Texas Business Review

Bureau of Business Research
The University of Texas
$\overline{\overline{\text { Vol. XVI, No. } 4} \text { May, } 1942}$

A Monthly Summary of Business and Economic Conditions in Texas and the Southwest Bureau of Business Research, The University of Texas, Austin, Texas

Business Review and Prospect

Physical output of industry and trade in the Nation during the past few weeks has remained about stationary according to Barron's business index, which is adjusted for population growth, long-term trend, and seasonal variation. On May 25th, the index stood at 108.0, as compared with 107.8 on April 20th. Thus, it appears that the sharp rise in the production of war materials is still being approximately offset by a corresponding decline in the production of goods for civilian use. It is probable that this situation will continue for a few more weeks, after which the index measuring total physical production in the country at large should show a strong and sustained rise.

The recent announcement of an impending order by the W. P. B., designed to limit new plant expansion to establishments already under way and to those which are indispensable in the production of an adequate supply of essential war materials, is expected to have far-reaching results. For example, there will be less competition for steel plates between ships and new factories; the pressure on the machine tool industry will be eased but will remain strong; machine tools which otherwise would have been needed for new plants will under the revised plan be uscd to increase the output in present plants and those which ean be converted; raw materials such as copper, which would have gone into the building of new plants, will under the prospective plan be used in the oxisting plants and those well advanced in construction. Finally, the proposed plan should prove a boon to small industrialists who can do a good job on war contracts but not good enough to have competed with a new factory and new equipment. Thus, many companies which might otherwise have been forced out of business may be revived by the pressure that Donald Nelson's order will create for maximum utilization of existing facilities.

Other developments of far-reaching significance are procecding at a rapid rate under the stress of war, and many of these will exert a profound influence on the peace-time economy which will follow. For example, precision tools far superior to those hitherto in use are rapidly being developed; great emphasis is being placed upon the training of large numbers of technicians and workmen; new materials and new plant capacity for producing them are being perfected. Included in the calegory of these new activities are not only the manyfold expansion of aluminum and magnesium production. and the development of plastics and synthetic rubber but also the expansion of the older products such as new alloys of steel and other metals; new substitutes for tin, chromium, and nickel for protective coatings; resinbonded plywoods and other wood products; new paper and other substitutes for rubber and cork in many of their uses; new uses of textile fibers to replace burlap and silk and wool.

Texas Business

Readjustment resulting from the conversion of civilian activities to war work noted above with respect to the Nation as a whole has its counterpart in Texas with the result that the sharp gains in the output of the war industries are about offsct by declines in numerous civilian industries. As in the country at large, moreover, there are indications of a positive sustained upward trend in Texas industry and trade which should soon become apparent.

The composite index of industry and trade in Texas during April remained practically unchanged from the preceding month but was twenty-four points, or more than twenty-two per cent, above April last year.

INDEXES OF BUSINESS ACTIVITY IN TEXAS

	${ }_{\text {Aprii }}$	${ }_{\text {April }}{ }^{\text {a }}$	$\underset{\substack{\text { March } \\ 1942}}{ }$
Employment	113.3	97.6	113.1
Pay Rolls	152.7	107.7	150.2
Miscellaneous Freight Carloading (Southwest District)	106.6	75.2	J10.7
Runs of Crude Oil to Stills	189.0	212.8	202.0*
Department Store Sales	120.0	114.0	120.5
Consumption of Electric Power	173.1	151.9	168.8*
COMPOSITE INDEX ...-...........	135.2	111.2	135.4*

*Rrviecd.

Employment in Texas non-agricultural industries increased only slightly from March to April, but total pay rolls increased from 150.2 per cent to 152.7 per cent of the 1929 level, or a gain of 1.6 per cent during the month. Electric power consumption for all purposesindustrial, commorcial, and domestic-increased more than the normal seasonal amount from March to April causing this component of the index to rise from 168.8 to 173.1. The remaining three components of the business index showed varying amounts of decline after adjustment for seasonal variation was made. Department s*ore sales changed only slightly, the index having moved down one-half point from 120.5 to 120.0. The index of runs of crude oil to stills dropped substantially from 202.0 to 189.0, and miscellaneous freight carloadings from 110.7 to 106.6 .

Farm Cash Income

Cash income from agriculture in Texas during April continued the sharp year-to-year increase observed in each of the preceding months of the current year.

As computed by this Bureau, farm cash income for the month of April totalled $\$ 49,199,000$ compared with $\$ 30$,681,000 during the corresponding month of 1491 (see footnote at bottom of table), an increase of more than sixty per cent. During the first four months of the curxent year, the computed aggregate cash income from

Texas agriculture was $\$ 160,379,000$, or nearly seventy per cent greater than the $\$ 94,968,000$ for the corresponding period of 1941.

INDEX OF AGRICULTURAL GASH INCOME IN TEXAS

Average month 1928-32=100\%					
District	$\begin{aligned} & \text { April } \\ & { }_{1942} \end{aligned}$	$\begin{aligned} & \text { March } \\ & 1942 \end{aligned}$	$\begin{aligned} & \text { April } \\ & \text { 194I } \end{aligned}$	Cumulative Income Jan.-Apr., 1942 Jan.-Apr., 194(000 Omitted)	
1-N	251.9	141.7	112.5	\$18,154	\$8,585
S	253.5	439.4	182.3	15,455	9,200
2 --	187.6	225:4	133.6	14,966	10,129
3	189.6	189.6	103.5	7,258	4,631
	252.2	219.1	128.6	26,029	12,036.
5	113.6	111.2	75.4	4,788	3,161
6	217.3	233.6	159.5	10,445	7,960
7	181.2	169.0	126.5	10,157	7,115
8	158.9	193.2	106.5	11,718	6,935
9	182.4	230.8	118.0	16,108	9,788
10	141.7	181.3	115.0	7,741	5;654
10-A	238.8	247.1	119.7	17,560	9,774
STATE	197.3	205.3	123.0	160,379	94,968

Note: Faran cagh income aa computed by thit Bureau andanateteg actual farm cash Incoma by from 6 te 10 per cent. This situation results from the faet that meang of securing complete lecal markatings, enpecially by truck, have not yet heen fully developed. In addition, meana fanve not yet been devaloped for computing cash income from all agricultaral specialties of local importance in scattered areas throughout the Stste. This situation, however, does not impair the accaracy of the indaxes to any appreciable extent.

Contributing most to this year's April increase in farm cash income over a year ago was the sharp rise in
the returns from the sales of cattle- $\$ 20,526,000$, compared with $\$ 11,978,000$-an increase of more than seventy-one per cent. Incomes from the other classes of livestock-calves, sheep, and hogs-showed relatively little change.

Substantial gains in farm cash income were also derived from eggs, which during April this year brought the farmers of the State $\$ 5,866,000$ compared with $\$ 2,644,000$ during April last year, or an increase of 122 per cent; from milk and milk products which brought $\$ 5,678,000$ compared with $\$ 4,007,000$ during April last year, an increase of forty per cent; and fruits and vegetables, from which $\$ 4,284,000$ was derived during April this year compared with $\$ 2,238,000$ during the corresponding month last year, a gain of ninety per cent.

