) would be picked up during floods and while regulated releases are in progress and transported within the channel to be deposited in Tennessee Colony Reservoir. Thus, the resulting total sediment inflow above Lock and Dam No. 12 would be 1,700 acre-feet per annum. It was further assumed that about half of the total sediment brought in above Lock and Dam No. 12 (850 acre-feet per annum) would be deposited in the channel in Tennessee Colony Reservoir and the other half would be distributed elsewhere in the reservoir. The material deposited in the channel and about 250 acre-feet per annum produced in the reach between Lock and Dam No. 12 and Tennessee Colony Dam, or, a total of 1,100 acre-feet per annum would have to be dredged in order to maintain the minimum required channel depth and alignment. In the case of the channels in the reaches above the Livingston and Wallisville Reservoirs, most of the sediment would be brought into the channels and transported into the respective reservoirs.

146. EFFECTS ON DESIGN WATER SURFACE.- Sediment deposited in the multiple-purpose channel that would have to be dredged or removed would be spoiled along the old river channels and banks in the vicinity of the channel. The effects of sediment deposition in the restricted overbank areas of the leveed floodways were estimated to result in an increase in the design water surface of about 0.5 foot. The corresponding increase in the wider, unleveed floodplain would be even less. The maximum increase in the hydraulic flow line would not be effective until after 100 years of operation of the entire system. In view of the ample freeboard provided by the proposed levees it is felt that no allowance was necessary in the levee grade or design water surface for this encroachment.

147. FLOW-DURATION STUDIES. - Water resource data for 2020 conditions of basin development were used to determine the runoff at selected stream-gaging stations for the period January 1924 through June 1957. Daily routing studies were made assuming the full system of existing and proposed reservoirs were in operation. Municipal, industrial, and irrigation water requirements for the year 2020 as determined by the Department of Health, Education and Welfare were supplied from existing and proposed reservoirs. The flow-duration curves are shown on plates 70 and 71.

Ó 704

52-


à

źo

and shown on plate 13 .

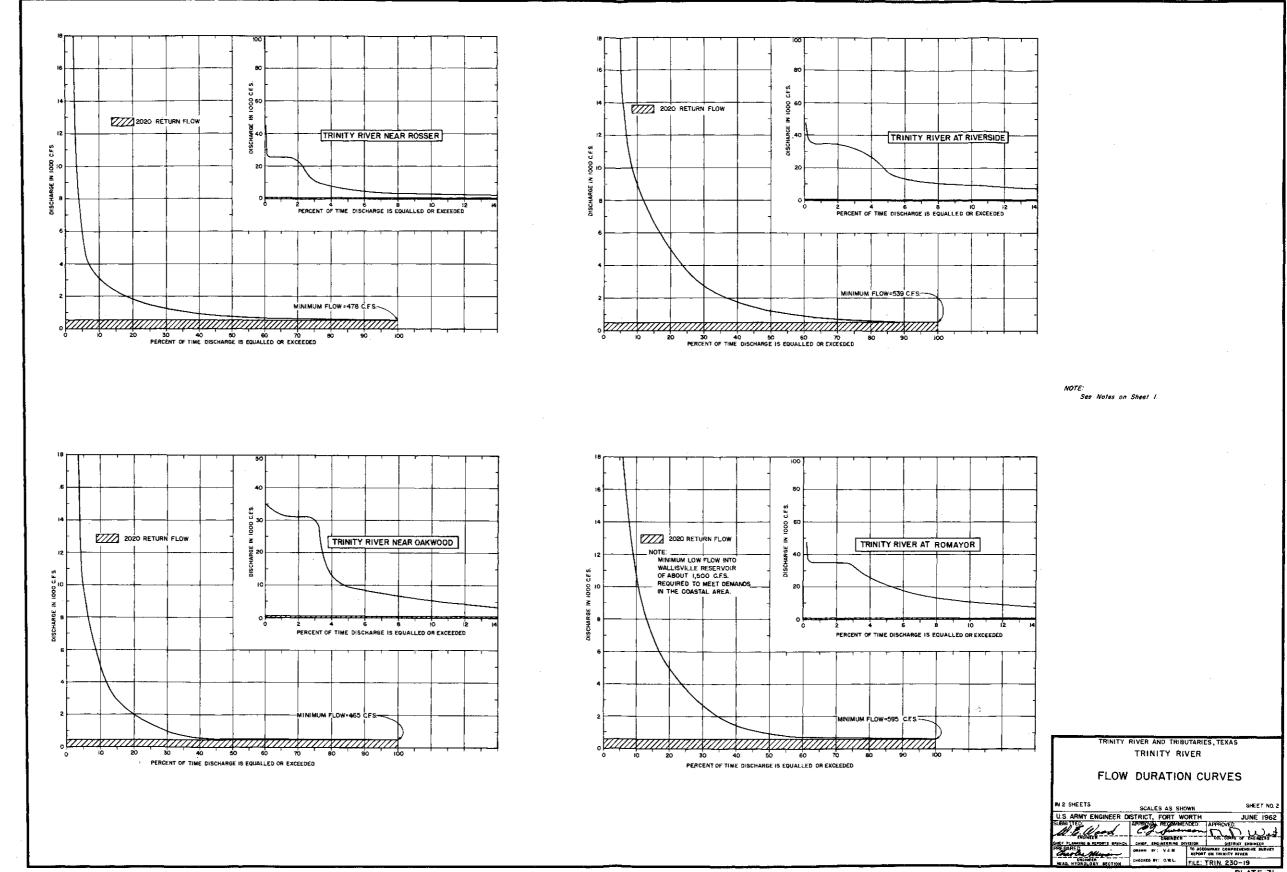
and Welfare.

U.S. ARMY

1 Period of record January 1924 through June 1957. 2.Curves are based upon flows resulting from watershed improvements, including major reservoirs, diversions, return flows, land treatment, ponds and minor reservoirs, flood-water relarding structures, etc., that are assumed to be effective in the year

3.The reservairs that are assumed operative under 2020 conditions are listed on tables 2,4,15 8.16

4. The 2020 return flows are based on estimates furnished by the Department of Health, Education


----- ..

. ______.

RINITY RIVER AND TRIBUTARIES, TEXAS TRINITY RIVER

FLOW DURATION CURVES

IN 2 SHEETS	SCALES AS SHOT	SHEET NO H	
U.S. ARMY ENGINEER D			JUNE 1962
10 Ellined	APPROVAL RECOMMEN	IDED:	APPROVED:
CHIEF PLANNING & REPORTS BRANCH	ENGINEER CHIEF, ENGINEERING DIV	15100	COL. CORPS OF ENGINEERS
PREPARED:	QRAWN BY: V,2 M.		PANY COMPREHENSIVE SURVEY ON TRINITY RIVER
ENGINEER READ. HYDROLOGY SECTION	CHECKED BY: OWL	FILE:	TRIN, 230-19

5 °. 148) ŗ. blank (Face Π Vol. 65 Ó 704 52CORPS OF ENGINEERS

5

PLATE 71

~ -

-

· · · ·

148. NAVIGATION DESIGN FLOOD. - The reference plane for measuring vertical bridge clearances in nontidal waters (as set forth in EM 1145-2-320 dated March 22, 1962) should normally be referred to the water stage or elevation which is not exceeded more than two percent of the time. The flow-duration curves of plates 70 and 71 were used to establish flows which would not be exceeded more than two percent of the time. Discharges for the navigation design flood used to establish the two percent flow line are shown in the following tabulation:

Gaging station	: Discharge equalled or : exceeded 2% of time : (cfs)
Fort Worth	3,200
Grand Prairie	5,000
Dallas	14,000
Rosser	23,000
Oakwood	31,000
Riverside	34,000
Romayor	35,000

149. DEPTH OF WATER AVAILABLE FOR NAVIGATION. - Table 68 shows the proposed normal elevations of the various navigation pools of the multiple-purpose channel and the depth of water in feet between the normal pool elevations and the design gradients of the multiple-purpose channel at the approach and discharge channels adjoining the movable navigation dams. These depths would be available during the occurrence of low and medium low flows. Depths of 15, 42, and 39.5 feet in Pools Nos. 1, 5B and 10B would prevail under conditions of full conservation storage in the Wallisville, Livingston, and Tennessee Colony Reservoirs, respectively. When conservation storage in these reservoirs would be fully depleted, a depth of 12 feet would be provided for navigation through these reservoirs. During passage of high flows, such as the two percent flood discharges (regulated), operating discharges, or the minimum channel discharges, the depths of water in the various pools would be increased due to backwater conditions in the channel. The extent of backwater depth in the various pools for the two percent flood discharges (regulated) is shown graphically on plates 66 through 69. These graphical presentations show that the depths of water available for navigation in the various pools are materially increased during periods of high flows in the channel.

TABLE 68

PERTINENT DATA CONCERNING PLAN OF IMPROVEMENT FOR MULTIPLE-PURPOSE TRINITY RIVER CHANNEL TO FORT WORTH, TEXAS

		unnel		nnel dime		:Channel ca	pacity(cfs)		Normal po		T = = 2+	Section of a			annel dimer		:Channel cap	acity(crs):	D 1	Rormal pool	
	Channel mile(1)	: Length : (miles)	: Elevation : : (MSL)	(feet)	: Grade : (%)	: Operating : discharge	: Minimum : design	· FOOL	: Elevation	: [feet](2)	% dam	: Channel : mile(1)	: Length (miles)	: ELEVATION : (MSL)	(feet)	: Grade	: Operating : discharge			: Elevation : : (MSL) :	
	Marat (2)	. (11100)	<u>. (Ani) .</u>	(1000)	<u>·</u>				. (1007	. (1000/10/				- (/////		·				. (11000
	0.0		-13.36(3)					Tidal	0.0	13.36		_		8110 666	a				100	262.5	20 E
		28.3		150	None	Хопе	Rone				11	2 58.91		223.0(18 258.0	· ·			· · · · · · · · · · · · · · · · · · ·	108	270	39.5
	28.3(4)-		-43.36(3) -11.0 (5)					Tidel	<u>0</u>	<u>13.36</u> 15.0			15.60(19)		150	None	28,000	35,000			
		7.20		150	None	35.000(6) 45,000(6)	-	4 ·	19.0	12	274 51		258.0 258.0					12	270	12.0
	35-50(T)		<u>-11.0 (5)</u> -23.0						4	15.0			8.89		200	0.02982	25,000	32,000			
	3777617	8.00	-23.0	300	0.01585	35,000	45,000		4	27.0		283.40		272.0						284	12.0
	43.50		-16.31	300	0.01,07	35,000	4,,,,,,,,		4	20.31			3.24	212.0	200	None	25,000	32,000		204	12.0
	43.90		-16.31				1				13	286.64~~~		272.0			.,		12	264	12.0
		3.95	-13.0	250	0.01585	35,000	45,000	1	h	17.0			6.36	278.0	000	0.04078			13	308	30.0
	47.45 —		-13.0 -13.0					2	16	17.0			0.30	291.69	200	0.040 (0	25,000	32,000		308	16.3
		8.25	- 1.3	250	0.02687	35,000	45,000		16			293.00	2.00		150	0.04078	25,000	32,000			
	55.70		- 1.3						10	17.3		295.00-	3-38	296.00	150	None	25,000	32,000		308	12.0
		3.38	•	200	0.02587	35,000	45,000				14		96.6	296.0	170	Butte	27,000	32,000	13	308	12.0
	59.08 -		3-5					2	<u>16</u> 36	12.5	14	298.38		302.0	·	> -> ->			14	326	24.0
		13.92	3.7	200	0.02799	35,000	45,000	2		(، يو			5.62	314.0	150	0.04044	25,000	32,000		326	12.0
	73.00 -	· · · · · · · · · · · · · · · · · · ·	24.0						36	12.0		304.00	2.31		150	None	20,000	27,000			
	1	1.85	24.0	200	None	35,000	45,000				15	306.31-		314.0			-		14	326 344	12.0 22.0
	74,85	-	24.0	200	140-2	J)/000	.,,,	3	36 50	12.0		2 2	4.94	322.0	150	0.03451	20,000	27,000	15	344	22.0
	1410)		26.0	150	0.0180	35,000	45,000	- 4	60	34.0	16	311.25		331.0				-,,	15	344 356	<u>13.0</u> 25.0
	of al. (8)	22.09	46.99	150	0.0190	35,000	45,000		60	13.01			6.56	331.0					16	356	25.0
	90.94(0)	3.94(10)		150	0.0180	35,000(9)	45,000(9)				17	317.81	6.96	344.0	150	0.03753	20,000	27,000	16	156	12.0
	100.88 _		50.73						60	9.27	Ŧ(311.01		344.0					16 17	356	28.0
	96 94 —		48.0						60	12.00			8.19	360.0	150	0.03701	20,000	27,000		- 70	10.0
		1.06(11)	48.0	150	None	None	None	۶.	60	10.0		326.00(20	·) <u>5.31</u>	300.0	150	Sone	20,000	27,000		372	12.0
A	98.00		89.0						101	12.0	18	331.31		360.0		,	······		<u>+1</u>	<u>372</u> 396	12.0
		1.20(11)		150	None	None	Hone	-				40 5-	5.99	363.5	150	0.06482	20,000	25,000	18	396	32.5
В.	99.20(12)	89.0 89.0(13)				~~~	<u>5A</u>	101	42.0		337.30		384.0		0.00402	20,000	29,000		396	12.0
		48.72		150	None	35,000(9)	45,000(9)	70	-	42,0			5.21		150	None	12,000	15,000	- 0		
	147.92-		89.0(13) 95.8					<u>5</u> B	<u>131</u> 138	42.0	19	342.51-		384.0					18	396	12.0 22.0
		36.00	99.0	150	0.01589	35,000	45,000	0	138	42.2			3.49		200	0.05427	12,000	15,000	9		
r	183.92-	-	126.0					<u> </u>	1 <u>38</u> 168	12.0		346.00-	5.91	412.0	200	None	10.000	15 000		424	12.0
	• •	23.63	126.0	150	0.02083	35,000	45,000	7	168	42.0	20		2-24	412.0	200	DUXUS	12,000	15,000	19	424	12.0
	207.55	-9.09	152.0 152.0		0102003	33,000	*),000	7	168	16.0	20	351.91	5.19	426.0	200	0,051.09	12,000	15,000	20	452	26.0
	201.55		152.0					8	192	40.0		357.10-		1440.0				· ·		452	12.0
		10.40	166.0	150	0.02550	35,000	45,000	0	1.00	af 1		371110	3.07	440.0	500	None	12,000	15,000			
	217.95		166.0		········	•		<u> </u>	<u>192</u> 210	26.0	21	360.17-		440.0	··				20	452	12.0
		11.75		150	0.02643	35,000	45,000						2.63		150	0.05524	12,000	15,000			2910
	229.70(14)	182.39	150	0.02643	25 000(16)	45,000(16)		21.0	27.88		362.80(21)	458.67	150	0.05524	10,000			480	21.3
	234.60 229.70	4.9(1))	203.0		0102045	39,000(10)	45,000(10)	,	210	18.11				468.82	150	0.05524	12,000	15,000		480	11.18
	229.70		198.0						210	12.0		366.28	1.17		150	00.1000	12,000	15,000			
		3.30(17)	198.0	150	None	None	None	_	210	10.0		367.45		475.0	1.50					480	5.0
A	233.0		223.0					 10A	235	12.0			0.38	477.1	150	0.1050	12,000	15,000		480	
		0.61(17)	•	150	None	None	None					367.83	0.57		200	0.1050	12,000	15,000		400	2.9
8	233.61		223.0 223.0(18)					10A 10B	235	12.0		368.40-		480.25							·
10								100	262,5	39.5			1.39		200	0.0254	12.000	15,000			

Distance in miles from Houston Ship Channel.

 $\binom{2}{3}$

Depth of channel below elevation of normal pool. Plan of improvement provides for 12-foot channel depth below mean low tide datum which is 1.36 feet below mean sea level datum.

8

leve, darum. Lock No. 1 located in Wallisville Dam. Channel located in Wallisville Reservoir provides 12-foot mavigable depth when conservation storage in reservoir is fully depleted to elevation 1.0.

Discharge through Wallisville Reservoir gated and overflow spillways when reservoir is full to elevation 4.0. Upper limit of lands immodated by Wallisville Reservoir. Junction of flood release channel to Livingston Reservoir spillway and mavigation channel to Lock No. 5A.

Exciting of root scales training to minigotal reservoir splitwy and minigato comment to hor Discharge from gated splitwy of firingston Reservoir splitwy to channel mile 56. Alood release channel from Livingston Reservoir splitwy to channel mile 56. łο

- (10) (11) (12) (13)

Consider for instruction unity robusts in Lam Quarters in Fings on Data. Lock No. 78 located into favingston Reservoir providen 12-foot navigable depth when conservation storage of 30 fest in reservoir is fully depleted to elevation 101.0.

Junction of flood release channel to Tennessee Colony Reservoir spillway and navigation channel to Lock No. 104.

(14) (15) (16) (17) (18) Flood related that the channel of the set of

Channel for marigation only in land cut below Tennessee Colony Dam. Channel located in Tennessee Colony Reservoir provides 12-foot mavigable depth when conservation storage of

27.5, feet is fully depleted to elevation 235.0.

(19) Channel within flood-control storage pool of Tennessee Colony Reservoir provides 12-foot navigable depth throughout

pool 11. Spur channel to Dallas terminus departs northward from the multiple-purpose channel at channel mile 326.72. The spur (20) channel provides a 12-foot navigable depth below normal pool clevation 3/27 for a length of short 2 milles and terminates at a 400-foot square turning basin located about 2,000 feet north of the Texas & Hew Orleans R. crossing of the channel to Fort Worth A 'We' channel 12' x 150' connects the spur channel to the channel to Forth Worth at channel

mile 327.44. Junction of flood release channel and spur channel to Fort Worth terminus. The spur channel provides a 12-foot (21) builds to income threase therein and out the main of the value to be a the same same providers a 12-1000 moving basis about one mile south of Halton City.

(22) Downstream end of existing Fort Worth floodway at Riverside Drive Bridge.

150. DISCHARGES CONSIDERED. - Flow-duration curves for the multiple-purpose channel under 2020 conditions of watershed development (including the effects of all reservoirs presented in the plan of improvement) are shown on plates 70 and 71. Inspection of these curves reveals that the discharges occurring two percent of time are of lesser magnitude than either the operating discharges or the minimum channel capacities at the various stream-gaging stations, as shown in the following tabulation:

Gaging station	: 2 percent flood :discharge regulated : (cfs)		
Fort Worth	3,200	12,000	15,000
Grand Prairie	5,000	12,000	15,000
Dallas	14,000	20,000	25,000
Rosser	23,000	25,000	32,000
Oakwood	31,000	35,000	45,000
Riverside	34,000	35,000	45,000
Romayor	35,000	35,000	45,000

151. Operating discharges would occur more frequently and for greater periods of time than discharges at the recommended minimum channel capacities. Since the operating discharges are approximately the same as the minimum channel capacities to be provided, further discussion of the effect of large flows on navigation will be limited to the operating discharges for the multiple-purpose channel.

152. DURATION OF FLOWS AT OR ABOVE OPERATING DISCHARGES.-Table 69 shows the percent of time regulated flows in the multiplepurpose channel would equal or exceed operating discharges at each lock on the channel, based on the flow-duration curve data shown on plates 70 and 71, for the various stream-gaging stations. The data in table 69 show that flows equalling or exceeding operating discharges at the locks upstream from the Livingston Dam would occur less than one percent of time and that similar flows below the Livingston Dam would occur about 2.7 percent of time. In this reach of channel, the operating discharge of 35,000 second-feet would have a mean channel velocity of about 3.3 miles per hour. The data in table 69 reveal that the occurrence of high flows on the channel would not be of long duration and apparently would not be seriously detrimental to navigation excepting below the Livingston Dam where speed of towboats would be affected by the velocities at high flows.

TABLE 69

PERCENT OF TIME OPERATING DISCHARGE IS EQUALLED OR EXCEEDED AT PROPOSED TRINITY RIVER LOCKS & DAMS

(BASED ON FLOW DURATION CURVES FOR 2020 CONDITIONS AT DESIGNATED STREAM-

GA	GING STAT			······	
Gaging station or lock number	r :	ation	:Operating: :discharge: :at gaging:	operating is equa	discharge
			: station :		
	:mile :	mile	: (cfs) :	at gage: a	t location
Fort Worth Gage	558.3	374.9	12,000	.6	
Lock & Dam No. 21	//0.0	360.17		•••	•7
Lock & Dam No. 20		351.91			.8
Grand Prairie Gage	515.1	345.3		•8	•0
Lock & Dam No. 19	/_/	342.51		•••	•8
Dallas Gage	500.3			• 4	•0
Lock & Dam No. 18	<i></i>	331.31		• •	.4
Lock & Dam No. 17		317.81			.4
Lock & Dam No. 16		311.25			.4
Lock & Dam No. 15		306.31			.4
Lock & Dam No. 14		298.38			2
Rosser Gage	451.4	298.0	25,000	•2	
Lock & Dam No. 13		286.64			.2
Lock & Dam No. 12		274.51			•2
Lock & Dam No. 11		258.91			•2
Lock No. 10B & Tennessee Colony	v Dam	233.61			(1)
Lock No. 10A	,	233.00			$\left(\frac{1}{2}\right)$
Oakwood Gage	313.4		35,000	.1	()
Lock & Dam No. 9	0-011	217.95			.1
Lock & Dam No. 8		207.55			.1
Lock & Dam No. 7		183.92			•3
Lock & Dam No. 6		147.92			-5
Riverside Gage	182.5		35,000	•5	
Lock No. 5B & Livingston Dam		99.20			(3)
Lock & Dam No. 5A		98.00			(3) (4)
Romayor Gage	94.3	75.8	35,000	2.7	
Lock & Dam No. 4		74.85	5/,0	- ,	2.7
Lock & Dam No. 3		59.08			2.7
Liberty Gage	40.3	47.8	35,000	(5)	2.7
Lock & Dam No. 2		47.45	579000		2.7
Lock No. 1 & Wallisville Dam		28.30			2.7

(1) Lock No. 10B would be located in the west end of the Tennessee Colony Dam and in general there would be no flow in pool 10B.

(2) Lock No. 10A would be located in cut-off channel and no flow would occur in pool 10A.

(3) Lock No. 5B would be located in the west end of the Livingston Dam and in general there would be no flow in pool 5B, except in the upper end of the reservoir near the Riverside Gage.

(4) Lock No. 5A would be located in cut-off channel & no flow would occur in pool 5A.

(5) Not determined, considered same as for Romayor Gage.

153. Further information concerning the number of days that regulated discharges would equal or exceed operating discharges during a recurrence of the three major floods of record at the various stream-gaging stations under 2020 conditions of watershed development is graphically shown on the hydrographs for the floods of April-July 1942, February-May 1945, and April-July 1957 presented on plates 23 through 37. A summary of the total number of days the modified flows would be equal or exceeded the operating discharges at gaging stations, as determined from the hydrographs of the three major floods is given in the following tabulation:

		of days modified ed operating dis								
Gaging station : discharge. flood of:										
	: (cfs) :	Apr-Jul 1942	: Feb-May 1945	: Apr-Jul 1957						
Grand Prairie	12,000	3	l	1						
Dallas	20,000	8	3	1						
Rosser	25,000	17	7	1						
Oakwood	35,000	4	2	0						
Riverside	35,000	5	17	3						
Romayor	35,000	67	49	0						

154. DURATION OF FLOWS AT OR ABOVE RECOMMENDED CHANNEL CAPACITY.-Analyses of the three major flood hydrographs reveal that the modified flows exceeded the recommended minimum channel capacities at and upstream from the Rosser gaging station, as shown in the following tabulation:

	Minimum channel		of days modified ed minimum chann	
Gaging station	:capacity			
	: (cfs)	: Apr-Jul 1942	2 : Feb-May 1945	: Apr-Jul 1957
·			_	_
Grand Prairie	15,000	0	1	-L.
Dallas	25,000	24	1	1
Rosser	32,000	6	2	0
Oakwood	45,000	0	0	• 0
Riverside	45,000	0	0	0
Romayor	45,000	0	0	0

155. In connection with the data presented in the above tabulation, it is noted that the proposed multiple-purpose channel would be located within the existing and recommended leveed floodways. The flows exceeding minimum channel capacities in this reach would be confined within the leveed floodways and would probably cause cessation of navigation because of adverse overbank currents, during periods when modified flows exceed minimum channel capacities. It is believed that the modified flows in the channel downstream from the floodways would not cause cessation of navigation, based on the assumption that towboats of sufficient horsepower would be provided to move the standard barge tows of three 35- X 195-foot barges in tandem against the velocities that would accompany discharges at the minimum channel capacities.

156. VELOCITIES IN NAVIGATION POOLS. - The estimated mean channel velocities resulting from operating discharges in each of the navigation pools and the percent of time the operating discharges would be equalled or exceeded are given in table 70. The data in table 70 show that a maximum mean channel velocity of 4.6 miles per hour would exist in the upper portion of Pool No. 11 approximately 0.2 percent of time. The average mean velocity in the pools would be more than 3.6 miles per hour for a very small percent of time upstream of the Livingston Dam, and about 2.7 percent of time in the pools below the Livingston bam. The foregoing concerns the operating discharge velocities which would probably be experienced during recurrence of major floods on the multiple-purpose channel under 2020 conditions on the Trinity River Basin.

157. The percent of time that velocities of modified flows of lesser magnitude than the recommended operating discharges, are estimated to occur in the multiple-purpose channel at the various stream-gaging stations under 2020 conditions in the basin, is shown in the following tabulation. The data shown in the tabulation are based on the flow-duration curves and velocity curves for the several gaging stations.

am-gaging statio	on:(channel:0	One mile and		:Two miles
	: mile):	Less (% time):miles(% time):more (% ti
Grand Prairie	345.3	98.0	1.1	0.9
Dallas	333-9	97.0	1.0	2.0
Rosser	298.0	91.5	5.0	4.5
Oakwood	220.6	96.0	0.7	3.3
Riverside	136.1	79.0	16.2	4.8
Romayor	75.8	89.5	5.5	5.0

PERTINENT DATA CONCERNING MEAN VELOCITIES IN NAVIGATION POOLS DURING PASSAGE OF OPERATING DISCHARGE

Pool number	: :Length :Op :of pool:d: :(miles):		e 	Mean channe velocities (MPH)):Lower(2):		Percent of time operating dis- charge is equalled or exceeded
21 20 19 18 17 16 15 14 13 12 11 10B	2.63(3) 8.26 9.40 11.20 13.50 6.56 4.94 7.93 11.74 12.13 15.60 25.30	12,000 12,000 20,000 20,000 20,000 20,000 20,000 20,000 25,000 25,000 25,000 28,000	2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 3.6 6 3.7 2.3 5.6 6 0.6	1.3 1.2 1.5 1.9 2.2 2.5 3.1 3.0 2.3 2.6 0.4 0.1	1.75 1.85 2.0 2.75 2.9 3.05 3.4 3.6 3.3 3.05 1.35 0.35	0.7 0.8 0.4 0.4 0.4 0.4 0.2 0.2 0.2 0.2 0.2 (4)
10A 9 8 7 6 5B 5A 4 3 2 1	0.61 15.05 10.40 23.63 36.00 48.72 1.20 23.15 15.77 11.58 19.20	<pre>(5) 35,000 35,000 35,000 35,000 (7) 35,000 35,000 35,000 35,000 35,000 35,000</pre>	3.6 3.4 3.4 2.1 3.6 3.9 4.0 3.2	2.3 2.5 2.4 2.4 0.1 3.1 2.7 2.5 2.5	2.95 2.95 3.0 2.9 1.1 3.35 3.3 3.25 2.85	0.1 0.1 0.3 0.5 (6) 2.7 2.7 2.7 2.7

(1) Velocity at upper end of pool.

(2) Velocity at lower end of pool.

(3) From junction with flood-control channel to Lock 21.

(4) Negligible, based on full conservation pool at Tennessee Colony Reservoir.

(5) Lock 10A would be located in cut-off and no flow would occur in pool 10A.

(6) Negligible, based on full conservation pool at Livingston Reservoir.

(7) Lock 5A would be located in cut-off and no flow would occur in pool 5A.

158. EFFECT OF VELOCITIES ON NAVIGATION. - The data presented in the foregoing tabulation indicate that the durations of velocities of one mile per hour or less produced by regulated discharges in the multiple-purpose channel would be as follows: more than 90 percent of time upstream of the Oakwood Gage, 79 percent of time at the Riverside Gage, and about 90 percent of time at the Romayor Gage. These data also indicate that the navigation pools generally would be at normal elevation, or slack water condition, and that the velocity of channel flow in the various pools would not materially affect navigation after full development of the Trinity River Basin reservoir system.

159. DISCHARGE FREQUENCY .- Observed records are available at various gages on the Trinity River and tributaries. Based upon these observed records, flows under 1958 (existing) conditions of watershed development were estimated for the areas above the existing reservoirs and for the incremental areas between the existing reservoirs and downstream gages for the period 1924 through 1959. Flows for the same period were also estimated under 2020 conditions of watershed development for the areas above all reservoirs considered in the plan of development and for the incremental areas between these reservoirs and downstream gages. Period of record routings were made through the system of existing reservoirs to downstream gages under 1958 conditions of watershed development and through the system of reservoirs considered in the plan of improvement to downstream gages under 2020 conditions of watershed development. The peak discharges produced at downstream gages under existing (1958) conditions and under the plan of development (2020 conditions) were then used to construct discharge-frequency curves at selected downstream gages in accordance with the graphical methods set forth in Leo R. Beard's "Statistical Methods in Hydrology" (distributed with Civil Works Engineer Bulletin 52-24, dated August 26, 1952). The discharge-frequency curves thus constructed for existing (1958) conditions and conditions that would obtain under the plan of development (2020) have been used as a basis for the economic studies presented in Appendix IV, Flood-Control Economics. An example of these curves for reach 3 (Midway Gage) is shown on figure 1 of Appendix IV.

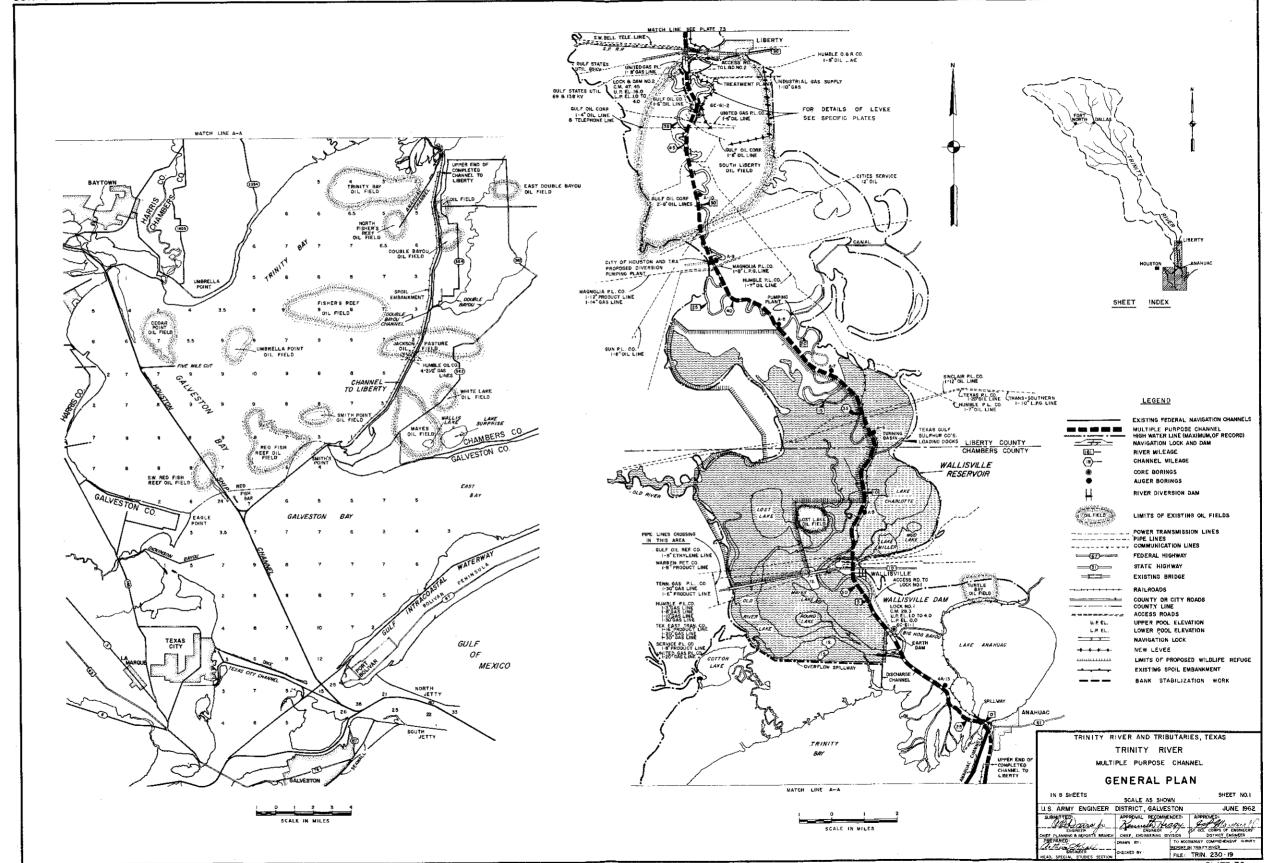
HYDRAULIC DESIGN

160. GENERAL. - Studies were made to determine the hydraulic characteristics under existing conditions and various plans of improvement on the Trinity River and its tributaries, particularly within the limits of the mixtiple-purpose channel between Fort Worth, Texas, and the mouth of the river. The following paragraphs describe the hydraulic studies made on the Trinity River, West Fork, Elm Fork, East Fork, Mountain Creek, Duck Creek, and their major tributaries.

161. WATER SURFACE PROFILES - EXISTING CONDITIONS.- Hydraulic computations were made to establish water surface profiles and limits of flooding under existing conditions on the Trinity River and its major tributaries between Fort Worth and the mouth of the river. Backwater studies were based on Manning's formula, in accordance with paragraph 10 of EM 1110-2-1409, December 7, 1959, using roughness coefficients of 0.035 to 0.060 for the existing channels and 0.060 to 0.120 for the overbanks. The backwater studies were further correlated with observed highwater data and measurements at U. S. Geological Survey gages on the Trinity River and its tributaries. Plates 2 through 12 show the profiles of the Trinity River and its tributaries under existing conditions and the profiles for the flood of record under historical conditions.

162. CHANNEL CAPACITIES. - Existing channel capacities for reaches of the Trinity River and its tributaries were determined by backwater computations, correlated with observed discharge measurements. The existing channel capacities for the Trinity River and its principal tributaries, and the capacities of the improved channels are shown in table 64.

