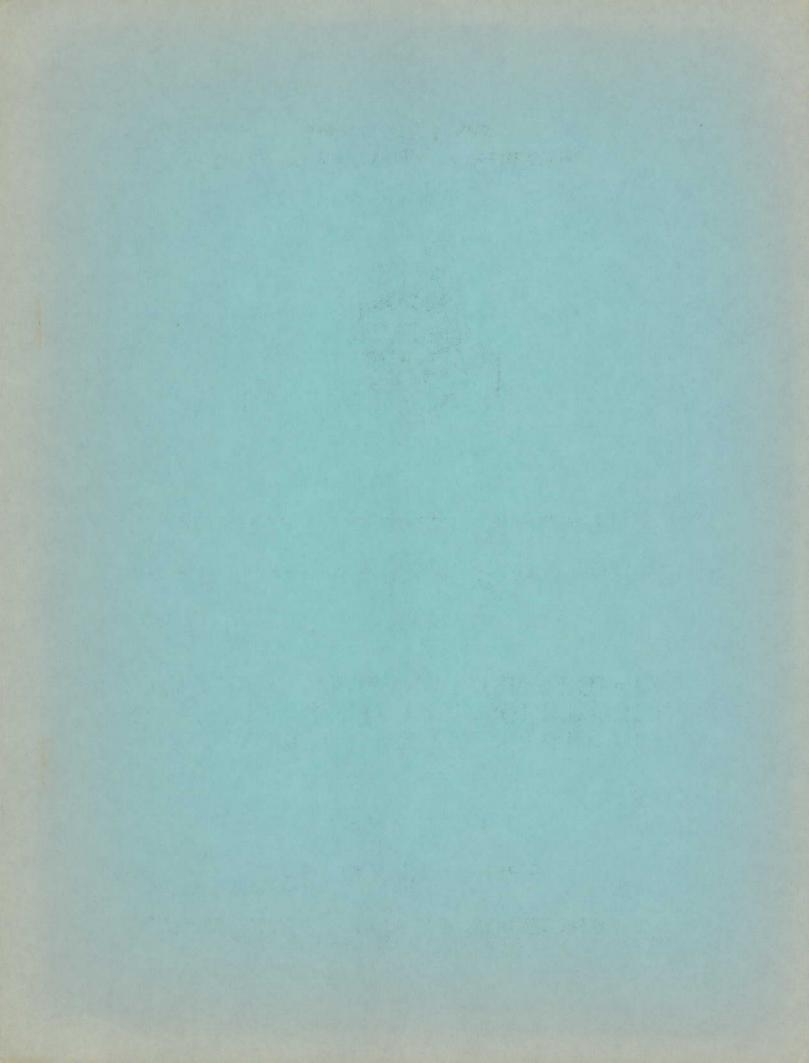

# Lamar State College of Technology Research Series

Paper No. 14

## VISCOSITIES AND DENSITIES OF BENZENE-ACETIC ACID SOLUTIONS UP TO THEIR NORMAL BOILING POINTS


### K. S. Howard, L. W. Hammond, R. A. McAllister and F. P. Pike

Reprinted from the Journal of Physical Chemistry 62, 1597 (1958)





Lamar State College of Technology Beaumont, Texas



[Reprinted from the Journal of Physical Chemistry, 62, 1597 (1958).] Copyright 1959 by the American Chemical Society and reprinted by permission of the copyright owner.

### VISCOSITIES AND DENSITIES OF BENZENE-ACETIC ACID SOLUTIONS UP TO THEIR NORMAL BOILING POINTS

#### BY K. S. HOWARD, L. W. HAMMOND, R. A. MCALLISTER AND F. P. PIKE

### Department of Chemicul Engineering, North Carolina State College, Raleigh, N. C.

### Received July 14, 1958

In a continuing study in these laboratories, the physical properties of various binary liquid systems are being measured, to provide adequate data for an investigation of the effect of these properties on the contact efficiency of distillation. Some prop-erties of the acetone-water system<sup>1-3</sup> and the methanol-toluene system<sup>4</sup> have previously been reported.

