$\omega 1125.1$
R299
\# 273
Report 273

GROUND-WATER AVAILABILITY OF THE

LOWER CRETACEOUS FORMATIONS IN THE HILL COUNTRY OF SOUTHCENTRAL TEXAS

Government Publications
Texas Stat: Dow.ments
APR 291987
Dallas Public Library

TEXAS DEPARTMENT OF WATER RESOURCES

REPORT 273

GROUND-WATER AVAILABILITY OF THE LOWER CRETACEOUS FORMATIONS IN THE HILL COUNTRY OF SOUTH-CENTRAL TEXAS

By

John B. Ashworth, Geologist

TEXAS DEPARTMENT OF WATER RESOURCES

Charles E. Nemir, Executive Director

TEXAS WATER DEVELOPMENT BOARD

Louis A. Beecherl Jr., Chairman George W. McCleskey, Vice Chairman Glen E. Roney
W. O. Bankston Lonnie A. " $8 o^{\prime \prime}$ Pilgrim Louie Welch

TEXAS WATER COMMISSION

Lee B. M. Biggart, Chairman
Felix McDonald, Commissioner
John D. Stover, Commissioner

Authorization for use or reproduction of any original material contained in this publication, i.e., not obtained from other sources, is freely granted. The Department would appreciate acknowledgement.

TABLE OF CONTENTS

Page
CONCLUSIONS 1
INTRODUCTION 1
Purpose and Scope 1
Location and Extent 2
Geography 2
Topography and Drainage 2
Population 2
Economy and Land Use 3
Vegetation 3
Climate 3
Previous Investigations 3
Acknowledgements 3
Well-Numbering System 7
Definition of Terms 8
Metric Conversions 9
GEOLOGY AS RELATED TO THE OCCURRENCE OF GROUND WATER 9
Depositional History 9
Stratigraphy 9
Structure 10
STRATIGRAPHY OF THE WATER-BEARING UNITS 19
Pre-Cretaceous Rocks 19
Trinity Group 19
Lower Trinity Aquifer 19

TABLE OF CONTENTS-Continued

Page
Middle Trinity Aquifer 19
Upper Trinity Aquifer 33
Fredericksburg Group 33
Quaternary Alluvium 33
CHEMICAL QUAL.ITY OF GROUND WATER AS RELATED TO USE 33
General Chemical Quality of Ground Water 33
Pubiic Supply 39
Primary Standards 42
Secondary Standards 42
Domestic and Livestock 43
Irrigation 44
Industrial 44
Treatment of Water 44
Chemical Quality of Ground Water from the Trinity Group Aquifer 44
OCCURRENCE OF GROUND WATER IN THE TRINITY GROUP AQUIFER 47
Recharge, Movement, and Discharge 47
Hydraulic Characteristics 48
Water Levels 48
Utilization and Development 60
AVAILABILITY OF GROUND WATER IN THE TRINITY GROUP AQUIFER 60
GROUND-WATER PROBLEMS 60
RECOMMENDATIONS 61
SELECTED REFERENCES 63
TABLES

1. Stratigraphic Units and Their Water-Bearing Properties 12
2. Source and Significance of Dissolved-Mineral Constituents and Properties of Water 40
Page
3. Results of Pumping Tests 55
4. Results of Laboratory Analyses of Cores from Test Wells 56
WELL DATA, BY COUNTIES

	Page Numbers		
	Records of Selected Water Wells, Springs, and Oil and Gas Tests (Table 5)	Chemical Analyses of Water From Selected Well and Springs (Table 6)	Well-Location Maps
Bandera	66	73	77
Bexar	79	83	85
Blanco	87	95	101
Comal	103	108	109
Gitlespie	111	114	117
Hays	119	122	123
Kendatl	125	139	147
Kerr	149	157	161
Medina	163 '	164	165
Real	167	168	169
Uvalde	171	172	173

