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Programming the
Analog Computer

Here are ways to resolve engineering
problems into mathematical equations that
can be handled by the d-c analog computer.

H. H. Yang
Lamar State College of Technology
Beaumont, Texas

ELECTRONIC ANALOG computers are relatively
simple devices for the solution of many applied mathe-
matical problems. Such instruments have found extremely
wide applications in design, simulation, and control in
various phases of engineering.

Among all types of analog computers, the d-c analog
computers are comparatively cheap and easy to operate.
With appropriate auxiliary elements, the analog com-
puters can be used to solve problems involving linear and
non-linear differential equations, boundary value prob-
lems, and repetitive computation of variable functions.

An inherent limitation of analog computer, however,
is its inability to handle a large number of variables and
operations. Commercial application will therefore be

justified by the nature and flexibility of problems, ac-
curacy required, volume of data, and convenience of
operations.

The d-c analog computer is composed of a number of
d-c amplifiers and feedback networks. With the addition
of time motor, potentiometer or servo multiplier, a d-c
analog computer can generally perform many useful
mathematical operations. After a network is set up to
represent a problem, the boundary values or initial con-
ditions of the problem are fed to the computer as feed
voltages. The circuit is closed then and its output voltage
varies under the prescribed conditions of the operational
machine equation. The computer may be stopped at any
time by opening the circuit.

The output voltage of the computer is recorded con-
tinuously as the graphical solution of the problem. The
change of output voltage may be recorded with respect
to the operating time of a computer as shown in Figure 1.
Then the output voltage will represent the dependent
variable of a problem, and the computer time the inde-
pendent variable. If a problem involves more than two
dependent variables, two of the variables may be recorded
by a continuous drum recorder or x-y recorder to yield
a regular rectangular graphical plot. The computer solu-
tion usually provides 0.5 to 5 percent accuracy.

The principal work in connection with the analog
computer is the programming work. This includes the
mathematical analysis of the problem, transformation of
the mathematical expression into an operational equa-
tion, and circuit analysis. The physical setup of analog
circuits and operation of the computer is more or less
mechanical in a sense.

The following problems are presented to demonstrate
the general principles involved in programming an analog
computer. There are a few methods for setting up ma-
chine equations for the analog computer. The examples
represent some typical engineering problems and will
show the relation of the mathematical equations to the
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It's easy to resolve engineering problems into computer setups using these simple symbols

Potentiometer Resister Condensor Servo-Motor

After you decide the best mathematical form which represents the problem, the d-c analog computer can take over and do the calculations.

Reprinted from PETROLEUM REFINER, February, 1957

D.C. Amplifier



The Analog Computer ...

components of the analog computer which will solve
these equations.

SYMBOLS USED
Surface area for heat transfer
Slab thickness
Conversion factor
Electrical capacitance
Specific heat capacity
Diameter
Moles of feed
Friction of drag
Flow rate
Gravitational constant
Horizontal velocity
Vapor-liquid equilibrium constant
Thermal conductivity
Moles of liquid
Reactor length
Positive integer

N Number of theoretical trays
n Moles of component present
P Pressure
p Perimeter
R Electrical resistance
r Reaction rate constant
s Distance from free end
S Function of s
T Temperature of heating medium

t Temperature of system
U Over-all heat transfer coefficient
V Moles of vapor

Vr Volume of reactor
v Vertical velocity

W Weight of system
x Mole fraction in liquid phase
y Mole fraction in vapor phase
z Percent conversion
a (Refer to Discussion)
P (Refer to Discussion)
0 Function of 0
0 Time of process change

qr 3.14
p Density
r Operating time of computer

Linear First-Order Differential Equation
The reaction of A to form B, which in turn reacts to

form C, may be represented as follows:

r, r2
A-- B-> C

Find the changes in concentrations of A, B, and C with
reaction time.

Solution-The reaction rate for such reactions may be
expressed by the following equations, assuming no reverse
reactions:

dnA
- dOr-n

dnB
dO rinA - r2nB

dno
dO -~ rn

U/ri 1/r"/2

nA0 '/'2 n ,0 Output

An electrical network representing these equations is
shown. If the initial concentrations nAo and neo are
fed to the computer as voltage equivalents, the circuit
will yield nA, nB, and nc in volts as functions of the
computer time. If the reaction time and the computer
time are expressed in the same unit of seconds, the
recorder voltage outputs of nA, nB, and nc will then
represent the corresponding concentration changes versus
reaction time.