The literature reveals only limited measurements<sup>5-8</sup> of the viscosity and density of benzeneacetic acid solutions, and so the present study was begun.

### Experimental

Materials .-- "Baker Analyzed" Resgent Grade benzene and acetic acid were further purified for use. Each was fractionally recrystallized by allowing about one-half the starting volume to freeze, pouring off the liquid portion, and retaining the frozen material. Especial care was taken to avoid any exposure to other than dry air during all opera-tions. The crystallization procedure was repeated to a total of these functions in reference in reference in the shore in the shore in reference in the shore in the total of three times, following the change in refractive index at each step. After the second crystallization, in the case of each solvent, no further charge in  $n^{20}$  was observed. The final value of  $n^{20}$  was benzene 1.49806; acetic acid 1.36965. These values check those obtained by previous workers.9,10 The densities (Table II) of the purified ma-

(1) K. T. Thomas and R. A. McAllister, A.I.Ch.E. Journal, 3, 161 (1957).

(2) K. S. Howard and R. A. McAllister, ibid., 4, in press (1958).

(3) K. S. Howard and R. A. McAllister, ibid., 3, 325 (1957).

(4) L. W. Hammond, K. S. Howard and R. A. McAllister, THIS JOURNAL, 62, 637 (1958).

(5) A. E. Dunstan, J. Chem. Soc., 87, 11 (1905).

(6) J. C. Hubbard, Phys. Rev., 30, 759 (1910).

2

(7) G. Muchin, Z. Elektrochem., 19, 819 (1913).

(8) P. B. Ganguly and S. K. Chakrabertty, Z. anorg. allgem. Chem., 231, 304 (1937).

(9) J. Timmermans, "Physico-Chemical Constants of Pure Organic Compounds," Elsevier Publ. Co., Inc., New York, N. Y., 1950, p. 147. Benzene (av. 8), 1.49800.

(f0) (a) R. R. Dreisbach, "Physical Properties of Chemical Compounds," American Chemical Society, Washington, D. C., 1955, p. 11. Benzene, 1.49792. (b) R. R. Dreisbach, "Physical Properties of terials were also in close agreement with published results.<sup>11</sup> Apparatus and Procedure.-The apparatus and proce-

dure for the precision density measurements have been re-ported previously.<sup>1</sup> The only modification used in this work was to dry all glass equipment thoroughly with a CaSO<sub>4</sub>-dried (Drierite) air stream to remove adsorbed water, and to equip all vents with CaSO<sub>4</sub> drying-tubes. The solutions for density determinations were prepared by weighing the individual components and the final compositions were calculated.

The kinematic viscosities were measured with a Cannon-Ubbelohde viscometer, whose calibration and use have been described earlier.<sup>9</sup> The solutions for viscosity determina-tion were prepared by volume, and a sample was withdrawn from the efflux bulb of the viscometer after each run for analysis by refractive index. The concentration of the sample was read from a standard curve of refractive index vs. concentration; an accuracy of  $\pm 0.05$  mole % was possible.

Refractive index measurements were made using a Bausch and Lomb precision refractometer capable of giving results accurate to  $\pm 0.00003$  unit.

#### Results

Table I gives the kinematic-viscosity values for benzene-acetic acid solutions. The technique for the measurement is capable of giving results with an accuracy of  $\pm 0.1\%$ . Every effort was made to maintain this accuracy, although the possibility exists that trace amounts of water, which may have been introduced through brief exposure to ordinary air during the viscosity runs, might have caused minor variations. Compared to the data of Table I, the results of Dunstan<sup>5</sup> average 5% high in the 0 to 60 mole % region; for the highbenzene region the agreement is within about  $\pm 1\%$ . The results of Muchin' average 3% higher than those found here.