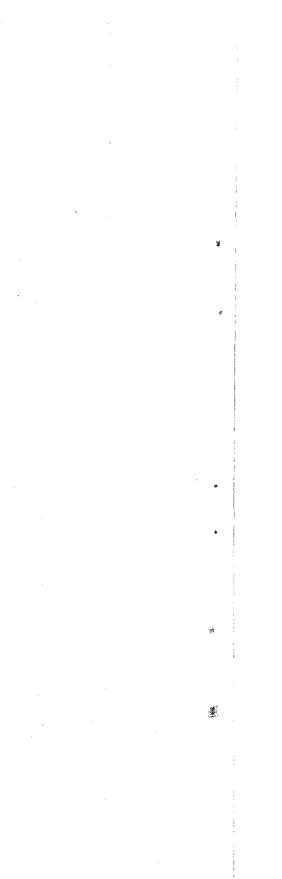
163. PLAN OF IMPROVEMENT .-

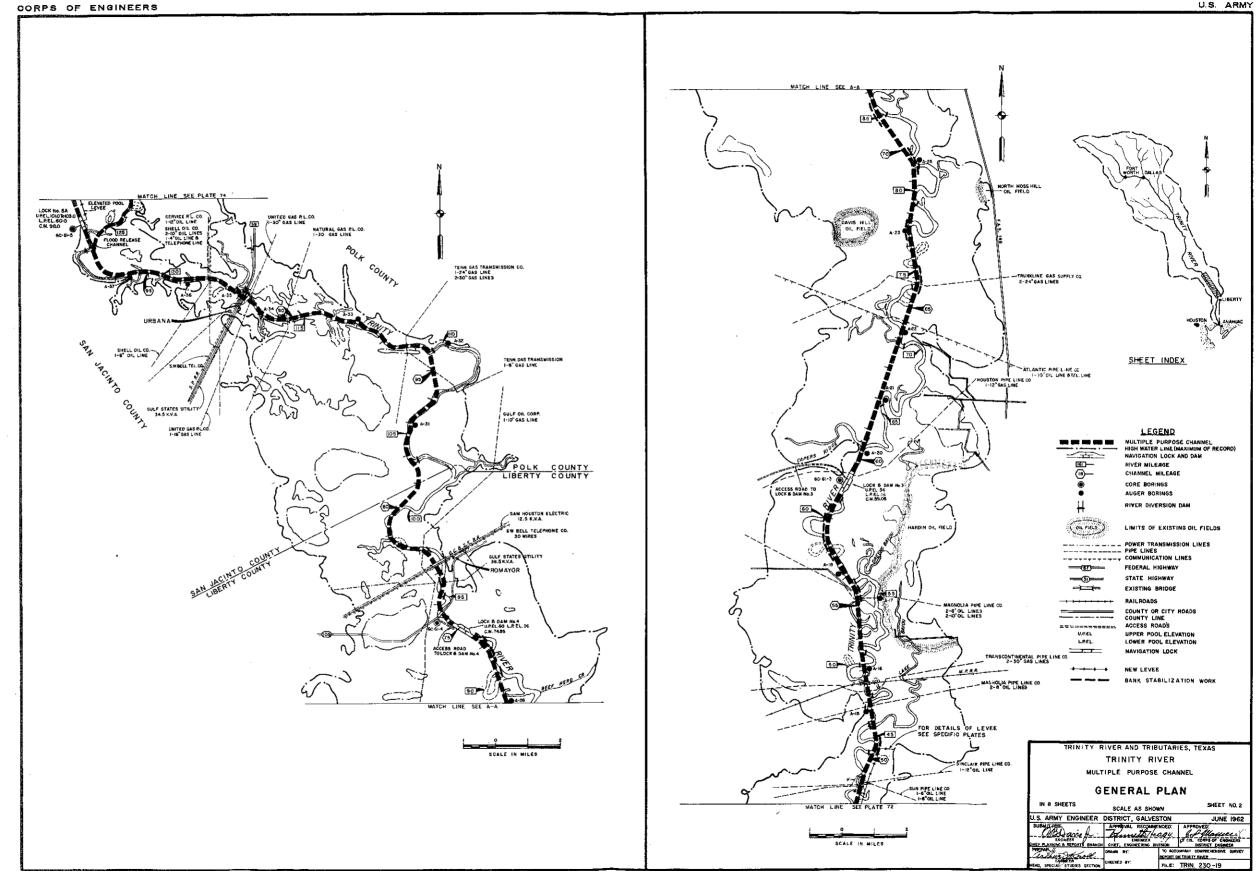

a. Channel. - The design of the multiple-purpose channel is based on a consideration of the requirements for navigation, flood control, and reservoir regulation. Various size channels were investigated to satisfy these three requirements. Channel size formulation studies for navigation show that a channel having dimensions of 12 feet deep and 150 feet of bottom width, with side slopes of 1 vertical on 2 horizontal, would be the most economical for modern barge navigation required to transport the prospective commerce on the channel. Channelsize studies for flood control and reservoir regulation indicated that the most feasible channel for these purposes would more nearly follow the existing river alignment, including certain river bend cut-offs, and clearing only in portions of the existing river channel. The recommended multiple-purpose channel incorporates the most advantageous and feasible features of the requirements for each of the purposes. This includes enlargement of the navigation channel by deepening and

widening where necessary to provide sufficient capacity for passage of operating discharges from the existing and recommended flood-control reservoirs on the watershed and to provide additional capacity for runoff from the uncontrolled drainage areas below the reservoirs. The general plan of the multiple-purpose channel project is shown on plates 72 through 79. Pertinent data concerning the design dimensions and capacities of the multiple-purpose channel from the Houston Ship Channel to the lower end of the Fort Worth Floodway are given in table 68. Generally, channel dimensions established in this report cover long reaches of the river. However, during preconstruction planning studies more detailed surveys will be available. Actual channel sizes will then be established based on local requirements and topography.

b. Levees. - The existing levees downstream from Five Mile Creek, with the exception of the recommended Liberty levee, are agricultural levees and would provide protection from floods in excess of 100-year frequency under improved channel conditions. The levees for the existing Fort Worth and Dallas Floodways, which would become a part of the improved floodway, have a minimum freeboard of 4 feet above the water surface elevation resulting from the standard project flood discharge. Levees generally along both banks of the improved channel from Five Mile Creek to the existing Dallas Floodway and from Elm Fork to the existing Fort Worth Floodway, would therefore be designed to provide a minimum freeboard of 4 feet above standard project flood discharge levels. All levees upstream from Five Mile Creek would be provided with a minimum top width of 10 feet and have 1 on 2.5 side slopes. Table 71 gives the pertinent hydraulic design data for the multiplepurpose channel and levees upstream of Five Mile Creek. The Liberty local protection project would consist essentially of levees along the left bank of the Trinity River. These levees in conjunction with the recommended multiple-purpose channel would provide protection from a standard project flood having a peak discharge of 180,000 second-feet. A minimum freeboard of 4 feet above the design water surface would also be provided for the Liberty levees. Levees hydraulically constructed would have a minimum crown width of 20 feet and side slopes varying from 1 on 20 to 1 on 3, depending upon the natural repose of the hydraulically placed material. The plan of improvement for Liberty is shown on plate 58 and the profile of the proposed levee is shown on plate 80.

c. <u>Bridge Improvements.</u> The plan of improvement provides for all railroad bridges over the navigation channel to be of the vertical lift type. The lift bridges would provide a minimum vertical clearance of 50 feet in open position above the stage that governs 98 percent of the time and a minimum vertical clearance of 3 feet in closed position above elevation of maximum high water or standard project flood design water surface in leveed floodways, as may be applicable at the bridge site. Table 72 gives pertinent design data for railroad bridges on the multiple-purpose channel. The plan of improvement for all highway bridges over the navigation channel are based on providing a



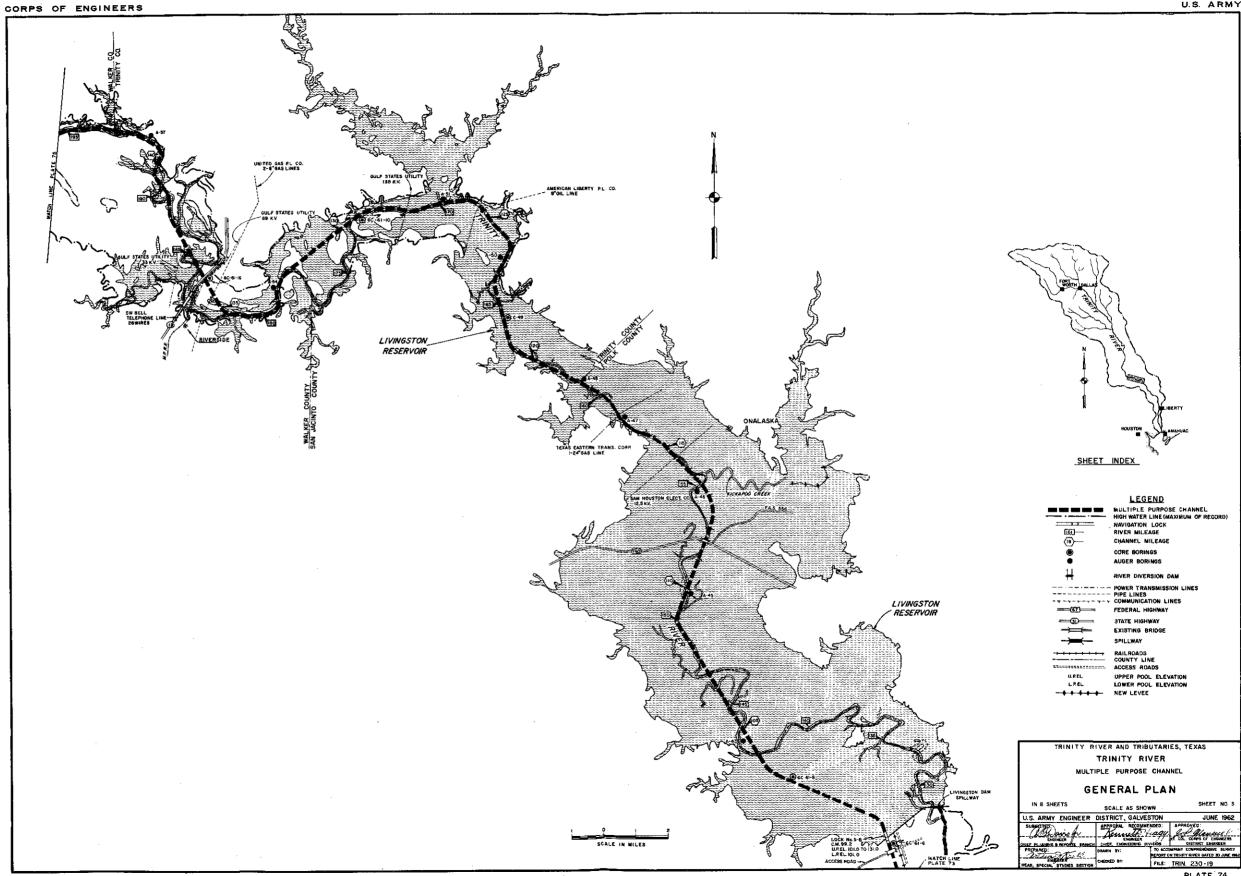

100

i)

PLATE 72

.

_ . . .


2 ů. Z 158) å Ë Ш Vol. 65 Ó 704 52-

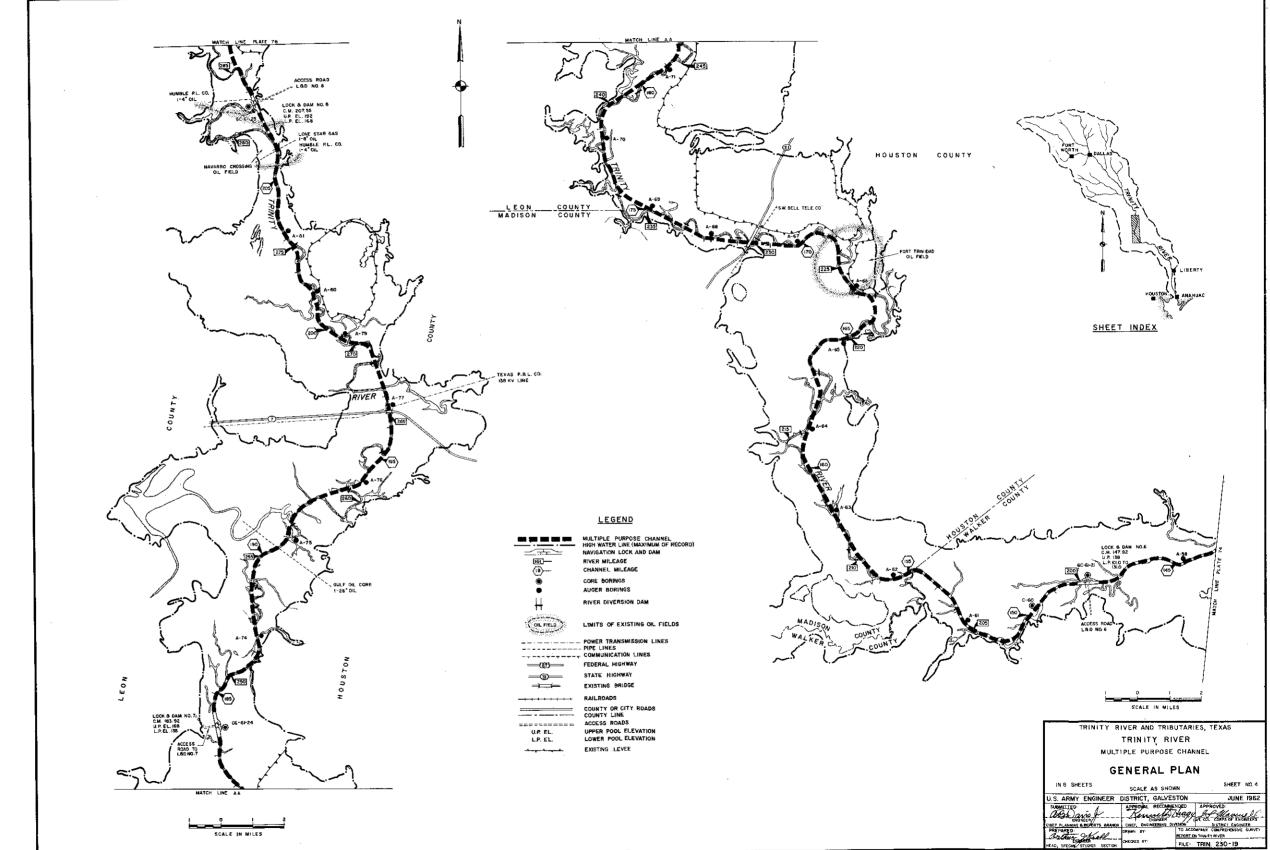
葦

5

4

tr.

ŝ 158) No. d, Vol. III (Face O-65 52-704


5

ĸ

÷

۴

.

CORPS OF ENGINEERS

\$

4

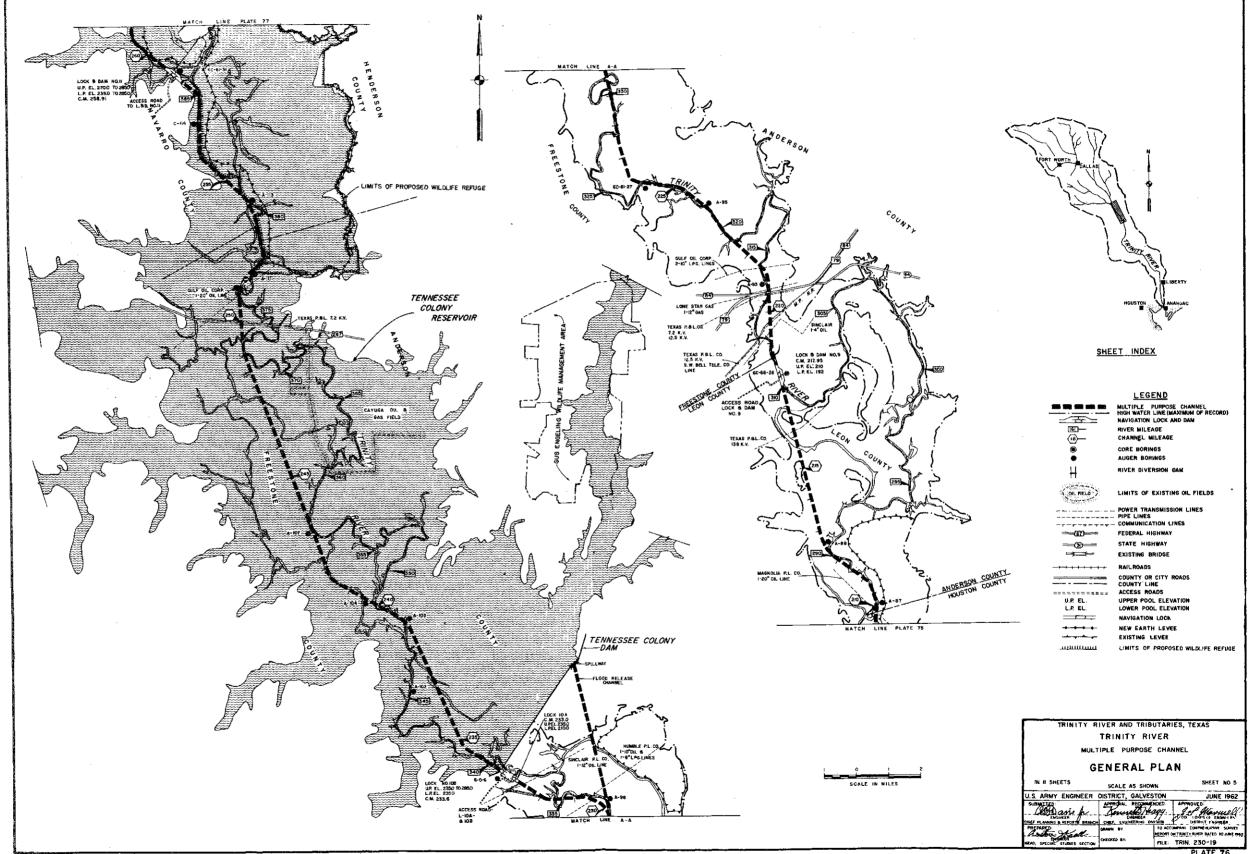
No.

158)

d,

(Face

Vol. III (

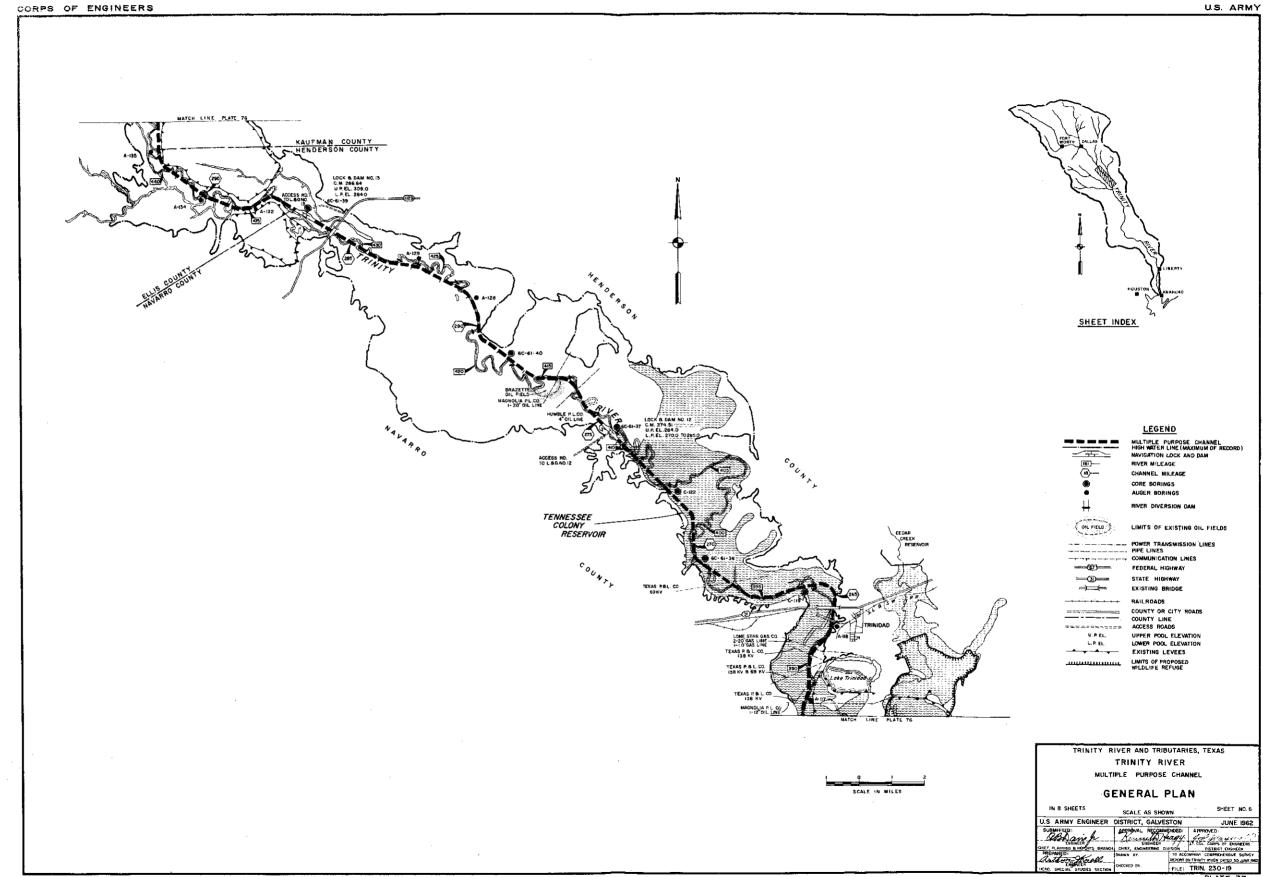

52-704 O-65 1

¢.

PLATE 75

- --

. . .



CORPS OF ENGINEERS

No. 158) ġ (Face III Vol. O-65 52-704

ŝ

PLATE 76

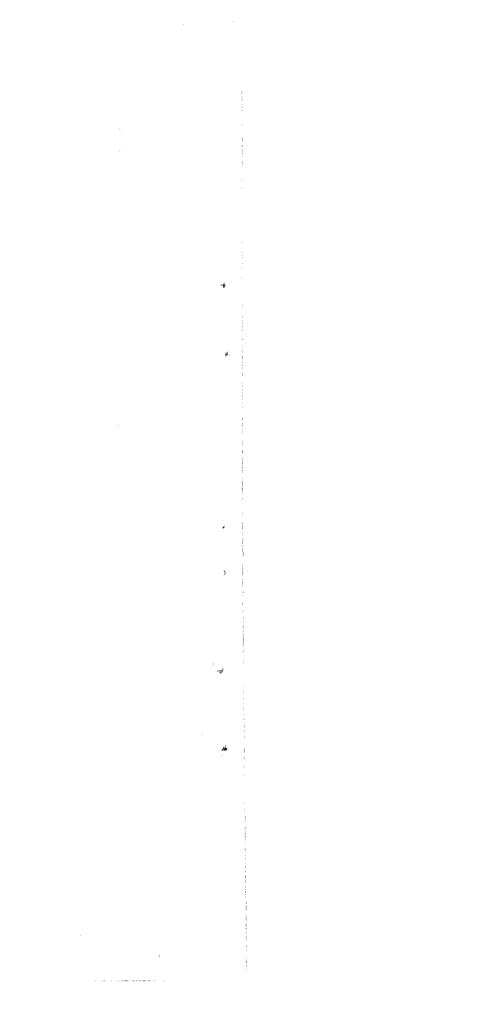
158) No. ġ, III (Face Vol. 52-704 O-65

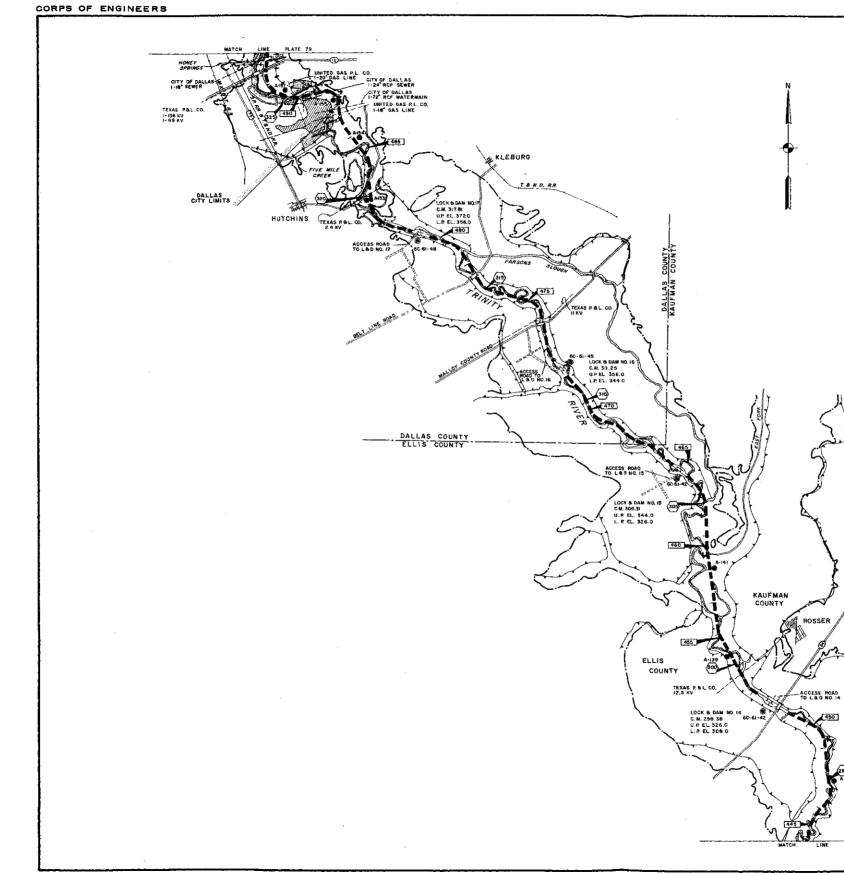
9

*

ĥ.

¢

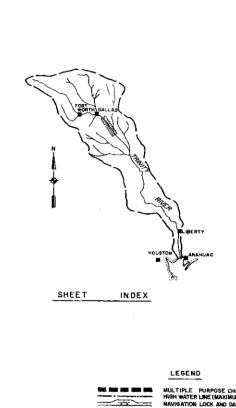

5


PLATE 77

.

· · · ·

æ


E

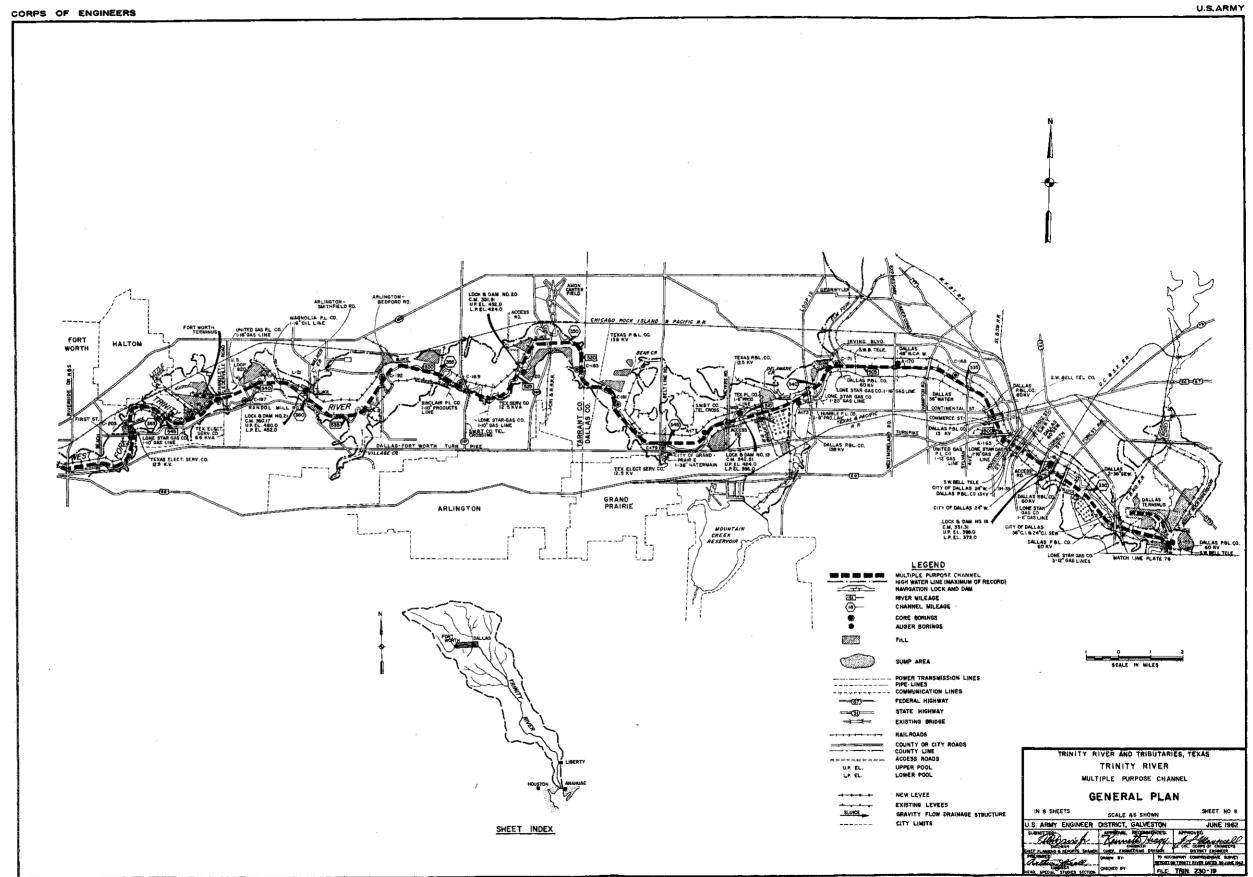
 $\overline{\nabla}$

2

158) ġ. (Face Ш Vol. -65 ò -704 52-

U.S. ARMY

MULTIPLE PURPOSE CHANN High Water Line (Maximum C Navigation Lock and Dam River Mileage <u>∎</u>--CHANNEL MILEAGE CORE BORINGS AUGER BORINGS RIVER DIVERSION DAM # NEW LEVER FILL POWER TRANSMISSION LINES PIPE LINES COMMUNICATION LINES ****** FEDERAL HIGHWAY EXISTING BRIDGE RAILROADS COUNTY OR CITY ROADS COUNTY LINE ACCESS ROADS UPPER POOL ELEVATION LOWER POOL ELEVATION _____ U.P. EL. L.P. EL. NAVIGATION LOCK EXISTING LEVER <u>tanina pinang</u> CITY LIMITS SUMP AREA GRAVITY FLOW DRAINAGE STRUCTURE TRINITY RIVER AND TRIBUTARIES, TEXAS TRINITY RIVER MULTIPLE PURPOSE CHANNEL GENERAL PLAN -SCALE IN MILES IN 8 SHEETS SHEET NO. 1 SCALE AS SHOWN J.S. ARMY ENGINEER DISTRICT, GALVESTON JUNE 196 UBATTLED DOIS AL APPRICIAL RECOMMENDED COL CORPS OF ENGINEE PLATE 77 EF PLANNING


Shall

ECKED BY

FILE: TRIN. 230-19

*

8 No.

8

÷.

蹇

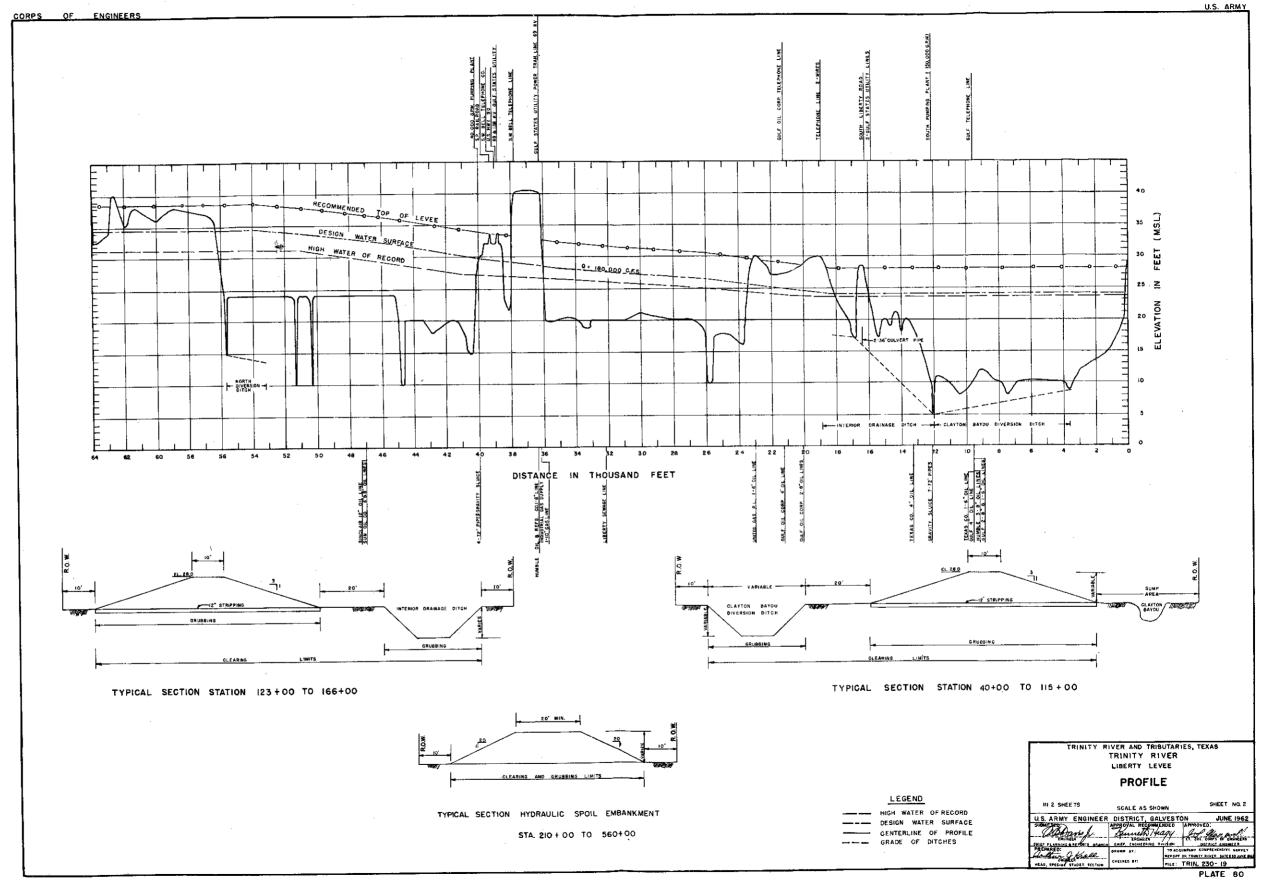
158) ġ (Face ш Vol. O--65 52-704

.