FIGURES

1. Map Showing Location of Study Region 2
2. Map Showing Average Annual Precipitation, 1931-60, and Charts of Average Monthly Precipitation for Period of Record at Selected Stations 5
3. Diagram of Well-Numbering System. 7
4. Map Showing Regional Structural Trends 11
5. Geologic Map 13
6. Geologic Section A-A' 15

TABLE OF CONTENTS-Continued

Page
7. Geologic Section B-B' 17
8. Map Showing Approximate Altitude of and Depth to the Base of the Cretaceous System 21
9. Map Showing Approximate Altitude of and Depth to the Top of the Lower Trinity Aquifer 23
10. Map Showing Approximate Total Thickness of the Lower Trinity Aquifer 25
11. Map Showing Approximate Altitude of and Depth to the Top of the Cow Creek Limestone of the Middle Trinity Aquifer 29
12. Map Showing Approximate Altitude of and Depth to the Top of the Hensell Sand and Bexar Shale of the Middle Trinity Aquifer 31
13. Map Showing Approximate Altitude of and Depth to the Top of the Middle Trinity Aquifer 35
14. Map Showing Approximate Total Thickness of the Middle Trinity Aquifer 37
15. Map Showing Sulfate, Chloride, and Dissolved-Soilds Content in Water from Selected Wells and Springs 45
16. Hydrographs comparing Water Levels in Lower and Middie Trinity Wells and the Gain in Base Flow of the Guadalupe River between the Comfort and Spring Branch Gages 49
17. Map Showing Approximate Altitude of and Depth to Water Levels in Wells Completed in the Middle Trinity Aquifer, Winter of 1977-78 51
18. Map Showing Approximate Altitude of and Depth to Water Levels in Wells Completed in the Lower Trinity Aquifer, 1975-78 53
19. Hydrographs of Water Levels in Selected Wells 59

GROUND-WATER AVAILABILITY OF THE LOWER CRETACEOUS FORMATIONS IN THE HILL

COUNTRY OF SOUTH-CENTRAL TEXAS

CONCLUSIONS

The Trinity Group aquifer is essentially the only ground-water source for all but the extreme updip, northern portion of the study region and is divided, in ascending order, into the lower, middle, and upper aquifer units.

The lower Trinity aquifer, which includes the Hosston Sand and Sligo Limestone Members of the Travis Peak Formation, yields small to large quantities of ground water. The quality is good in the Kerrville to Bandera area but becomes slightly more saline throughout the remainder of the study area. The water is utidized for municipal purposes in Kerrville and Bandera and for irrigation in a few other localities. Because of its depth and poor quality, overall development of the lower Trinity aquifer has been minimal. The lower Trinity is not present in Gillespie and portions of Blanco and Kerr Counties.

The middle Trinity aquifer is comprised of the Cow Creek Limestone, Hensell Sand, the lower member of the Glen Rose Limestone, and is the most widely utilized of the three aquifer units. The middle Trinity aquifer vields small to moderate quantities of fresh to slightly saline water throughout the study region.

The upper Trinity aquifer produces water from the upper member of the Glen Rose Limestone. Yields are generally very small due to the low porosity and permeability of the limestone, and the chemical quality is normally poor because of the presence of evaporite beds. This unit is utilized only for limited domestic and livestock purposes.

Chemical quality of water in the Trinity Group aquifer is variable. Water acceptable for human consumption, although very hard, is available over most of the study region. Poor quality of water in the Trinity is usually due to excessive concentrations
of sulfate and chloride. High concentrations of iron, nitrate, and fluoride are also common problems. The dissolved-solids content generally increases downdip toward the south and southeast. There had been no widespread pollution of the aquifer in the study region although local problems do exist. The chemical quality of the water produced from a well can often be improved by properly casing off zones of undesirable water. The vield and life expectancy of a well can likewise be improved by utilizing proper well completion and development procedures.

Although approximately 200,000 acre-feet ($247 \mathrm{hm}^{3}$) of rainfall is estimated to be available as recharge to the aquifer annually, much of this recharge is lost by natural rejection, principally to springs. During dry periods, recharge is limited and water levels dectine. Also, continuous heavy pumpage results in rapid water-level declines due to the aquifer's rather low capability to transmit water. Therefore, moderate to severe water-level declines can be expected over a major part of the study region where both drought and heavy concentrated pumpage occur.