Table II gives the density values for benzeneacetic acid solutions. With the technique used, the possibility of trace water contamination is very remote, and the results are believed to have a maximum deviation of  $\pm 0.00005$  g./ml. from the true value. The values reported by Hubbard<sup>6</sup> check the results of Table II within 0.0002 g./ml.;

Chemical Substances," Dept. Tech. Service and Develop., The Dow Chemical Co., Midland, Mich. Acetic acid, 1.36965.

(11) Timmermans (ref. 10) reports average densities of 0.87898 and 0.87367 g./ml. for benzene at 20 and 25°, respectively, and 1.04924 g./ml. for acetic acid at 20° Dreisbach reports 0.87901 and 0.87370 g./ml. for benzene (ref. 10a) at 20 and 25°, respectively, and 1.04923. g./ml. for acetic acid (ref. 10b) at 20°.

Vol. 62

| KINEMATIC           |                 | r Liquid Benz<br>Diutions | ene-Acetic       | Acm Dens:<br>Mo  |  |
|---------------------|-----------------|---------------------------|------------------|------------------|--|
| Mole %<br>benzene   | ¥, C8.          | Mole %<br>benzene         | V, US.           | ber              |  |
|                     |                 |                           |                  |                  |  |
|                     | 20.00°          |                           | 25.00°           |                  |  |
| 0.0                 | 1.1712          | 0.0                       | 1.0888           |                  |  |
| 3.1                 | 1.0918          | 3.1                       | 1.0332           |                  |  |
| 9.3                 | 0.9806          | 9.3                       | 0.9146           |                  |  |
| 17.6                | .8794           | 17.5                      | .8268            |                  |  |
| 25.2                | .8170           | 25.1                      | .7668            | -                |  |
| 36.9                | .7568           | 55.1                      | .6712            |                  |  |
| 43.1                | .7366           | 64.1                      | , 6650           |                  |  |
| <b>55.2</b>         | .7153           | 79.5                      | .6670            |                  |  |
| 63.8                | .7133           | 89.9                      | . 6763           |                  |  |
| 79.5                | .7125           | 100.0                     | . 6918           | )                |  |
| 89.9                | .7231           |                           |                  | 2                |  |
| 100.0               | .7397           |                           |                  | 3                |  |
|                     | 37.80°          |                           | 50.05°           | 5                |  |
|                     |                 | 0.0                       |                  | 8                |  |
| 0.0<br>3.2          | 0.9117<br>.8578 | 0.0<br>3.0                | 0.7857           | 10               |  |
| م.د<br>9.9          | .7730           | 5.0<br>9.9                | . 7437<br>. 6728 |                  |  |
| 9.9<br>17.0         | .7100           | 9.9<br>16.8               | . 6726           |                  |  |
| 23.9                | .6690           | 23.9                      | . 584(           |                  |  |
| 35.6                | .6159           | 35.6                      | .5415            |                  |  |
| 42.1                | .6002           | 42.2                      | .5263            |                  |  |
| 53.2                | .5848           | 53.3                      | . 5097           | -                |  |
| 64.0                | .5726           | 64.6                      | .5036            | v                |  |
| 79.5                | .5718           | 79.4                      | . 5020           | •                |  |
| 89.8                | .5804           | 94.6                      | . 5123           | -v               |  |
| 100.0               | .5903           | 100.0                     | . 5153           |                  |  |
| 60.11°              |                 |                           | 70,20°           |                  |  |
| 0.0                 | 0.7014          | 0.0                       | 0.6320           | 1<br>1 3         |  |
| 3.1                 | .6671           | • 3.7                     | .5959            | ·                |  |
| 9.3                 | .6099           | 9.3                       | .5542            |                  |  |
| 17.5                | .5578           | 17.0                      | .5118            | -                |  |
| 25.3                | .5242           | 23.9                      | .4827            |                  |  |
| 36.8                | .4884           | 36.8                      | .4471            | L                |  |
| 43.3                | .4765           | 43.2                      | .4358            | Vieno            |  |
| 55.1                | .4616           | 54.95                     | 422:             | 5                |  |
| 63.85               | .4571           | 63.8                      | .4169            | ) Mole<br>benzei |  |
| 79.5                | .4548           | 79.5                      | .4156            | 1                |  |
| 90.0                | . 4587          | 89,9                      | . 4182           |                  |  |
| 100. <b>0</b>       | , 4658          | 100.0                     | . 4253           | 3 10<br>20       |  |
|                     | 80.35°          |                           | 90.54°           | 20               |  |
|                     |                 |                           |                  |                  |  |
| 0.0                 | 0.5732          | 0.0                       | 0.522            | 50               |  |
| 3.0                 | .5479           | 2.9                       | . 5002           | 4 6.0            |  |
| 9.8                 | .5026           | 9.4                       | .461(            | 70               |  |
| 17.0                | .4674           | 16.7                      | . 4309           | <sup>9</sup> QU  |  |
| 23.8<br>25.5        | . 4429          | 23.2                      | . 4099           | 90               |  |
| $\frac{35.5}{42.9}$ | .4128<br>.4020  |                           |                  | 100              |  |
| $\frac{42.9}{52.9}$ | . 4020          |                           |                  | ۹B               |  |
| 54.9<br>64.4        | . 3826          |                           |                  | C. W.            |  |
| 79.4                | ,3815           |                           |                  | $\mathbf{point}$ |  |
| 89.9                | .3820           |                           |                  |                  |  |
| 20.0                |                 |                           |                  | Ac               |  |