Although the outlook for crops is not optimistic in the areas which were subjected to excessive rains and flood conditions during the past few weeks, the general agricultural situation for the State as a whole appears relatively favorable. This situation is especially true with respect to livestock and livestock products of which the marketings and prices are expected to be well maintained.

F. A. Buechel

What of Further Industrialization in Texas

A comprehensive view of the potentialities of the chemical industry in Texas has to comprehend the broad pattern of industry in general and the chemical aspects of industry in particular. The chemical industry in Texas can no more be lodged within the confines of water-tight compartments than can the oil industry. Provincialisms in science and technology and industry can have but little place in the world of today. Absolutely indispensable is a point of view that is at once inclusive and comprehensive and at the same time substantial and tangible if the challenges of the times are to be met positively and effectively. But it is precisely the gravity of these challenges that calls in no uncertain terms for a reappraisal of the present situation, for the marshalling of the best knowledge attainable, and for the highest possible contributions from research.

And can anyone question the magnificient opportunities these challenges bring to Texas, if Texas is to take a position of leadership commensurate with the array of natural resources which the State has to offer those industries that are assuming a predominant position in the American economy.

Most difficult of problems, however, is that of getting before Texas leadership a proper appreciation of the patterns and quantity of the natural resources of the State and of the part these natural resources can well play in the evolving pattern of industrial needs.

To attack these vital problems successfully will demand a sure knowledge of the characteristics and inherent qualities of industry on the one hand and the relationships of industrial growth to natural resources on the other.

An historical perspective' of the chemical industry, as is also the case with industry in general, reveals a definite succession of patterns of impingements of institutional factors and forces as they have reacted upon various groups of the world's natural resources.

The intricate interrelations exemplified in the growth and extension of the chemical industry, the wide ramifications manifested in its several lines of development, and the revolutionary effects wrought by its progressive developments upon an ever widening theater of operations furnish materials vital for the study and analysis of the fabric of institutional factors provided on a scale equalled perhaps by no other phase of industrial evolution. The dynamics of the chemical industry is a function of the dynamics of science and technology; the dynamics of science and technology applied to the study and utilization of natural resources is the basic factor of the human quest for the conquest of scarcily, and from the point of view of human welfare is to be regarded as obviously a positive institutional factor.
The "statics" of an industry, whether the chemical or some other industry, if continued for any considerable
period of time, and manifested in rigid control features, by cartels or other organized methods, have to be seen as institutional factors of the negative sort, bent upon the maintenance of scarcity. It may be surprising to consider the maintenance of scarcity through sach organized means as cartels as a manifestation of the institutional factor of price economy. The philosophy of scarcity stems from the limited concepts of the Middle Ages. But the modern world cannot be circumscribed by the narrow knowledge-range of even the 18th century; the world of the 20th century is a function of the growth of science and the problems engendered by the application of a continuously evolving science to the ever-widening utilization of natural resources on a world-wide scale.
Seen in the time perspective, the dynamics of science and technology in association with the evolution of what is ordinarily regarded as chemical industries constitutes one of the most magnificent chapters in human history; this perspective is one of the indispensable factors required in appraising the potentialities of the chemical industry in Texas. For it must be realized that we are face to face with new problems, whose solution requires considerably more than the application of conventional methods. The frontier of today consists not in the subjugation of new lands but in a comprehension of the new problems and the mastery of new technologies for dealing with these problems. The new frontiers of knowledge are no less fascinating than the western frontier of a century ago. And in a broader, in a more fundamental sense, the historical development of an industry is more than a mere listing of gadgets as they have appeared on the industrial stage and a compilation of production data; basically, the study of the growth of industry belongs to the field of social institutions, in which supply and demand curves and price data tell us little of what the fundamental factors of the industry really are.
There is, however, another phase of industry study which also has been too much smothered by the conventional though superficial methods that pass for industry analyses. This phase is concerned with fundamental features of the natural resources utilized and the technologies employed in utilizing natural resources in modern industry.

Natural resources are earth materials, and as such the investigation of their characteristics and properties has been carried out in the natural sciences. To attempt to analyze or evaluate natural resources without the knowledge and methods embodied in the natural sciences and the use of the scientific method is of course an impossibility; such superficialities obviously cannot contribute to progress, and they are likely to delay or retard.

A similar line of reasoning is obviously applicable to analyses and evaluations of technologies, for these likewise are based primarily upon the natural sciences.

The social scientists have in general taken for granted both natural resources and technology, and the field of raw materials as well, except for a type of price studies
of the latter. Social scientists, such as Veblen, for instance, primarily concerned with the evolution of institutions have clearly seen certain phases of the natural resources picture and of technology because of the force of impact of these subjects upon modern economic trends. To such institutional economists must go credit for calling for a more complete evaluation of the place of nataral resources and technology in social development. But even the institutional economist is in no position to analyze or evaluate the fundamental factors inherent to natural resources and technology, unless he has the adequate scientific groundwork and is willing to use the scientific method; and when he attempts to deal with natural resources and technology without a scientific background he necessarily relies upon opinion rather than science. Reliance on opinion inevitably means reliance on biases of one sort or another rather than upon an objective point of view, the aim of which is truth and comprehensive understanding. Even the institutional economists have failed generally to recognize that science itself is an institutional factor and that the drama of the growth of the sciences is part and parcel of institutional and social development. In today's world a lack of knowledge of the natural sciences and a lack of appreciation of their place in modern society is nothing less than tragedy.

One aspect of the tragedy is, and it is rather obvious, that the use of unscientific methods in dealing with science or the fields for which science only provides the background must result in confusion and waste motion. The other aspect is that scientific studies and analyses of natural resources and technology not only contribute to a comprehensive understanding of these fundamental factors as related to industry, per se, but also that such studies provide in themselves magnificient opportunities for an understanding of the "particular go" of things in today's world. Without such studies we are like fishes with poor eyesight becoming adjusted to the darkness of underground caves. Furthermore, the full-fledged use of the scientific method in the social sciences is still to be realized.

Fortunately, we have available the results of scientific investigations which give a comprehensive view of natural resources and of technology, and the great investigators in these ficlds have always been concerned with the vital consequences of their scientific knowledge as it pertains to human welfare. Unfortunately, many of the results of these scientific investigations have not yet reached the text-book stage. Moreover, we have only begun to appreciate, for instance, the vital significance of contributions made by the great body of American scientists, and of what these contributions mean to the American people and the American way of life. Perhaps the stress of emergency and crisis will aid in crystallizing some of these bigger concepts in such a manner that henceforth they cannot be pushed aside or relegated to inconspicuous places. Every period has
its own problems to solve, and the challenges of the time can neither be by-passed nor solved by rote.
But of what concern are these things to the problems of Texas industry or more particularly the chemical industry of the State? What are the resources of the Texas chemical industry?
One basic factor is the vast and complex background of scientific knowledge of natural resources and the technology for utilizing such resources which has been patiently worked out by the preserving leaders of science during a long period of time in the past; this knowledge is one of the greatest of our resources, one that is absolutely necessary in appraising our potentialities.
Another basic factor has to do with the requirements for materials, and for what kind of materials will be required in the near future. Ours is an industrial age, an age of multiple industries, each a complex within itself, but all complexly interrelated. From the standpoint of basic economics the future of our raw materials like cotton and wood pulp, or petroleum and natural gas, or the brines containing both metals, like magnesium, and non-metals, like common salt or potash, will have to be appraised in what they can contribute to modern industry which in the nature of the case cannot stand still.