Changing Independent Variables
In a chemical process, a fluid mixture is heated in an

agitated tank as shown. The mixture is fed to the tank
at a rate of G pounds per hour and a temperature of
to F. Steam at a constant temperature of T F. is avail-
able for heating. The tank initially contains W pounds
of fluid mixture at to when the steam is turned on. Find
the temperature of the mixture leaving the tank as a
function of time before steady state is reached.

Solution-In order to simplify the heat balance, as-
sume that the fluid mixture in the tank is at a uniform
temperature equal to that of the mixture leaving the
tank. A heat balance for the unsteady state will be
represented by the following equation:

UA(T - t) = GC,(t - to) + WC, d
dO

The independent variable 0 of the above equation is
the time of unsteady heating and is usually expressed in
hours. The equation can be processed through a com-
puter by changing 0 into the computer time r in seconds
by the following relationship:

r = 3600 0

Hence dt UAT - GCpto UA + GC,dr - 3600 WC - 3600 WC,
Since U, A, T, G, Cp, to, and W are constants, the above

Mixture in
Jb/htr @0 t

tF 'Mixture Out
G b/hr t F

- Steam @ T F

cUndensate
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equation can be greatly simplified by writing in the
following form.

dt
= a -- tdr

where
UAT - GCpt.a = 3600 WCP

UA + GCp
3600 WC

The resulting equation is an ordinary differential

equation of the first order. It can be solved readily by
the computer setup shown here. The network involves
one summation and an integration as indicated by the
operational equation. The machine output voltage will

represent the temperature t of the fluid mixture leaving
the tank. The temperature is recorded as a function of

machine time T.

( <-j dr )

InputOutput

The electronic computation of this problem is rather
simple, judging from the fact that only two d-c amplifier

units are employed in the circuit. The formal mathe-

matical solution of the equation, however, is much more

involved and may be written as follows.

UA
GCP (T -t) ' t UA + 

G\

t=UA + 1 I eoL - WG,1y t
GCp

Linear Second-Order Differential Equation
A metal rod of circular cross section is placed in a

stream of hot gas having a constant temperature T.
Assume that (1) the temperature of gas surrounding the
rod is uniform and (2) the temperature gradient in the
radial direction in the rod is negligible. Calculate the
temperature distribution within the rod along the axis
as a result of simultaneous convection and conduction.

Solution-A heat balance for an element of length
ds of the rod may be set up as the following.

dt
Heat in at s by conduction =-kA ds

Heat in to the whole section ds by convection around the
periphery = U (T - t) pds

Heat out at s + ds by conduction

kA dt d ( Jt) ds]=k - d + ds

Equating the total heat input to output, we have
dt [-dt d2t d

-kA ds U(T-t) pds=kA ds + ds d

This can be simplified to be
d2t Up
ds' kA(T t)

To apply electronic computation, the temperature t

in the rod will again be represented by a voltage. The

distance s will be transformed into computer time by

letting
S -_ ar

where a is a constant.

Substituting ar for s, the equation becomes

1 d't Up T t
a2 dr' kA

In order to simplify the resistance elements in the com-

puter circuit, the value of a may be chosen so that

kA
Up

The equation then reduces to

d2
t

djri- T -- t

where the boundary condition is t = T at s = 0 and
all values of -r. Written in an integral form, the equation
becomes

t= (T-t)drdr

This problem represents a linear differential equation
of the second order. The computer setup is prepared
according to operational equation shown above. The
boundary condition is satisfied by feeding a voltage
corresponding to T into the computer. The solution will

$

ci
GT

(t.- t)dy

Input Output
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The Analog Computer ...

be recorded as temperature t versus computer time r.
Values of r, of course, may be readily converted to
distance s by the following relationship:

S = ar = r k

where a is a constant. It follows therefore

dO ak
dO -ap

Let

T 3600 0. /3 =61 ak

Partial Differential Equation
Calculate the temperature distribution in a slab of

finite thickness B. The slab is initially at a uniform
temperature t' and its faces are kept at temperature
zero.

Tomp, Zero-4

--- 4-----
4 15

1
01 23

Temp.