.

minimum vertical clearance of 50 feet above maximum navigation elevation, which in all cases would exceed the minimum low steel level required for the passage of flood releases. Table 73 gives information concerning design data for highway bridges. Bridges above the limits of navigation on the Trinity River and on tributaries above Five Mile Creek would provide a minimum freeboard of three feet between low steel and the water surface level of the standard project flood. Typical highway and bridge details are shown on plate 81.

d. <u>Interior Drainage</u>.- Details for interior drainage facilities in the existing, authorized, and previously recommended floodways are set forth in the appropriate design memorandums and plans for construction of the floodways. For all new levee systems, with the exception of the leveed area at Liberty, the interior drainage will be controlled by gravity sluices and sump storages to provide protection from flooding of the interior areas from storms having a frequency of recurrence of once in 100 years. In addition to gravity sluices, the leveed area at Liberty will be provided with a 40,000 gpm pump in the Big Bayou interior drainage area and a 150,000 gpm pump in the Clayton Bayou interior drainage area as shown on plates 58 and 80. The location of sumps and tabulation of the pertinent data for the gravity sluices and sumps are shown on plates 52 through 58.


TABLE 71.

HYDRAULIC DESIGN DATA MULTIFLE-FURPOSE CHANNEL

FIVE MILE CREEK TO FORT WORTH, TEXAS

Location : ive Mile Creek Diversion Channel rade Control Change ighway Loop 12 oney Springs Branch Diversion Channel hite Rock Creek Diversion Channel bove Mouth White Rock Creek &NO Railroad aterstate Highway 45 KT Railroad orrest Avenue .C. & S.F. Railway ock & Dem No. 18 (D. S.) (U. S.) orinth Street adiz Street aterstate Highway 35E ouston Street allas-Fort Worth Turnpike	Channel : mile : 321.50 326.02 326.02 326.15 326.62 - 328.30 328.46 330.65 331.09 331.31 - 331.41 332.22 332.28 332.61	(cfs) : 174,600 174,600 174,600 174,600 174,600 163,800 163	grade (ft-mgl) 351.22 360.00	: (feet) 150 150 150 150 150 150 150 150	: water surface : (ft-msl) 396.2 404.5 404.5 404.8 405.7 - 408.4 408.6 411.1 411.6 412.2 412.3 413.3
rade Control Change ighway Loop 12 oney Springs Branch Diversion Channel hite Rock Creek Diversion Channel bove Mouth White Rock Creek &NC Railroad aterstate Highway 45 KT Railroad orrest Avenue .C. & S.F. Railway ock & Dam No. 18 (D. S.) (U. S.) orinth Street adiz Street igterstate Highway 35E ouston Street	326.00 326.02 326.15 326.62 	174,600 174,600 174,600 163,800 163,800 163,800 163,800 163,800 163,800 163,800 163,800 163,800 163,800	360.00 360.00 360.00 360.00 360.00 360.00 360.00 360.00 360.00 360.00 360.00 360.00 360.00	150 150 150 150 150 150 150 150 150 150	404.5 404.6 404.8 405.7 408.4 408.6 411.1 411.6 411.6 412.2 412.3
rade Control Change ighway Loop 12 oney Springs Branch Diversion Channel hite Rock Creek Diversion Channel bove Mouth White Rock Creek &NC Railroad aterstate Highway 45 KT Railroad orrest Avenue .C. & S.F. Railway ock & Dam No. 18 (D. S.) (U. S.) orinth Street adiz Street igterstate Highway 35E ouston Street	326.00 326.02 326.15 326.62 	174,600 174,600 174,600 163,800 163,800 163,800 163,800 163,800 163,800 163,800 163,800 163,800 163,800	360.00 360.00 360.00 360.00 360.00 360.00 360.00 360.00 360.00 360.00 360.00 360.00	150 150 150 150 150 150 150 150 150 150	404.5 404.6 404.8 405.7 408.4 408.6 411.1 411.6 411.6 412.2 412.3
ighway Loop 12 oney Springs Branch Diversion Channel hite Rock Creek Diversion Channel bove Mouth White Rock Creek & MC Railroad aterstate Highway 45 KT Railroad orrest Avenue .C. & S.F. Railway ock & Dem No. 18 (D. S.) (U. S.) orinth Street adiz Street sterstate Highway 35E ouston Street	326.02 326.15 326.62 	174,600 174,600 174,600 163,800 163,800 163,800 163,800 163,800 163,800 163,800 163,800 163,800 163,800	360.00 360.00 360.00 360.00 360.00 360.00 360.00 360.00 360.00 360.00 363.50	150 150 150 150 150 150 150 150 150 150	404.6 404.8 405.7 - 408.4 408.6 411.1 411.6 412.2 412.3
hite Rock Creek Diversion Channel bove Mouth White Rock Creek &NO Railroad mterstate Highway 45 KT Railroad orrest Avenue .C. & S.F. Railway ock & Dem No. 18 (D. S.) (U. S.) orinth Street adiz Street mterstate Highway 35E ouston Street	326.15 326.62 328.30 328.46 330.28 330.65 331.09 331.31 	174,600 174,600 163,800 163,800 163,800 163,800 163,800 163,800 163,800 163,800 163,800 163,800	360.00 360.00 360.00 360.00 360.00 360.00 360.00 360.00 363.50	150 150 150 150 150 150 150 150 150 150	405.7 408.4 408.6 411.1 411.6 412.2 412.3
bove Mouth White Rock Creek &NC Railroad aterstate Highway 45 KT Railroad orrest Avenue .C. & S.F. Railway ock & Dam No. 18 (D. S.) (U. S.) orinth Street adiz Street aterstate Highway 35E ouston Street	328.30 328.46 330.28 330.65 331.09 331.31 331.41 332.22 332.28	163,800 163,800 163,800 163,800 163,800 163,800 163,800 163,800 163,800 163,800	360.00 360.00 360.00 360.00 360.00 360.00 360.00 363.50	150 150 150 150 150 150 150 150	408.4 408.6 411.1 411.6 412.2 412.3
&NO Railroad nterstate Highway 45 KT Railroad orrest Avenue .C. & S.F. Railway ock & Dem No. 18 (D. S.) (U. S.) orinth Street adiz Street nterstate Highway 35E ouston Street	328.46 330.28 330.65 331.09 331.31 331.41 332.22 332.28	163,800 163,800 163,800 163,800 163,800 163,800 163,800 163,800 163,800	360.00 360.00 360.00 360.00 360.00 360.00 363.50	150 150 150 150 150 150 150	408.6 411.1 411.6 412.2 412.3
nterstate Highway 45 KT Railroad orrest Avenue .C. & S.F. Railway ock & Dem No. 18 (D. S.) (U. S.) orinth Street adiz Street mterstate Highway 35E ouston Street	328.46 330.28 330.65 331.09 331.31 331.41 332.22 332.28	163,800 163,800 163,800 163,800 163,800 163,800 163,800 163,800	360.00 360.00 360.00 360.00 360.00 363.50	150 150 150 150 150 150	408.6 411.1 411.6 412.2 412.3
KT Railroad orrest Avenue .C. & S.F. Railway ock & Dem No. 18 (D. S.) (U. S.) orinth Street adiz Street sterstate Highway 35E ouston Street	330.28 330.65 331.09 331.31 - 331.41 332.22 332.28	163,800 163,800 163,800 163,800 163,800 163,800 163,800	360.00 360.00 360.00 360.00 363.50	150 150 150 150 150	411.1 411.6 412.2 412.3
orrest Avenue .C. & S.F. Railway ock & Dam No. 18 (D. S.) (U. S.) orinth Street adiz Street mterstate Highway 35E ouston Street	330.28 330.65 331.09 331.31 - 331.41 332.22 332.28	163,800 163,800 163,800 163,800 163,800 163,800	360.00 360.00 360.00 363.50	150 150 150 150	411.6 412.2 412.3
.C. & S.F. Railway ock & Dam No. 18 (D. S.) (U. S.) orinth Street adiz Street sterstate Highway 35E ouston Street	331.09 331.31 331.41 332.22 332.28	163,800 163,800 163,800 163,800 163,800	360.00 360.00 363.50	150 150 150	412.2 412.3
ock & Dem No. 18 (D. S.) (U. S.) orinth Street adiz Street sterstate Highway 35E ouston Street	331.31 331.41 332.22 332.28	163,800 163,800 163,800 163,800 163,800	360.00 363.50	150 150	412.3
(U. S.) orinth Street adiz Street iterstate Highway 35E ouston Street	331.41 332.22 332.28	163,800 163,800 163,800	363.50	150	
orinth Street adiz Street sterstate Highway 35E ouston Street	332.22 332.28	163,800 163,800			μ13.3
adiz Street uterstate Highway 35E ouston Street	332.22 332.28	163,800	363.84		
uterstate Highway 35E ouston Street	332.28			150	413.5
ouston Street			366.61	150	414.8
ouston Street	332.61	163,800	366.82	150	414.9
allas-Fort Worth Turnpike		163,800	367.95	150	415.5
	333.12	163,800	369.69	150	416.3
ommerce Street	333.50	163,800	370.99	150	417.0
&P Reilway	333.66	163,800	371.54	150	417.2
ontinental Street	333.93	163,800	372.47	150 150	417.7
ylvan Avenue	334.89	163,800	375.75	150	419.2
ampton-Inwood Road	336.33	163,800	380.68	150	421.4
estmoreland Avenue	337.26	163,800	383.86	150	422.9
rade Control Change	337.30	163,800	384.00	150	422.9
Im Fork Confluence	338.80	163,800	384.00	150 150	425.5
bove Mouth Elm Fork	550.00	160,000	384.00	150	425.5
tate Highway Loop 12	340.39	160,000	384.00	150	430,0
ountain Creek	340.89	160,000	384.00	150	432.3
ock & Dam No. 19 (D. S.)	342.51	160,000	384.00	150	435.3
(U. S.)	-	160,000	402.00	200	436.3
eyers Road		160,000	403.20	200	438.0
outh Bear Creek	342.9	160,000		200	+30.0
bove Mouth Bear Creek	-	160,000(1)	-	200	-
eltline Road	345.25	160,000(1)	409.85	200	446.1
rade Control Change	346.00	160,000(1)	412.00	200	448.9
ear Creek Diversion Channel	346.83		412.00	200	451.5
		160,000(1)	412.00	200	
.R.I.&P R.R. Spur	350.54	148,000			459.1
tate Highway No. 360	350.75	148,000	412.00	200	459.5
ock & Dam No. 20 (D. S.)	351.91	148,000	412.00	200	461.2
(U. S.)	arl. 00	148,000	426.00	200	462.2
. M. Highway No. 157	354.00	148,000	431.64	200	469.8
nnamed Greek Diversion Channel	355.13	148,000	434.69	200	473.0
ulphur Branch Diversion Channel	356.08	148,000 *	437.25	200	475.6
bove Sulphur Branch Diversion Channel	-	138,000		200	475.6
rlington Bedford Road	357.00	138,000	439.70	200	478.2
rade Control Change	357.10	138,000	440.00	200	478.5
illage Creek	358.10	138,000	440.00	200	480.8
bove Mouth Village Creek	-	117,700	440.00	200	480.8
alker Branch Diversion Channel	359.79	117,700	440.00	200	483.5
rlington-Smithfield Road	359.95	117,700	440.00	200	483.8
ock & Dam No. 21 (D. S.)	360,17	117,700	440.00	200	484.1
(U. S.)	-	117,700	451.00	150	485.1
nnamed Creek Diversion Channel	361.13	117,700	453.80	150	489.3
ighway Loop 820	362.11	117,700	456.56	150	493-7
andley-Ederville Road	362.70	117,700	458.38	150	496.3
ig Fossil Creek Diversion Channel	362.92	117,700	459.02	150	497.2
bove Big Fossil Creek Diversion Channel		95,000	-	150	497-2
ittle Fossil Creek Diversion Channel	363.68	95,000	461.24	150	500.0
hite Lake Outfall Diversion Channel	364.71	95,000	464.24	150	503.5
rade Control Change	366.28	95,000	468.82	150	508.8
irst Street	366.80	95,000	471.46	1.50	510.6
rade Control Change	367.45	95,000	475.00	150	513.0
hannel Size Change	368.02	95,000	478.15	200	515.2
rade Control Point	368.40	95,000	480.25	200	516.4
each Street	368.60	95,000	480.50	200	516.9
uverside Drive	369.41	95,000	481.62	200	519.7
nd Channel Improvement	369.76	95,000	482.11	200	520.8

(1) Flow 148,000 cfs prior to Bear Creek Diversion.

160) ġ, III (Face Vol. O-65 52-704

3

TABLE 72

PERTINENT DESIGN DATA - RECOMMENDED RAILROAD BRIDGES MULTIPLE-PURPOSE CHANNEL

	с <u>ч</u> а			: :1	Elevation:M	aximum	: Low ste	el ele	vation
	:Channel:	Cha	nnel	: Normal :		high		t-msl)	
Name of bridge	: mile :		tom	: pool :2	2 percent:	water	: Lift sp		Flanking
Name of plinge	۰ ۳ ۵	lidth e	Grade	elevation:	flow line:e	lev.(1)	over cha	nnel :	spans
	: :((feet):	(ft-msl)	:(ft-msl) :	(ft-msl) :(ft-msl)	:Closed:	Open :	(fixed)
Houston Ship Channel		<u></u>							
T&NO R.R.	47.94	250	-13.0	16.0	17.1	26.3	29.3(2)		29.3
Missouri Pacific R.R.	52.57	250	- 5.6	16.0	20.0	34.5	38.2(3)		38.2
GC&SF Rwy.	77.28	150	28.3	60.0	62.7	73.8	83.5(3)		83.5
	91.93	150	42.7	60.0	74.1	91.0	94.0	124.1	94.0
T&NO R.R. Missouri Pacific R.R.	136.08	150	89.0	131.0(4)	133.0	133.0		183.0	142.7
Missouri Pacific R.R.	219.70	150	168.5	210.0	211.4	223.0	228.9(3		
SL&SW Rwy.	264.14	150	258.0	For design	data refer	to Ten	nessee Co	lony F	leservoir
Recommended Dallas Terminus				-					
T&NO R.R.	328.30	150	360.0	372	380.8	408.4	411.4	430.8	411.4
	330.28	150	360.0	372	382.0	411.1	414.1	432.0	41.4.1
MKT R.R.	331.09	150	360.0	372	382.5	412.2	416.6	432.5	416.6
GC&SF Rwy.	333.66	150	371.5	396	397.6	417.2	428.8	447.6	428.8
T&P Rwy Gifford Hill Gravel Co. R.R.	341.086	150	384.0	396	402.4	433.3	436.3	452.4	436.3
	350.54	200	412.0	424	426.1	459.1	462.1	476.1	462.1
CRI&P R.R.	JJ0; J4	200						-	

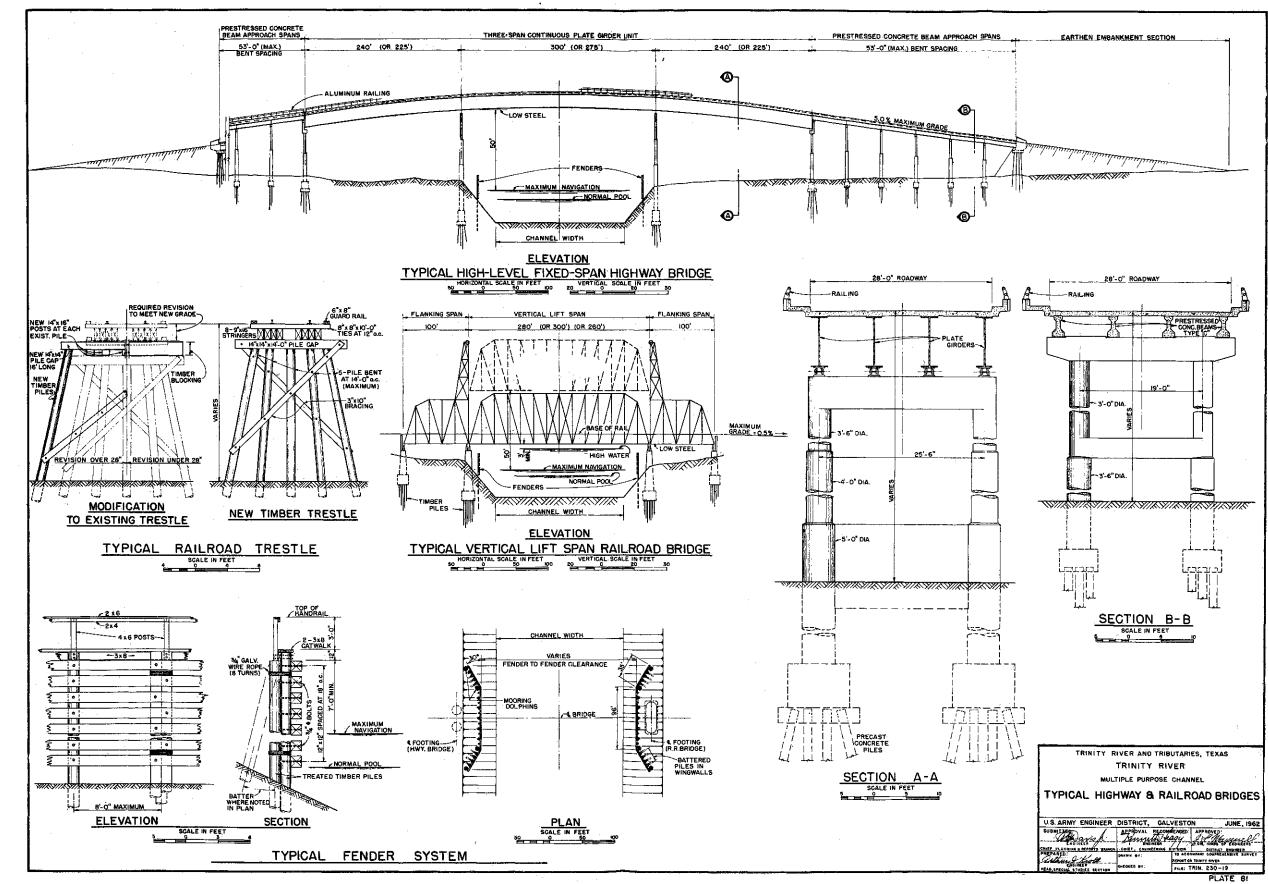
(1) Refers to elevation of historical maximum high water below channel mile 322.0, and the standard project flood design water surface in recommended or existing leveed floodways upstream of channel mile 322.0

(2) Recommended low steel will not adversely affect levee freeboard since standard project flood discharge will inundate rail on right bank, minimum base of rail elevation 28.2, for a distance of 12,800 feet.

(3) Based on maintaining existing grade of railroad at bridge crossing.

(4) Top of conservation storage in Livingston Reservoir which may be depleted to elevation 101.0.

TABLE 73

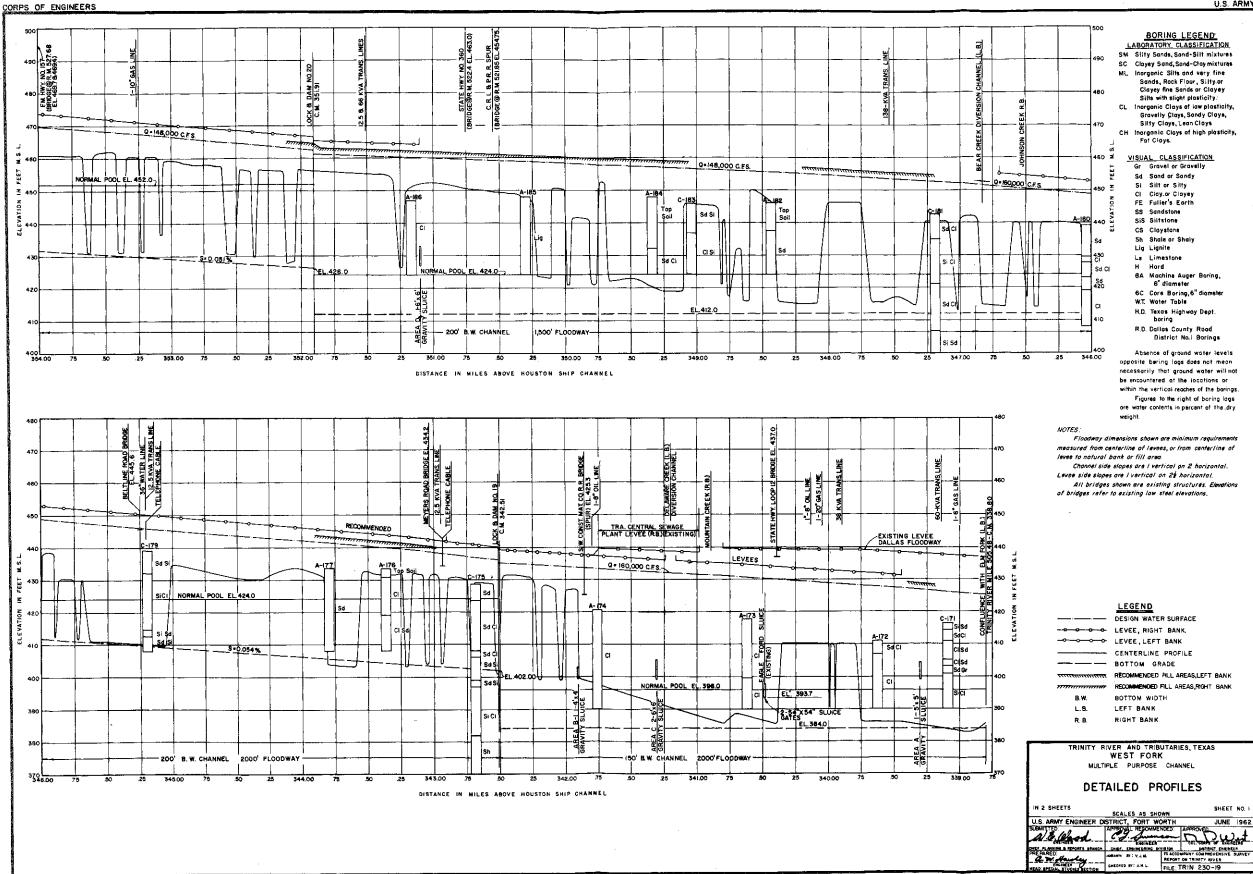

PERTINENT DESIGN DATA - RECOMMENDED HIGHWAY BRIDGES

MULTIPLE-PURPOSE CHANNEL

Name of bridge :	Channel mile		annel ttom	: Normal poch :	Elevation of 2 percent	: Maximum : : high water ;	Design 3-span		
		Width	: Grade	: elevation : : (ft-mal) :		elevation :	elevation		of levees
Houston Ship Channel			. (10-0051)	. (IC-mai) .	(10-0051)	: (ft-msl) :	(ft-msl)	: (ft-msl)	: (feet)
Interstate Highway 10 (Westbound)	30.36	150	-11.0	4.0	4.1	8.0	54.1	-	
Interstate Highway 10 (Eastbound)	30,37	150	-11.0	4.0	4.1	8.0	54.1	•	-
U. S. Highway 90 (Eastbound)	47.84	250	-13.0	16.0	17.1	28.0	67.1	-	-
U. S. Highway 90 (Westbound)	47.90	250	-13.0	16.0	17.1			*	
State Highway 105	75.78	150	26.9	60.0	61.6	28.0	67.1	-	-
U. S. Highway 59	91.86	150	42.7	60.0		72.0	111.6	-	-
County Road (2)	98.90	150	89.0		74.0	91.0	124.0	-	-
U. S. Highway 190	111.54	150	89.0	101.0	102.0		152.0	-	-
State Highway 19	136.15			131.0	131.0	131.0	181.0		-
State Highway 21		150	89.0	131.0	133.0	133.0	183.0	-	-
State Highway ?	171.63	150	116.0	138.0	1,50.2	167.7	200.2	-	-
	196.68	150	140.2	168.0	174.5	178.4	224.5	-	
Interstate Highway 35E	220.55	150	170.0	210.0	211.5	244.0	261.5	-	_
U. S. Highway 287	249.99	150	223.0	(_			-
State Highway 31	264.52	150	258.0	(FOT design	data refer to	Tennessee Col	ony Reservoir		
State Highway 1129	285.60	200	272.0	284.0	295.2	319.5	345.2		
State Highway 34	298.04	150	296.0	308.0	321.0	343.0	371.0	345.0	1 900
Malloy County Road	312.84	150	334.1	356.0	357.8	370.0	407.8		1,800
Belt Line Road	315.57	150	339-5	356.0	360.1			376.0	2,000
Dowdy Ferry Road (2)	319.92	150	348.1	372.0	373.8	377-8 396.0	410.1 423.8	385.0	2,200
Proposed Dallas Terminus						_		e i	
State Highway Loop 12 (Eastbound)	326.02	150	360.0	372.0	379.2	404.6	429.2		
State Highway Loop 12 (Westbound)	326.02	150	360.0	372.0	379-2	404.6		408.6	2,150
Interstate Highway 45 (Northbound)	328.46	150	360.0	372.0	380.8		429.2	408.6	2,150
Interstate Highway 45 (Southbound)	328.47	150	360.0	372.0		408.7	430.8	412.7	2,000
Forrest Avenue	330.65	150	360.0		380.8	408.7	430-8	412.7	2,000
Corinth Street	331.41	150	363.8	372.0	382.3	411.6	432.3	415.6	2,400
Cediz Street	332.22			396.0	397.0	413.5	447.0	425 7	2,300
Interstate Highway 35E	332.28	150	366.6	396.0	397.2	414.8	447.2	427.2	1,950
Houston Street		150	366.8	396.0	397-2	414.9	447.2	427.4	2,000
	332.61	150	368.0	396.0	397-2	415.5	447.2	427.9	2,000
Dallas-Fort Worth Toll Road	333.12	150	369.7	396.0	397-3	416.3	447.3	428.8	1,950
Commerce Street	333.50	150	371.0	396.0	397-3	417.0	447.3	430.7	1,800
Continental Street	333-93	1.50	372.5	396.0	397.8	417.7	447.8	430.3	
Sylvan Road	334.89	150	375 7	396.0	398.2	419.2	448.2		1,900
Hampton Road	336-33	150	380.7	396.0	399.2	421.4	449.2	432.4	2,600
Westmoreland Road (2)	337.26	150	383.9	396.0	400.2	422.9		434.4	3,070
State Highway Loop 12	340.39	150	384.0	396.0	402.2		450.2	433.6	2,900
Meyers Road	342.94	200	403.2	424.0		430.0	452.2	431.1	2,100
Belt Line Road	345.25	200	409.8		425.0	438.0	475.0	442.0	2,100
State Highway 360	350.75	200		424.0	425.1	446.1	475.1	450.1	2,000
F. M. Road 157 (Northbound)			412.0	424.0	426.1	459.5	476.1	463.5	3,200
F. M. Road 157 (Southbound)	354.00	200	431.7	452.0	453.0	469.8	503.0	463.8	1,600
	354-01	200	431.7	452.0	453.0	469.8	503.0	463.8	1,600
Arlington-Bedford Road	357.00	200	439.7	452.0	453.2	478.2	503.2	482.3	3,000
Arlington-Smithfield Road	359-95	200	440.0	452.0	453.7	483.8	503.7	487.8	
U. S. Highway Loop 820 (3)	362,11	150	456.6	480.0	481.0	493 7	531.0	40(10	3,000
Handley-Ederville Road	362.70	150	458.4	480.0	481.0	496.3	531.0	500.3	2,300
Proposed Fort Worth Terminus									_,,-
East First Street	366.80	150	471.5	480.0	None	510.6	5126		
Beach Street	368.60	200	480.5	_	10110		513.6	514.6	1,050
Riverside Drive (Northbound)	369.41	200	481.6	_	-	516.9	519.9	520.9	1,700
Riverside Drive (Southbound)	369.41	200	481.6	-	-	519.7	522.7	523.7	1,120
						519.7	522.7	523.7	1,120

(1) Refers to elevation of historical maximum high water below channel mile 322.0 and the standard project flood design water surface in proposed or existing leveed floodways upstream of channel mile 322.0

(2) Under construction as of January 1962.


2-704 O-65 Vol. III (Face p. 162)

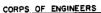
52-7

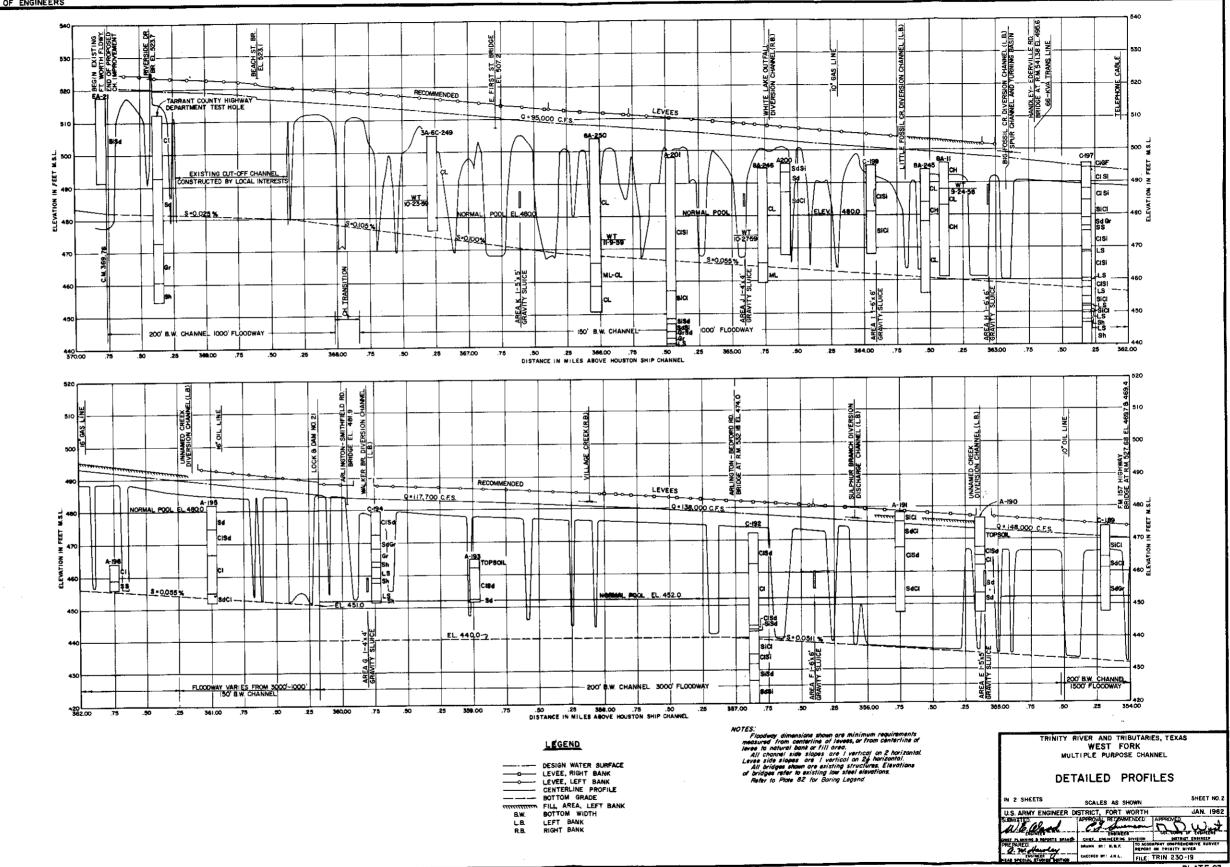
164. WATER SURFACE PROFILES - MULTIPLE-PURPOSE CHANNEL.-

a. <u>Trinity River below Five Mile Creek.</u> Backwater studies were made for the improved channel for various regulated flows including the 2 percent flood discharge, using a channel roughness coefficient of 0.030 in the Manning formula. The minimum level in each navigation pool was assumed to be one foot above normal pool during the passage of these flows. The mean channel velocity for the operating and 2 percent discharge would vary from 0.4 to 4.6 miles per hour with Tennessee Colony and Livingston Reservoirs at or above conservation level. However, in extreme cases, when the reservoirs would be empty and the navigation pools at normal (minimum) level, velocities in the portion of the channels in the reservoirs would be slightly higher. Plates 66 through 69 show the water surface profile for the 2 percent flood discharge for the limits of navigation under improved conditions.

b. <u>Trinity River and West Fork above Five Mile Creek</u>.-Backwater studies for the multiple-purpose channel upstream from Five Mile Creek were based on the assumption that the flows would be confined within levees (within the designated floodway limits) having a distance between centerlines of levees varying from a minimum of 1,050 feet to a maximum of 3,000 feet. Where levees are not provided on both banks in the recommended plan of improvement, this assumption would permit construction of additional levees where required, or other development in the remaining flood plain without encroachment on the capacity of the designed floodway. Water surface profiles for the design flood discharge were developed for the improved floodway, using roughness coefficients of 0.030 in the Manning formula for the channel, and 0.070 for the overbank (berms between channel and levees). Plates 82 through 85 show the design water surface profile for the standard project flood discharge above Five Mile Creek under improved conditions.