INTRODUCTION

Purpose and Scope

The ground-water study of the Lower Cretaceous formations in south-central Texas, commonly referred to as the Hill Country, was conducted during the period from December 1974 to October 1978. The primary purpose of the study was to describe the hydrologic characteristics of the Trinity Group, which includes the Glen Rose Formation and the Hensell Sand, Bexar Shale, Cow Creek Limestone, Hammett Shale, Sligo Limestone, and Hosston. Sand Members of the Travis Peak Formation.

Principal objectives of the investigation included: (a) colfection and evaluation of previously compiled
geologic and hydrologic data; (b) determination of the quantity and quality of the available ground waters on a regional basis; (c) determination of the hydrological characteristics of the various formations; (d) determination of hydrologic connections between formations; (e) determination of the annual amount of recharge and discharge of the aquifers; and (f) the initiation of a continuing ground-water quality monitoring program.

For the purpose of this report, hydrologic data were gathered primarily from high-capacity wells which include public supply, industrial, and irrigation wells. Also an attempt was made to inventory all perennial springs.

Location and Extent

The area of investigation includes the southern edge of the Edwards Plateau and extends southeastward into the Balcones fault zone. It includes all or parts of the following 11 counties: Bandera, Bexar, Blanco, Comal, Gillespie, Hays, Kendall, Kerr, Medina, Real, and Uvalde. The study area is within the drainage basins of the Guadalupe, San Antonio, Nueces, and Colorado Rivers and covers approximately 5,800 square miles $\left(15,000 \mathrm{~km}^{2}\right)$. The study region is shown on Figure 1.

Geography

Topography and Drainage

The land surface in the study region is characterized by a rough and rolling terrain. The nearly flat-lying, erosion-resistive limestone rocks forming the surface of the Edwards Plateau have been deeply incised into the less resistive, marly limestone rocks of the Glen Rose Formation. Wermund (1974) describes three different terrains in the study region:
> "Along the West Nueces and Nueces Rivers, most of the terrain consists of broad divides. Along the Dry Frio, Frio, and Sabinal Rivers, the terrain comprises both highly dissected divides and incised stream valleys. About the Medina and Guadalupe Rivers, most terrain lies in broad valleys and less occupies narrow divides."

> Elevations range from a maximum of 2,400 feet (730 m) above mean sea level in the northwest Plateau region to a
minimum of 780 feet (240 m) in the drainage basins in the east.

Four major drainage basins occupy the study region. Drainage in the Nueces River basin is to the south. In the San Antonio River basin, drainage is to the southeast. And in the Guadalupe and Colorado River basins the drainage is to the east. The larger rivers are dominantly effluent and form wide valleys. The smaller creeks and streams are characterized by two dominant types: the perennial spring-fed streams, and the intermittent creeks that only transport precipitation runoff. Many of the streams revert underground when encountering cavernous zones or areas of gravel accumulation and later resurface as gravity springs. Most of these streams that are perennial in their lower reaches are diverted underground where they cross the Balcones fault zone. Most of this water is probably captured in the down-faulted Edwards Formation.

Figure 1.-Location of Study Region

Population

Based on studies conducted by the Department's Economics, Water Requirements and Uses Section, the 1970 population of this area is estimated to be slightly over 67,000 and it is projected to be over 100,000 by the year 2020. Most of the population resides on rural farms and ranches although several towns and residential developments are showing rapid growth. Some of the larger population centers are the cities of Bandera, Blanco, Boerne, Comfort, Fredericksburg, Kerrville, Leakey, Wimberly, and the area surrounding Canyon Lake.

Economy and Land Use

The economy of this area is based primarily on the raising of cattle, sheep, and goats. Because of the ruggedness and beauty of the area, much of the land is being used for recreational purposes such as hunting leases, public parks, private camps, weekend resorts, and retirement areas. Numerous large tracts of land in the more scenic areas are being subdivided for residential development.