TABLE I

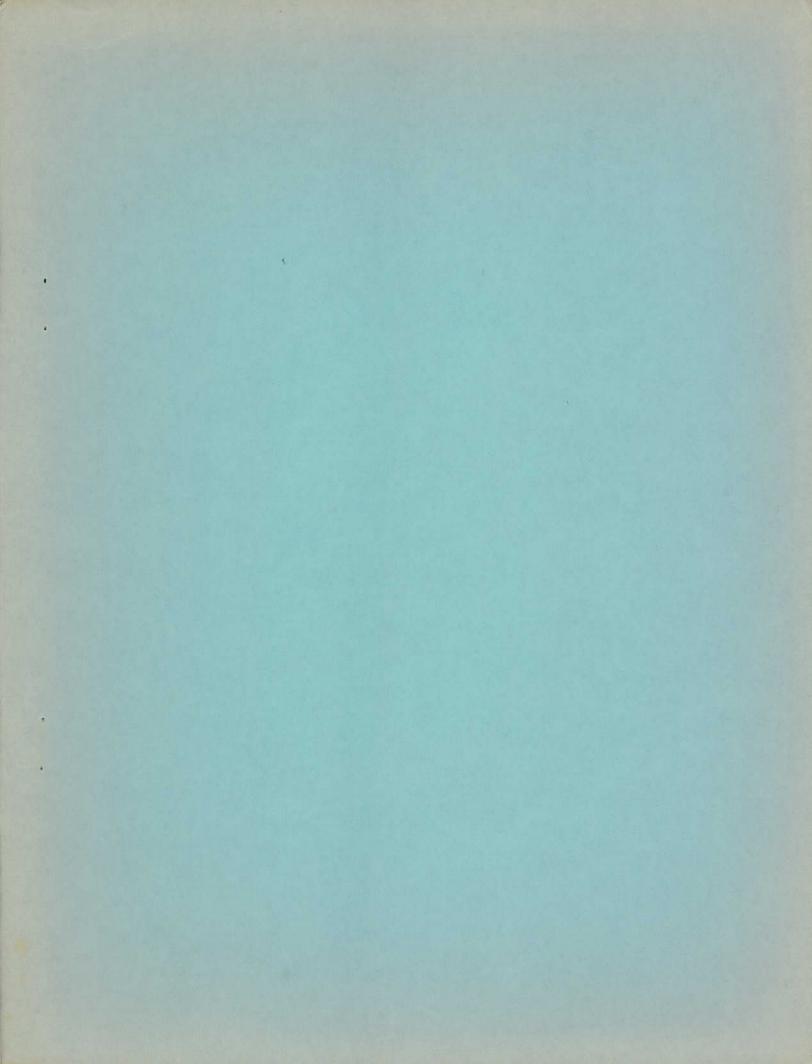
those of Muchin<sup>7</sup> are about 0.3% higher than those found here.