And modern industry is concerned with what the large groups of raw materials can contribute: hydrocarbons and free carbon; cellulose and lignin, starches and fats; the light metals like aluminum and magnesium; the steel alloys and the non-ferrous metals; and the alkalies and brines. The long-range solution of the agricultural surpluses of grains, of corn and wheat, lies in what will be done industrially, for instance, with the starch materials thus produced in large volume, and the industrial solution apparently will be through the agency of modern industrial chemistry.

We shall have to reappraise the consumption potentialities for our most common raw materials in terms of how modern technology can and will make them fit into industrial demands. "Old" industries fall into a static attitude by endeavoring to maintain their former holds or position in the market. "New" industries are dynamic partly because they are based upon a continually evolving technology-that is, they partake more of the nature of modern science which is ever on the march-partly because they can advantageously meet the new demands of the market. And the new demands of the market in turn are dependent fundamentally upon a wider and more effective use of the world's natural resources-for material goods and material welfare inevitably rest upon the materials and forces of nature. As to problems of marketing Texas products, the basic consideration concerns what industry in the future will be, what raw materials it will require, and where it can get these raw materials most advantageously. The mere exchange features or even the engineering problems in providing transportation facilities are minor factors in comparison with the problem of getting at the potential demands of industry and the questions as to what regions and what natural resources will be able to supply these demands.

Still another basic factor in appraising the potentialities of Texas industry consists in what raw materials Texas has to offer modern industry, and from a broad point of view, it consists in what Texas materials can contribute to the expanding chemical industry, considering the chemical industry in the broad sense.

The effective use of cellulose materials in the progressively advancing demands of industry in such lines as pulp and paper, in rayon and other synthetic fibers, in plastics and synthetic wood materials is by and large a chemical problem, and will become even more so in the future. The American oil industry has become within recent years a full-fledged, synthetic organic chemical industry. Our great oil refineries have gradually been transformed into vast and complex chemical plants producing high-octane aviation gasoline, toluene, butadiene, alcohols, glycerine, and even such products as phenol and ethylene in comparatively large amounts. Most of these substances are to be regarded as raw materials for still further chemical developments than have hitherto been made of them. Even a dim perception of the potentialities thus being brought into the realm of actuality surpasses the limits of scientific imagination of even a few years past.

And there are other raw materials that will have to be reappraised. What, for instance, may well be the results of the wide scale application of the process of "molecular distillation" to the industrial uses of vegetable oils? We are told that Russia is successfully making synthelic rubber from white potatoes, by transforming the starch of the potato to ethyl alcohol by fermentation, and then producing butadiene from the alcohol by a catalytic process.

Concerning our problem of synthetic rubber Sydney Self has recently written as follows in The Wall Street Journal, May 5, 1942:

Oil and chemical research men, working on synthetic rubber, are embarrassed by the fact that they have the key to a magic cupboard filled with treasures, and scant time to explore it.
They are haunted by the knowledge that new test-tube discoveries lie just around the corner. Specifically they are afraid that any new synthetic rubber plant built today may become obsclete overnight.
It hothers the chemists and engineers to set up an industry to make good synthetic rubber, which they now can do, when they know that before they can get. it working they are almost bound to find a way to make a better synthetic rubber.

Normally the pattern of research is to follow good ways by better ways, with plenty of time for tests and orderly development. But war calls for production instead of experimentation. There isn't time to wait for the latest new ideas. Yet new ideas are horn faster than ever.
For example, although the first half of this nation's 700,000 ton synthetic rubber program is going ahead as fast as possible, because: the armed forces must have an ample supply of rubber soon, regardless of cost, the remainder of the program may await development of new ideas. If it could be called delay, it is a strategic delay actually designed to attain the final goal more quickly.

There is a good possibility that a synthetic rubber plant started six months hence will come into production more quickly, provide a much larger output and cost a great deal less than any already under construction. Chemists are talking today of future plants which might double the quantity and cut the cost in half.
There is also every reason to believe that the quality of the synthetic rubber that will be turned out finally will be far
superior to any of the types made now. This is simply the rule of synthetic chemistry, which means that it is composed mainly of carbon and hydrogen molecules, just as natural rubber is made up of these qualities. Organic chemicals can be made from coal or from oil or from vegetable matter, but petroleum is the most plentiful and convenient raw material source of synthetic rubber.
The main type of synthetic rubber planned under the U. S. program is called "buna" which starts with a basic raw material called butadiene made chiefly from petroleum. The other ingredient is styrene, widely used as a plastic and which is made from either coal or oil.
Butadiene is one of the hundreds of organic compounds which are found in petroleum or made by rearranging the petroleum molecules.
There are excellent processes for making butadiene, now in operation; processes which involve several laborious and expensive steps of piecing the molecular building blocks together.

However, in half a dozen laboratories, all of which have been concentrating on this vital problem for the last year or so, several startling new synthetic rubber methods already have been found.

Big advances are being made in quality. For example, while better butadiene-making processes are under way it has been found that it may not be necessary to use butadiene at all to make rubber. There are other petroleum compounds, other "dienes" perhaps, that can be re-arranged to give even better types of rubber than the buna type,

What we are seeing now under the stress of war demands is the emergence of a new industrial pattern in the United States, a pattern which will provide the bases
and establish the broader oullines for industrial developments during the next decade or so. Of course, this evolving industrial pattern is being paralleled by fundamental adjustments in American economic life.

And these new patterns are being set by the "new" industries-those embracing the light metals as aluminum and magnesium, the new developments in steel alloys, as exemplified by beryllium to take one example, the new fields in synthetic organic chemicals using raw materials provided by petroleum and natural gas, the new fields in synthetic fibers and plastics. Some of the "old" industries, like petroleum refining, are being transformed, lock, stock and barrel, by the wide-scale adaptation of new processes; other "old" industries, less adaptable for one reason or another, will have increasingly hard going in years to come.

How Texas will fit into this evolving pattern of American economy will not be determined by grandiose expressions or by window-dressing labels; there is no royal road to getting these tasks done. But the time has come to take stock of the factors that can contribute in a worthwhile manner to a concrete realization of the magnificient potentialities that already are appearing on the horizon. Foresight based on full knowledge is more satisfying them hindsight is likely to be.

Elmer H. Johnson

Texas Statistical Council Proceedings

Proceedings of the May 1, 1942, meeting of the Texas Statistical Council have been published and will be sent to all members of the organization.