Farming is predominantly limited to the growing of grass and feed crops in the stream valleys. Because of the limited supply of ground water and the rising cost of fuel, there is very little irrigation in the area although trickle irrigation systems are gaining popularity for watering orchards.

Minor incomes are derived from the cutting of cedar posts and the quarrying of building stone.

Vegetation

A variety of vegetation inhabits the study region. Prairie grasses and stands of Live and Spanish Oak grow on the karstic surface of the upper plateau. "Cedar" (scrub Juniper) and Live Oak are prominent in the marly dissected region. Lining the banks of the creeks and rivers are Cypress trees while the terraces support growths of Live and Post Oak, "Cedar", Elm, Hackberry, Cottonwood, Sycamore, and Willow. Varieties of natural grasses include Little Bluestem, Indian Grass, Sideoats Grama, and Texas Winter Grass. The most common introduced grasses include Coastal Bermuda, Plains Lovegrass, Klein Grass, and King Ranch Bluestem (Cuyler, 1931).

A number of studies have shown that grasses utilize one-third to one-half as much water as trees and shrubs. Trees, such as the "Cedar" or Juniper, are especially inefficient water users. Several residents of the Hill Country have indicated that creeks and springs on their property have increased in flow since they converted their land from tree growth to grass.

Climate

A subhumid to semiarid climate prevails throughout the study area. The average annual precipitation ranges from 35 inches (89 cm) in the east to 25 inches (64 cm) in the west. During the drought period from 1950 to 1956, the average annual precipitation was about 22 inches (56 cm).

Measurements by the National Weather Service of average annual precipitation during the 30 -year period 1931 to 1960 are illustrated on Figure 2 along with average monthly precipitation for periods of record at selected stations.

The average monthly temperature for the period 1905 to 1973 ranged from a minimum of $33^{\circ} \mathrm{F}\left(1^{\circ} \mathrm{C}\right)$ in January in the northwest to a maximum of $96^{\circ} \mathrm{F}\left(36^{\circ} \mathrm{C}\right)$ in July throughout most of the study region. The annual mean temperature for the period 1931 to 1960 ranged from $65^{\circ} \mathrm{F}\left(18^{\circ} \mathrm{C}\right)$ in the northwest to $68^{\circ} \mathrm{F}\left(20^{\circ} \mathrm{C}\right)$ in the south and east (Carr, 1967).

The average annual gross lake-surface evaporation for the period 1940 to 1965 ranged from 73 inches (185 cm) in the northwest to 65 inches (165 cm) in the southeast (Kane, 1967), or more than twice the average annual precipitation.

Previous Investigations

Ground-water investigations have been conducted in all but Gillespie County in the study region by personnel of the U.S. Geological Survey in cooperation with the Jexas Department of Water Resources. A portion of Gillespie County around the city of Fredericksburg was discussed in a memorandum report by the Texas Department of Water Resources.

A number of local water-availability studies have been made by private consulting firms at the request of municipalities.

Principal regional stratigraphic studies include: (a) Hill (1901); (b) Imlay (1945); (c) Barnes (1948); (d) Lozo and Stricklin (1956); and (e) Stricklin, Smith, and Lozo (1971).

The geologic map was adapted from the San Antonio, Seguin, and Austin Geologic Atlas sheets; geologic quadrangle maps for parts of Gillespie and Blanco Counties; and the Geologic Map of Eastern Edwards Plateau (Rose, 1972). All were published by the University of Texas Bureau of Economic Geology.

Acknowledgements

The author appreciates the cooperation of the property owners within the study region for supplying information concerning their wells and allowing access to their property and use of their wells to measure water levels and sample for water quality. Appreciation is also

Figure 2
Average Annual Precipitation, 1931-60, and Average Monthly
Precipitation for Period of Record at Selected Stations
extended to the water well drillers, city officials, water superintendents, and consultants for information, assistance, and cooperation rendered throughout this investigation. The cooperation of Federal and other State agencies, especially the State Department of Highways and Public Transportation, is also gratefully acknowiedged.