6 78

Solution-Assume that the temperature in the slab
varies with distance from the faces only. The unsteady
heat transfer problem can then be expressed by the
following equation:

at k alt
- C1 p s2 (0<s<B, '>0)

The boundary conditions are, for t = t(s, 0),
t (s, o) = t' (o<s<B)
t (o, 0) = 0 (6>o)
t(B, 0) = 0

To separate the variables, assume that
t = S(s) 0(0)

where S(s) and 0(0) are functions of s and 0 alone.
Differentiating the above equation according to the
heat transfer equation, we obtain

SO', k SIPO
Rearrange the above equation

Cap 0' s"
k 0 - -- a

Thus,

dO
d7- -0

d 2S
d S2  

U

Where the boundary conditions become

0(o) - t'
S(o) -0
S(B) = 0

The differential equation of 0 is a function of time
and consequently can be solved by a single feedback
integration. The equation of S, however, is a function
of distance s. The independent variable s should then
he transformed into computer time by letting

b
TB

where b is a conversion factor in seconds. This provision
permits the choice of any value for b corresponding to
the slab thickness B. Take for example b = 10 seconds.Zero At 5 seconds of machine time, therefore, the computer
output will indicate a function corresponding to s = B/2.
the center plane of the slab.

With the change of independent variable, the differ-
ential equation of S is transformed into the following
form:

b' d 2S
B 2 d7.

For the sake of simplicity in the computer setup, choose
the value of b so that

2B 2

The above equation becomes

d2S

Here is the computer setup for this equation.

S oetoee

e Mltplir

Since the temperature in the slab is determined by two
independent variables, i.e., distance s and time 0, a
two-dimensional solution may be obtained by correlating
temperature against one of the two variables and using
the other one as a parameter. According to the deriva-
tion, therefore, the computer output of 0 may be multi-
plied by a constant value of S with the aid of a poten-
tiometer multiplier. The product of SO will indicate the
temperature at a certain point in the slab as a function
of time. Since both faces of the slab are kept at tem-
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perature zero in this problem, a symmetrical temperature
distribution in the slab is anticipated. If the slab thick-
ness B is divided into nine even parts, as shown in the
figure, only four temperatures at si, S2, S3, and s4 will
be necessary to express the temperature distribution. A
complete set of computer solution would then include
four continuous temperature curves of t(s1, 0), t(s 2, 0),

t(s,, 0) and t(s4, 0).
On the other hand, the variable computer output of S

may be multiplied by a constant value of 0 in order to
generate continuous functions of temperature in the slab
in terms of distance at certain instant 0.

The method of finite difference may be used as an
alternate solution. The slab is first divided as before into
a number of even parts along its thickness. The heat
transfer rate may then be approximated in the following.

C!s As A

d!2t A2 t

t..,-2t. +tn-I

where the subscripts n + 1, n, n- 1 are referred to the
number of cross section in the suab.

Since at k a't
ao Cp as2

We have the following approximation:

at k 1
__ - Cp s2 (t.,, - 2t. + t-,)

The increment As may be chosen such that
k As

c p

Hence at
a t,+ t_

The above equation expresses the change of tempera-
ture at cross section n in terms of the temperatures at
cross sections n-1, n, and n+ 1. Solution of this equation
is simplified in consideration of the symmetrical tempera-
ture distribution in the slab. For example, when n=9.
we have for all values of 0 the following relationships.

to = t9

t2 = th
t3 atO

t4 = t

According to the Schmidt approximation, therefore.

d= t -2t, + t2

dt
= - L - 2t2 + t 3

dt=
do- L2- 2tn + t,

dt4 =O t22t 4+t= t,---t4

These equations can be solved simultaneously by analog
computer very readily with the network shown here.

F ]
-- 5 ---- 9

Output

o 51:

Output

0 5t

Outputoutput

The initial slab temperature t' is satisfied by feeding
it to the computer circuit. Values of ti, t,, t3 and t4 will
be obtained as continuous functions of machine time.

The method of finite difference has been developed
for numerical analysis of unsteady heat transfer in finite
slabs. Its accuracy depends on the number of cross sec-
tions in the slab taken into consideration. Application
of this method on electronic computer has been found
very satisfactory.

The partial differential equation of heat transfer as
shown above can be formally solved by means of Fourier
series. Its solution is:

1t' - I F~
t(s, ) 2 m -- 1

--I2m--'-L

(21 - 1)2w2 k . (2m - 1)rS
CQpB2 I B

Function Generation by Finite Approximation
Find the ratio of vapor to liquid which exists after

flashing a petroleum fraction.