The program included addresses presented by Mr. B. F. Vance, State Administrator, Agricultural Adjustment Administration, College Station; Mr. C. J. Crampton, State Director, Contract Distribation Division, War Production Board, Houston; Mr. James H. Bond, State Director, U.S. Employment Service, Austin; Mr. Frank Scofield, State Administrator, Defense Savings Staff, Austin; Mr. Hulon Black, Director, The University of Texas Development Board; Mr. Henry W. Rahn, Technical Director, Southern Alkali Company, Corpus Christi;
and Mr. Elmer H. Johnson, Bureau of Business Research, The University of Texas. Mr. W. L. Pier, Vice President, Fort Worth National Bank, Fort Worth, and Mr. Richard B. Johnson, U.S. Bureau of Foreign and Domestic Commerce, Dallas, were the discussion leaders.
Those, other than members of the Council, who desire copies of the Proceedings are asked to communicate with Dr. F. A. Buechel, Secretary of the Texas Statistical Council. There is also a limited number of the Proceedings of the October 24, 1941, meeting available for distribution which may be had upon request.

Clara H. Lewis

Demand for Cotton in War Time

World wars such as we are now in have a tremendous effect on the demand for cotton, both in terms of quantities used and qualities required.

Cotton and cottonseed are two of the world's most vital war commodities. As was pointed out in my article in the March number of the Review, they are major sources of four vital commodities-food (cottonseed oil), fiber, high protein feed, and high explosives.

Notwithstanding this greatly increased need for these products of cotton, occasioned by war, the records show that the world consumption of raw cotton actually declines during a world war. From the beginning of the first World War in 1914 to the year 1918-19, the world consumption of all cotton declined about twenty-five per cent. This contradictory situation is true because Europe outside of Russia still has over fifty per cent of the world's cotton spinning spindles and grows less than one per cent of the cotton it consumes. Moreover, Japan, the second largest cotton consuming country in the world, grows only a small per cent of its normal consumption and is on the wrong side in this war to get substantial imports. It seems possible, then, that the blockade may reduce world cotton consumption during this war to an even greater extent than during the last war.

Forcign consumption of United States grown cotton has been greatly reduced now as compared with the last war. The low of foreign consumption of United States cotton during the first World War occurred during the year 1918-19 with $4,300,000$ bales, and foreign consumption of United States cotton will scarcely exceed a million bales this year.
In spite of the drastic decline in foreign consumption of United States cotton, it is possible world consumption of our cotton during this war will probably not reach as low a level as during 1918 because of the great increase in consumption in the United States. Cotton consumption in the United States increased from $5,600,000$ bales in 1914 to $6,800,000$ bales in 1917. So far during this war Uniled States consumption has increased from $6,900,000$ bales during $1939-40$ to 9,700 ,-

000 bales this past year, a prospect for over $10,500,000$ bales this yeat, and a prospective demand at least for over $12,000,000$ bales next year.

Changing Demand for Qualities

The above are extremely important facts to be taken into account in shaping cotton production programs in the United States, both as to quantities and qualities to be produced.

It seems evident from the demand for cotton in the United States that production should be increased to a prospective $13,500,000$ bales to insure against a short crop due to bad yields. Moreover, it is impossible to grow a crop all of which is suitable to meet United States demands as to grade and staple.

The fact is United States mills in the main are set up to manufacture both the medium grades and staple lengths of cotton. According to a survey made by the United States Department of Agriculture in 1928, over sixty-three per cent of the cotton being consumed in the United States mills was Middling and Strict Middling, and two other grades, Strict Low Middling and Good Middling, step that up to about eighty-four per cent.
According to the above authority, eighty-five per cent of the cotton consumption in the United States is $7 / 8$ to and including 1 sty inch. The requirements of the war have increased the demand for cotton $1^{\frac{1}{15}}$ inch and longer, but have likewise tended to decrease the demand for the shorter staples. The fact is, foreign markets took the big end of our highest grades and lowest grades and off-colored cottons and short staples. American cotton growers need to take these facts into account in selecting sced to be planted and in choosing methods of harvesting.

During the first World War, Low Middling went as low as 1,000 points off Middling, and Good Ordinary to over 1,500 off.

COTTON BALANCE SHEET FOR THE UNITED STATES AS OF MAY 1
(In Thousands of Running Bales Except as Noted)

Year	Cartryover	Importe May 1*	Fínal Ginning		$\underset{\text { tion to }}{\text { Congump }}$ tion to	Exports $\stackrel{\text { to }}{\text { May }}$		Bulanco
1932-1933	9,682	96	12,710	22,488			Total	May 1
1933-1934	8,176	112	12,664	20,488	4,219 4.458	6,521	10,740	11,748
1934-1935	7,746	83	12,664 9,472	17,301	4,458	6,485	10,943	10,009
1935-1936	7,138	102	10,417	17,657	4,71.6	3,986	8,102	9,199
1936-1937	5,397	167	12,130	17,657	4,658	5,167	9,825	7,832
1937-1938	4,498	99	18,242	17,694	6,017	4,762	10,779	6,915
1938-1939	11,533	108	18,242	22,839	4,430	5,034	9,464	13,375
1939-1940	13,033	123	11,477	24,633	5,153	2,964	8,117	15,145
1940-1941	10,596	119	12,287	24,633	6,955	5,695	11,650	12,983
1941-1942	12,367	\dagger	10,489	22,856	8 8,245	80	7,878	15,124,
				22,056	8,245	+	8,245	14,611

*In 500-pound bales.
\dagger Figures not available.
The cotton year begins August 1.