This report was prepared under the general direction of C. R. Baskin, director of the Department's Data and Engineering Services Division, and Tommy R. Knowles, Chief of the Data Collection and Evaluation Section.

Wetl-Numbering System

The well-numbering system in this report, illustrated on Figure 3, was adopted by the Texas Department of Water Resources for statewide use. It was designed to identify, facilitate the location of, and avoid duplication of well numbers in present and future studies. The system is based upon the division of the State into quadrangies of latitude and longitude and the repeated division of these quadrangles into smalier ones.

The State is first divided into one-degree quadrangles which are numbered 01 through 89. Each

Location of Well s8-11-601
© 1 - degree quadrangle
11 $71 / 2$-minute quadrangle
6 21/2-minute quodrangle
○। Well number within 21/2minute quadrangle

Figure 3.-Well-Numbering System
one-degree quadrangle is then subdivided into sixty-four $71 / 2$-minute quadrangles. And lastly, each $71 / 2$-minute quadrangle is subdivided into nine $21 / 2$-minute quadrangles. Within each $21 / 2$-minute quadrangle, each well is assigned a two-digit number in the sequence inventoried, beginning with 01; these are the last two digits of the well number.

Each well or spring is assigned a seven-digit number. The first two digits of a well number identify the one-degree quadrangle in which the well or spring is located. The second two digits identify the $71 / 2$-minute quadrangle. The fifth digit identifies the $21 / 2$-minute quadrangle and the sixth and seventh digits identify the particular well within the $21 / 2$-minute quadrangle.

In addition to the seven-digit number, a two-letter prefix is used to identify the county. The prefixes for the 11 counties covered by this report are:

Prefix	County	
		BS
AY		Bandera
AZ	Bexar	
DX	Blanco	
KK	Comal	
LR	Gillespie	
RB	Hays	
RJ	Kendall	
TD	Kerr	
WA	Medina	
YP	Real	
	Uvalde	

Definition of Terms

This section is intended to acquaint the reader with some of the terms used in this report. Many of these definitions were selected from previous reports and from the "Glossary of Geology and Related Sciences" prepared by the American Geological Institute (1957).

Aquifer-A formation, group of formations, or part of a formation that is water bearing.

Aquifer test, pumping test-The test consists of the measurement at specific intervals of the discharge and water level of the well being pumped and the water levels in nearby observation wells. Formulas have been developed to show the relationship among the yield of a well, the shape and the extent of the cone of depression, and the properties of the aquifer such as the specific yield, porosity, and the coefficients of permeability. transmissibility, and storage.

Artesian aquifer, confined aquifer-Artesian (confined) water occurs where an aquifer is overlain by rock of lower permeability (such as clay) that confines the water under pressure greater than atmospheric. The water level in an artesian well will rise above the top of the aquifer even without pumping.

Coefficient of storage-The volume of water an aquifer releases from or takes into storage per unit of surface area of the aquifer per unit change in the component of head normal to that surface.

Coefficient of transmissibility-The number of gallons of water that will move in 1 day through a vertical strip of the aquifer 1 foot wide extending the vertical thickness of the aquifer when the hydraulic gradient is 1 foot per foot. It is the product of the field coefficient of permeability and the saturated thickness of the aquifer.

Cone of depression-Depression of the water table or potentiometric surface surrounding a discharging well, more or less in the shape of an inverted cone.

Electric $\log -A$ graph log showing the relation of the electrical properties of the rocks and their fluid contents penetrated in a well. The electrical properties afe natural potentials and resistivities to induced electrical currents, some of which are modified by the presence of the drilling mud.

Fault-A fracture or fracture zone along which there has been displacement of the two sides relative to one another paratlel to the fracture.

Hydraulic gradient-The slope of the water table or potentiometric surface, usually given in feet per mile.

Outcrop-That part of a rock layer which appears at the land surface.

Perched ground water-Ground water separated from an underlying body of ground water by unsaturated rock. Its water table is a perched water table.

Permeability of an aquifer-The capacity of an aquifer for transmitting water under pressure.