No. 164)ъ. blank (Face Ш Vol. 65 0 704 52-

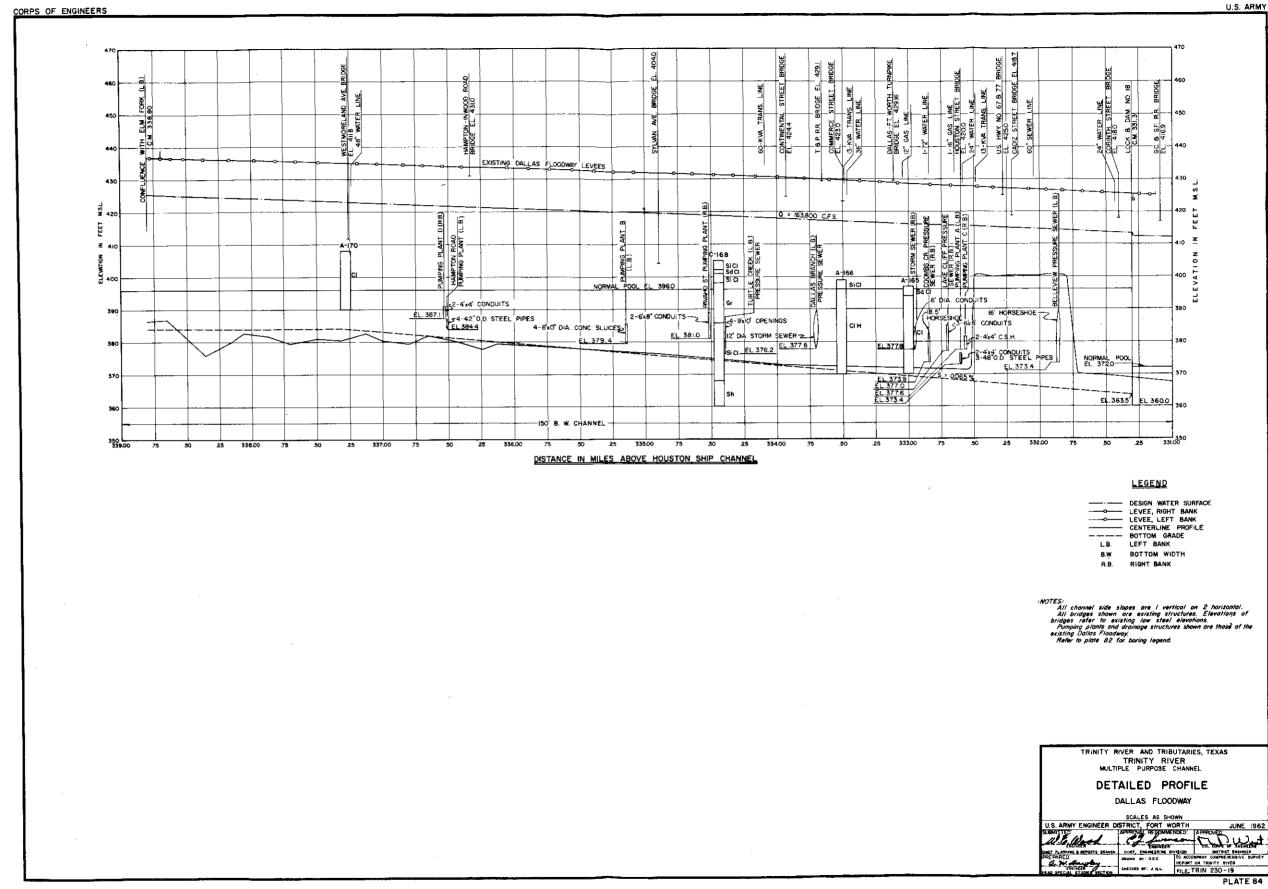

Ġ,



necessarily that ground water will not

...

PLATE 82



13.

PLATE 83

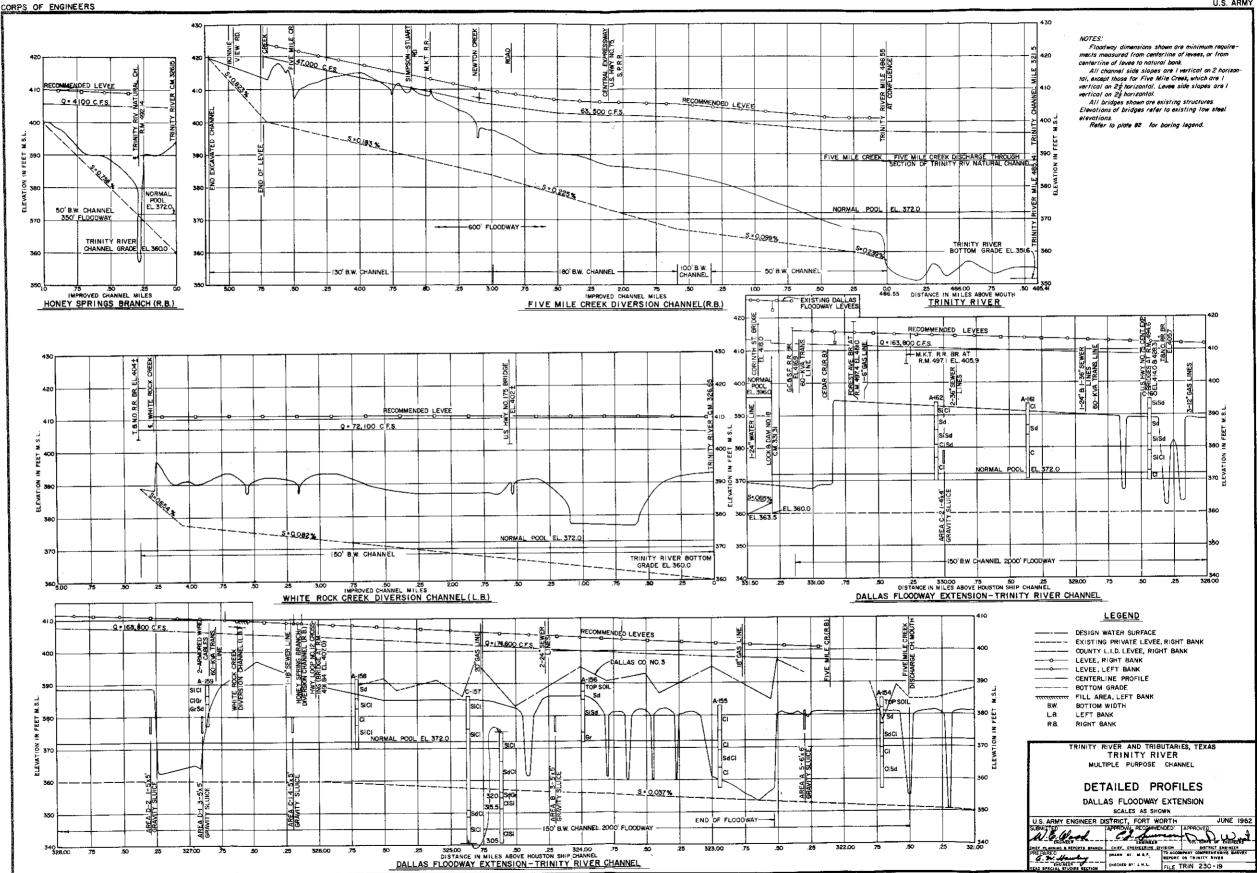
U.S. ARMY

.

പ് (Face 52-704

ŝ No. blank Vol.

164) III -65 Ó


CORPS OF ENGINEERS

<u> </u>	DESIGN WATER SURFACE
	LEVEE, RIGHT BANK
o	LEVEE, LEFT BANK
	CENTERLINE PROFILE
	BOTTOM GRADE
L.B.	LEFT BANK
B.W.	BOTTOM WIDTH
R.B.	RIGHT BANK

ne en la companya de la comp La companya de la comp н. .

· · · ·

. . . .

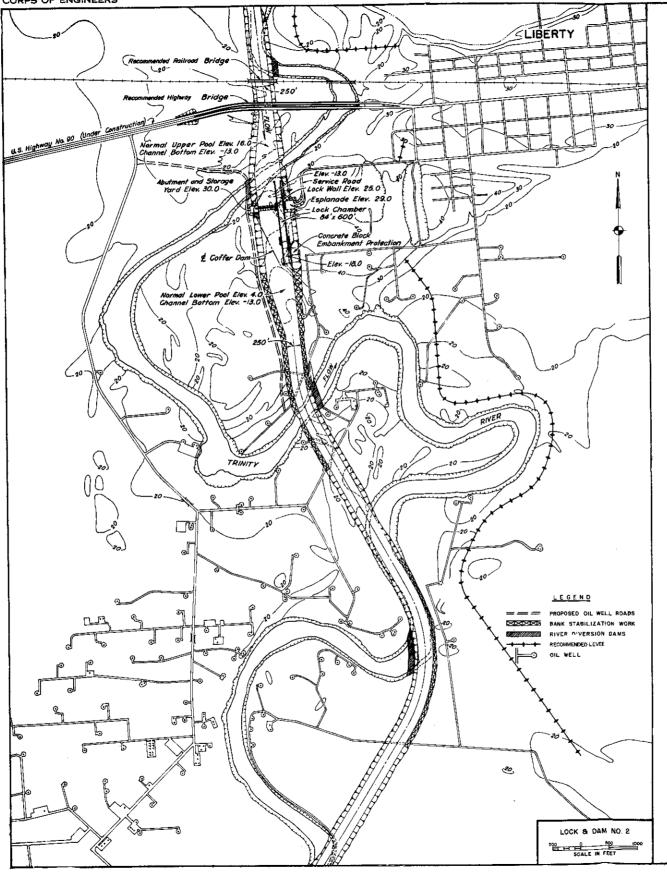
No. 164)å Ч bla SCC Ē III Vol. 35 Ó 704 52-

a,

PLATE 85

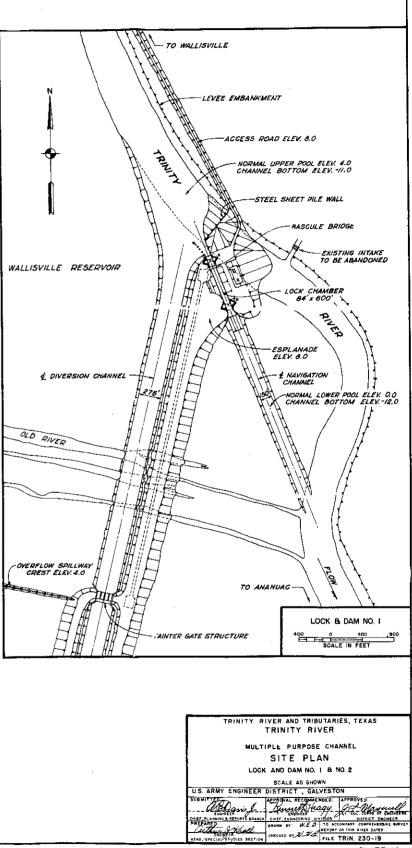
165. NAVIGATION LOCKS. - A total of 23 navigation locks would be required to overcome the total fall of 480 feet in the recommended multiple-purpose channel. All of the locks, except Lock No. 1, would be equipped with miter gates. Lock No. 1, with a maximum lift of 4 feet, is located where a reversal of head may occur and would be equipped with sector gates. No filling and emptying system would be required for Lock No. 1 as filling and emptying would be accomplished by end filling and emptying through the gates. The remainder of the locks provide side port filling and emptying systems which were designed in accordance with the "Arkansas River Multiple-Purpose Project, Arkansas River and Tributaries, Project Design Memorandum No. 3, Navigation Lock, Part I - Criteria." Typcial navigation locksites and lock and dam details are shown on plates 86 through 93.

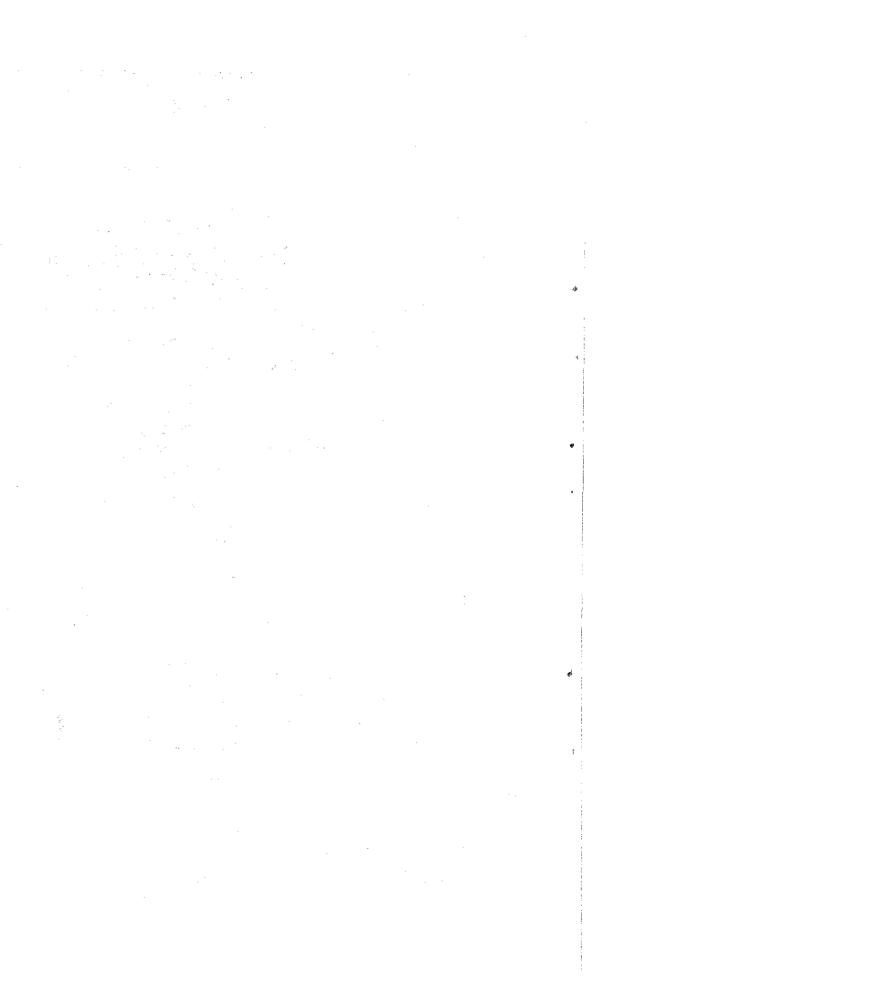
166. For the 84- X 600-foot locks a side port filling system is proposed in each lock wall. The filling system would consist of a 12- X 12-foot culvert with valves of reversed tainter gates, 8 intake manifolds, 20 lock chamber ports located in the downstream two-thirds of the chamber and staggered with those on the opposite wall, and 6 discharge manifolds. The locks above Dallas would also have a side port filling system consisting of an 8- X 8-foot culvert with 6 intake manifolds, 13 lock chamber ports and 4 discharge manifolds located in each wall.

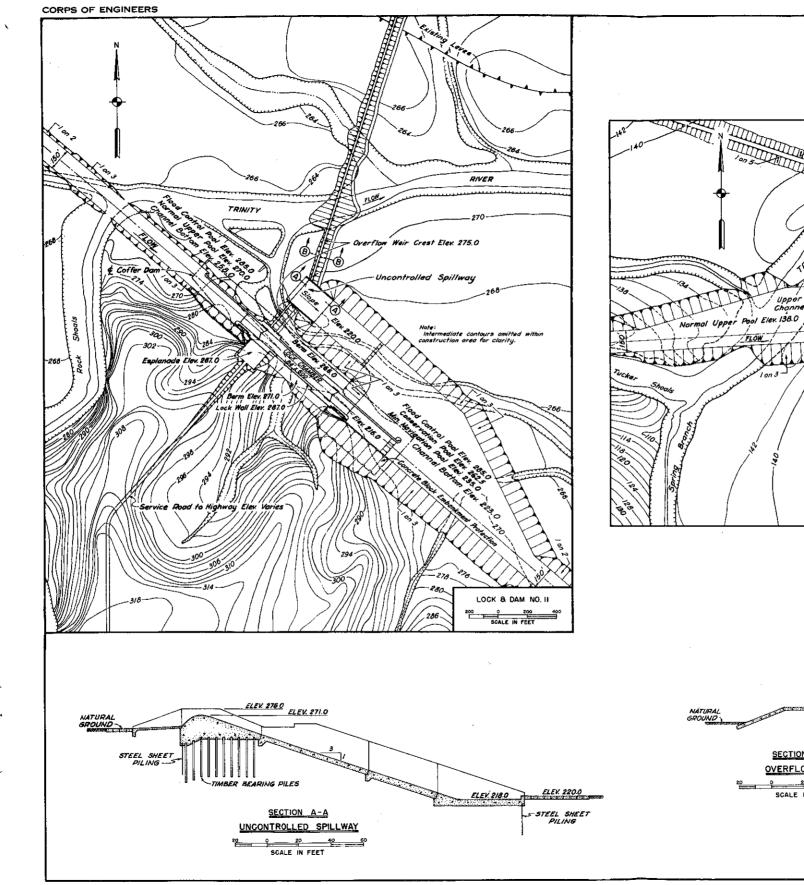

167. The approximate lock filling or emptying time for the range of lifts of the 84- X 600-foot locks under consideration was computed by the formula T = m / H/2g given in EM 1110-2-1604. In this formula, T is the filling or emptying time in seconds; H the design lift; and m a constant with an assumed value of 900 considered applicable for shallow draft barge locks. Based on this formula the tentative filling and emptying time varies from 5.5 minutes for a 10-foot lift to 10.5 minutes for a 40-foot lift, as shown in the following tabulation:

Lift (H)	: Filling time (T) : (minutes)	: Selected time : (minutes)	
40	10.33	10.5	
35	9.50	9.5	
30	9.08	9.0	
25	8.25	8.25	
20	7.40	7.5	
15	6.56	6.5	
10	5.33	5.5	

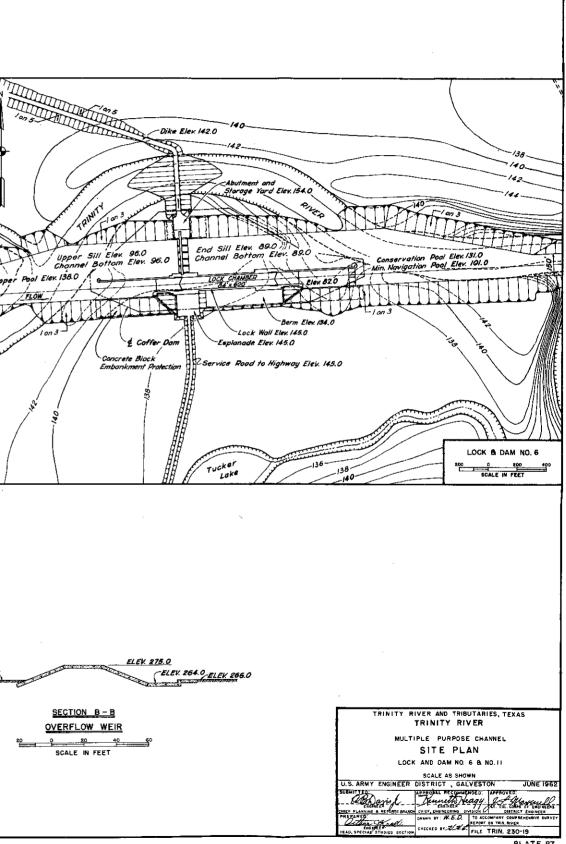
TENTATIVE LOCK FILLING AND EMPTYING TIME

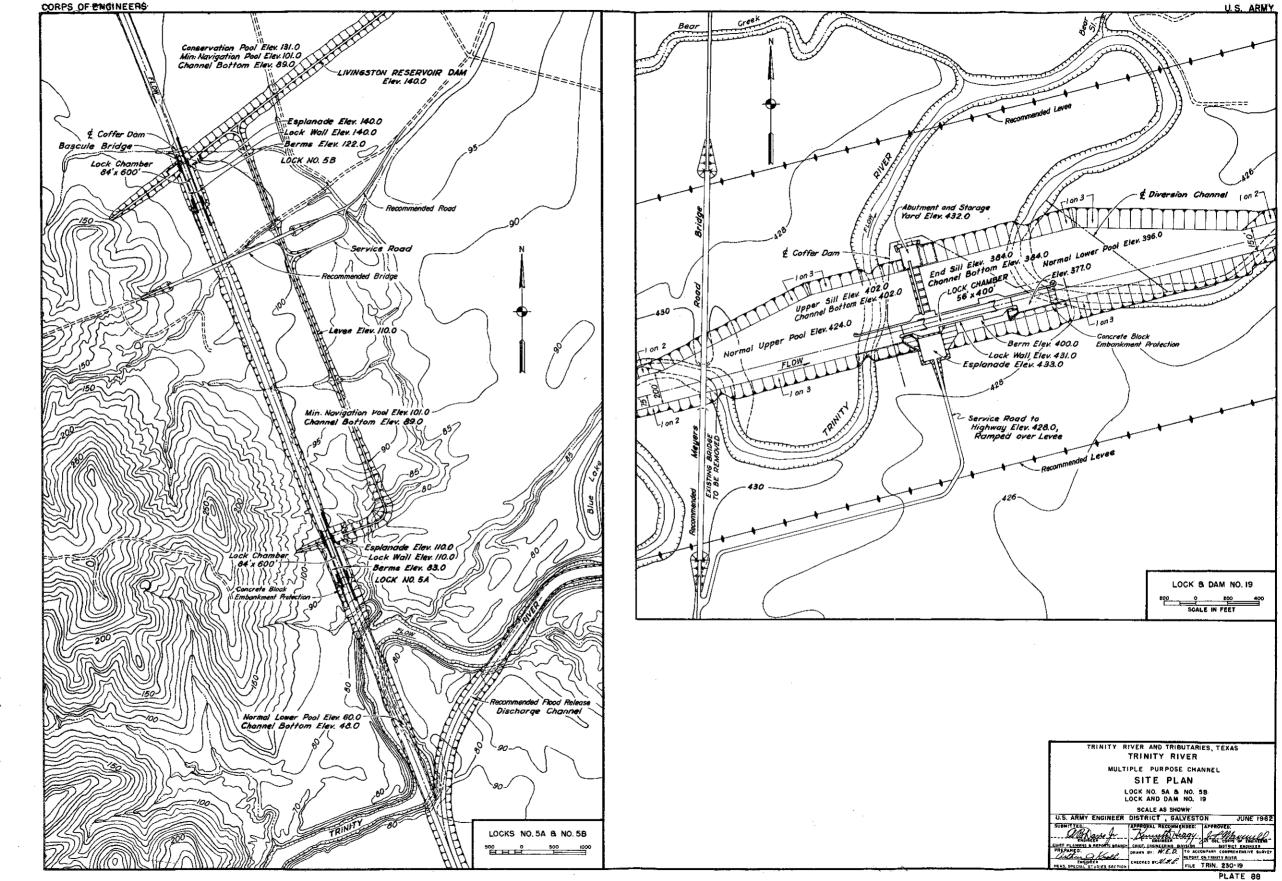

. .

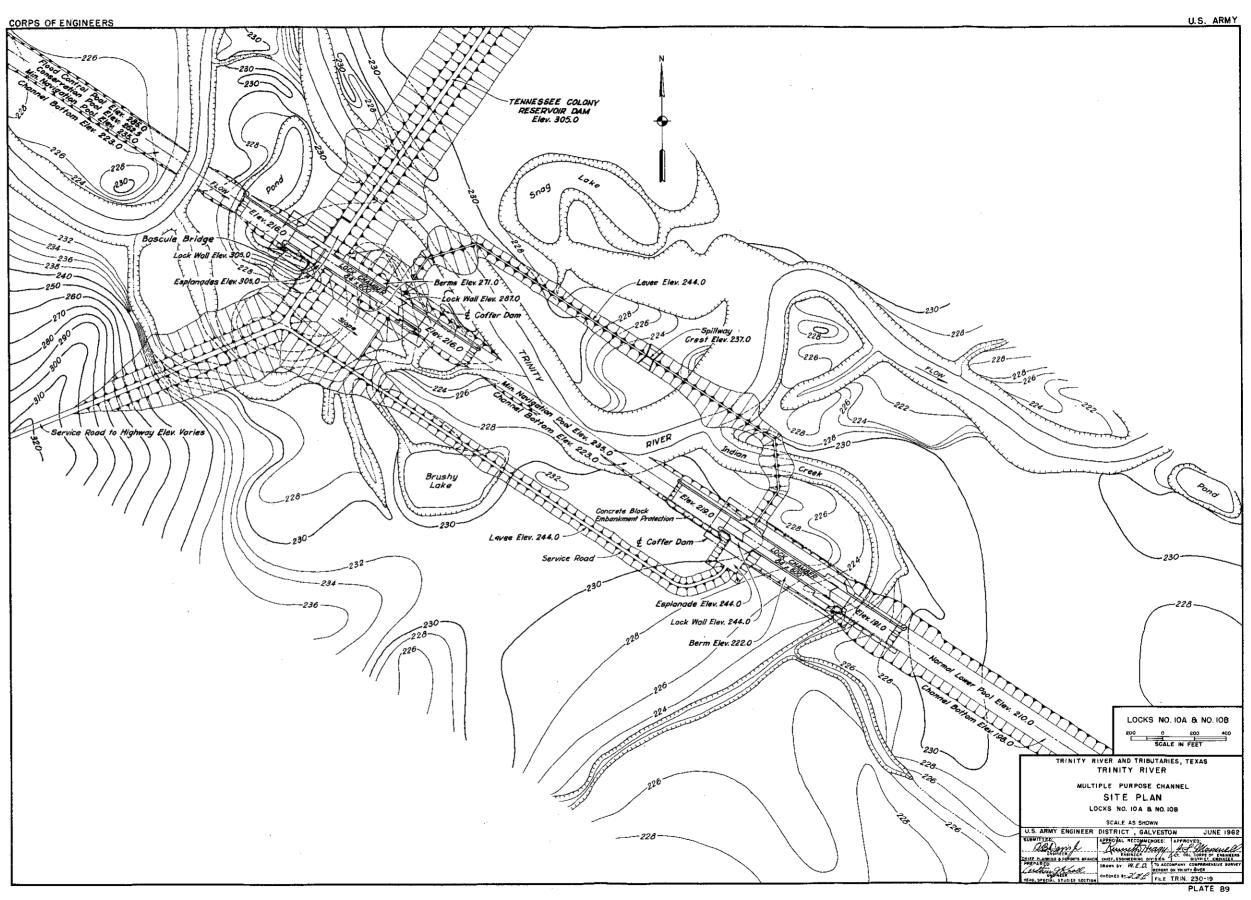



- ---

CORPS OF ENGINEERS





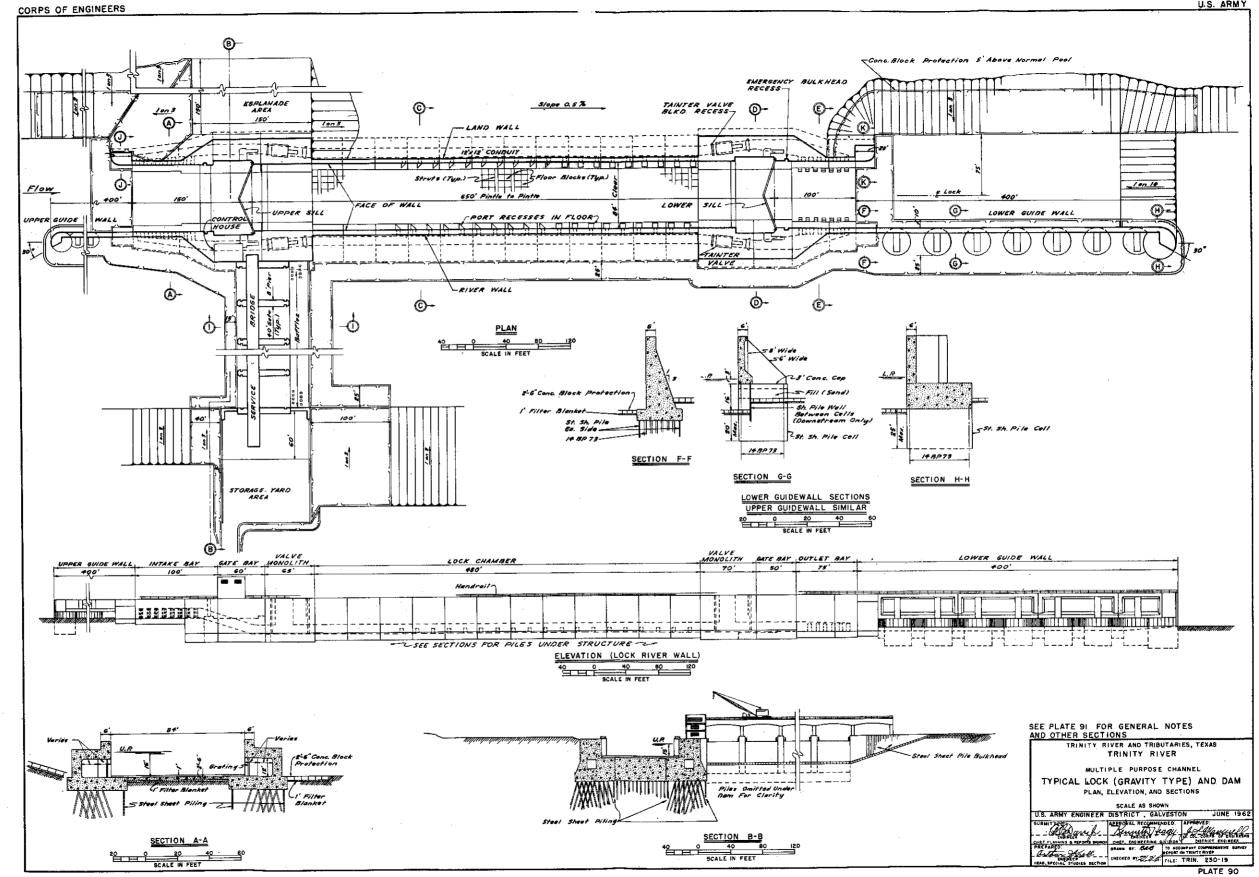

FLOW

I on 3

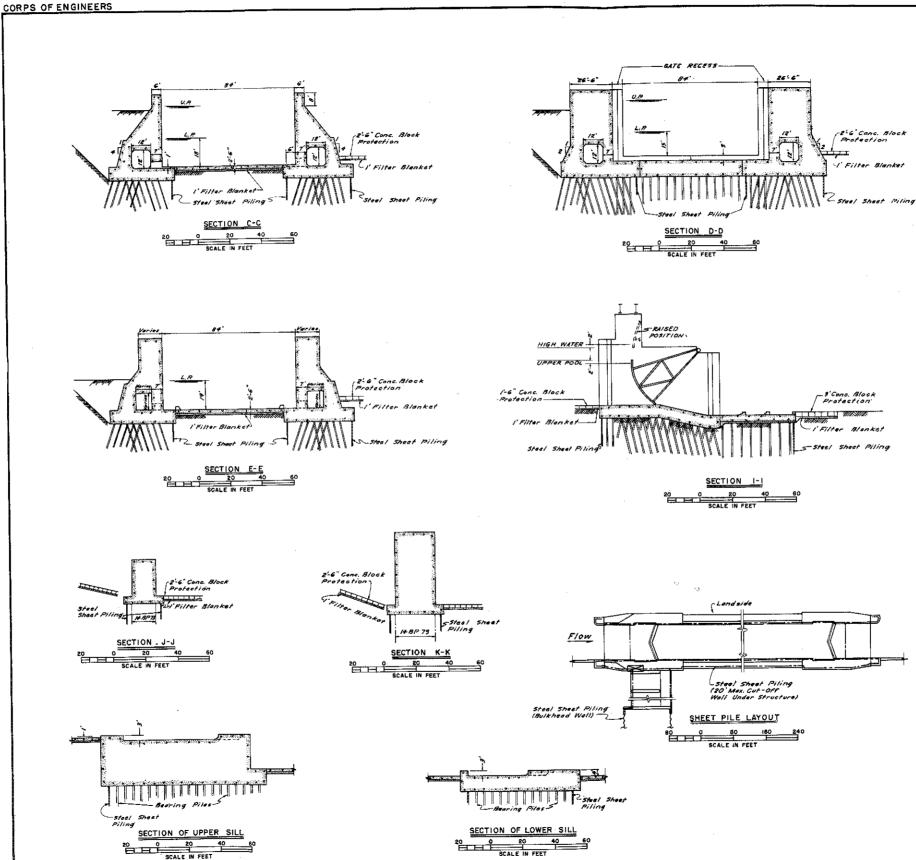
•

No. 166)പ Ť Ē Ш Vol. 65 Ó 52-704

4 So. 166) ġ. blankĒ Ш Vol. -65 Ó 704 52-


1

à



No. 166) d, ÷ bla (Face III Vol. 65 Ó 52-704

ŝ

U.S. ARMY

. O å 166) ġ. blank (Face 111. Vol. 3 Ó -704 ģ

ŧ

£

ð

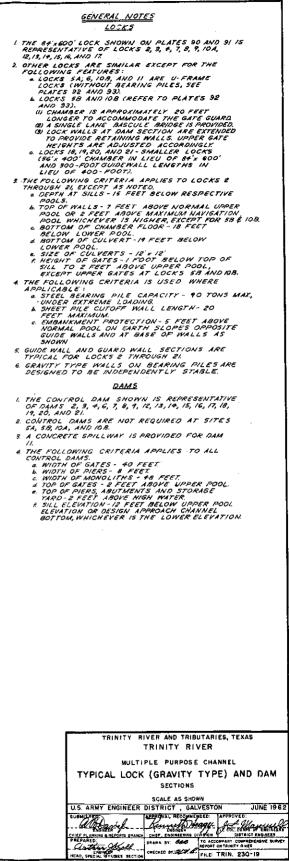
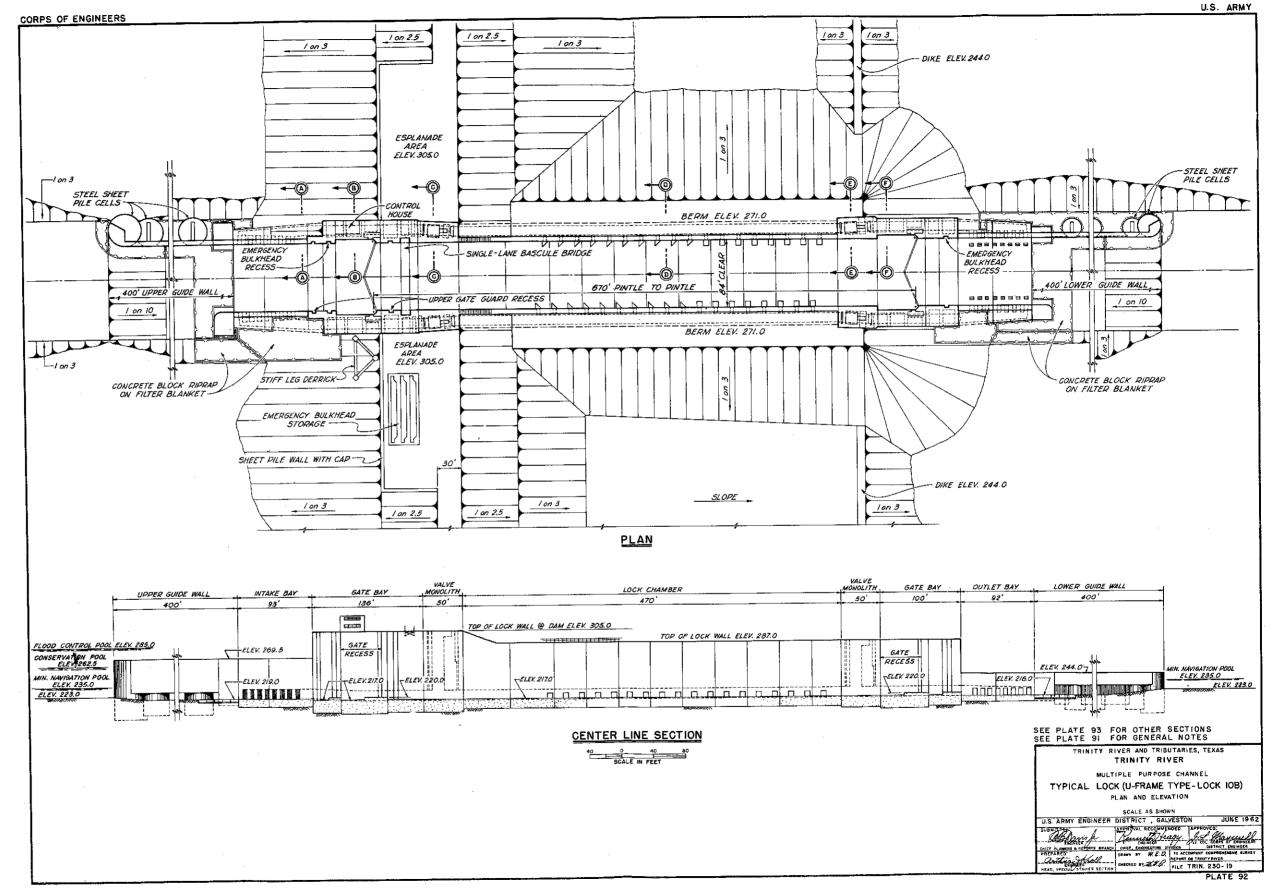
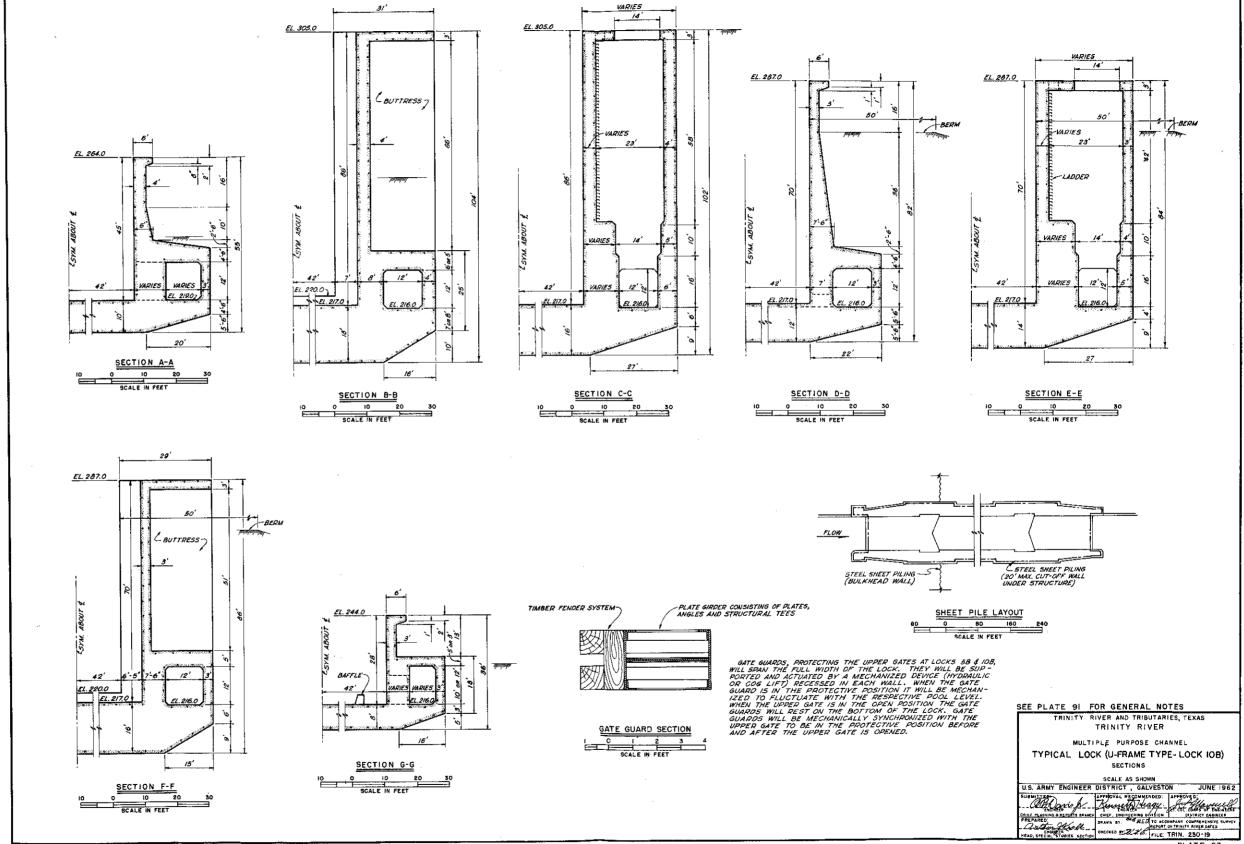



PLATE 91

·



5 Ŋ. 166) ġ. blank (Face Ξ Vol. 59 Ó 704 52-

.