	EMPLOYMENT		AND PAY ROLLS IN TEXAS					
	Eatimated Number of Workers Employed* March Apri		Percentage Changefromfrom		Eatimated Amount of Weekly Pay Roll		Percentage ChangefromMaschfromApril	
			March	Aptil	March	${ }_{\text {April }}$		
MANUFACTURING								
All Manufacturing Industries --	-. 153,981	154,449	+ 0.3	$+9.1$	3,577,652	3,664,009	$+2.4$	+26.3
Food Products								
Baking	6,986	7,012	+ 0.4	+ 8.4	162,678	168,089	$+3.3$	+18.2
Carbonated Beverages	- 2,567	2,612	+ 1.8	-10.4	67,027	69;507	$+3.7$	- 3.7
	-991	903	-8.9	+ 6.4	10,456	9,541	-8.7	$+6.7$
	- 1,972	2,123	+7.7 $+\quad 7$	$+12.8$	37,206	39,967	+ 7.4	+17.9
	- 1,114	1,114	\pm	+14.4 +105	22,652	23,830	+5.2 +4.5	+22.4 +42.9
Meat Packing -.-----------------	- 5,338	5,265	- 1.4	+10.5	134,122	140,160	+ 4.5	+ 42.9
Textiles								
Cotton Textile Mills	7,183	7,104	-1.1	$+4.9$	132,087	133,4, ${ }^{\text {a }}$	$+1.0$	+28.8
Men's Work Clothing .--	4,343	4,502	$+3.7$	+16.4	58,919	65,921	+11.9	+ 39.6
Forest Products								
Furniture	2,099	2,114	+ 0.7	- 3.3	37,186	38,268	+ 2.9	$\bigcirc 7.1$
Planing Mills	2,189	2,251	+ 2.8	$+3.6$	54,248	56,408	$+4.0$	$+35.1$
Saw Mills .-.	17,518	17,223	- 1.7	+ 4.6	235,220	230,938	- 1.8	+ 8.4
Paper Boxes	645	636	- 1.5	$+3.6$	11,907	10,695	-10.2	- 4.0
Printing and Publishing								
Commercial Printing	2,368	2,451	$+3.5$	+ 1.7	60,042	66,780	+11.2	+16.3
Newspaper Publishing ------	- 4,917	5,186	$+5.5$	+ 5.4	119,283	125,384	+ 5.1	+ 0.2
Chemical Products								
Cotton Oil Mills	3,212	2,549	-20.7	-3.7	32,210	27,866	-13.5	+16.8
Petroleum Refining -----------	- 22,213	22,271	+ 0.3	$+9.7$	902,553	865,296	-4.1	$+23.2$
Stone and Clay Products								
Brick and Tile	2,103	2,231	+ 6.1	+3.6	29,099	32,927	+13.1	$+18.5$
Cement],346	1,251	- 7.1	+25.6	45,156	44,577		+48.9
Iron and Steel Products								
Structural and Ornamental Tron-	- 2,546	2,600	+ 2.1	+8.4	58,806	60,586	$+3.0$	$+24.6$
NONMANUFACTURING								
Crude Petroleum Production -	- 30,406	29,928			1,101,873	1,077,762		
Quarrying	- (3)	(a)	+1.6 +1.	+27.2	$\stackrel{(9)}{(4)}$	$\begin{aligned} & \text { (}(\$) \\ & \text { (} \end{aligned}$	-6.8	+54.5 +13.8
Public Utilities .-.-........---...-		${ }_{185}{ }^{(4)}$	+1.2 +06	+7.4 -4.4	3,601,665	3,662,627		+13.8 $+\quad 3.4$
	187,100 $-64,093$	188,216 64,798	+0.6 +1.1	- 4.4 +6.1	1,692,437	3,682,62\%	+1.7 +0.3	$\begin{array}{r}\text { + } \\ + \\ +9.4 \\ \hline\end{array}$
Dyeing and Cleaning -------	- 2,427	2,558	+ 5.4	+ 7.8	39,081	40,785	+ 4.4	+19.0
	15,825	15,655	- 1.1	-0.2	196,319	194,131	- 1.1	+ 3.6
Power Laundries	11,658	12,395	$+6.3$	+13.1	155,390	170,805	+ 9.9	+20.3

	CHANGES IN EMPLOYMENT AND PAYROLLS IN SELECTED CITIES ${ }^{(0)}$									
	Employmont Percentage Clange		Pay Rolls Percentago Change		Employment Percentage Clange				Percen	Rolis Change
	Mar., 1942	$\mathrm{Apr}_{2}, 1941$	Mar., 1942	Apr., 1941		$\text { Mar., } 1942$	$\text { Apr., }^{1941}$		Mar., 1942	$\text { Apt. } 1941$
	$\mathrm{Apr}_{\text {c, }}^{\text {to }} 1942$	Apre, 1942	Apre, 1942	Apr., 1942		Apr., 1942	Apr., 1942		Apr., 1942	$\mathrm{A}_{\mathrm{pr}} \mathrm{t}$, 1942
Abilene	$\pm{ }^{\text {+ }}$	+ 10.6	- 0.3	+ 16.8 .	Galveston	+ 3.5	†-31.6		6.6	$+45.4$
Amarillo	5.2	1.9	0.4	$+13.6$	Houston	t- 0.6	+ 9.5		0.9	+ 20.7
Austin	- 1.1	+ 7.9	- 2.0	$+5.7$	Port Arthur	+ 0.5	+ 0.5		3.9	+ 18.5
Beaumont	+-10.5	$+138.6$	+ 24.5	$+243.0$	San Antonio..		+ 6.6		$+2.1$	+ 20.3
DaIlas .---	2.6	$+0.5$	- 0.1.	+ 16.0	Sherman -----	+ 4.9	- 3.7		8.4	+ 11.1
El Paso	+ 0.6	$+1.0 .5$	$+4.3$	$+26.3$	Waco	+ 4.8	+ 12.8		4.7	$+21.9$
Fort Worth	+ 1.4	+ 12.5	$+8.0$	+ 39.8	Wichita Falls.	10.8	-8.9		17.0	+ 2.2
					STATE	+ 0.1	+ 15.5		1.7	+ 41.4

ESTIMATED NUMBER OF EMPLOYEES IN NONAGRICULTURAL BUSINESS AND GOVERNMENT ESTABLISHMENTS ${ }^{(1)}$

	$1940{ }^{(1)}$	1947 (1)	1942		$19 \mathrm{a}\left({ }^{(1)}\right.$	$1941{ }^{(1)}$	1942
January	944,000	1,052,000	1,115,000 ${ }^{(1)}$	July	983,000	1,101,000	
February	943,000	1,092,000	1,131,000 ${ }^{(1)}$	August	988,000	1,113,000	
March --------------3	965,000	1,086,000	1,153,000 ${ }^{(2)}$	September	1,009,000	1,134,000	
April .------------..-	963,000	1,097,000		October	1,022,000	1,141,000	
May	983,000	1,077,000		November	1,048,000	1,161,000	
June	982,000	1,084,000		December	1,084,000	1,177,000	

*Does not include propristorn, firm members, officers of corporations, or ather principal executives. Factory employment excludea also office, sales, technical and pofarsional personnel.
${ }^{1}$) Reviaed,
${ }^{(2)}$ Subject to reviaton.
(8) No change.
(4) Not available.
(*) Pased on nuweighted figures.
(6) Loss than $1 / 10$ of one per ceat.
 by the Bareau of Labor Statistica, U.S. Department of Labor,

Prepared from reports from representative Texas establighmenta to the Burean of Buslnegs Research coöperating with the Burean of Labor Statiatics,
Due to tha national emergency, publication of dsts for certain industries is heing withheld until further notice.