Porosity-The ratio of the aggregate volume of interstices (openings) in a rock or soil to its total volume, usually stated as a percentage.

Potentiometric surface-An imaginary surface that everywhere coincides with the static level of the water in the aquifer. The surface to which the water
from a given aquifer will rise under its full head.

Recharge of ground water-The process by which water is absorbed and is added to the zone of saturation. Also used to designate the quantity of water that is added to the zone of saturation, usually given in acre-feet per year or in million gallons per day.

Secondary porosity-Porosity developed after the formation of a rock deposit and resulting from subsequent fracturing, replacement, solution, or weathering.

Water level-Depth to water, in feet below the land surface, where the water occurs under water-table conditions (or depth to the top of the zone of saturation). Under artesian conditions the water ievel is a measure of the pressure in the aquifer, and the water level may be at, below, or above the land surface.

Water-table aquifer (unconfined aquifer)-An aquifer in which the water is unconfined; the upper surface of the zone of saturation is under atmospheric pressure only and the water is free to rise or fall in response to the changes in the volume of water in storage. A well penetrating an aquifer under water-table conditions becomes filled with water to the level of the water table.

Yield of a well-The rate of discharge, commonly expressed as gallons per minute, gallons per day, or gallons per hour.

Metric Conversions

For those readers interested in using the metric system, metric equivalents of English units of measurement are given in parentheses. The English units used in this report may be converted to metric units by the following conversion factors:

From	Mutiply by	To obtain
inches (in)	2.54	centimeters (cm)
feet (ft)	. 3048	meters (m)
miles (mi)	1.609	kilometers (km)
feet per mile (ft/mi)	. 189	meters per kilométer (m / km)
square miles ($\mathrm{mi}^{\mathbf{2}}$)	2.590	square kilometers $\left(\mathrm{km}^{2}\right)$
acre-feet (acre-ft)	. 001233	cubic hectometers (hm^{3})

From	Multiply by	To obtain
gallons (gal)	3.785	liters (1)
cubic fest per secand $\left(\mathrm{ft}^{3} / \mathrm{s}\right)$. 02832	qubic meters per second ($\mathrm{m}^{3} / \mathrm{s}$)
gallons per minute (gal/min)	. 06309	liters per second (1/s)
gallons per day (gat/d)	3. 785	liters per day (1/d)
gallons per day per foot [(gal/d)/ft]	12.418	liters per day per meter [(1/d)/m]
gallons per day per square foot [(gal/d)/ft ${ }^{2}$]	40.74	liters per day per square meter $\left[(1 / \mathrm{d}) / \mathrm{m}^{2}\right]$

To convert from degrees Fahrenheit to degrees Celsius use the following formula:

$$
{ }^{\circ} \mathrm{C}=\left({ }^{\circ} \mathrm{F}-32\right)(0.556)
$$

GEOLOGY AS RELATED TO THE OCCURRENCE OF GROUND WATER

Depositional History

At the beginning of the Cretaceous Period, the topography in the study region was characterized by an eroded, uneven, faulted surface known as the Comanche Shelf that sloped to the south and southeast away from the uplifted Llano area. The sea transgressed inland from the southeast during Cretaceous time, with occasional interruptions by short regressive periods. During deposition of the Trinity Group, the earliest set of Cretaceous rocks present, the Llano uplift remained the primary contributor of land-derived sediments. The resulting Trinity Group sediments form a wedge-like, overtapping sequence that thickens seaward and pinches out against the slope of the Llano uplift. Subsequently, during depositions of lower Glen Rose sediments, a laterally extensive reef complex known as the Stuart City Trend formed on the edge of the shelf south and east of the study area (Bebout and Loucks, 1974). This reef trend existed until late Cretaceous time and formed an energy barrier and sediment catchment basin with water depths remaining relatively shallow in the back reef zone.