\$

CORPS OF ENGINEERS

1

æ Š. 166) ġ blank (Face III Vol. O-65 52-704

85

*

5

8.

奇

5

PLATE 93

- -----

. .

*

¢ . . .

168. NAVIGATION DAMS. - A total of 18 navigation dams would be required in connection with the canalized Trinity River. All of the navigation dams, with the exception of Dam No. 11, would be withinchannel dams of the movable, non-navigable type. These dams, placed adjacent to the locks, would consist of sills, placed on grade with the flood discharge channel, surmounted by tainter gates. The top elevation of the tainter gates would be two feet above the level of the upper navigation pool. The required cross-sectional area of the gates was determined by the D'Aubisson formula for the condition that the structure when passing bankfull flows would not raise the water surface more than 0.5 feet above the stage that would exist without the structure. Discharges greater than bankfull capacity would overflow the banks and a part of the flow would occur in the flood plain. Due to the submergence of the sill and the cross-sectional area of the gates, no jump was formed at the dam and therefore, apron design or length of riprap required below the apron presented no particular problems. The pertinent hydraulic data relating to the navigation dams are shown in table 74.

169. Navigation Dam No. 11, located within the flood-control pool of Tennessee Colony Reservoir, would be a fixed non-navigable dam. The structure would extend across the entire flood plain and would consist of a spillway with crest at elevation 275 and a total length of 5,700 feet, including a 200-foot notch with crest at elevation 271.0. The notch would have a capacity of 4,800 second-feet which is adequate to pass the average annual discharge of about 3,600 second-feet plus about 500 second-feet of return flow from upstream sources. Flood inflows to the reservoir would pass over the uncontrolled spillway to the lower conservation and flood-control pool. With one foot overflow, the spillway would pass a flow of 23,000 second-feet, which is approximately equal to the operating discharge of the multiple-purpose channel at Lock and Dam No. 12. Accordingly, it is considered that the spillway would have no appreciable effect on the passage of flood flows.

TABLE 74

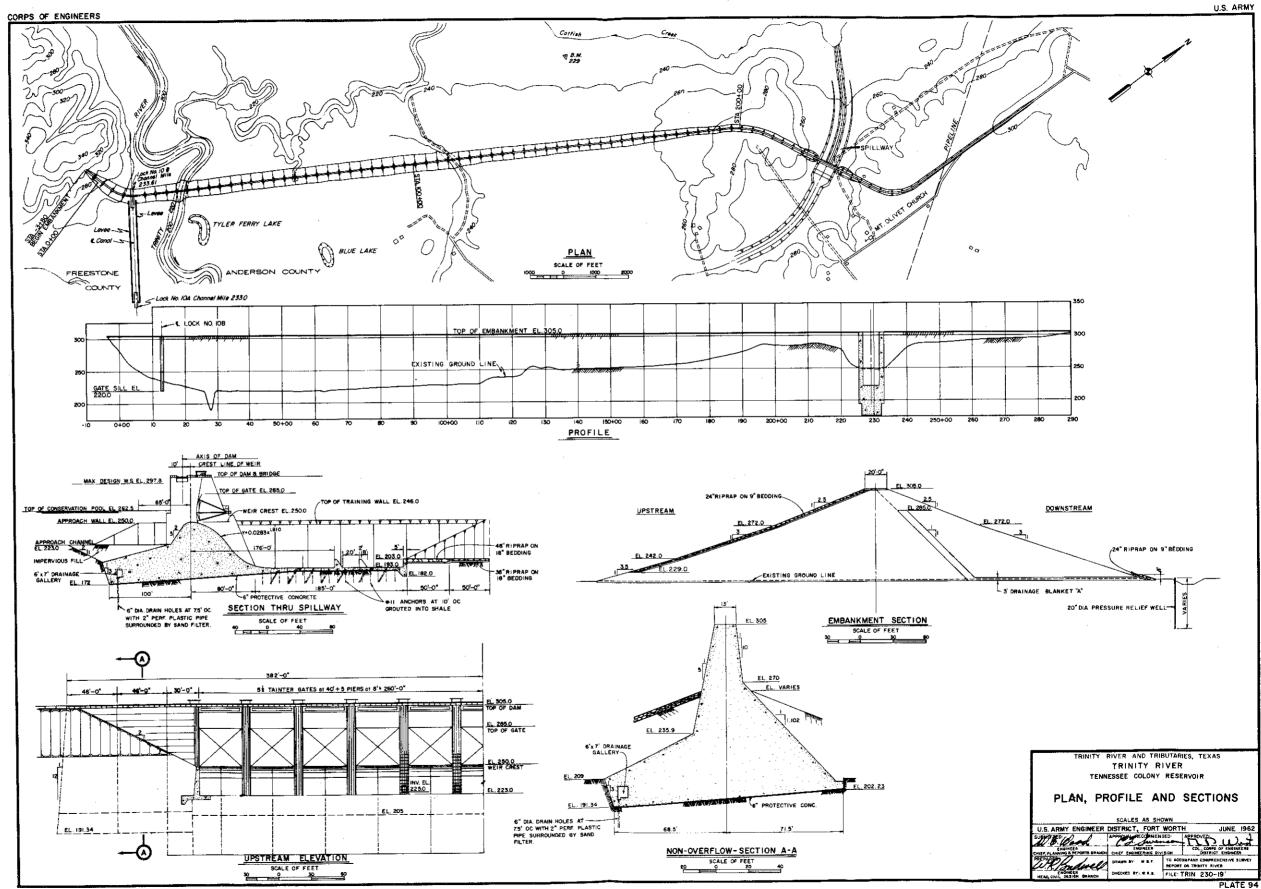
HYDRAULIC DATA - NAVIGATION DAMS MULTIPLE-PURPOSE CHANNEL

	:		:1	Pool el	evation	n:Lift:	Discha	rge (cfs)	:Tainte	r gates:(Gate-sil]	Apron	:Riprap
Dam	:	Channel	:	<u>(f</u> t-	msl)	: in :		n: Bankfull		: Size :	elevation	n:length	:length
number	:	mile	:	Lower:	Upper	feet:	capacity	:capacity(1):Number	:(feet);	(ft-msl)	:(feet)	:(feet)
								_	_			· · · ·	
21		360.17		452	480	28 .	15,000	86,000	6	40x31	451.0	67	37
20		351.91		424	452	28	15,000	70,800	6	40x28	426.0	32	17
19		342.51		396	424	28	15,000	64,000	6	40x24	402.0	26	14
18		331.31		372	396	24	27,000	48,000	5	40x34.5	363.5	27	15
17		317.81		356	372	16	27,000	54,000	5	40x30	344.0	48	26
16		311.25		344	356	12	27,000	46,000	5	40x27	331.0	41	23
15		306.31		326	344	18	27,000	50,500	5	40x24	322.0	37	21
14		298.38		308	326	18	32,000	47,000	5	40x26	302.0	33	18
13		286.64		284	308	24	32,000	68,000	6	40x32	278.0	35	19
12		274.51		270	284	14	32,000	43,000	5	40x28	258.0	35	19
11		258.91		-	-	-	35,000	68,700	-	-	_	(2)	(2)
10		- (3) -	-	-	-	•	•••		-	-	_
9		217.95		192	21.0	18	45,000	92,000	6	40x46	166.0	45	25
8		207.55		168	192	24	45,000	68,000	5	40x42	152.0	42	23
7		183.92		138	168	30	45,000	64,000	5	40 x 44	126.0	35	19
6		147.92		131	138	7	45,000	63,100	5	40x44	95.8	26	14
5			3		-	-	· •	-	-	-	_		_
4		74.85		36	60	24	45,000	72,000	6	40x36	26.0	35	20
3		59.08		16	36	20	45,000	78,000	6	40x34.5	3.5	54	30
ž		47.45		4	16	12	45,000	67,000	7	40x31.0		35	19
1			3			-	-		-	_		-	
				•									

Bankfull capacity immediately downstream from dam. See plate 87 for design of Dam No. 11. Storage reservoirs, no navigation dams. (1)

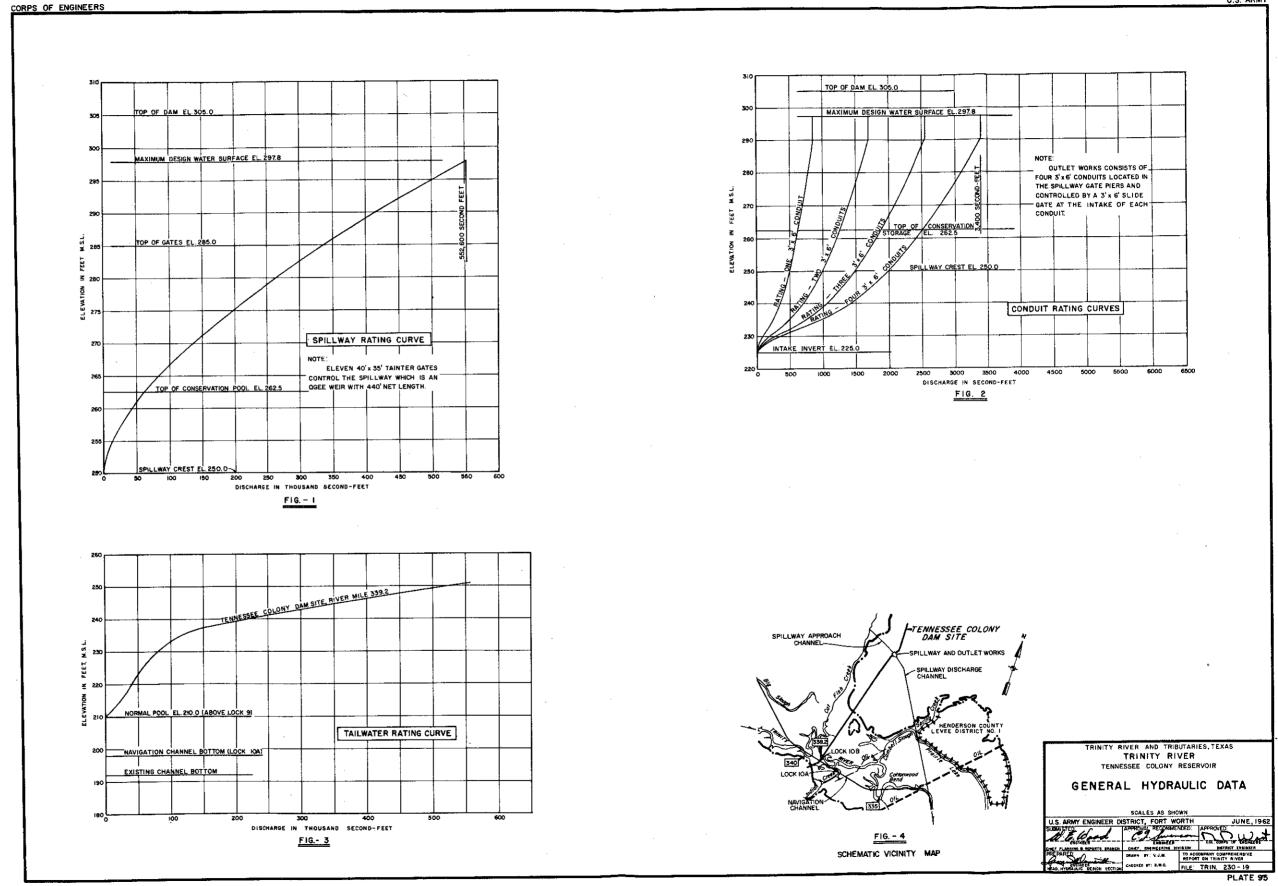
(2)

(3)


170. MULTI-PURPOSE DAMS. - Dams are recommended at the Tennessee Colony site on the Trinity River at river mile 339.2 (improved channel mile 233.61), Lakeview site on Mountain Creek, river mile 7.2, Aubrey site on Elm Fork, river mile 60.0, and the Roanoke site on Denton Creek, river mile 31.4.

171. TENNESSEE COLONY DAM. -

a. <u>Spillway</u>.- The earthen dam would be located on the Trinity River at river mile 339.2 with the spillway on the left bank. The spillway would consist of an ogee weir with an underdesigned crest at elevation 250.0 controlled by eleven 40- X 35-foot tainter gates separated by 8-foot piers. Details of the spillway and stilling basin are shown on plate 94. Under conditions of the spillway design discharge (552,600 second-feet through the spillway) the reservoir level would be at elevation 297.8. The proposed Tennessee Colony Reservoir will not adversely affect the operation of the Cedar Creek Reservoir, now under construction by local interests, nor the proposed Richland and Tehuacana Reservoirs. The spillway rating curve is shown on figure 1, plate 95.

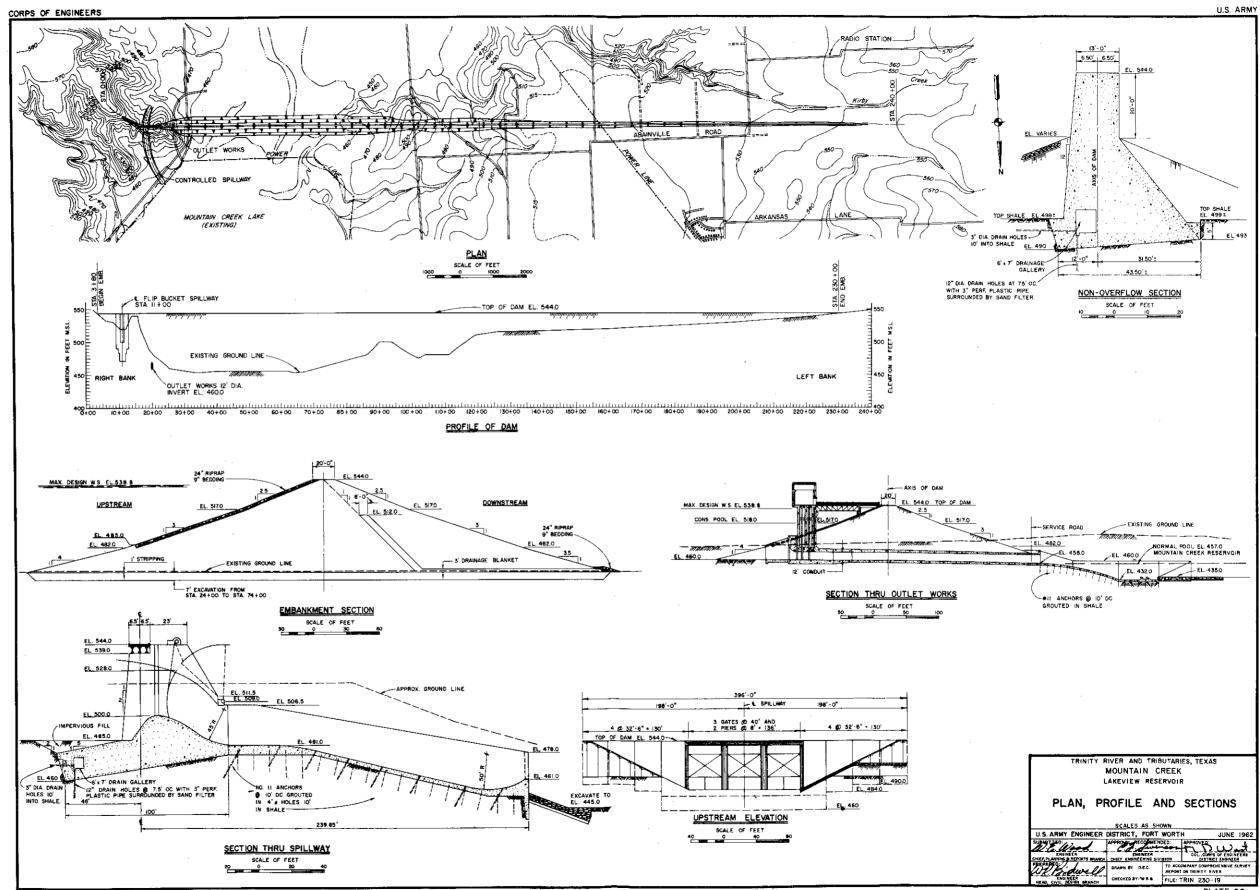

b. <u>Outlet Works.</u> Four 3- X 6-foot conduits through four of the spillway gate piers would be provided for diversion and conservation releases and for practical draining of the reservoir to elevation 225.0. Each conduit would be controlled by a 3- X 6-foot slide gate at the entrance. Trash racks and stop logs would be provided. The capacity of each conduit would be 610 second-feet at top of conservation pool (elevation 262.5) and 850 second-feet at maximum reservoir level (elevation 297.8). Rating curves for the conduits are shown on figure 2 of plate 95.

c. <u>Tailwater Rating Curve</u>.- The tailwater rating curve at the damsite is shown on figure 3 of plate 95. This rating curve was developed by backwater computations correlated with observed highwater data and measurements at U. S. Geological Survey stream-gaging stations on the Trinity River. The tailwater level at the damsite (prior to closure of the main embankment) for the design discharge of 556,000 second-feet (combined flow spillway and conduit) would be at elevation 250.9.

_ No. 170) ġ 9 Ш Vol. 12 Ó 704 52-

and the second second second second

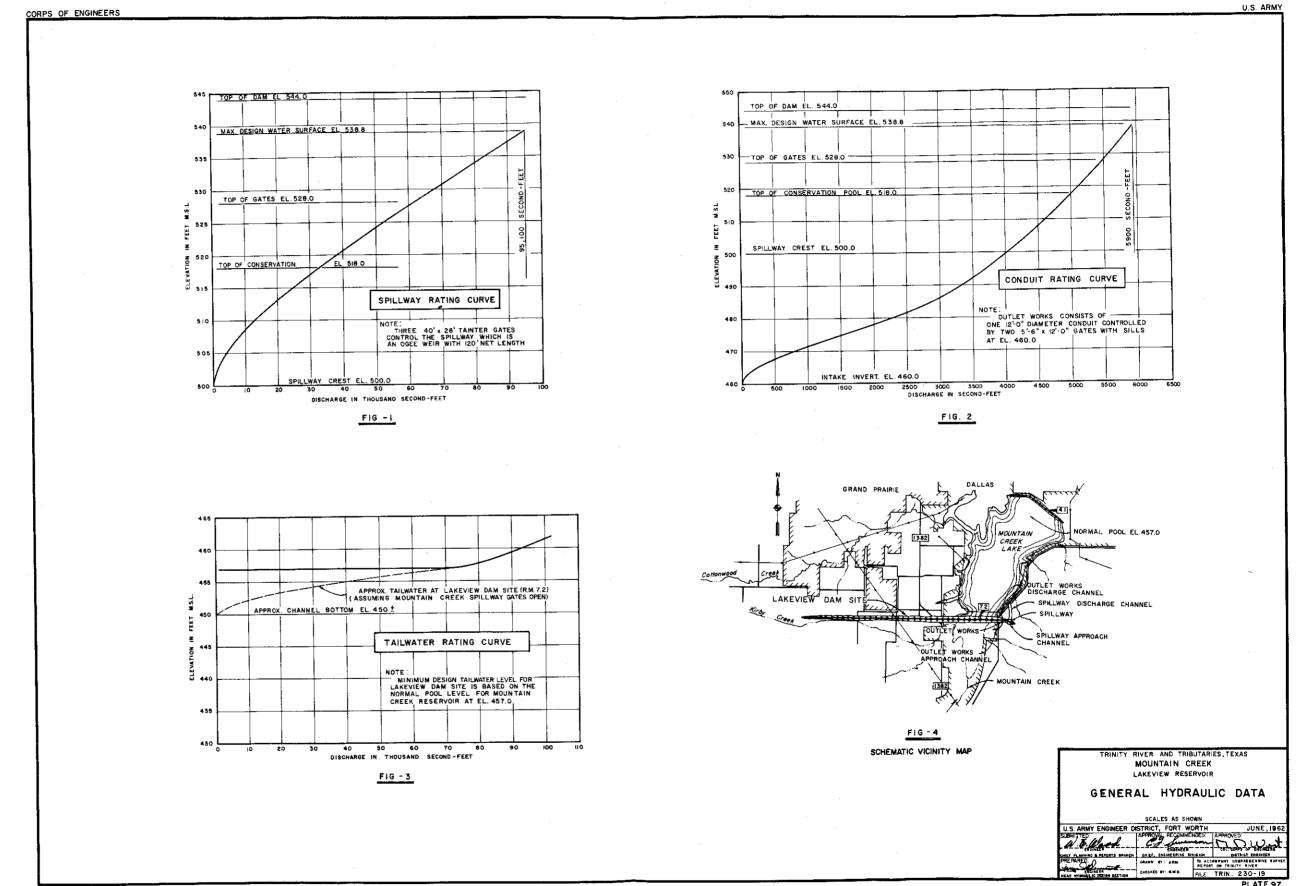
52-704 O-65 Vol. III (Face blank p. 170) No. 2


۲, 7 ß ٦.

172. LAKEVIEW DAM.-

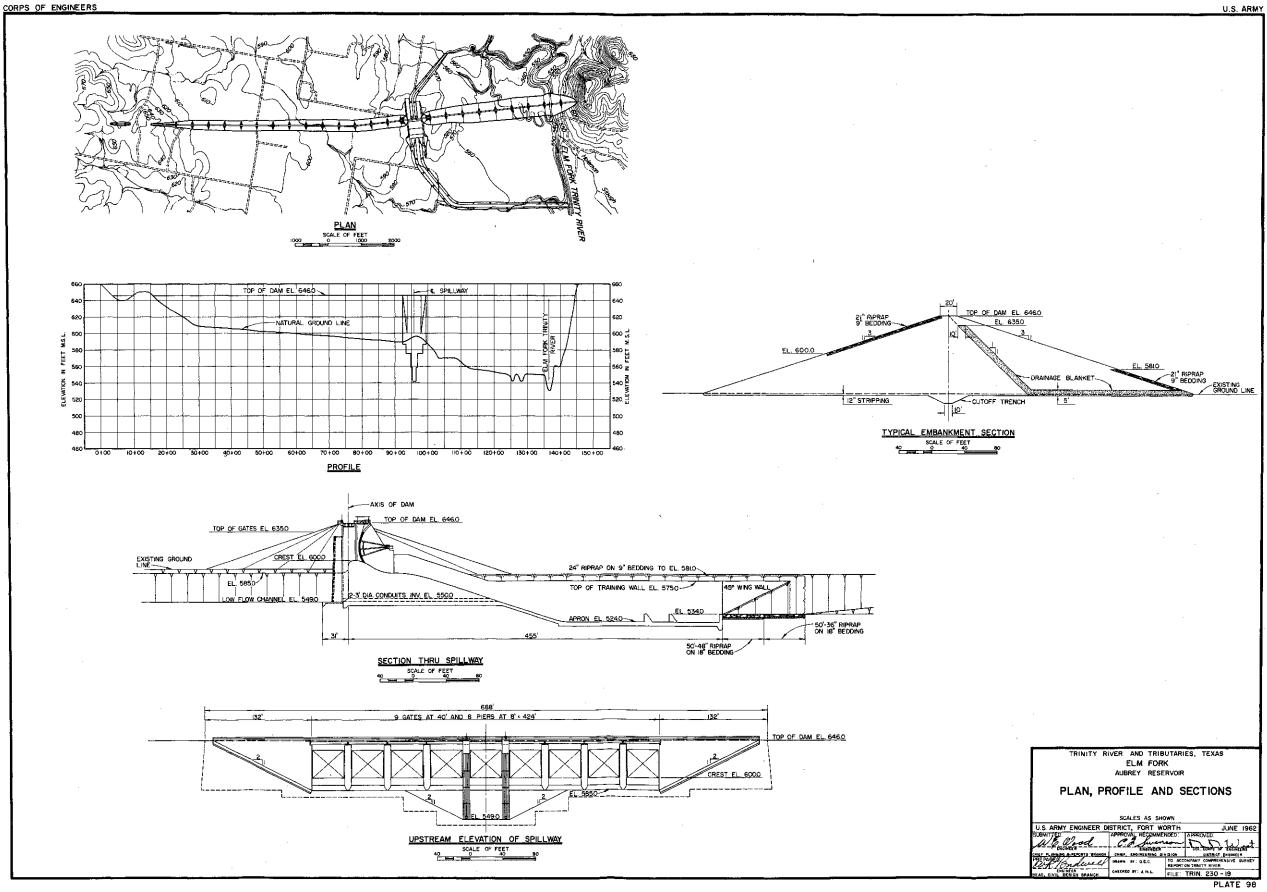
a. <u>Spillway</u>.- The earthen dam would be located on Mountain Creek at river mile 7.2 with the spillway in a saddle on the right bank. The spillway would consist of an ogee weir with an underdesigned crest at elevation 500.0 controlled by three 40- X 28-foot tainter gates separated by 8-foot piers. Details of the spillway and stilling basin are shown on plate 96. Under conditions of the spillway design discharge (95,100 second-feet through the spillway) the reservoir level would be at elevation 538.8. Energy dissipation would be accomplished by a flip bucket with a 50-foot bucket radius and a 30 degree angle. The top of the bucket lip would be at elevation 461.0. The spillway rating curve is shown on figure 1, plate 97.

b. Outlet Works.- The flood-control outlet works would consist of a 12-foot diameter conduit controlled by two 5-foot 6-inch X 12-foot tractor-type slide gates, with intake inverts at elevation 460.0 and outlet invert at elevation 458.0. The conduit would be used for diversion during construction, for the passage of flood releases, and for the passage of low-flow discharges. The capacity of the floodcontrol conduit would be 5,000 second-feet at top of conservation pool (elevation 518.0) and 5,900 second-feet at maximum reservoir level (elevation 538.8). The outlet works rating curve is shown on figure 2, plate 97.


c. <u>Tailwater Rating Curve.</u> The tailwater rating curve at the damsite is shown on figure 3, plate 97. The minimum tailwater level for Lakeview Damsite is based on the normal pool level for Mountain Creek Reservoir, maintained at elevation 457.0. The tailwater rating curve was developed by backwater methods based on the downstream control at the Mountain Creek spillway (river mile 4.1). The tailwater at the damsite (river mile 7.2) for the design discharge of 101,000 second-feet (combined flow spillway and outlet works) would be at elevation 461.6. Lakeview Reservoir was designed to operate in conjunction with the existing Mountain Creek Reservoir and will not adversely affect nor be affected by the existing project.

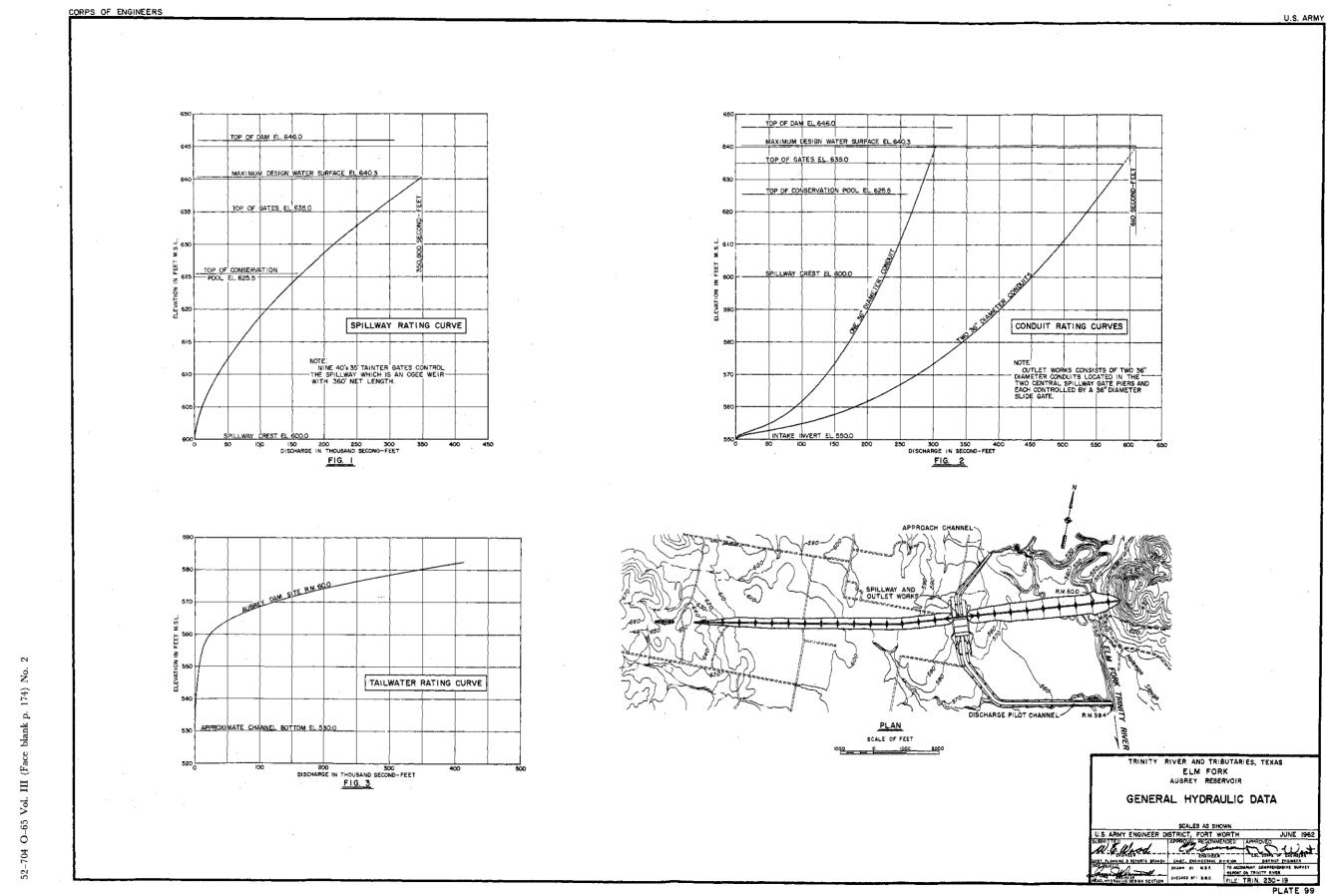
- --- ---

4


PLATE 97

173. AUBREY DAM.-

a. <u>Spillway</u>.- The earthen dam would be located on the Elm Fork of the Trinity River at river mile 60.0 with the spillway in a saddle on the right bank. The spillway would consist of an ogee weir with an underdesigned crest at elevation 600.0 controlled by nine 40- X 35-foot tainter gates separated by 8-foot piers. Details of the spillway and stilling basin are shown on plate 98. Under conditions of the spillway design discharge (350,800 second-feet) the reservoir level would be at elevation 640.3. The spillway rating curve is shown on figure 1, plate 99.