APRIL RETAIL SALES OF INDEPENDENT STORES IN TEXAS

	Percentage Changea in Doliar Sale			
	$\begin{gathered} \text { No. of } \\ \text { Firns } \\ \text { Reporting } \end{gathered}$	April, 1942 from April, 194		
TEXAS	1,119	+ 2	$+5$	- (1)
STORES GROUPED BY LINE OF GOODS CARRIED:				
APPAREL	124	$+12$	- (1)	$+20$
Fanily Clothing Stores	32	+19	+ 4	$+23$
Men's and Boys' Clothing Stores	43	-1	-4	+18
Shoe Stores	15	$+16$	+8	$+24$
Wornen's Specialty Shops	34	$+16$	- 2	+19
AUTOMOTIVE*	77	-70	$+3$	-69
Motor Vehicle Dealers	73	-71	$+3$	-71
COUNTRY GENERAL	104	+18	+2	+21
DEPARTMENT STORES	57	+12	+ ${ }^{10}$	+16
DRUG STORES	146	+16	-1	+12
DRY GOODS AND GENERAL MERCHANDISE	28	+12	$+1$	+22
FILLING STATIONS	48	-10	-6	$+7$
FLORISTS	24	-9	$+27$	-10
FOOD*	166	$+28$	+6	+26
Grocery Stores	50	+35	$+10$	+27
Grocery and Meat Stores	108	+25	+ 4	+25
FURNITURE AND HOUSEHOLD*	68	-1	-9	+8
Furniture Stores	58	$+1$	-7	+ 9
JEWELRY -	28	$+11$	$+13$	+13
LUMBER, BUILDING, AND HARDWARE*	205	+18	-3	+22
Farm Implement Dealers	10	+ 9	-4	+28
Hardware Stores - --...	64	$+12$	-1	+26
Lumber and Building Material Dealers	128	+22	- 4	+18
RESTAURANTS	30	+15	-1	+12
ALL OTHER STORES	14	$+24$	-20 .	$+44$
TEXAS STORES GROUPED ACCORDING TO POPU. LATION OF CITY:				
All Stores in Cities of.-				
Over 100,000 Population	175	- 1	+4	-1
50,000-100,000 Population	123	+8	+ 4	+1
2,500-50,000 Population	544	-4 .	-4	+ 2
	277	+9	$+13$	$+2$

©Group total includes kinde of businese other than the classifications listed.
${ }^{(1)}$ Change of less than $.5 \%$.
Nota: Preparcd from reports of independent retaill stores to the Bureau of Businges Research cooperating with the United States Bureati of the Census.

TEXAS CHARTERS

APRIL RETAIL SALES OF INDEPENDENT STORES IN TEXAS

TOTAL TEXAS TEXAS STORES GROUPED BY PRODUCING AREAS:	1,119	+ 2	+
	82	-18	$+1$
	23	-13	-11
Pampa	16	-31	± 2
Plainview	15	$\square 7$	- 5
All Others	28	-3	
District 1-S	29	+14	-10
Lubbock	10	$+10$	-12
All Others	19	+19	
District 2	80	+17	
Abilene	10	+2	-2
Wichita Falls	10	$+34$	+3
All Others	60	+14	-2
District 3	36	+ 4	$+$
District 4 ---	237	$+13$	-
Dallas	37	-10	- 2
Denton	15	$+$	
Fort Worth	37	+14	
Sherman	18	$+13$.	
Waco	23	+8	
All Others	107	+14	+3 +4
District 5	107	$+11$	+ 4
Tyler	11	± 1	
All Others	96	+13 +3	+6 +7
District 6	42	+3 +16	+ ${ }^{7}$
El Paso-	${ }_{21}$	+16 +15	+8 +5
All Others	21 73	+15 +17	+9 +2
	13	+17 +13	+2 +2
San Angeio. All Others	60	+20	± 1
District 8 -----	173	-4	-16
Austin	14	+10	-12
Corpus Christi	11	+45	$+16$
San Antonio.	52	+12	+11
	96	$+13$	+ 2
District 9	135	+2	
Beaumont	17	+35	
Galveston	10	-8	-10 +3
Houston -	49	-7	+ ${ }^{3}$
All Others	59	+1 +8	+
District 10	44	+8 -6	+2 +3
District 10-A	51 14	-6 +13	+3 +6
Brownsville All Others	37	-12	+2

Southern Pine Mills:

Average Weekly Production per unit \qquad	305,962	332,908	298,315
Average Weekly Shipments per unit \qquad \qquad	390,990	300,193	346,648
Average Unfilied Orders per unit, end of month. \qquad	082,656	1,212,495	1,762,344

[^0]
PETROLEUM

Daily Average Production

(In Barrels)

	$\underset{1942}{\text { April }}$	$\begin{gathered} \text { Apxil } \\ 1941 \end{gathered}$	$\underset{1942}{\text { March }}$
Coastal Texas*	218,690.	249,010	262,000
East Central Texas ...-	78,270	76,550	86,000
East Texas	209,970	344,880	312,300
North Texas	137,560	137,115	146,450
Panhandle	83,270	177,850	84,800
Southwest Texas	143,300	192,660	187,450
West Texas	177,350	226,000	213,250
STATE	1,048,410	1,296,500	1,292,250
UNITED STATES -.-_-	3,484,610	3,620,910	3,740,300

*Itcludas Conroe.
Note: From American Petrolenm Institute.
See accompanying map bhowing the oil producing dietricta of Texar.
Gasoline sales as indicated by taxes collected by the State Comptroller were: March, 1942, 121,240,000 gallons; March, 1941, 123,301,000 gallons; February, 1942, 106,415,000 gallons.

CEMENT
(In Thousands of Barrels)

	${ }_{\text {April }}{ }_{192}$	$\begin{aligned} & \text { April } \\ & \text { L941 } \end{aligned}$	$\underset{\substack{\text { March } \\ 1942}}{ }$
Texas Plants			
Production	949	798	976
Shipments	921	779	973
Stocks ...--..--..--...-...-	839	827	811
United States			
Production .----...---....	14,068	12,196	12,733
Shipments .---.------------	14,774	14,132	12,563
	25,125	24,052	25,838
Capacity Operated ---..-	69.0\%	59,3\%	60.0\%

Norz: From U.S. Departuant of Interior, Bureat of Minea,

POSTAL RECEIPTS

	$\underset{1942}{\text { Appil }}$	${ }_{\text {ApriI }}$		$\underset{\substack{\text { March } \\ 1942}}{\text { and }}$
Abilene -.-------....-... \$	\$ 27,451	\$ 26,789	\$	35,042
Amarillo --------------	36,392	35,714		33,756
Austin	77,788	76,001		79,049
Beaumont	32,535	30,327		31,743
Big Spring ...--u-u-...-	7,610	7,618		6,450
Brownwood -.----------1.	13,346	16,196		27,406
Childress .-.---.-.-.....-	2,944	2,916		2,820
Coleman -..-...-	3,502	2,417		3,269
Corsicana --.-.-.-......	7,001	6,778		6,534
Dallas -------	415,058	406,204		414,790
	3,806	6,767		3,510
Denison --.-.-.......--.-.	7,590	6,652		7,166
Denton ------.-.-.	10,285	9,684		8,494
El Paso	56,188	61,624		66,999
	157,081	100,792		170,254
Galveston	36,939	37,661		40,996
Gladewater	3,145	2,858		3,449
Graham	2,482	2,344		2,268
Harlingen	7,729	7,178		7,956
Houston	286,536	280,183.		292,651
Jacksonville	4,228	4,004		3,208
Kenedy	1,755	1,654		1,247
Longview	11,100	10,669		9,323
Lubbock ..-.-----------	22,459	21,978		23,832
Lufkin	5,648	5,601		5,444
McAllen	5,762	5,418		4,891
Marshall	8,938	6,730		7,861
Palestine	5,802	5,364		5,800
Pampa	7,452	8,045		6,853
Paris	8,275	6,532		7,265
Plainview	4,704	4,707		4,570
Port Arthur ------------	18,282	16,963.		16,143.
San Angelo .-.-.-.-.-.-	15,315	14,367		14,31.4
San Antonio .-.-.-.-.	161,013	156,913		168,430
Sherman --...................	9,053	8,493		9,390
Sweetwater	5,140	6,137		5,674,
Temple --.-.....----...-	7,852	7,727		7,647
Tyler	16,707	16,759		16,318
Waco	37,546	38,712		36,490
Wichita Folls ------..-	35,474	25,245		49,951
TOTAL ...--	1,587,913	1,498,721		,649,263

Note: Compiled from reports from Texas chambers of commerce to tho
Buran of Basiness Research.