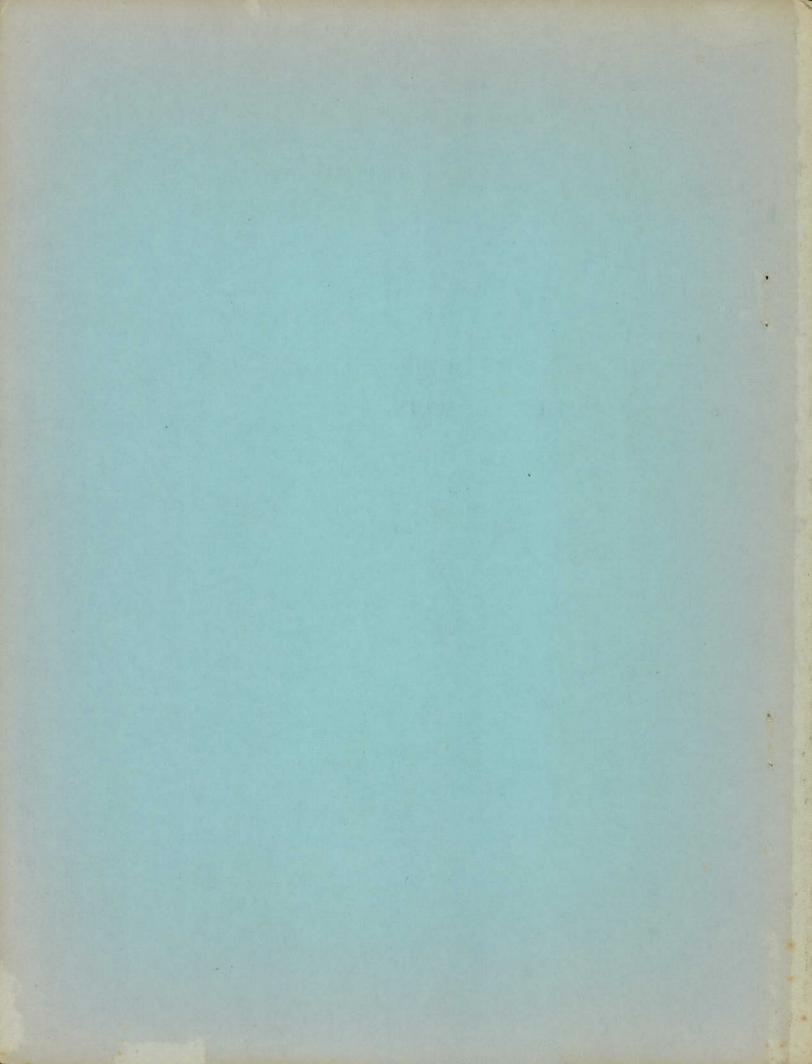
From the data of Tables I and II, the viscosities and densities at the normal boiling point were extrapolated, and are presented in Table III.