Solution-The flash vaporization of a hydrocarbon

mixture is usually expressed by the following equations
of material balance:

Fz-L+V
Fxf = Lxi + Vy

SPECIAL COMPUTER REPORT
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Introducing the equilibrium constant K and taking
F = 1, these equations may be combined to give the
following:

xf I
X1=1 + (K, -- ) V

where Ki = yi/xi and V becomes moles of vapor per
mole of feed vaporized. Since the summation of mole
fraction x of all components in the mixture is 1, we
have then

x K - ) =

0

E

Function Generation in a Closed Circuit

It is required to separate an oil-water mixture by
means of a standard oil separator shown here. The over-
flowing level of oil is s feet above the lower end of the
oil retention wall. Calculate the minimum length of
separation section of the separator.

Solution-The minimum dimension of the separation

section may be determined by first estimating the time
required for an oil globule to arise from s feet beneath
the level. To analyze the flow path of an oil globule, its
velocity is resolved into vertical component v and hori-
zontal component vh. The horizontal velocity of an oil
globule is constant throughout the separation section.
It is equal to the total volume flow rate divided by the

SPECIAL COMPUTER REPORT

Continuous Fuhction

Actual relay output for
finite approximation
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In flash vaporization calculations, it is usually re-
quired to determine L and V at predetermined flash
temperature and pressure. In the equations, therefore,
Ki's are constants at constant temperature and pres-
sure, and V is the independent variable. As has been
illustrated in the previous problems, V should be trans-
formed into machine time scale in order to solve the
equations by electronic computer. However, to generate
the function xi according to the equation, it is also
necessary to feed values of V as voltages into the circuit.

This requirement may be approximated through the
additional use of a time relay device. Choose for instance
a machine time of 10 seconds to represent the entire
range of V (i.e., 0<V<1). A time relay may then be
arranged in accordance with the relation shown in the
accompanying graph. The relay output V will change
from 0 to 0.5, 1.5, 2.5, etc., in volt every second and
will be fed into the circuit shown in the diagram.

This circuit will then generate a function of xi ac-
cording to the equation. A summing network will indi-
cate the machine time required for Yx i - 1. If the
machine time is 5.64 seconds, for example, V would
be 0.564 mole per mole feed at a relay setting of 10
seconds.

A function generating circuit, such as is shown, will
be required for each of the components in the feed.
With such a circuit setup, it is merely necessary to
change the voltage input xfi and equilibrium constant
Ki in routine calculations for different feed composi-
tion and operating conditions.

A plate-to-plate calculation may be made by apply-
ing this method to a multi-component fractionating
column. Take the calculation of minimum number of
theoretical plates under total reflux for example. We
have the following conventional equations:

N-KN

YN+1 = XN

For computer calculation, the equilibrium constants
K may be expressed as functions of temperature alone
for different components. The temperature function may
be generated by a time motor which is operated in con-

junction with the computer. The plate temperature will
then be determined by the computer in terms of machine
time required to satisfy Yxi = 1. Consecutive plate-to-
plate calculation may be carried out by proper network
made according to both equations.

The difficulties in applying electronic computer to
problems of such nature are the requirement of known
functions of equilibrium constant K for all components
in the system and a large number of network elements.

O 1
(T )



cross-sectional area of the separator. The vertical velocity
is nevertheless a variable and is dependent upon a force
balance which is derived in the following.

Assume an average diameter D for the oil globules.

Accelerational force of the oil globule =' pd

Buoyancy of the globule = 6 (Pw-Po P

Drag force against the upflowing globule

f (4 /PV

2

The force balance may then be set up as below:

7D3 dv iTD 3  f TD 2 
p.V

2

6 Pu d ~9 6 k ~ P*) 8
dv Pw - Po 3f p~v
d6 Po g- 4Dpu

Or
dv

dT=a -8v

if =r, a gand 3  
. Both a and are

Pu 4Dpo oh n

constants provided that a constant value of friction factor f is
used.

The vertical velocity v may be integrated with respect
to time to give the vertical traverse distance of an oil

globule within a given time. Since the total vertical

traverse distance s and the function of vertical velocity

are known, the above equation is employed to determine

the time required for an oil globule to arise to the over-

flowing surface. An electronic circuit may be set up

according to the following equation:

S vdt

(C -#v') dTdT

The computer setup as shown here consists of a typical

Oil Retention Section Seaa'o Section

Retention Bf f le-- Overflowing Oil
- 7

Oil-Watr
Mixture InH. r OlPt

Oi goule

........ Water Out

squarer

function-generating element in a closed circuit for the
variable v.