BUILDING PERMITS

	${ }_{\text {April }}$	$\underset{1942}{\text { April }^{\text {A9 }}}$	$\underset{\substack{\text { Maroh } \\ 1942}}{ }$
Abilene --.-...-	- 445,811	\$ 71,761	\$ 84,535
Amarillo --------------	117,600	294,761	183,660
Austin	153,541	497,012	447,425
Beaumont	196,423	250,768	1,370,767
Brownwood .----.-.-...-	49,140	63,650	147,715
Coleman	20,600	11,853	3,700
Corsicana	12,350	8,803	99,775
Dallas .-u--------	432,088	1,142,093	659,894
Del Rio	3,505	13,173	19,430
Denton	12,500	36,781	3,100
El Paso	117,739	265,321	933,758
Fort Worth	3,229,198	484,40I	834,094
Galveston	53,221	187,618	237,715
Gladewater	0	0	1,500
Graham	280	9,094	12,578
Harlingen	14,715	95,050	36,900
Houston.	547,050	1,380,809	1,486,210
Jacksonville	0	12,812	5,300
Kenedy	1,000	3,500	0
Longview	2,705	10,625	9,777
Lubbock	45,858	374,242	851,453.
Lufkin	19,200	54,614	50,101
McAllen	31,580	34,380	43,346
Marshall -.----.-...-_-	7,974	38,081	45,010
Midland	7,035	31,790	82,130
New Braunfels	5,890	12,640	5,295
Palestine --	10,290	15,631	3,480
Pampa --	500	37,350	14,050
Paris	28,045	8,380	35,775.
Plainview	0	10,700	1,757
Port Arthur	37,104	94,433	14,347
San Angelo --.----------	14,647	47,216	24,227
San Antonio -...----	386,987	449,070	776,225
Sherman	19,457	22,956	82,234
	4,360	13,100	13,930
Tyler	15,788	56,061	55,718
Waco	179,887	173,583	172,388
Wichita Falls	93,047	170,836	144,155
TOTAL, .------.---.-.-.	6,317,115	6,484,948	8,993,454

Nows: Compiled from reports from Texas chambers of commerce to the Bureay of Business Regearch.

APRIL SHIPMENTS OF LIVE STOCK CONVERTED TO A RAILCAR BASIS*

	Gattle		Calver		$\mathbf{E a g s ~}^{\text {a }}$		Shecp		Total	
	1942	1941	1912	1941	1942	1941	1942	1941	1942	1941
Total Interstate Plus Fort Worthit	9;467	6,665	783	813	I,083	1,019	511	541	11,844	9,038
Total Intrastate Omitting Fort Worth	541	624	161	91	32	10	II.	4	745	729
TOTAL SHIPMENTS	10,008	7,289	944	904	1,115	1,029	522	545	12,589	9,767

TEXAS CAR-LOT* SHIPMENTS OF LIVE STOCK, JANUARY 1-MAY 1

	Cattle		Calves		Hogs		Sheep		Total	
	1942	1941	1942	1941	1942	1941	1942	1941	1942	1941
Total Interstate Plus Fort WorthT	19,095	13,647	3,003	3,170	3,990	3,809	1,925	1,508	28,013	22,134
Total Intrastate Omitting Fort Worth	1,697	I,199	490	426	67	64	57	55	2,311	1,744
TOTAL SHIPMENTS	20,792	14,846	3,493	3,596	$4,057$.	3,873	1,982	1,563	30,324	23,878

[^1]
APRLL CREDIT RATIOS IN TEXAS DEPARTMENT AND APPAREL STORES

(Expressed in Per Cent)

	$\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { Storeeg } \\ & \text { Repurtiog } \end{aligned}$	Ratio of Credit Saleat to Net Salea 1942 1941		Ratio of Callections to Outatandings		Ratio ofCrudit Salaribeto Credit Salos$1942 \quad 1941$	
				1942	1941		
All Stores	63	60.7	65.4	42.1	41.4	1.0	1.0
Stores Grouped ky Cities:							
Austin	6	55.3	59.3	49.4	48.7	1,2	1.1
Beaumont	3	64.0	68.0	42.6	39.0	0.8	0.8
Bryan .-.	3	52.7	61.1	39.6	39.0	2.9	2.8
Dallas	10	69.1	73.6	44.7	43.8	0.8	0.7
E1 Paso.	3	55.1	67.0	41.0	40.1	0.4	0.9
Fort Worth	6	63.2	65.5	39.5	37.1	1.1	1.2
Houston ---	7	59.9	70.3	39.1	42.1	1.6	1.2
San Antonio	4	48.6	56.8	43.5	43.5	1.6	1.2
Waco ---	5	58.2	62.5	32.3	29.7	1.4	1.4
All Others	16	55.0	60.2	41.1	39.3	1.3	1.3
Stores Grouped According to Type of Store:							
Department Stores (Annual Volume Over $\$ 500,000$)	19	- 60.8	64.8	43.5	42.0	1.1	1.0
Department Stores (Annual Volame under $\$ 500,000$)	10	55.1	60.3	39.4	38.8	1.3	1.4
Dry-Goods-Apparel Stores .-......	4	56.3	61.2	42.5	38.7	1.7	1.6
Women's Specialty Shops	17	60.6	65.1	39.2	40.3	0.7	0.7
Men's Clothing Stores -	13	63.5	69.4	41.4	40.4	1.5	1.1
Stores Grouped According to Volume of Net Sales During 1941:							
Over \$2,500,000	11	62.7	63.5	44.5	43.2	1.1	0.8
\$2,500,000 dowa to $\$ 1,000,000$	11	56.1	62.3	41.1	40.1	1.2	0.9
\$1,000,000 down to $\$ 500,000$	8	57.1	59.5	43.6	41.3	1.3	1.2
$\$ 500,000$ down to $\$ 100,000$	29	53.1	58.3	41.6	41.2	1.5	1.4
Less than $\$ 100,000$	4	56.5	53.6	37.3	31.9	3.0	3.0

Notr: The ratios shown for cach year in the ordar in which they appear from left to right are obtained by the following computations: (1) Credit Sales divided by Net Sales. (2) Collections during the month divided by the totsl accounts unpaid on the first of the month. (3) Salaries of the Credit department divided by Crodit Sales. The dats axe meported to the Bureat of Baginess Resegrch by Texas retail stores.