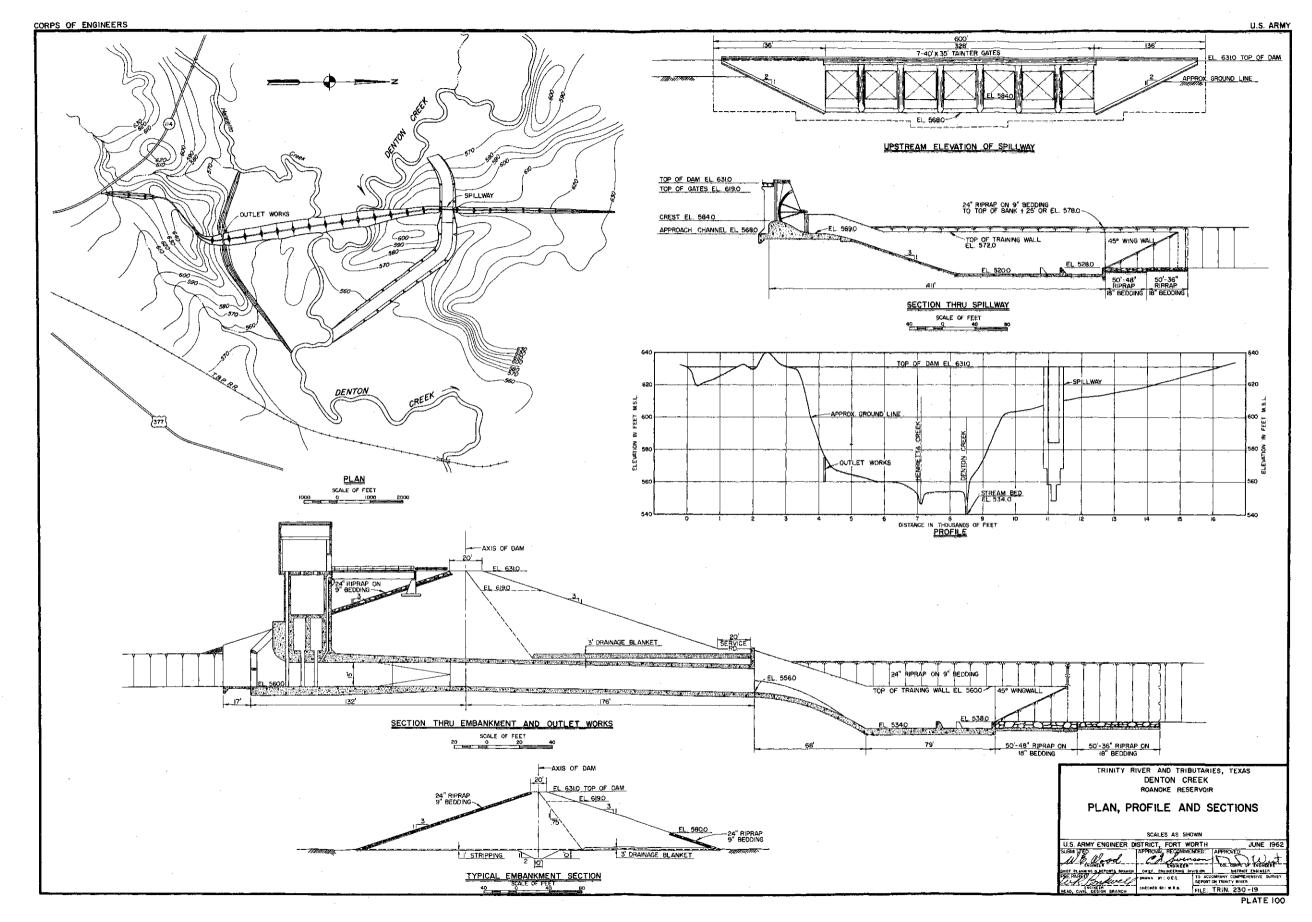

b. Outlet Works.- The outlet works would consist of two 36-inch diameter conduits controlled by 36-inch diameter slide gates, with intake inverts at elevation 550.0. The conduits would be used for the passage of low-flow releases and for practical draining of the reservoir to elevation 550.0. The capacity of each conduit would be 280 second-feet at top of conservation pool (elevation 625.5), and 300 second-feet at maximum reservoir level (elevation 640.3). Rating curves for the conduits are shown on figure 2 of plate 99.

c. <u>Tailwater Rating Curve</u>.- The tailwater rating curve at the damsite is shown on figure 3 of plate 99. The tailwater rating was developed by backwater methods correlated with observed highwater data. The tailwater level at the damsite for the design discharge of 350,800 second-feet would be at elevation 580.2.

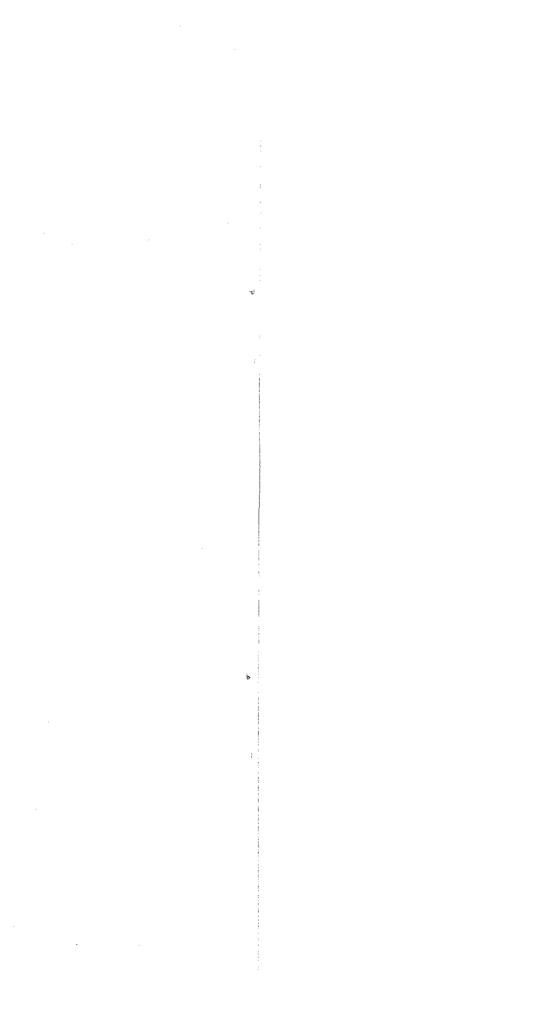
O-65 Vol. III (Face blank p. 174) No. 1

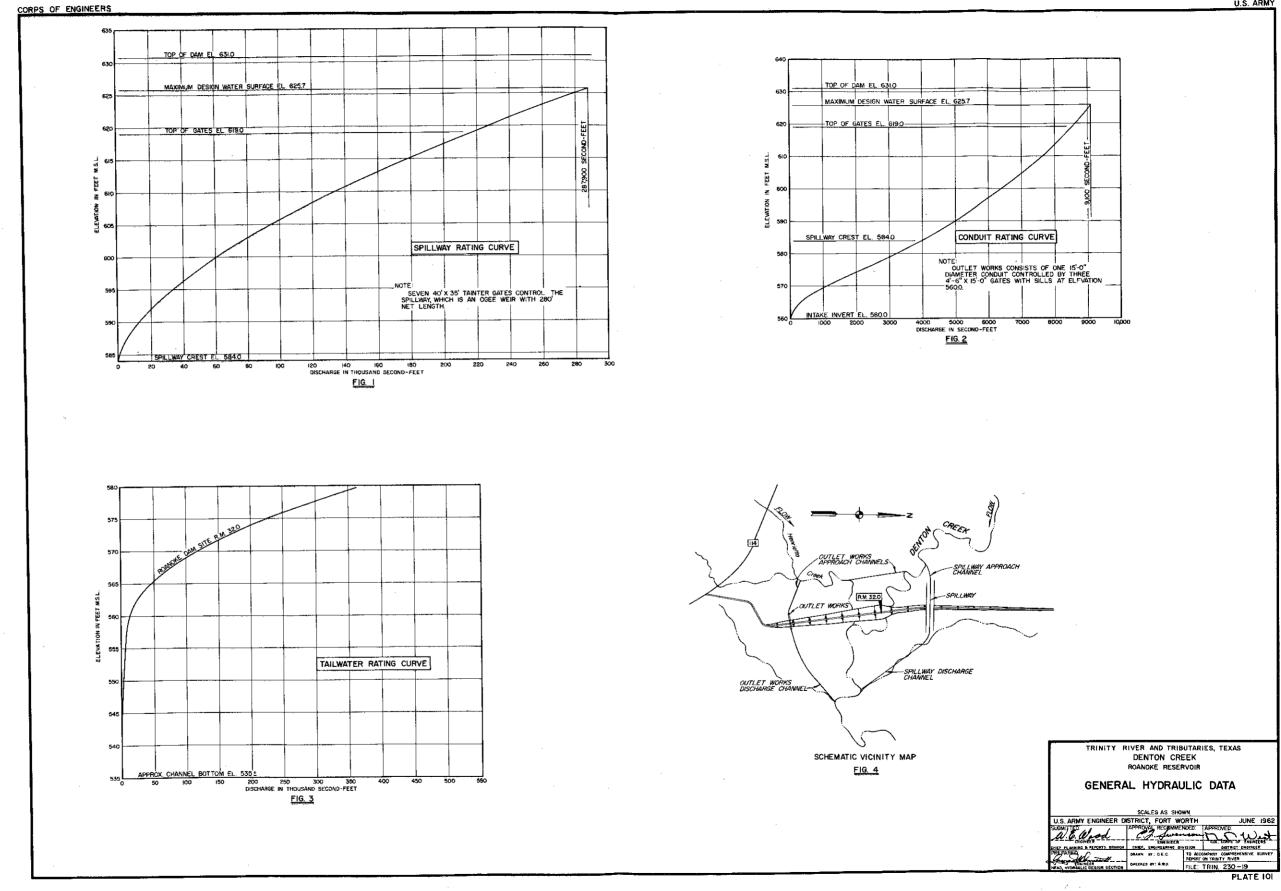
52-704 O-65 V

.


174. ROANOKE DAM -

52-704 O-65 (Vol. III)-13

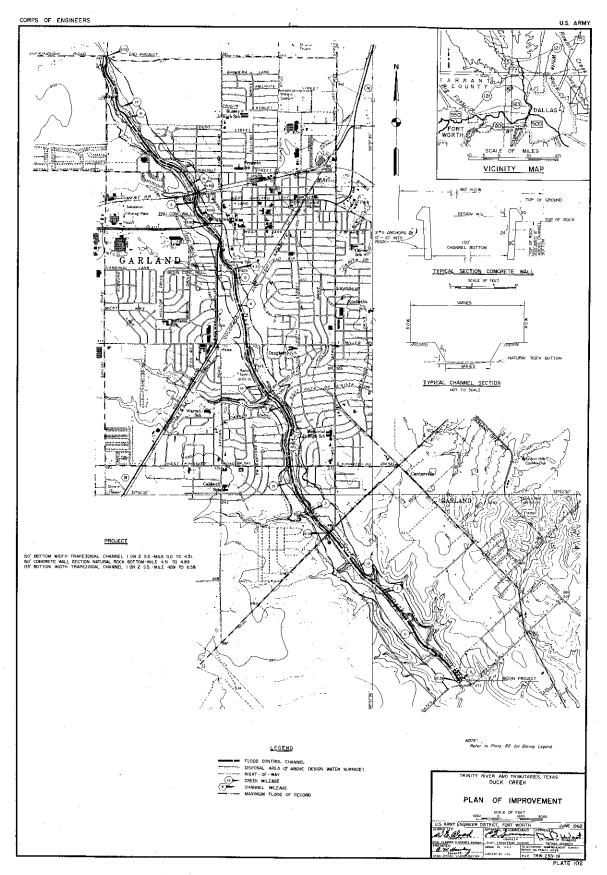

a. <u>Spillway</u>.- The earthen dam would be located on Denton Creek at river mile 32.0 with the spillway in a saddle on the left bank. The spillway would consist of an ogee weir with an underdesigned crest at elevation 584.0 controlled by seven 40- X 35-foot tainter gates separated by 8-foot piers. Details of the spillway and stilling basin are shown on plate 100. Under conditions of the spillway design discharge (287,900 second-feet through the spillway) the reservoir level would be at elevation 625.7. The spillway rating curve is shown on figure 1, plate 101.


b. Outlet Works. - The outlet works would consist of a 15-foot diameter conduit controlled by three 4.5- X 15-foot tractortype slide gates, with intake inverts at elevation 560.0. The conduit would be used for diversion during construction, for the passage of flood releases, and for practical draining of the reservoir to elevation 560.0. The capacity of the conduit would be 9,100 secondfeet at maximum reservoir level (elevation 625.7). Rating curve for the conduit is shown on figure 2 of plate 101.

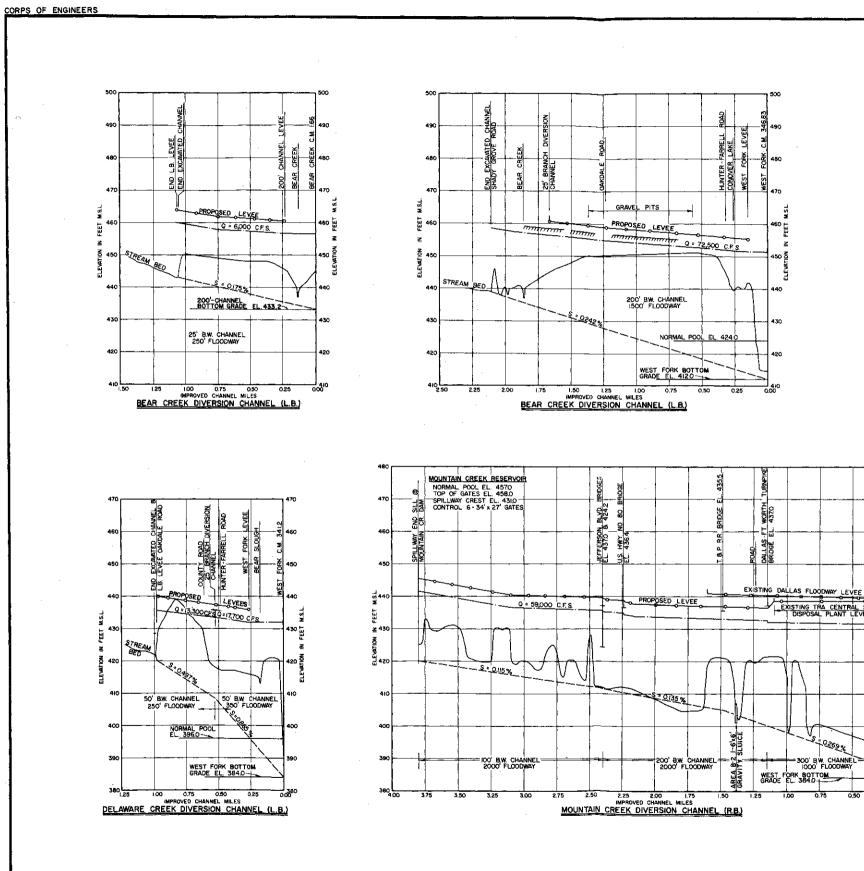
c. <u>Tailwater rating curve</u>.- The tailwater rating curve at the damsite is shown on figure 3 of plate 101. The tailwater rating curve was developed by backwater methods correlated with observed highwater data. The tailwater level at the damsite for the design discharge of 297,000 second-feet would be at elevation 577.5.

No. (92) å (F2 III Vol. 65 Ó 704 52-

. ...

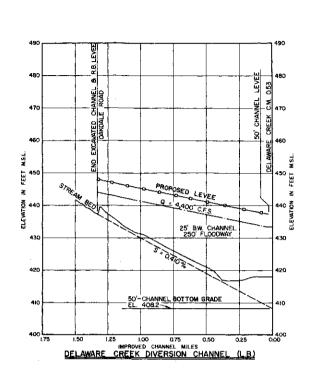


175. TRIBUTARY CHANNEL IMPROVEMENTS - TRINITY RIVER .- The plan of improvement for tributaries of the Trinity River (excluding the East Fork) listed in table 75 and Duck Creek, a tributary of the East Fork, would be designed to provide standard project flood protection. The improvements would consist generally of an improved channel with uniform bottom grades, channel realignment, and levees. The improved channel section would have the channel bottom depressed 1.0 foot at center and would have 1 vertical on 2 horizontal side slopes, except as noted. The levees would be modified or constructed to provide a minimum freeboard of 4 feet above the water surface of the standard project flood. Bridges would have a minimum freeboard of 3 feet. The hydraulic friction losses were based on the Manning formula with coefficients of roughness of 0.035 and 0.070 for channel and overbank, respectively, except as noted. Table 75 shows the approximate Trinity River channel miles and the design conditions at the confluence of each of these tributaries and Duck Creek. The plans of improvement for these tributaries and for Duck Creek are shown on plates 52 through 57, and 102. The proposed channel widths, channel grades, design water surface, levee profiles, and location and sizes of the interior drainage structures are shown on plates 85 and 103 through 108. The details for the plans of improvement of some of the larger tributaries are set forth in the following paragraphs.


TABLE 75

HYDRAULIC DESIGN DATA TRINITY RIVER - TRIBUTARY CHANNEL IMPROVEMENTS

	•	:	: Mouth of tributary			
	: Trinity			:	Improved	:Design
Tributary	: River	÷	Design	ê	channel	: water
-	: channel	1	discharge	:b	ottom wid	th:surface
	: mile	è	(cfs)	0 •	(feet)	:(ft-msl)
			<i></i>			
Five Mile Creek	321.50		63,500		50	396.2
Honey Springs Branch	326.15		4,100		50	404.8
White Rock Creek	326.62		72,100		150	405.7
Elm Fork	338.80		61,000		100	425.5
Mountain Creek	340.89		59,000		300	431.3
Delaware Creek	341.20		17,700		50	432.0
Bear Creek	346.83		72,500		200	451.5
Unnamed Creek	355.13		10,200		50	473.0
Sulphur Branch	356.08		8,100		50	475.6
Walker Branch	359.79		25,800		50	483.5
Unnamed Creek	361.13		1,890		25	489.3
Big Fossil Creek	362.92		52,000		50	497.2
Little Fossil Creek	363.68		17,400	•	50	500.0
White Lake Outfall	364.71		2,000		25	503.5


,

-No. 178) d (Face Ш Vol. 65 Ó 704 52-

樽

U.S. ARMY

LEGEND

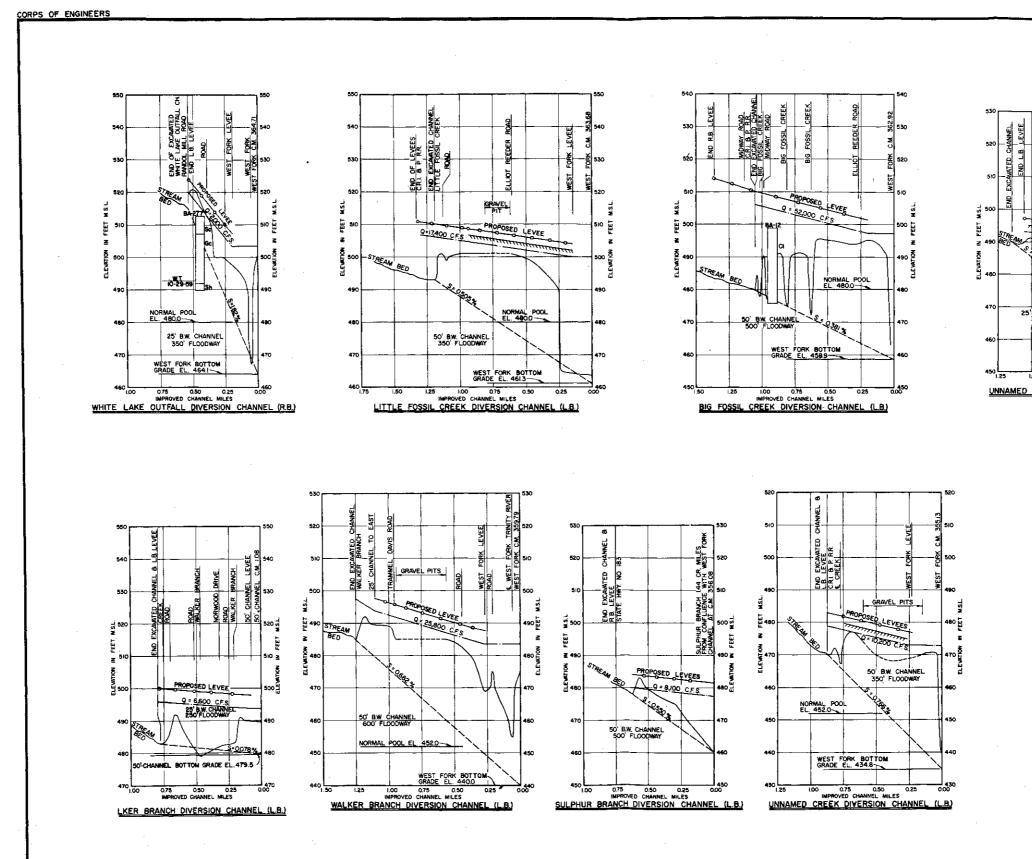
	DESIGN WATER SURFACE
	LEVEE, RIGHT BANK
	LEVEE, LEFT BANK
	CENTERLINE PROFILE
	BOTTOM GRADE
	FILL AREA, RIGHT BANK
manna	FILL AREA, LEFT BANK
B.W.	BOTTOM WIDTH
L.B.	LEFT BANK
R.B.	RIGHT BANK

460 450 EXISTING TRA CENTRAL SEWAGE EET 430 ≥ N 420 ដ 400 NORMAL POOL EL. 396.0 ~s=0269% = 300' B.W. CHANNE 1000' FLOODWAY 0.75

LEVEE

470

NOTES: Floadway dimensions shown are minimum requirements measured from centerline of levees, or from centerline of levee to notwal bank or fill area. All channel side slopes are I vertical on 2 horizontal. Levee side slopes are I vertical on 2 horizontal. All bridges shown are existing structures. Elevations of bridges refer to existing low steel elevations.

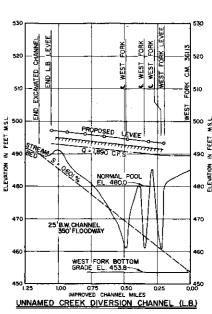

TRINITY RIVER AND TRIBUTARIES, TEXAS WEST FORK TRIBUTARIES FLOOD CONTROL CHANNELS AND FLOODWAYS

DETAILED PROFILES

IN 2 SHEETS	SCALES AS SHO) WN	SHEE	T NO. I
		HTR	JUNE	E 1962
SUBATTED.	APPROVAL REGOMME	NDED:	APPROVED:	Juit
ENGINEER	CHIEF, ENGINEERING DI		COL COMPS OF LIGH DISTRICT CHAIN	
PREPARED	DRAWN OY: D.E.C.		WANY CONFREHENSIVE	SURVEY
HEAD, SPECIAL STUDIES SECTION	CHECKED BY: J. H.L.	FILE: T	RIN 230-19	

PLATE 103

· · ·



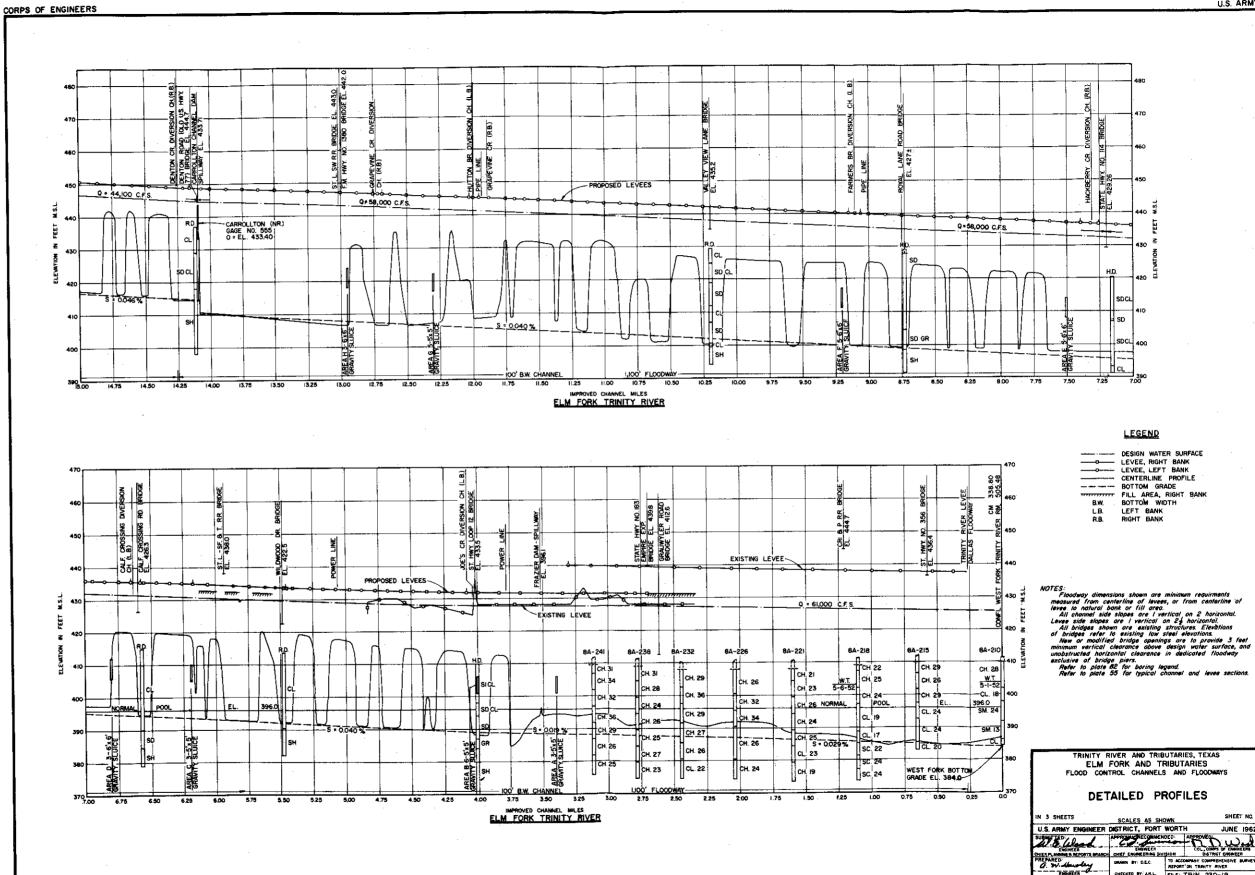
2 No. 178) ď, (Face Ξ Vol. 33 Ó 704 52^{-}

з

-

U.S. ARMY

LEGEND


NOTES: Floodway dimensions shown are minimum requirements measured from centerline of Weees, or from centerline of levee to natural bank or fill area. All channel side slopes are I vertical on 2 horizontal. Leves side slopes are I vertical on 2 horizontal. All bridges refer to existing structures. Elevations of bridges refer to existing to street elevations. New or modified bridge openings are to provide 3 feel minimum vertical claerance above design water surface, and unabstructed horizontal claerance in dedicated floodway exclusive of bridge piers. Refer to plate 82 for boring legend.

TRINITY RIVER AND TRIBUTARIES, TEXAS WEST FORK TRIBUTARIES FLOOD CONTROL CHANNELS AND FLOODWAYS

DETAILED PROFILES

IN 2 SHEETS	SCALES AS SHO	OWN SHEET NO. 2
U.S. ARMY ENGINEER D		ORTH JUNE 1962
W. C. Wood	APPROVAL RECOMME	m n n wat
CHEF PLANNING & REPORTS BRANCH	CHEF, ENSINCERING P	VIERON DISTANCE ENGINEER
G. W. Hausley	DRAWN BY: D.E.C.	TO ACCOMMANY COMPREMENSIVE SURVEY REPORT ON TRINITY AIVER
HEAD, SPECIAL STUDIES SECTION	CHECKED BY: J.H.L.	FILE: TRIN 230-19

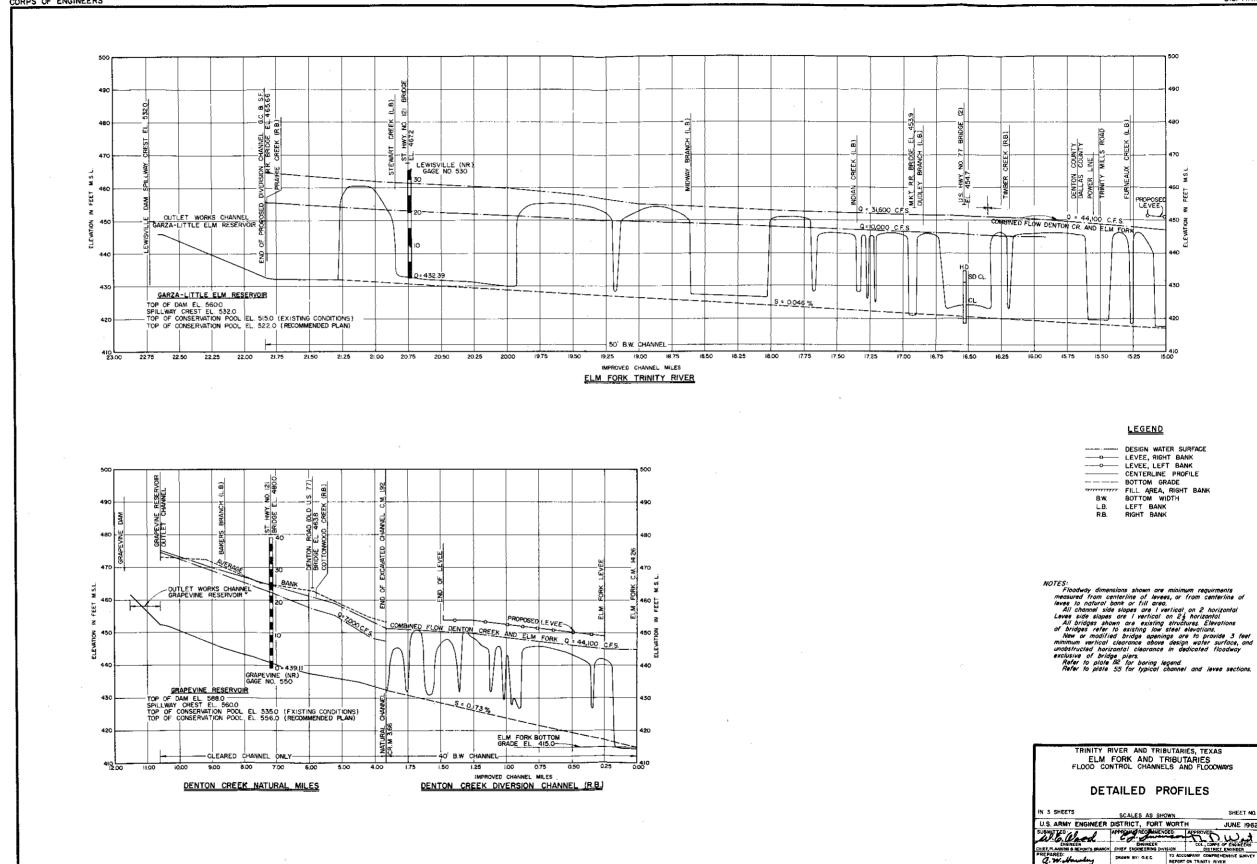
PLATE 104

52-704

ŝ Ño. 178) ų. Fa III Vol. O-65

3

U.S. ARMY

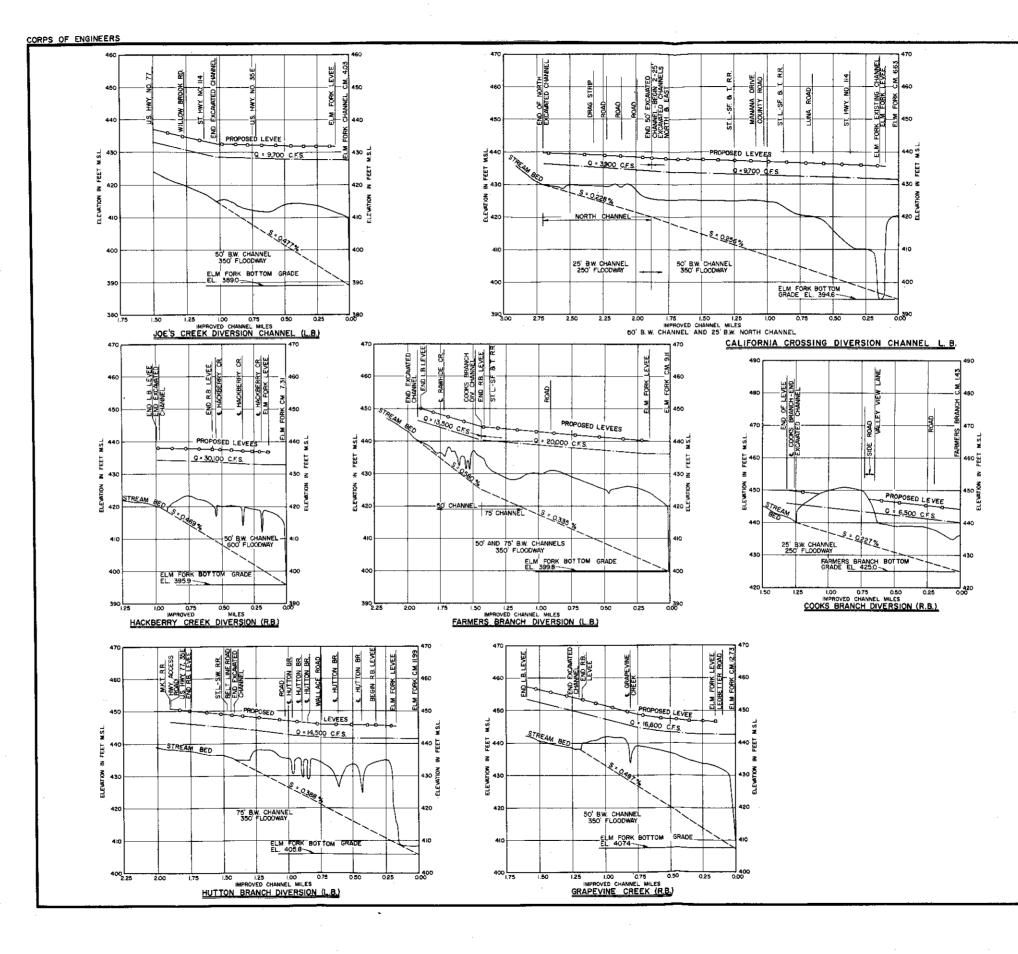

	DESIGN WATER SURFACE
	LEVEE, RIGHT BANK
	LEVEE, LEFT BANK
	CENTERLINE PROFILE
	BOTTOM GRADE
	FILL AREA, RIGHT BANK
B.W.	BOTTOM WIDTH
L.B.	LEFT BANK
R.B.	RIGHT BANK