The circuit output is the vertical traverse path of an

oil globule as a function of retention time in the sep-
aration section. The minimum retention time for the
vertical traverse path equal to the given value s may then
be determined. The minimum longitudinal length of the
separation section equals simply to the horizontal velocity
Vh times the minimum retention time.

Simultaneous Equations

Vapor of sulfuryl chloride at 200 F and 1.2 atm.
is fed to a 1%-inch reactor tube at a rate of 418 pounds
per hour. The reaction tube is heated at a rate of 5000
Btu/ (hr.) (sq. ft.) based on the internal area. The re-
actor tube has an inside diameter of 1.334 inches. At
elevated temperature the S0 2C 2 decomposes by a first-
order reaction to form SO 2 and C12. It is desired to
decompose 98 percent of the SO2CI2 fed. The pressure
drop in the reactor and the reverse reaction may be
neglected. Calculate the length of reactor tube required.

The rate constant r for the uncatalyzed reaction may
be represented by the following expression.

r = (6.427) (10")e-"""*" see

where the temperature t is in 'K.

Solution-The decomposition of sulfuryl chloride is an
endothermic reaction. Since there is an excess of ex-
ternal heat supply to the reactor, the reaction tem-
perature will change along the entire length of the
reactor tube. While the reaction rate is a function of

SPECIAL COMPUTER REPORT
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(t) (to

Retay Function /1.52
Generator

Output

1 149

-32 , - - -32l dd

temperature, the conversion of sulfuryl chloride per
unit length of the reactor will not be uniform. Calcula-
tion of the reactor length will consequently be made by
heat and material balance over a differential section of
the reactor.

Assume that in a differential section dl of the reactor
there occurs a conversion of dz mol/mol feed and the
temperature increases by dt. A heat balance may be
established as follows.
Since M.W. of SOCl2 = 134.91

Feed rate = 418/(134.91) (3600)
= 0.39 gr. mol/sec.

Internal heating surface 0.3491 sq. ft./ft.
Average heat of reaction 10,000 cal/mol SO2 Cl2
Average specific heat = 21 cal/ (mol) ('K)

Consequently, for a differential section of the reactor,

External heat input = 3600 (252) (0.3491)dl

Btu/sec
Sensible heat for temperature increase = (0.39) (21)dt

Btu/sec
Heat of reaction = (0.39 dz) (10,000) Btu/sec

The heat balance is then expressed by the equation below.
External heat input = sensible heat for temperature

increase + heat of reaction

5600 (252) (0.3491) dl (0.39) (21) dt + (0.39 dz) (10,000)
122 dl = 8.19 dt + 3900 dz

Or,
dt = 14.9 dl -476 dz

= 14.9 (dl - 32 dz)
The material balance is established by means of the

following familiar equation for a differential reactor.

,= -= Fdzdn
where the reaction rate dn/dO is in mol SO2C12 decom-

posed per second per liter. The reactor has a volume of
28.3 liters per linear foot. We can therefore solve for
Vr/F as below.

(1.3342) 144 (28.3) (dl) = 0.705 dl

An expression for dn/dO may be found in terms of partial
pressure, which in turn can be expressed by the percent-
age of decomposition.

dn 
rndO

rP/Rt

1 -z
r (1.2) 1 + z

I
Rt

(6.427)(1015) e-50610/Rt(1.2)

Combine the expressions of Vr/F and dn/dO now.
dz

0.705 dl =
1 -z 1

(6.427)(1015) e-50610/Rt(1.2) 1 + z Rt

Upon simplifying, we have

11060 1-Z
d1= (1.52 t) 10 t -- 17 + z dz

In order to process through the computer, choose the
reactor length I and reaction temperature t as the de-
pendent variables and percent conversion z independent
variable. Assume that:

Z - 17
Where a is a constant. We have then

11060 _ 1 - ar
1= (1.52 a) t 10 1 -17 a d-

dl
t = (14.9) dr -- 32 a ) dr

where the initial conditions are 1 = 0 and t = 366.30 K

at r = 0.
The simultaneous equations may be solved with the

combination of two circuit systems as shown in the block
diagram. The circuit output of 1 will indicate readily the
required reactor length at a computer time corresponding
to a conversion of 98 percent. # #
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