APRIL, 1942, CARLOAD MOVEMENT OF POULTRY AND EGGS
Shipments from Texas Stations

Destination*	Cars of Poultry				Cars of Egy							
	Chi	${ }_{\text {ens }} \mathrm{D}_{5}$			Shell		Fiozen		Dried		Shel! Equivalent \dagger	
	1942	1941	1942	1941	1942	1941	1942	${ }_{1941}{ }^{\text {Apr }}$	${ }_{1942}$	1941	1942	1941
TOTAL	11.5	43	3.5	10	53	18	148	138	119	20	1,301	454.
Intrastate	0.0	0	0.0	1	23	4	76	63	34	0	447	130
Interstate	11.5	43	11.543 . 3.5				72	75	85	20	854	324
Receipts at Texas Stations												
Origin												
	1	1	----	1	36	4	38	56.5	30	\cdots	352	117
	1	0	- .	0	21	3	37	55.0	30	---	335	113
	0	1	---	1	15	1	1	1.5	0	----	17	4

[^2]
BANKING STATISTICS

(In Millions of Dollars)

Assets:

Debits to individual accounts
Condition of reporting member banks on-

Loans and investments-total	702	31,205	602	27,550	693	30,494
Loans-total --	350	11,094	316	9,870	359	11,394
Commercial, industrial, and agricultural loans	250	6,731	214	5,532	256	7,003
Open market paper	3	409	2	354	3	424
Loans to brokers and dealers in securities	3	441	3	465	4	408
Other loans for purchasing or carrying securities.	13	395	12	445	12	407
Real estate loans	22	1,246	24	1,235	22	1,245
Loans to banks		30		40		29
Other loans	59	1,842	61	1,799	62	1,878
Treasury Bills	38	1,058	33	869	33	680
Treasury certificates of indebtedness	14	611		\dagger	,	\dagger
Treasury Notea	42	2,356	34	2,190	42	2,354
U.S. Bonds	156	9,705	114	7,753	156	9,671
Obligations fully guaranteed by U.S. Gov't	38	2,675	43	3,115	38	2,684
Other securities	64.	3,706	62	3,758	65	3,711
Reserve with Federal Reserve Bank	190	9,902	146	11,208	188	9,951
Cash in vault	17	535	12	516	14	491
Balances with domestic banks	290	3,217	301	3,386	280	3,367
Other assets-net	32	1,226	31	1,226	32	1,153
bllities:						
Demand deposits-adjusted	649	25;358	546	23,712	628	24,197
Time deposits	130	5,121	138	5,452	130	5,120
U.S. Government deposits --	37	1,523	27	410	48	1,886
Inter-bank deposits:						
Domestic hanks	314	8,687	286	9,043	302	8,885
Foreign banks	1	652	1	643	1	639
Borrowings --		8		6		6
Other liabilities	6	807	4	765	5	786
Capital account	94	3,929	0	3,855	3	37

*Tive weeks.
\dagger Not available.
Noxs: Fxom Fedetal Reserve Board.

PERCENTAGE CHANGES IN CONSUMPTION OF ELEGTRIC POWER

	$\begin{aligned} & \text { April, } 1942 \\ & \text { frnim } \\ & \text { ApriI, } 1941 \end{aligned}$	$\underset{\text { Aprill, } 1942}{\text { from }}$ $\underset{\mathrm{March}, 1942}{\text { trona }}$
Commercial	+11.2	$+7.2$
Industrial	+10.0	+ 1.4
Residential	+ 8.0	+ 4.3
All Others	$+27.3$	+ 5.4
TOTAL	+12.1	$+3.7$

[^3]TEXAS COMMERCIAL FAILURES

	$\underset{\mathbf{1 9 4 2}}{\text { April }}$	$\begin{aligned} & \text { April } \\ & 1941 \end{aligned}$	$\begin{gathered} \text { March } \\ 19442 * \end{gathered}$
Number	23	23	12
Liabilities \dagger	\$174,	\$220	\$117
Assets \dagger	123	89	60
Average Liabilities per failuret----	8	10	10

*Revised.
\dagger In thougands,
Nore: From Dun and Bradstroet, Inc. $_{4}$

30,494 7,003 424 407 ,245 $\stackrel{680}{4}$ 9,671

3,711 495 1,153

4,197 1,886

8,885
6
786

Directory of Texas Wholesale Firms

A limited number of copies of the DIRECTORY OF TEXAS WHOLESALE FIRMS are still available for distribution. Price $\$ 2.00$ Combined price of DIRECTORY OF TEXAS MANUFACTURERS and DIRECTORY OF TEXAS WHOLESALE FIRMS $\$ 3.00$. Previous purchasers of the DIRECTORY OF TEXAS MANUFACTURERS are entitled to a copy of the DIRECTORY OF TEXAS WHOLESALE FIRMS for $\$ 1.00$.

Progress Reports Nos. 1 and 2

Also still available are a few copies of Progress Reports, Numbers 1 and 2, entitled FAMILY EXPENDI. TURES AND PER CAPITA CONSUMPTION IN NINE TEXAS COMMUNITIES, and FAMILY EXPENDITURES IN TWENTY-ONE TEXAS COMMUNITIES. Price $\$ 1.00$.

Public Librart
 JUN 1-1942
 Dalias, Texas

TABLE OF CONTENTS

Page
Business Review and Prospect, F. A. Buechel 3
Demand for Cotton in W ar Time, A. B. Cox 8
Texas Statistical Council Proceedings, Clara H. Lewis 7
What of Further Industrialization in Texas, Elmer H. Johnson 4
LIST OF CHARTS
Distribution of Average Family Dollar Among Five Principal Budget Items in Texas Cities 1
Indexes of Business Activity in Texas 2
LIST OF TABLES
Banking Statistics 14
Building Permits 12
Carload Movement of Poultry and Eggs 13
Cement 11
Charters 10
Commercial Failures 14
Commodity Prices 10
Cotton Balance Sheet 8
Credit Ratios in Texas Department and Apparel Stores 13
Employment and Payrolls in Texas 9
Lumber 11
Percentage Changes in Consumption of Electric Power 14
Petroleum 11
Postal Receipts 12
Retail Sales of Independent Stores in Texas 10, 11
Shipments of Livestock 12

Public Librate

[^0]: Nerz: From Sonthorn Pine Aseciation.

[^1]: "Rail-car Basis: Cattle, 30 head per car; calvea, 60; hogs, 80; and sheap, 250,
 Fort Worth shipmonts are combined with interstate forwardings in order that the bulk of market dissppeannce for the month may be shown.
 Note: These data are furnished the Agricultural Marketing Seryice, U.S.D.A. by railway officiala through more than 1,500 station agente, repreagatitg every live stock shipping point in the State. The data are conopiled by the Burean of Business Research,

[^2]: *The destination abofe is the first destination as shown by the original waybill. Changes in deatination brought about by diveraion orderg are not shown.
 †Dried cogs and frozen egg" are converted to a shelf egg equivalent on the following basis: 1 rail carload of dried egga $=8$ carloads of ahell eyge, and
 I carload of frozen eggs $=2$ carloads of ghell eggs.
 Notr: These data are furnished to the Agricultaral Marketing Service, U.s.D.A., by railroad officials through agente at all gatations which originate and receive osrload shipments of poultry and egge. The data are compided by the Burcau of Buainesg Regearch.

[^3]: Prepared from reporto of 10 elpetric power companies to the Bureay of Buaj ness Reserich.