TRINITY RIVER AND TRIBUTARIES, TEXAS ELM FORK AND TRIBUTARIES FLOOD CONTROL CHANNELS AND FLOODWAYS

DETAILED PROFILES

IN 3 SHEETS	SCALES AS SH	OWN	SHEET NO. I
U.S. ARMY ENGINEER	DISTRICT, FORT	WORTH	JUNE 1962
W.S. Wood	APPROVINE	~~+D	N West
ENGINEER CHIEF PLANNING & REPORTS BRAM			, COMPS OF ENVINEERS
G. W. Musley	DRAWN BY: D.E.C.		ONFREHENSIVE SURVEY
HEAD: SPECIAL STUDIES SECTION	CHECKED BY ARL.	FILE: TRIN	230-19

PLATE 105

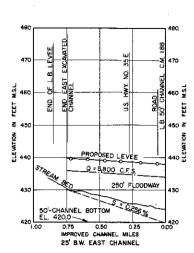

à,

	DESIGN WATER SURFACE
0	LEVEE, RIGHT BANK
o	LÉVEE, LEFT BANK
·	CENTERLINE PROFILE
<u></u>	BOTTOM GRADE
mannan	FILL AREA, RIGHT BANK
8.W.	BOTTOM WIDTH
L.B.	LEFT BANK
R.B.	RIGHT BANK

TRINITY RIVER AND TRIBUTARIES, TEXAS ELM FORK AND TRIBUTARIES

IN 3 SHEETS	SCALES	AS SHOWN		SHEET NO. 2
U.S. ARMY ENGINEER		FORT WO		JUNE 1962
W.C. Vood	APPROVAGREC	MMENDEO	APPROVED	JW.J
ENRINEER CHIEF, PLANNING & REPORTS BRANCH	CHIEF ENGINEE			PS OF ENGINEERS
PREPARED: Q. W. Hawley	ORAWN BY: 0.6	REI		REHENSIVE SURVEY
ENGINEER V	CHECKED BY:	AHL. FIL	E: TRIN. 230)-19

PLATE 106



ŝ ŝ 178) á Fa Ξ Vol. 12 Ó 704 52-

16

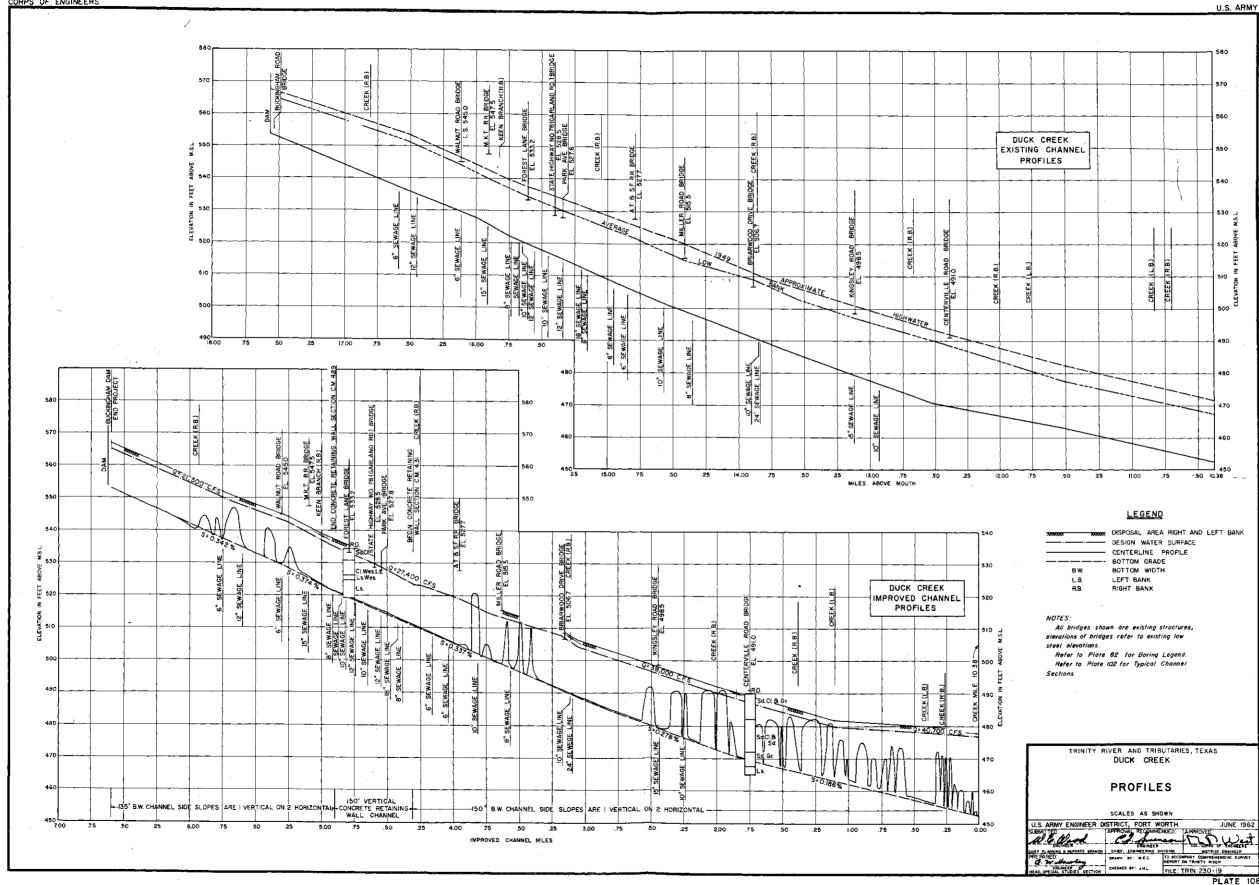
3

LEGEND

 DESIGN WATER SURFACE
 LEVEE, RIGHT BANK
 LEVEE, LEFT BANK CENTERLINE PROFILE BUTTOM GRADE FILL AREA, RIGHT BANK BW BOTTOM WIDTH L.B. LEFT BANK R.B. RIGHT BANK

NOTES: Floodway dimensions shown are minimum requirments measured from centerline of levers, or from centerline of lever or advard book or till area, or from centerline of lever or advard book or till area, or from centerline of lever or advard book or lever fool on 24 horizontal. Lever side stops are i verifical on 24 horizontal. Lever side stops are i verifical on 24 horizontal. Lever side stops are i verifical on 24 horizontal. Lever side stops are i verifical on 24 horizontal. Lever side stops are side stops are to provide 3 feet minimum verifical clearance and decisated floodway exclusive of bridge piers. Refer to plate 55 for typical channel and lever sections.

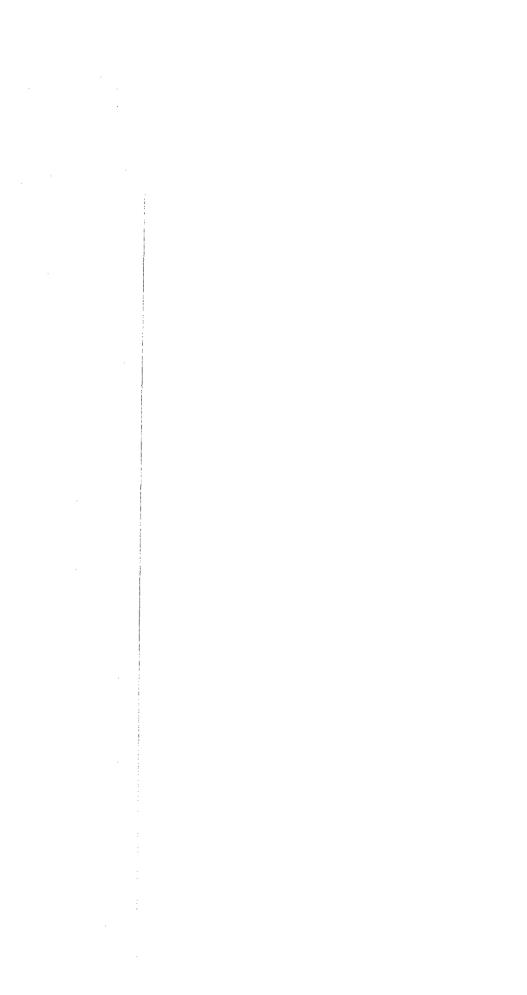
TRINITY RIVER AND TRIBUTARIES, TEXAS ELM FORK AND TRIBUTARIES FLOOD CONTROL CHANNELS AND FLOODWAYS


DETAILED PROFILES

IN 3 SHEETS	SCALES AS SHO	SHEET NO. 3
U.S. ARMY ENGINEER D		
W.G. Cont		man The Want
PREPARED	CHIEF, SHOHEERING DI DRAWN BY: O.E.C.	TO ACCOMPANY COMPREHENSIVE SURVEY REPORT ON TRINITY RIVER
HEAD PECIAL STUDIES SECTION	CHECKED MT: J.H.L.	FILE TRIN 230-19

PLATE 107

and the second



No. 178) ċ, (Face Ш Vol. 65 Ó 52-704

6

SCALES AS SHO) WN	
STRICT, FORT W		JUNE 1962
APPHOVAL RECOMME	NDED:	In West
ENDISEER CHART, ENDINEERING DI	VIS 10N	DOL. CORPS OF ENGINEERS
DRAWN BY: M.E.C.		NPANY COMPREHENSIVE SURVEY ON TRIMITY RIVER
CHECKED BY: J.H.L.	FILE:	TRIN. 230-19
		PLATE 108

-

176. EAST FORK IMPROVEMENTS. - The proposed plan of improvement for the East Fork would consist of an improved channel which would permit the controlled release of 5,000 second-feet downstream from Forney Dam (river mile 31.8) without blocking the discharge from the interior drainage structures through the existing levees, strengthening the existing levees to provide a 2-foot freeboard above the 50-year frequency flood level, and enlarging the conservation storage for Lavon Reservoir by raising Lavon Dam (river mile 55.9), as set forth in detail in "Review of Reports on Trinity River and Tributaries, Texas, Covering East Fork Watershed." Profiles for the existing conditions are shown on plate 9.

177. DUCK CREEK IMPROVEMENTS. - The proposed improvement of Duck Creek would extend from Oates Road (river mile 10.38) through the city of Garland, Texas, to Buckingham Road (river mile 17.50). The channel would be enlarged and the bridges would be modified to pass the standard project flood discharge. The improved channel side slopes would be 1 on 2, except in the reach from river mile 14.67 to 15.25 which would have vertical walls. The improved channel would have a bottom width of 150 feet from Oates Road to river mile 15.25, thence 135-foot width to the upstream erd of improvement. Backwater studies were made based on the Manning formula with coefficients of roughness varying from 0.025 to 0.030. Channel velocities would vary from 12 to 17 feet per second under design conditions. The plan of improvement is shown on plate 102. Profiles for the improved and existing conditions are shown on plate 108.

178. ELM FORK IMPROVEMENTS. - The plan of improvement on the Elm Fork shown on plates 54 and 55 consists of an improved channel from its confluence with the Trinity River (improved channel mile 338.80) to Elm Fork improved channel mile 21.83, the downstream end of the spillway discharge channel for Lewisville Dam. Channel widths would vary from 50 to 100 feet and levees would extend to Elm Fork improved channel mile 15.1 and Denton Creek improved channel mile 1.5. Upstream from the new levees, the improved Elm Fork channel would be designed to carry flows of 10,000 second-feet and the Denton Creek channel, 7,000 second-feet. Table 76 shows the design discharges, channel grades, widths and water surface levels for the improved Elm Fork channel. The tributaries to Elm Fork would be modified by improved channels and levees to complete the levee system of Elm Fork. The design conditions at the confluence of each of these tributaries are shown on table 77. The profiles for the design conditions of Elm Fork and its tributaries are shown on plates 105 through 107.

TABLE 76

HYDRAULIC DESIGN DATA - ELM FORK CHANNEL IMPROVEMENT (Trinity River Channel Mile 338.80, River mile 505.48)

	+	: Design	: Improved	channel:	Design
	•	:discharge	Construction of the second	:Bottom:	water
Location	:Channel		: grade	:width :	surface
	: mile		(ft_msl)		(ft-ms1)(2)
		·		.(1000).)	
Begin Improvement	0.00	61,000	484.00	100	425.5
State Highway No. 356	0.58	61,000	384.89	100	426.0
CRI&P R.R.	1.21	61,000	385.85	100	426.4
Grade Control Change	1,89	61,000	386.90	1.00	426.8
Grauwyler Road	2.62	61,000	387.63	100	427.3
Empire Expressway	2,70	61,000	387.71	100	427.4
State Highway No. 183	4.01	61,000	389.02	100	427.7
Grade Control Change -		•	- F		
Joes Creek Diversion Chann	el 4.03	61,000	389.04	100	427.7
Wildwood Drive	5.48	61,000	392.10	100	429.6
St.L-SF&T R.R.	5.93	61,000	393.05	100	430.4
California Crossing Road	6.59	61,000	394.45	100	431.5
California Crossing		-		.*	
Diversion Channel	6.63	61,000	394.53	100	431.6
State Highway No. 114 Brid	ge 7.20	61,000	395.74	100	432.6
Above State Highway No. 11	4	58,000		100	-
Hackberry Cr. Diversion Ch	. 7.31	58,000	395.97	100	432.8
Royal Lane Road	8.73	58,000	398.97	100	435.4
Farmers Br. Diversion Ch.	9.11	58,000	399.77	100	436.1
Valley View Lane	10.20	58,000	402.08	100	438.2
Button Branch Diversion Ch	. 11.99	58,000	405.86	100	441.5
Grapevine Cr. Diversion Ch		58,000	407.42	100	442.7
F.M. Highway No. 1380	12.99	58,000	407.97	100	443.1
St.L&SF R.R.	13.02	58,000	408.04	100	443.1
Carrollton Channel Dam	14.09	58,000	410.30	100	444.7
Above Carrollton Dam	-	44,100(50	444.Š
Denton RdOld US Hwy 77	14.10	44,100	414.80	50	444.9
Denton Cr. Diversion Ch.	14.26	44,100	415.09	50	445.0
Trinity Mills Road	15.51	44,100	418.01	50	448.5
Discharge Change	16.36	44,100	420.15	50	451.3
Above Denton Cr. Floodplai		31,600		50	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
U.S. Highway No. 77		31,600	420.55	50	451.6
MKT R. R.	16.91	31,600	421.47	50	451.8
State Highway No. 121	20.75	31,600	430.72	50	461.4
Grade Control Change	21.29	31,600	432.00	50	462.9
End Proposed Diversion		ومحاوسي	·	/~	
Channel - GC&SF R.R.	21.83	31,600	432.50	50	464.6
		July 0000			

Channel upstream from mile 15.1 designed for 10,000 cfs with no levees (1)recommended.

(2) (3) Design water surfaces upstream from mile 15.1 reflect overbank flow.

Combined flow Denton Creek and Elm Fork.

TABLE 77

	:	: Mou	th of tributa	ry
	* . * .	• e	Improved :	Design
Tributary	: Elm Fork	: Design :	channel :	water
	: channel	:discharge:	bottom width:	surfac
	: mile	: (cfs) :	(feet) :	(ft-ms
Joes Creek	4.03	9,700	50	427.7
California Crossing	6.63	9,700	50	431.6
Hackberry Creek	7.31	30,100	50	432.8
Farmers Branch	9.11	20,000	75	436.1
Hutton Branch	11.99	14,500	75	441.5
Grapevine Creek	12.73	16,600	50	442.7
Denton Creek	14.26	44,100	40	445.0

HYDRAULIC DESIGN DATA TRIBUTARY CHANNEL IMPROVEMENTS ELM FORK

179. MOUNTAIN CREEK IMPROVEMENTS. - The proposed plan of improvement for Mountain Creek would consist of improved channel and levees downstream from existing Mountain Creek Dam, river mile 4.1, in addition to construction of Lakeview Dam, river mile 7.2, described in paragraph 174 above. The improved channel would vary from 100 to 300 feet in bottom width and the leveed floodway would pass the standard project flood discharge, 59,000 second-feet, without requiring any modification to the existing Dallas-Fort Worth Turnpike Bridge at improved channel mile 1.14. The plan of improvement is shown on plate 52 and the improved channel profile is shown on plate 103.

WATER RESOURCES STUDY

TRINITY RIVER BASIN, TEXAS

Study of Potential Needs and Value of Water for Municipal, Industrial, and Quality Control Purposes

DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE Public Health Service, Region VII Dallas, Texas

In Cooperation with the

DEPARTMENT OF THE ARMY U. S. Army Engineer Districts Fort Worth and Galveston, Texas

SEPTEMBER 1962

· · · · · ·

TABLE OF CONTENTS

		Page
LIST OF TA	BLES	187
LIST OF FI	GURES	188
1.	INTRODUCTION	
	Authority	189
	Purpose and Scope	189
	Acknowledgments	189
II.	SUMMARY AND CONCLUSIONS	
	Summary	191
	Conclusions	191
111.	WATER RESOURCES OF THE TRINITY RIVER BASIN	
	General	193
	Pertinent Data	193
	Water Quality	193
	Runoff	196
IV.	DESCRIPTION OF STUDY AREA	197
v.	ECONOMICS AND POPULATION	
	Economic Projections	199
	Population Projections	200
VI.	WATER REQUIREMENTS	
	General	201
	Municipal Water Use	201
	Industrial Water Use	203

TABLE OF CONTENTS (Continued)

		Page
	Power Generation Water Use	203
	Nonmunicipal Water Use	203
	Other Water Uses	203
	Projected Basin Water Requirements	205
VII.	WATER QUALITY CONTROL	
	General	206
	Quality Parameters	206
	Stream Loading	207
	Availability of Quality Control Water	208
	Basin Operations Plan to Maintain Water Quality	208
VIII.	PLANS FOR SUPPLYING FUTURE WATER REQUIREMENTS	210
IX.	BENEFITS OF STORAGE	
	Evaluation Method	212
	Costs	212
	Alternative Plans	212

LIST OF TABLES

		rage
Table III-1.	Pertinent DataProposed Reservoirs, Trinity River Basin	195
IV-1.	Characteristics of the Subareas	198
V-1.	Study Area Employment, Present and Projected	199
V-2.	Population Base and Projections by Subareas	200
VI-1.	Per Capita Municipal Water Use for the Year 2020	201
VI-2.	Subarea Needs	202
VI-3.	Projected Water Requirements for the Trinity River Basin	205
VIII-1.	Summary Water Balance	211
IX-1.	Benefits of Storage in Wallisville and Enlarged Lavon Reservoirs	212
IX-2.	Benefits of Storage in Lakeview, Aubrey, Roanoke, and Tennessee Colony Reservoirs	213
IX-3.	Benefits of Storage for Municipal and Industrial Water Supply and Water Quality Control Purposes in Tennessee Colony and Aubrey Reser- voirs	214

LIST OF FIGURES

I. INTRODUCTION

Authority

In a letter dated June 8, 1959, the Corps of Engineers, Fort Worth District, requested "HEW views and recommendations on present and prospective municipal and industrial water supply needs in Trinity River Basin, including Houston municipal and industrial complex." The request was subsequently expanded to cover a 100year future period and to include the needs for storage of water for quality control purposes.

This study has been made in accordance with: (1) the Water Supply Act of 1958 (Public Law 85-500, Title III) and a Memorandum of Agreement between the Department of the Army and the Department of Health, Education, and Welfare, dated November 4, 1958; and (2) the Federal Water Pollution Control Act (Public Law 84-660) as amended by Public Law 87-88.

Purpose and Scope

This report indicates the requirements for municipal, industrial, and water quality control purposes to the year 2070 in the Trinity River basin including the Houston municipal and industrial complex. Estimates are made of the benefits attributable to the storage of water for these purposes in proposed Federal reservoirs.

Acknowledgments

The cooperation of many persons and agencies is gratefully acknowledged. Special appreciation is expressed to the following:

- Bureau of Business Research, University of Texas, Austin, Texas
- Mr. William O. George, Consulting Geologist, Austin, Texas
- 3. Texas Employment Commission, Austin and Dallas, Texas
- 4. Texas Water Commission, Austin, Texas
- 5. Texas State Department of Health, Austin, Texas
- U. S. Army Engineer District--Fort Worth, Fort Worth, Texas

- U. S. Army Engineer District--Galveston, Galveston, Texas
- 8. U. S. Geological Survey, Ground Water Branch, Houston, Texas
- 9. U. S. Study Commission-Texas, Houston, Texas
- 10. Water Departments, officials, and Chambers of Commerce of the following cities:

Athens, TexasGalveston, TexasCrockett, TexasHouston, TexasDallas, TexasPalestine, TexasFort Worth, Texas

Summary

- There are 23 existing, under construction, and authorized reservoirs in the basin with storage capacities in excess of 5,000 acre-feet each. In addition, there are 19 proposed major reservoirs planned within the basin. Of the latter group, only Tennessee Colony, Lakeview, Aubrey, Roanoke, and Wallisville Reservoirs, and the enlargement of Lavon Reservoir are Federal projects.
- All of the projections and estimates contained in this report presuppose: (a) The existence of the Trinity River navigation canal to Fort Worth; and (b) a design drouth similar to the one which occurred in the years 1950-1957.

Conclusions

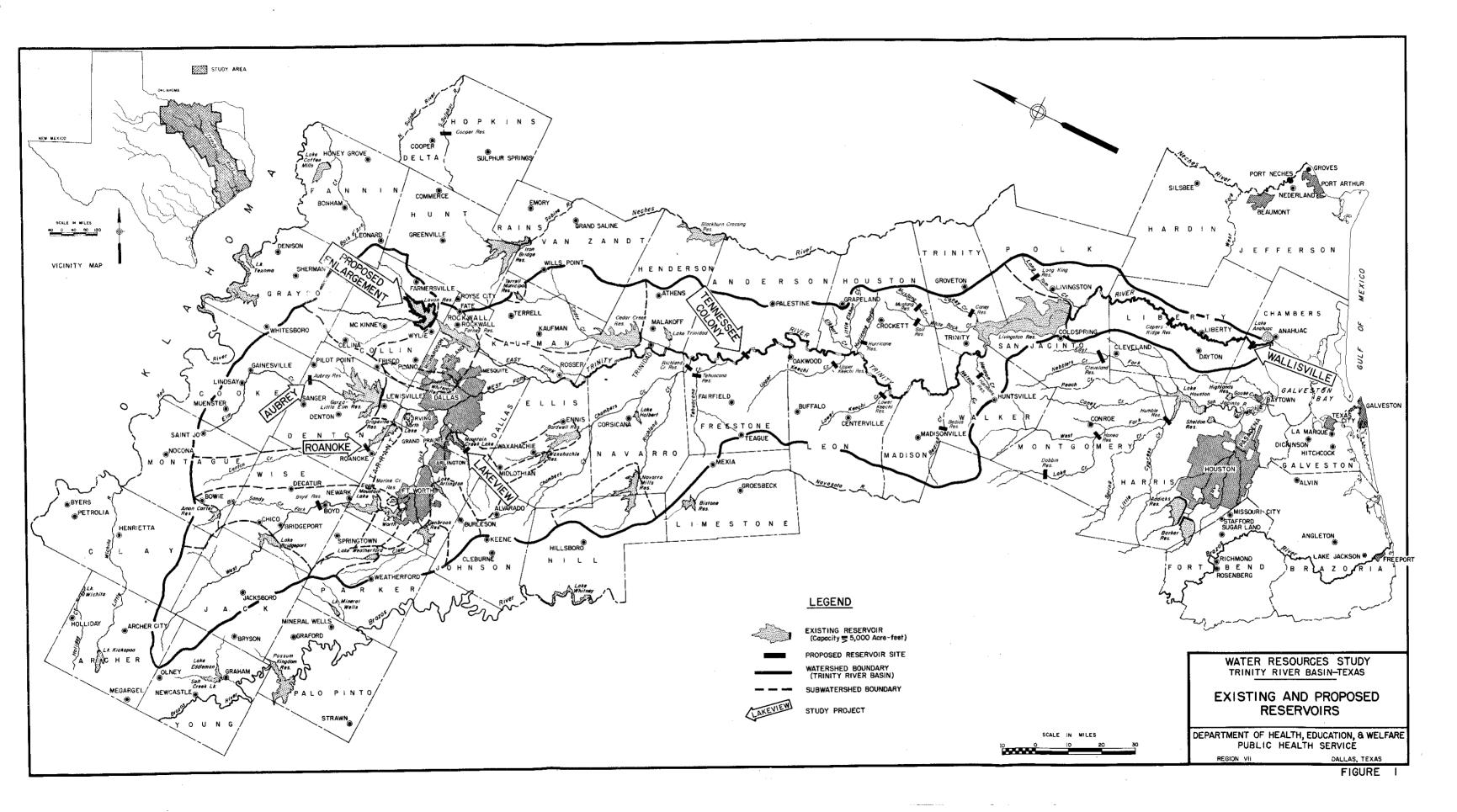
- 1. Efficient development of all of the water resources of the Trinity River basin is essential to the continued growth of the area. To attain full utilization of these resources for municipal, industrial, agricultural, navigation, and recreation purposes will require abatement of the present pollution in the upper basin as well as control of future pollution throughout the Therefore, provision of water to maintain area. minimum quality conditions in the river must be made a part of the water supply plan until such time as future advances in waste treatment technology can economically provide for removal of residual pollutants before they reach the stream.
- The study area's population is expected to reach 12 million by the year 2020 and 23 million by the year 2070.
- 3. Projected municipal and industrial water needs are 5,100 mgd (million gallons per day) in 2020 and 9,700 mgd in 2070 for the 46-county study area.

- 4. With the water supply plan as herein presented, the potential water resource in the Trinity River basin is sufficient to satisfy all projected water requirements within the basin, including the diversion of the presently agreed amount to the city of Houston until the year 2070.
- 5. To maintain water quality within the Trinity River basin and on the Buffalo Bayou watershed will require releases from storage of about 1,650 mgd in 2020 and 3,600 mgd in 2070 based on 90 percent removal of BOD and 15 percent removal of total dissolved solids.
- 6. Maintenance of water quality within the Trinity River basin beyond the year 2020 is dependent upon the improvement of waste treatment techniques.
- With increased water reuse and minimal use of water for cooling, the projected municipal and industrial study area water needs until 2070 can be satisfied.
- 8. The study area outside the Trinity River basin, with the exception of Houston which will receive 840 mgd, will be served by sources outside the Trinity River basin.
- 9. The estimated benefits of storage by purpose for the six proposed Federal projects in the Trinity River basin are shown in Tables IX-1 and IX-2, pages 212 and 213. The benefits shown in Table IX-3, page 214, for water quality control represent the value of storage for this purpose at the reservoir site plus the cost of transporting the required amount of water in the case of Tennessee Colony Reservoir.

General

There has been considerable water resource development in the Trinity River basin in the past. There are 23 existing, under construction, and authorized reservoirs in the basin with storage capacities in excess of 5,000 acre-feet each, and 79 reservoirs having a capacity of less than 5,000 acre-feet. Several agencies have devised plans for the ultimate development of the surface water resource in the basin. The 19 proposed Trinity River basin reservoirs are shown in Figure 1. This report is concerned with six proposed reservoirs in the basin in which there is Federal interest. These are Lakeview, Tennessee Colony, Wallisville, Aubrey, and Roanoke Reservoirs and the enlargement of Lavon Reservoir.

Pertinent Data


Pertinent data on storage capacity, yield, and related facts regarding the proposed projects are presented in Table III-1. The six reservoirs under consideration can provide 592.5 million gallons per day of water for municipal, industrial, and water quality control uses.

Water Quality

The two primary measures of water quality used in this study are total dissolved solids and biochemical oxygen demand (BOD).

The total dissolved solids concentrations of waters within the basin presently vary from a low of 100 mg/l. to a high of 1,000 mg/l. Concentrations in excess of 500 mg/l. are very few and are confined to the lower coastal region. These high concentrations are due to brackish Gulf of Mexico waters which affect the mineral quality of the river as far as 40 miles inland. In general, the mineral quality of the Trinity basin can be described as good to very good.

On the other hand, the organic quality of a large part of waters of the basin is presently very poor. Above Fort Worth and below the San Jacinto County line, the organic quality of basin streams can be classified as good. This is due to light pollution loads entering the basin above Fort Worth and the self-recovery of the stream from the high loads imposed by the Fort Worth and Dallas complex by the time the river reaches the San Jacinto County line. Below the confluence of Marine Creek with the West

		r	

(a) A set the set of the set o

.

.

Table III-1

Pertinent Data--Proposed Reservoirs Trinity River Basin

<u>Reservoir</u> Corps of Eng	<u>Stream</u>	River <u>Mile</u>	Drainage Area (Sq. Mi.)	<u>Water Su</u> 2020 Yield <u>(mgd)</u>	pply Pool Storage (Millions of Gals.)
Lakeview	Mountain Creek	7.2	272	28.4 <u>a</u> /	99,841
Tennessee Colony	Trinity River	339.6	12,687	290.8	336,441
Wallisville	Trinity River	3.9	17,760	146.0	13,621
Lavon (Enlargement)	East Fork Trinity River	55.9	777	42.7 <u>b</u> /	85,470
Garza-Little Elm-Aubrey System	Elm Creek	60.0	682	65.3 <u>c</u> /	196,749
Grapevine-Roanoke System	Denton Creek	31.4	604	23.9 <u>c</u> /	0

 $\frac{a}{2}$ Yield does not include 2.0 mgd utilized by the existing Mountain Creek Reservoir. $\frac{b}{2}$ Storage and yield shown are increases resulting from reservoir enlargement. $\frac{c}{2}$ Yields shown are increases in system yields based on storage exchange with Grapevine and Garza-Little Elm Reservoirs.

Fork in Fort Worth and downstream to Rosser in Kaufman County, the conditions in the river are generally anaerobic and associated offensive odors persist. Downstream from Rosser, sufficient tributary dilution and reaeration occur, almost overcoming the effects of the organic pollution, upon reaching the San Jacinto County line.

With the exception of the watershed of the proposed Tennessee Colony Reservoir, the waters in the watersheds of the proposed reservoirs are not presently subjected to extensive contamination from communities, industries, or other sources.

The waters at all six proposed reservoir sites are considered acceptable as raw water supply for general municipal and industrial purposes.

Runoff

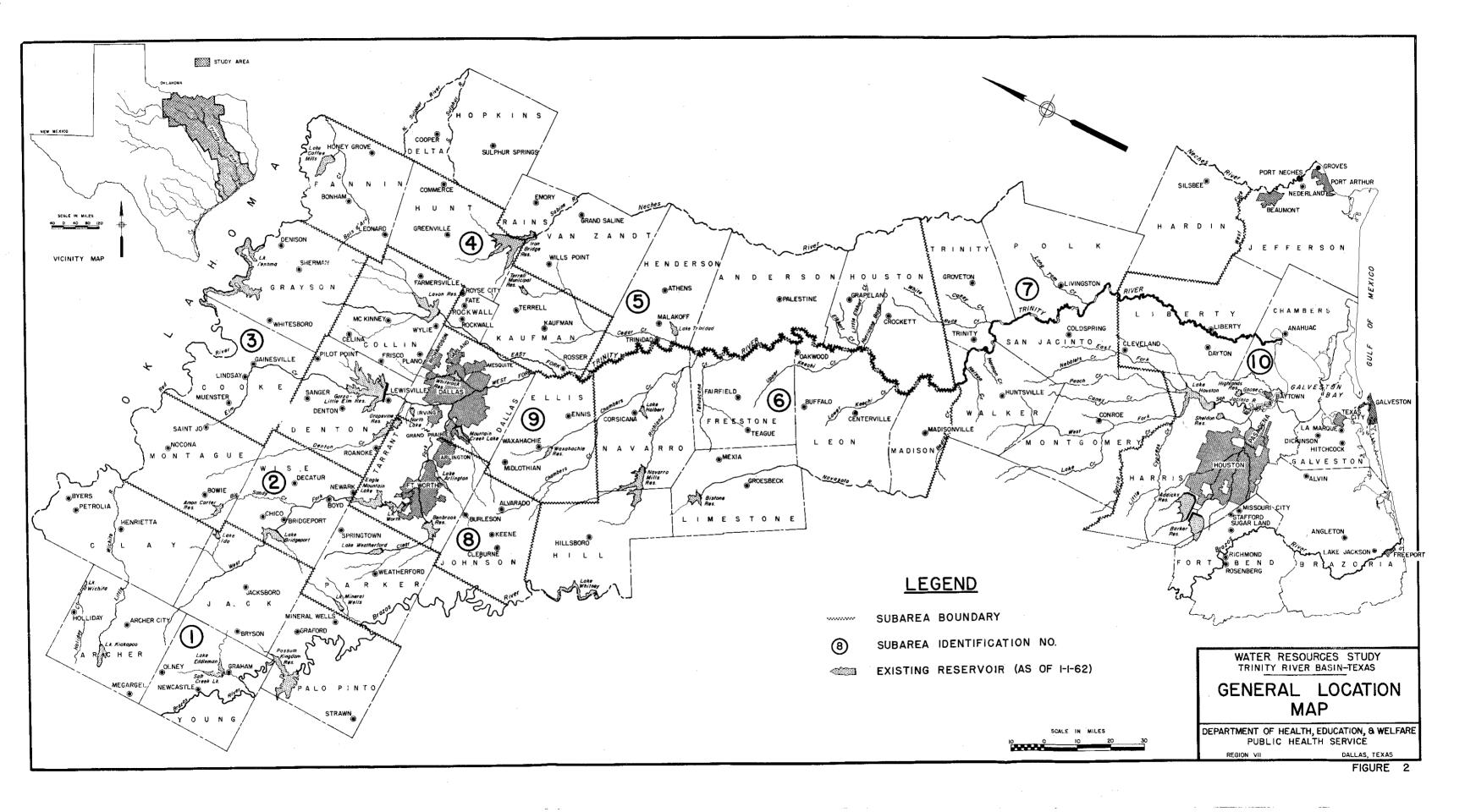
Runoff within the area is characterized by large variations annually as well as seasonally. Within the Trinity River basin, periods of zero flow have been experienced on all tributaries of the river with the exception of the West Fork between Fort Worth and Dallas where upstream sewage releases account for the base flow of the stream during dry periods. The estimated average annual natural runoff of the entire Trinity River basin for the period 1941-1956 was 5,770,200 acre-feet.