| NSITY             | OF  | LIQUID       | Ben    | zene-Acetic       | Астр   | Solutions    |
|-------------------|-----|--------------|--------|-------------------|--------|--------------|
| Mole %<br>benzene |     | ρ,<br>g./n   | ıl.    | Mole %<br>benzene |        | р,<br>g./ml, |
| 20.00°            |     |              | 25.00° |                   |        |              |
| 0.00              | )   | 1.04         | 928    | 0.00              |        | 1.04378      |
| 10.94             | ŧ   | 1.01         | 570    | 21.82             |        | 0.98242      |
| 14.78             | 5   | 1.00         | 549    | 40.49             |        | 94512        |
| 28.96             | 3   | 0.97         | 256    | 60.56             |        | .91477       |
| 36.87             | 7   | . 95         | 729    | 79.60             |        | .89248       |
| 49.72             | 2   | . 93         | 572    | 100.00            |        | .87372       |
| 62.5              | 1   | .91          | 77     |                   |        |              |
| 78.28             | 8   | , 89         | 929    |                   |        |              |
| 100.00            | 0   | .87          | 908    |                   |        |              |
| 37.80°            |     |              |        | 50.05°            |        |              |
| 0.00              | 0   | 1.02         | 934    | 0.00              |        | 1.01548      |
| 24.42             | 2   | 0.96         | 212    | 10.94             |        | 0.98162      |
| 38.49             | 9   | . 93         | 416    | 14,75             |        | .97126       |
| 56.62             | 2   | . 90         | 579    | 28.96             |        | .93839       |
| 81.4              | 1   | . 87         | 654    | 36.87             |        | .92316       |
| 100.0             | Ð   | .85          | 998    | 49.72             |        | .90190       |
|                   |     |              |        | 62.51             |        | .88426       |
| 60.11°            |     |              | 78.28  |                   | .86630 |              |
| 0.00              |     | 1.00         | 100    | 100.00            |        | .84667       |
| 21.8              | -   | 0.94         |        |                   | 70.20  | ٥            |
| 40.49             |     | . 90         | 529    | 0.00              |        | 0.99242      |
| 60.5              | 6   | .87          |        | 24.42             |        | .92499       |
| 79.6              | 0   | . 85         | 357    | 38.49             |        | . 89697      |
| 100.00            | 9   | . 83         | 564    | 56.62             |        | .86903       |
|                   | 24  | 0.35°        |        | 81.41             |        | .84057       |
| 0.04              | -   |              |        | 100.00            |        | .82456       |
| 0.0<br>12.78      |     | 0.98         |        |                   | 90.5   | 4°           |
|                   | -   | ,94          |        | 0.00              |        |              |
| 30.00<br>41.4     |     | . 90<br>. 87 |        | 0,00<br>8,30      |        | 0.96832      |
| 41.4.<br>57.4     | _   | .87          |        |                   |        | .94221       |
| 07.4              | D C | . 85         | 004    | 20.09             |        | .91095       |

TABLE II

### TABLE III


JISCOSITY AND DENSITY OF LIQUID BENZENE-ACETIC ACID Solutions at Their Normal Boiling Points


| Mole %<br>benzene | B.p.,*<br>°C. | ν,<br>CS. | g./ml. | <b>н.</b><br>ср. |
|-------------------|---------------|-----------|--------|------------------|
| 0                 | 118.5         | 0.407     | 0.9353 | 0.381            |
| 10                | 106.1         | . 402     | .9180  | .369             |
| 20                | 98.8          | .392      | .9011  | . 353            |
| 30                | 93.9          | .381      | .8849  | .337             |
| 40                | 90.4          | .373      | .8706  | .325             |
| 50                | 87.7          | .370      | .8581  | .317             |
| 60                | 85.6          | .368      | .8465  | .312             |
| 70                | 83.8          | .371      | .8364  | .310             |
| 80                | 82.4          | .375      | . 8281 | . 311            |
| 90                | 81.2          | .379      | .8206  | .311             |
| 100               | 80.1          | . 392     | .8136  | . 319            |

υ

<sup>6</sup> Boiling points of solutions from M. A. Rosanoff and C. W. Easeley, J. Am. Chem. Soc., 31, 985 (1909). Boiling points of pure solvents from Timmermans, ref. 9.

Acknowledgments.—This work was carried out with funds made available by the American Institute of Chemical Engineers, Research Project No. 1, "Tray Efficiencies in Distillation Columns," and by the National Science Foundation. The authors gratefully acknowledge the support and encouragement of these organizations.