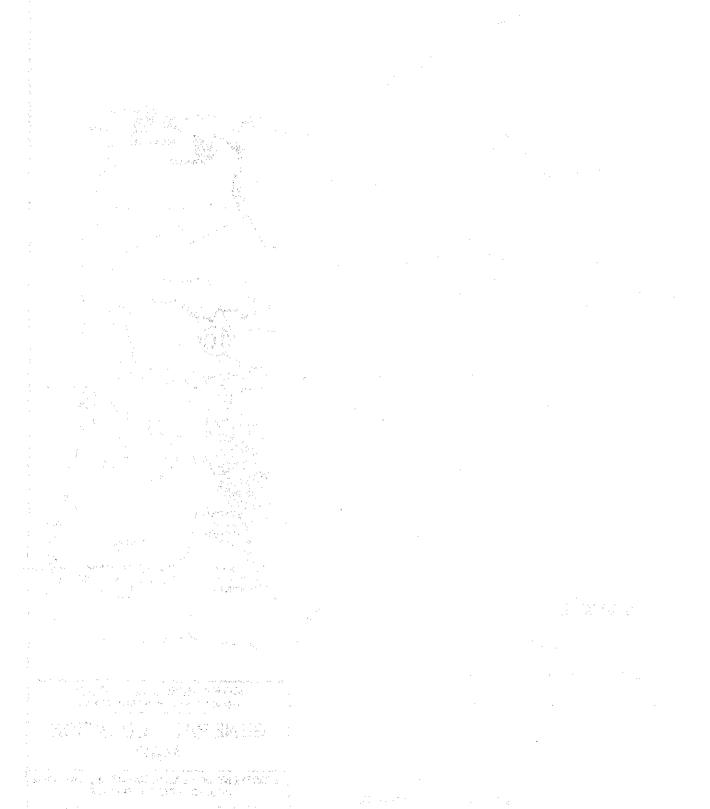
IV. DESCRIPTION OF STUDY AREA

Those counties which lie within the Trinity River basin and those adjoining counties which could reasonably be served by waters from the basin, or are an economic part of the potential water service area, were included in the study area. This area, as shown in Figure 2, comprises 46 counties representing approximately 15 percent of the land area of the State of Texas and 43 percent of its population.

The study area was divided into 10 subareas for the purpose of providing suitable size base areas for study, at the same time maintaining a reasonable degree of homogeneity of economic, water resource, and geographic factors. The characteristics of the several subareas are shown in Table IV-1.

The climate of the study area is extremely diverse. It varies from dry, subhumid in the northwest to humid along the coast of the Gulf of Mexico. Heavy rainstorms are common throughout the area and occasional tropical storms enter the area from the gulf. Average winter and summer temperatures in the northwestern half of the area vary from 42° F to 85° F, and in the southeastern half from 54° F to 83° F. Mean annual rainfall varies from 27 inches at the extreme northwestern edge of the area to 51 inches along the gulf coast.


The growing season is about 232 days in the northeastern portion of the area and, in the southeastern portion, averages about 277 days.


Table IV-1

Characteristics of the Subareas

		Chai	racterist:	ics of the Sub	areas					
								Mean Annual		
Sub- area <u>No.</u>	<u>Counties</u>	Principal Cities	1960 Popu- <u>lation</u>	Population Class	Economy	Topography	Alti- tude (feet)	Temper- ature (°F)	Growing Season (days)	Avg. Rainfall (inches)
1	Archer, Clay, Jack, Palo Pinto, Young	Holliday, Henrietta, Jacks- boro, Mineral Wells,Graham	59,649	Non-Metro- politan	Farm - Live- stock and oil	Rolling plains to hilly	800- 1,450	64	220	27.6
2	Montague, Parker, Wise	Bowie, Weatherford, Deca- tur	54,785	Non-Metro- politan	Farm - Live- stock	Rolling plains to hilly	700- 1,400	63	228	30.6
3	Cooke, Grayson	Gainesville, Sherman	95,603	Non-Metro- politan	Industrial, Agricultural, Oil	Rolling plains	500- 1,100	65	235	36,7
4	Fannin, Hunt, Kaufman, Rockwall	Bonham, Greenville, Terrell, Rockwall	99,088	Non-Metro- politan	Agricultural, Industrial	Rolling plains	300- 700	64	233	40.1
5	Anderson, Delta, Hender- son, Hopkins, Houston, Rains, Van Zandt	Palestine, Cooper, Athens, Sulphur Springs, Crockett, Emory, Canton	115,862	Non-Metro- politan	Agricultural, Forest, Indus trial, Oil		200- 800	66	243	40.2
6	Freestone, Hill, Leon, Limestone, Madíson, Navarro	Fairfield, Hillsboro, Cente: ville, Mexia, Madisonville, Corsicana		Non-Metro- politan	Agrícultural, Livestock, Industríal	Level to rollin	g 200- 900	66	243	38.0
7	Hardin, Montgomery, Polk, San Jacinto, Trinity, Walker	Kountze, Conroe, Livingston Coldspring, Groveton, Hunts ville		Non-Metro- politan	Agricultural, Livestock, Forest, Oil	Coastal plain to rolling	30- 450	67	261	47.5
8 <u>a</u> /	Johnson, Tarrant	Cleburne, Fort Worth	573,215	Metro- politan	Industrial, Commercial, Some Agri- cultural	Rolling prairie	500- 1,000	65	238	33.3
/ <u>ە</u> و	Collin, Dallas, Denton, Ellis	McKinney, Dallas, Denton, 1, Waxahachie	,083,601	Metro- politan	Industrial- Commercial, Some Agri- cultural	Rolling prairie	300 - 900	65	238	35.7
	Brazoria, Chambers, Fort Bend, Galveston, Harris, Jefferson, Liberty	Freeport, Anahuac, Rosen- 1 berg, Galveston, Houston, Beaumont, Liberty	,787,886	Metro- politan	Industrial Commercial, Oil, Chemical Forest, Agri-	· .	0- 300	68	288	46.3
_	omprises the Fort Worth SMS omprises the Dallas SMSA.	SA.			cultural, Liv stock	/e-				
-	ncludes the Houston, Beaumo	ont. Port Arthur, and								
·	Galveston-Texas City SMSA'									

Galveston-Texas City SMSA's.

V. ECONOMICS AND POPULATION

Economic Projections

Agricultural production of the study area is expected to increase 140 percent by the year 2020. Four percent of the labor force, or 70,112 workers, were engaged in agriculture in 1960. By 2020, 1 percent of the labor force, or 55,100 workers, will be sufficient to achieve the expected production.

Mining is very important to the economy of the study area and accounts for about 21 percent of its income. In 1960 almost 3 percent of the area's labor force was employed in mining compared to a national average of slightly more than 1 percent. Employment in mining is expected to increase from 45,909 workers in 1960 to 76,700 workers in 2020. This will represent about 2 percent of the labor force in 2020.

A part of the projected national increase in the demand for timber and forest products will be satisfied by these resources of the study area. The present production rate is only 52 percent of the net annual growth and can be expected to improve with good forestry management practices. Employment in forestry can, therefore, be expected to increase from 1,382 in 1960 to 27,000 by the year 2020. A summary of present and future employment is shown in Table V-1.

Table V-1

	196 Labor		2020 Labor Force		
Industry	Number	Percent	Number	Percent	
Agriculture	70,112	4.3	55,100	1.2	
Forestry and Forest Products	1,382	0.1	27,000	0.6	
Mining	45,909	2.8	76,700	1.6	
Manufacturing	323,454	19.9	1,004,800	21.4	
Service Industries	1,114,302	68.4	3,347,400	71.2	
Unemployed	74,139				
Labor Force	1,629,298		4,699,100		

Study Area Employment Present and Projected

The manufacturing industries are expected to form an important part of the future economic base of the study area. Employment in these categories has increased 157 percent in the two decades since 1940. In 1960, 323,454 workers, or 20 percent of the labor force, were engaged in manufacturing. By 2020, about 21 percent, or 1,004,800, will be so employed.

The service industries, which include sales, insurance, finance, personal services, and transportation, employed 68 percent of the labor force, or 1,114,302 workers, in 1960. Based on past national trends modified by relative growth and income in the area, comparable employment in 2020 will be about 3,347,000 workers, or 71 percent of the labor force.

Population Projections

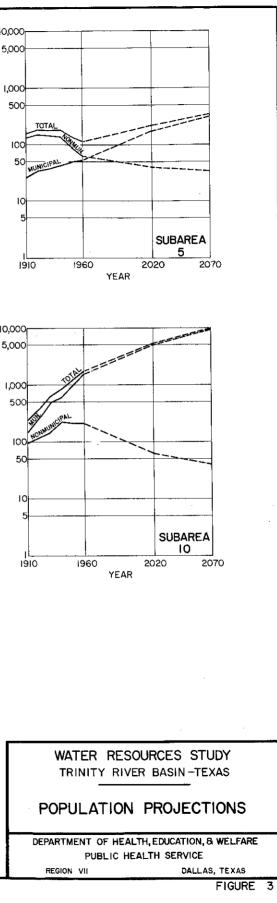
The rate of population growth in the three metropolitan subareas has been about 3.5 percent per year compared to the national average for metropolitan centers of about 2.25 percent. This trend of higher growth rates in the study area can be expected to continue as indicated by its economic potential. The metropolitan subareas of Dallas, Fort Worth, and Houston are projected to increase from 3,444,702 in 1960 to 10,722,000 by 2020 and to 20,101,000 by 2070.

A summary of the population projections by subareas is presented in Table V-2 and Figure 3.*

Subarea	1960	2020	2070
1	59,649	101,000	160,000
2	54,785	148,000	282,000
3	95,603	314,000	628,000
4	99,088	304,000	575,000
5 🔬	115,862	220,000	350,000
6	107,711	204,000	325,000
7	100,496	328,000	614,000
8	573,215	2,265,000	4,247,000
9	1,083,601	3,199,000	6,001,000
10	1,787,886	5,258,000	9,853,000
Total	4,077,896	12,341,000	23,035,000

Table V-2

*Municipal is defined here as including the population of all places of 1,000 or more persons, and nonmunicipal is the classification


Population Base and Projections by Subareas

used for the remainder of the population.

200) ď III (Face] Vol. O-65 704 521,000 500

10,000 5,000

	an a	-
e •		:
	an a	
		2
		•
	ine Anna an Anna an Anna an Anna an Anna Anna Anna	1
		4
		1
		-
		2 7
		ч
		:
		-
		-
	and the second	1
		÷

VI. WATER REQUIREMENTS

General

Under the provisions of Title III, Public Law 85-500, the inclusion of storage to meet present or anticipated future demand or need for municipal and industrial water is authorized in any reservoir project surveyed, planned, or constructed by the Corps of Engineers, U. S. Army. A Memorandum of Agreement dated November 4, 1958, between the Department of the Army and the Department of Health, Education, and Welfare states that the Public Health Service will submit to the Corps of Engineers a report of its views and recommendations on present and prospective needs for municipal and industrial water supply and the desirability of meeting those needs from the project or projects under consideration.

The probable future water requirements of the study area in the year 2020 are based on detailed economic and population projections, coupled with analyses of unit water requirements. The overall unit water use determined for the projected population in 2020 is assumed to remain constant for the period from 2020 to 2070. Therefore, determination of the 2070 water requirements involves population as the only variable.

Municipal Water Use

Municipal water is defined here as municipally supplied water for all purposes excluding that supplied to industrial establishments. Included in the resulting per capita quantities are losses in the distribution system, treatment plants, and terminal reservoirs.

Future municipal water needs are calculated by multiplying the estimated 2020 per capita use by the projected municipal population for the area. The expected variation in gallons per capita day use with climate in the study area is shown in Table VI-1. Total estimated municipal requirements are summarized in Table VI-2.

	<u>Per Capita Municipal</u>	Water Use for the Year 2020	<u>o</u>
Subarea	gpcd	Subarea	gpcd
1	180	6	165
2	175	7 · · · · · · · · · · · · · · · · · · ·	155
3	170	8	175
4	160	9	175
5	160	10	155

Table VI-1

Table VI-2

<u>Subarea Needs</u>

			2020) Water N	leeds in	MGD		
					Thermal			
					Power	Non		
Sub-	Total	Total*	Munic-	Indus-	Genera-	munic =	Irri-	Navi-
area	Water	<u>M. & I.</u>	<u>ipal</u>	<u>trial</u>	tion	ipal	gation	gation
1	20.9	18.6	15.7	2.9		2.3		
2 3	30.6	27.5	22.7	4.8		3.0	0.1	
3	60.3	55.9	49.2	6.7		4.4		
4	80.0	48.5	44.2	4.3		4.6	26.9	
5	196.2	140.2	28.6	67.9	43.7	7.2	48.8	
6 7	131.6	77.5	26.8	50.7		7.2	46.9	·
	302.5	268.2	43.6	224.6		8.6	25.7	
8	582.1	580.8	394.9	74.5	111.4	1.1	0.2	
9	782.7	774.2	554.9	67.5	151.8	3.1	5.4	
10	3,451.1	3,107.5	793.9	2,047.7	<u>265.9</u>	<u>11.5</u>	<u>275.1</u>	<u>57.0</u>
Study								
Area	5,638.0	5,098.9	1,974.5	2,551.6	572.8	53.0	429.1	57.0
% of								
Total	100.0	90.5	35.0	45.3	10.2	0.9	7.6	1.0
			207	70 Water	Needs in	n MGD		
		Total	Total		on-	Irriga-	Navi	ga-

	Total	Total*	Non-	Irriga-	Naviga-		
Subarea	Water	<u>M. & I.</u>	<u>municipal</u>	tion	tion		
1	33.8	31.9	1.9				
2	58.8	56.5	2.2	0.1			
3	121.3	119.6	1.7				
4	127.1	95.6	4.6	26.9			
5	293.4	238.5	6.1	48.8			
6	191.1	137.0	7.2	46.9			
7	582.7	549.3	7.7	25.7			
8	1,091.8	1,091.0	0.6	0,2	55 40		
9	1,429.4	1,421.8	2.2	5.4			
10	6,249.3	5,909.3	7.9	275.1	57.0		
Study Area	10,178.7	9,650.5	42.1	429.1	57.0		
% of Total	100.0	94.8	0.4	4.2	0.6		

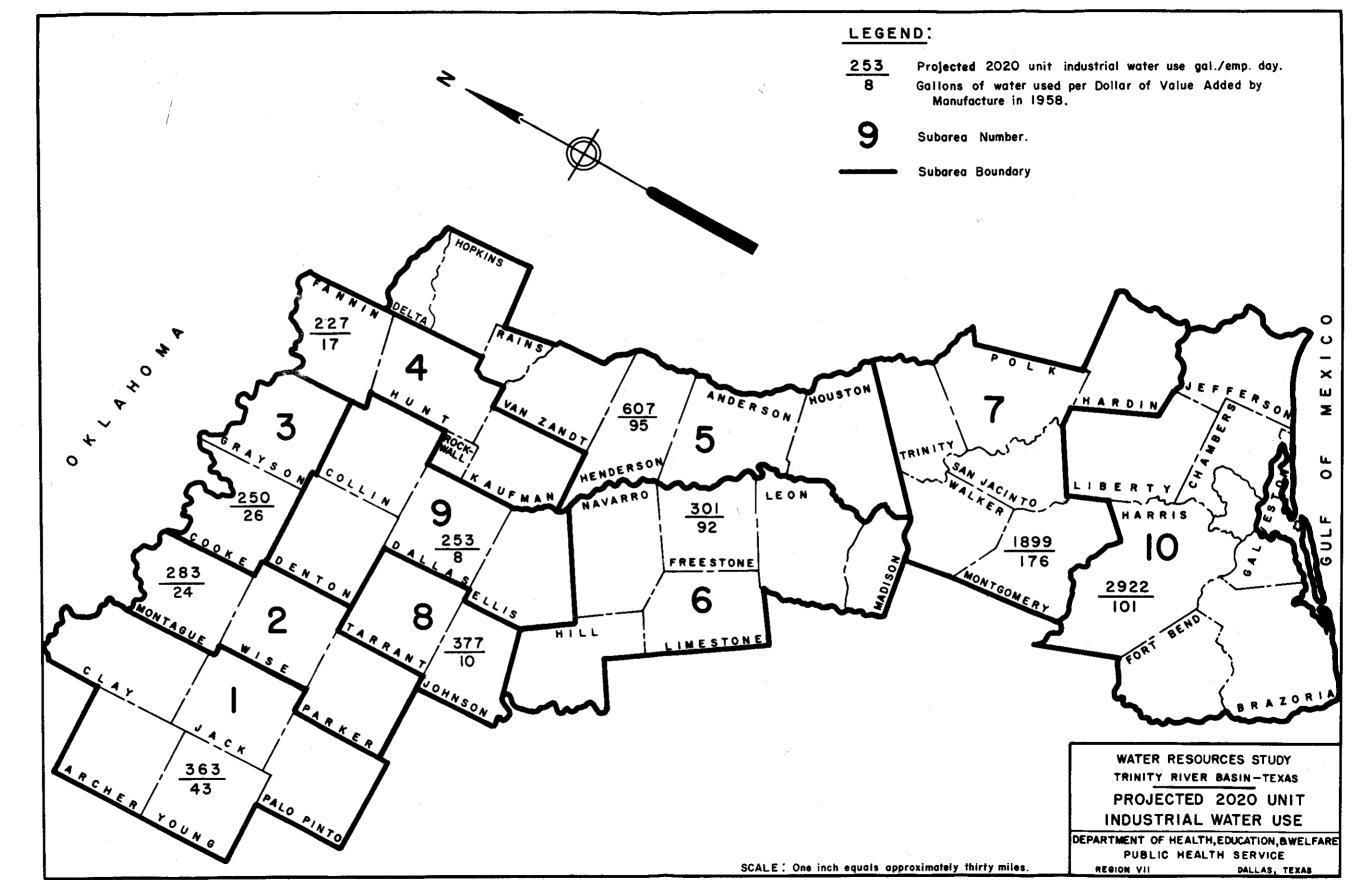
*Including consumptive use for thermal power generation.

Industrial Water Use

The definition of industrial water used here refers to all water regardless of source used by the manufacturing industries (Standard Industrial Classification categories 13, 14, and 20 through 39). The total industrial requirements are determined by combining the projected number of employees with the projected unit employee water use for each of the several industrial categories. Industrial water use is shown in Table VI-2. Regional differences in industrial practice have been accounted for in the base data which were obtained from an industrial survey of the study area. Adjustments have been made for anticipated recirculation and reuse practices. Figure 4 illustrates the variation which is expected in unit water use for a composite of all industries.

Power Generation Water Use

Consumptive water use for thermal power generation is a part of the industrial requirements but is determined separately since water for this purpose is a function of population rather than employment. Information on future water use was gathered from power companies in the area and combined with data developed by the Federal Power Commission and the Edison Electric Institute for the Senate Select Committee on National Water Resources. The general locations of future power generating installations were determined and the projected needs apportioned throughout the study area according to the service areas for the several generating plants. The water requirements for this purpose are shown in Table VI-2.


Nonmunicipal Water Use

A small segment of the total water needs that is sometimes overlooked is that of nonmunicipal water supply for purposes other than irrigation. In an area where the terminal year requirement for all of the water available is anticipated, however, an estimate of this use becomes necessary so as not to understate the total water requirements.

For purposes of this study, the nonmunicipal water requirements are assumed to consist of domestic water for nonmunicipal population and water for the maintenance of livestock. The requirements for nonmunicipal water are shown in Table VI-2.

Other Water Uses

Projected irrigation and navigation uses were furnished by the Corps of Engineers. These estimates are also included in Table VI-2.

ر.

 $(\delta e_{i}) = e_{i} \left[\frac{1}{2} \left[$

Projected Basin Water Requirements

For purposes of comparison with previous and concurrent studies and to avoid duplication of water demands in adjoining river basins, projections of water demand for the area totally within the boundaries of the Trinity River basin were also estimated and are shown in Table VI-3. These were calculated from the subarea projections shown in Table VI-2. In this case, the basin is divided into three parts as follows:

- Upper: All of the watershed area upstream of 1. Tennessee Colony Reservoir.
- 2. Middle: The watershed area downstream of the upper basin and upstream of the north boundary lines of Polk and San Jacinto Counties.
- 3. Lower: The remainder of the watershed area.

Table VI-3

Projected Water Requirements for the Trinity River Basin

,	Water Requirements in MGD						
Subbasin	Total	Total <u>M&I</u> *	Non- munic- ipal	Irriga- tion	Naviga- tion	Export	Quality
	*		For t	he Year 2	2020		,
Upper Middle	1,677 295	1,513 227 340	15 3 2	69 65 222	0 0 <u>57</u>	0 0 840	80 0 0
Lower Total	<u>1,461</u> 3,433	2,080	<u> 20</u>	356	<u>57</u> 57	<u>840</u>	<u> </u>
	. •		For	the Year 2	2070		алар (У. 1997) 1970 — Полон (У. 1997) 1970 — Полон (У. 1997) 1970 — Полон (У. 1997)
Upper Middle Lower	2,877 504 <u>1,806</u>	2,797 435 686	11 4 _1	69 65 <u>222</u>	0 0 <u>57</u>	0 0 <u>840</u>	0 0 _0
Total	5,187	3,918	16	356	57	840	0
*Includes	s consur	nptive u	ise for	thermal p	ower gene	ration.	e e e e e e e e e e e e e e e e e e e

 $\hat{\mathcal{T}}$

VII. WATER QUALITY CONTROL

General

Under the provisions of the Federal Water Pollution Control Act, Public Law 84-660 as amended, consideration must be given to the inclusion, in any reservoir being planned by a Federal agency, of storage for regulation of streamflow to control water quality. Storage and release of this water is not to be provided as a substitute for adequate treatment or control of wastes at their sources.

When treatment methods improve, the need for addition of water to maintain quality will diminish and may someday entirely disappear. Until such time, however, it is essential that recognition be given to the need for flows which must prevail in receiving streams if their water quality is to be maintained at acceptable levels. Therefore, estimates of the water required to maintain quality in the waters of the Trinity River basin and in the Buffalo Bayou watershed have been made since these demands are an inseparable part of the water supply plan for the study area. For the remainder of the area outside the Trinity River basin, studies of wastes were not made since their disposal is not expected to affect the interbasin transfer of water.

Quality Parameters

The determination of water quality takes into consideration the wastes which will result from the economic development of an area and the effects of these wastes on stream regimen. At any point in a stream, the water quality will be the result of mixing various qualities and quantities of water which make up the total flow modified by forces such as reaeration and evaporation which tend to change its character.

A comprehensive study of water quality requires the analysis of a large number of individual contaminants which occur in most streams. For long-term planning, however, it is not considered necessary to make detailed studies of this nature. Estimates of pollution are based on water use as a logical outgrowth of present conditions and technology. To assign values to a multiplicity of waste constituents would create an apocryphal condition without any degree of probability. Therefore, quality analysis is based on broad parameters which are currently available for evaluation of future stream conditions. Total dissolved solids projections are employed to characterize the effects of stable pollutants (those constituents which are not utilized or reduced by stream environment). Dissolved oxygen content is applied as a measure of unstable pollutants (those constituents which decay and act on, or are acted on by the stream environment).

Stream Loading

An estimate of waste loads likely to be discharged to the stream in the future is the first step necessary in forecasting water quality conditions.

The expected amounts of return flow and characteristics of the wastes were estimated and the following assumptions regarding quality control requirements were made.

- Sufficient treatment will be provided to remove 90 percent of the biochemical oxygen demand and 15 percent of the total dissolved solids.
- 2. Evaporation and seepage from streams are reflected in streamflow records requiring no adjustment. Adjustments for evaporation in reservoirs were necessary, however.
- 3. Uniform mixing of wastes and receiving waters will occur.
- 4. Water for quality control is required when the dissolved oxygen content of the mixed water in the stream is below 4.0 milligrams per liter (mg/1.) or the total dissolved solids exceed 1,000 mg/1.

Analysis of the basin based on the above assumptions indicated the following:

- 1. The waters of the basin will not be degraded below acceptable limits by the stable pollutants (total dissolved solids).
- 2. Organic pollution in the reach between Fort Worth and the Tennessee Colony Reservoir site exceeds the assimilative capacity of the stream at present and will continue to do so in the future.
- 3. The waters available for quality control in the basin upstream of the points of need are not adequate to raise the dissolved oxygen level of the stream to acceptable standards.

Further studies, however, indicated that a plan for maintaining the water quality of the basin could be developed through efficient use of available dilution water and allowances for improved waste treatment technology.

Availability of Quality Control Water

Since this report recognizes prior commitments, agreements, and permits of local interests, storage for water quality control purposes is available only in the several proposed Federal projects, the largest of which is located downstream from the points of water need. After 1970, some water will be available in Aubrey Reservoir upstream of Dallas on an interim basis. The initial quantity is about 65 mgd (increased system yield) which will gradually decrease until it is all needed to meet municipal and industrial requirements.

An operation plan of surface water reservoirs in the basin was developed. The prime function of this plan is efficient utilization of available waters in maintaining water quality within the basin.

Basin Operations Plan to Maintain Water Quality

The most upstream significant pollution source in the basin is the city of Fort Worth. Other major sources are the Trinity River Authority plant and the city of Dallas in that order.

There is no water available for quality control in basin reservoirs upstream of Fort Worth. Therefore, the first stage of development to meet water quality requirements is a pipeline from Tennessee Colony Reservoir to Benbrook Reservoir by the year 1970 which will transport a yearly average of 80 mgd. This water is to be released from Benbrook Reservoir to satisfy monthly needs varying from 136 mgd in July to 29 mgd in January during the year 1970. Also to be constructed by this time is Aubrey Reservoir. Additional releases from this source amounting to an annual average of 40 mgd in 1970 are required to abate the pollution imposed by the city of Dallas. This first stage development will satisfy water quality needs in the upper basin until the year 1985.

Additional treatment to improve the oxygen economy in the effluents of the Fort Worth, Trinity River Authority, and Dallas waste treatment plants will be required by the year 1985. This additional treatment, coupled with 80 mgd of dilution water from Tennessee Colony Reservoir will be adequate to satisfy water quality needs in the upper Trinity River basin until the year 2020. After the year 2020, the water from Tennessee Colony Reservoir will be needed to meet municipal and industrial requirements in the upper basin and should revert to this use completely by the year 2040. In all probability. waste treatment technology will have advanced sufficiently to negate the need for quality control water beyond the year 2020. The period of 20 years between 2020 and 2040 allows for stage construction of such facilities. On this premise, no needs for quality control water were projected beyond this year.

In the Houston area, continued disposal of wastes into the Buffalo Bayou watershed and the Houston ship channel, even when treated to remove 90 percent of the organic pollutants, will require average annual regulation flows approximating 1,200 mgd, and a maximum monthly flow in excess of 2,000 mgd in the year 2020. At present, there seems little likelihood that such flows could be made available.

An alternative which would be effective to the terminal year of the study, and probably beyond, would be the construction of one or a series of outfall lines to discharge treated wastes into the Gulf of Mexico at a suitable point offshore. Further studies of this nature are, however, beyond the scope of this report.

VIII. PLANS FOR SUPPLYING FUTURE WATER REQUIREMENTS

The projected study area water requirements to satisfy municipal, industrial, nonmunicipal, water quality control, navigation, and irrigation uses are 5,638 mgd by the year 2020 and 10,179 mgd by the year 2070. Similar requirements for the Trinity River basin, including exports, are 3,433 mgd and 5,187 mgd for the years 2020 and 2070, respectively. Existing, under construction, authorized, and proposed reservoirs in the Trinity River basin will yield 2,297 mgd, and reservoirs in the long-range plans of the remaining area will yield 1,461 mgd. An additional supply of 2,060 mgd would be required to satisfy study area requirements in the year 2020 and, similarly, 6,601 mgd additional would be required in the year 2070.

An analysis of the available ground water, return flow, and brackish water indicated that the potential of these resources may be sufficiently developed to meet the additional needs in the area to the year 2070. It is reasonable to assume that ground water use in the study area will expand beyond the present 339 mgd; that the use and reuse of return flows will progressively increase throughout the projection period; and that a considerable amount of brackish water will be used for industrial cooling along the gulf coast as the cost of fresh water supplies increases. Other than to conclusively establish the fact that ultimate water requirements will necessitate the maximum practical development of these water resources in the study area, no definitive basis is available to assign a schedule to their development. Generally, the development and use of these water resources will progress in accord with changing economic conditions and areal development of the study area and with distribution, availability, and quality of these water resources.

The water requirements and resources are summarized in Table VIII-1.

Table VIII-1

Summary Water Balance (All quantities in mgd)

	:			Supply	· ,
Area	<u>Requir</u>	ement	<u>Surfa</u>	ice	<u>Other</u> <u>a</u> /
	For the Y	ear 2020			
Trinity River Basin	In Basin	2,593	In Basin Import	1,457 <u>180 c</u> /	956
Area Outside Trinity River Basin	In Area	3,045	In Area Import	1,101 <u>840</u> <u>ь</u> /	1,104
Total Study Area	Total	5,638	Total	3,578	2,060
	For the Y	ear 2070			
Trinity River Basin	In Basin	4,347	In Basin Import	1,457 180 드/	2,710
Area Outside Trinity River Basin	In Area	5,832	In Area Import	1,101 <u>840</u> <u>b</u> /	3,891
Total Study Area	Total	10,179	Total	3,578	6,601

<u>a</u>/ Includes ground water, reuse and recirculation of return flows, and brackish water for industrial cooling in coastal areas.

b/ In accordance with Texas Water Commission Permit No. 1970 from Livingston-Wallisville Reservoir system.

c/ From Lake Tawakoni (Iron Bridge) and Flat Creek Reservoirs.

IX. BENEFITS OF STORAGE

Evaluation Method

The report of the Sub-Committee on Evaluation Standards of the Federal Inter-Agency Committee on Water Resources makes the following comment on evaluation of municipal and industrial water supply:

> "From an overall public viewpoint, a municipal and industrial water supply development will be economically justified if it provides water to meet expected needs at a cost not greater than the cost of the alternative source that would likely be utilized in the absence of the project."

The alternative cost method has been used for evaluation of all storage proposed in this report.

Costs

For purposes of comparison of alternatives, capital costs were converted to equivalent annual costs using an amortization period of 100 years and a non-Federal interest rate of 4 percent. The costs so determined for the date of first use of the project are discounted to their "present" value which in this report refers to the year 1970.

Alternative Plans

Six of the proposed reservoirs in the Trinity River basin are Federal projects. These are Lakeview Reservoir, Tennessee Colony Reservoir, Aubrey Reservoir, Roanoke Reservoir, Wallisville Reservoir, and the enlargement of Lavon Reservoir. Benefits attributable to the latter two projects are covered in earlier Public Health Service reports and are shown in Table IX-1.

Table IX-l

Benefits of Storage in Wallisville and Enlarged Lavon Reservoirs

Project	<u>Yield (mgd)</u>	<u>Annual Benefits (\$)</u>
·	1. State 1.	
Wallisville (Water Supply)	146.0	359,000
Lavon Enlargement (Water Supply)	42.7*	935,100

*Yields shown are increases resulting from reservoir enlargement.

The water supply plan reveals a need for all water that can be economically developed in the Trinity River basin. And investigations of water supply sources in surrounding basins indicate that there are no sources of suitable quality water available, other than those already included in the plan. Therefore, the alternatives to Lakeview, Aubrey, Roanoke, and Tennessee Colony Reservoirs are single-purpose reservoirs at the project sites.

A yield-requirement analysis determined a need for water quality and/or water supply storage in Lakeview, Tennessee Colony, and Aubrey Reservoirs by the year 1970. In addition, the Corps of Engineers has received adequate assurances from the city of Grand Prairie, Texas, and the Trinity River Authority committing the entire conservation yield of the Lakeview and Tennessee Colony Reservoirs and other features of the overall Trinity River basin development plan at the earliest possible date. Therefore, no discounting of the benefits calculated for these projects is made.

The benefit calculated for Roanoke Reservoir is discounted since the earliest need for storage at this site is the year 2000.

Benefits attributable to these projects are shown in Table IX-2.

Table IX-2

Benefits of Storage in Lakeview, Aubrey, Roanoke, and Tennessee Colony Reservoirs

Project	<u>Yield (mgd)</u>	<u>Annual Benefits (\$)</u>
Lakeview (Water Supply Only)	28.4 <u>a</u> /	907,300
Aubrey (Water Supply and Quality Control)	65.3 <u>b</u> /	1,085,200
Roanoke (Water Supply Only)	23.9 <u>b</u> /	210,800 <u>c</u> /
Tennessee Colony (Water Supply and Quality Control)	290.8	5,589,600 <u>d</u> /

<u>a</u>/ Yield does not include 2.0 mgd utilized by the existing Mountain Creek Reservoir.

b/ Yields shown are increases in system yields based on storage exchange with Grapevine and Garza-Little Elm Reservoirs.

c/ Discounted 30 years from 2000 to 1970.

<u>d</u>/ Includes 84-inch pipeline and pumping facilities to provide 80 mgd of water for quality control upstream of Fort Worth.

The benefits of storage as shown above for Aubrey and Tennessee Colony Reservoirs must be divided between municipal and industrial and water quality control purposes in accordance with the portion of storage used for each as outlined in the water supply plan and water quality control sections of this report. Since this varies with time, it follows that the part of the total benefit attributable to each purpose also varies. Benefits shown in Table IX-3 were calculated in this way by decades until the total benefit becomes attributable to storage for municipal and industrial water supply purposes.

Table IX-3

<u>Benefits of Storage for Municipal and Industrial</u> <u>Water Supply and Water Quality Control Purposes in</u> <u>Tennessee Colony and Aubrey Reservoirs</u>

		Annual	Benefits (\$)		
	Tennessee	Colony Res.	Aubrey Res.		
	<u>Yield: 2</u>	<u>90.8 mgd</u>	<u>Yield: 65.3 mgd</u>		
	M. & I.	Water	M. & I.	Water	
	Water	Quality	Water	Quality	
Year	<u>Supply</u>	<u>Control</u>	<u>Supply</u>	<u>Control</u>	
1970	1,260,400	4,329,200	-0-	1,085,200	
1980	1,260,400	4,329,200	65,100	1,020,100	
1985			119,400	965, 800	
1990	1,260,400	4,329,200	1,085,200	-0-	
2000	1,260,400	4,329,200			
2010	1,260,400	4,329,200			
2020	1,260,400	4,329,200		,	
2030	3,657,800	1,931,800			
2040	5,589,600	-0-			

 \bigcirc