Stratigraphy

The Trinity Group of Cretaceous age is the most important water-bearing unit in the study region. It
overlies rocks of Paleozoic age and is overlain in a portion of the study region by younger rocks of the Fredericksburg Group of Cretaceous age. The Trinity Group is divided into the following formations in order from the oldest to youngest: Travis Peak and the Glen Rose. The Travis Peak Formation is subdivided into the following members in order from oldest to youngest: Hosston Sand, Stigo Limestone, Hammett Shale, Cow Creek Limestone, and Bexar Shale and Hensell Sand. These strata within the Trinity Group will be discussed in detail in the section covering the stratigraphy of the water-bearing units. The stratigraphic units and their water-bearing properties are summarized in Table 1.

Structure

The study region, locally known as the South-Central Texas Hill Country, is bounded on the north by the Llano uplift, on the south and east by the Balcones fault zone, and on the northwest by the Edwards Plateau. Geologic structures affecting ground water within the study area include the regional dip, the Balcones fault system, the Llano uplift, the San Marcos arch, and the uneven pre-Cretaceous surface. The regional structural trends are shown in Figure 4.

The dip of the formations in the western half of the study region is to the south and increases from about 10 to 15 feet per mile (1.9 to $2.8 \mathrm{~m} / \mathrm{km}$) in updip areas to about 100 feet per mile ($19 \mathrm{~m} / \mathrm{km}$) or more downdip near the Balcones fault zone. The regional dip in the eastern half of the study area is to the east and southeast at the same approximate rate of dip. Although the general subsurface water flow will be in the direction of the regional dip, the direction of flow in any local area may be determined by local anomaties and heavy pumpage.

The Balcones fault zone forms the southern and eastern boundary of the study region (Figure 4). The zone is comprised of numerous, more or less parallel, mostly normal faults, some having individually as much as 600 feet (180 m) of displacement although 200 to 300 feet (60 to 90 m) of displacement is more common among the major faults. Some faults act as ground-water barriers and thus deflect the flow in the direction of the fault strike. George (1952) observed in one fault that the level of water in the Glen Rose Formation on the northwest, upthrown side of the fault was higher than the level of the water in the Edwards Formation on the opposite, downthrown side of the fault. Also, water qualities often differ on opposing sides of the major faults. Other observations indicate that at least the upper portion of the faults may transmit water. This is
indicated by the observation of some streams that are diverted underground when crossing the fault plane, particularly where the Glen Rose Formation is in contact with the Edwards Formation. The fault planes are possible passageways for surface contamination as well as recharge water to enter an aquifer. Contamination may atso occur from subsurface sources if undesirable saline water enters the fault plane. In addition to major faulting along the Balcones fault zone, numerous northeast-trending faults occur throughout the study area. These faults are laterally discontinuous with smali displacement and have only small local effect on ground water.

The Llano uplift is a structural dome of igneous and metamorphic rocks located north of the study region. This dome was a source area for the terrigenous sediments of the Hosston and Hensell Sands.

The San Marcos arch or platform as described by Adkins (1933) is a broad anticlinal extension of the Llano uplift whose axis plunges southeastward through the city of San Marcos in Hays County. The anticline is evidenced by an increased altitude of the tops of the formations and a thinning of the formations across the axis (Figure 7). Other, less substantial folded trends can be delineated in the study area. The presence of a subsurface high would generally cause a restriction of ground water movement.

The uneven surface upon which the Hosston Sand Member of the Travis Peak Formation was deposited was a result of the faulting and erosion of pre-Cretaceous marine sediments. The Hosston sediments filled the valleys and covered the ridges producing a geologic unit of variable thickness which influences the occurrence and movement of ground water in the unit. The approximate altitude of and depth to the base of the Cretaceous rocks are shown on Figure 8.

Caverns formed by the solution of limestone and evaporites by ground water are common in the Trinity formations, particularly in the Glen Rose Limestone. These caverns are characteristically influenced by the jointing structure of the limestone and may extend both vertically and laterally for great distances and provide major conduits for the flow of ground water. When caverns grow to such a size as to no longer support their overburden, they collapse thus forming sinkholes that are visible from the surface as circular depressions that may transmit large quantities of surface water to a passage below ground. Sinkholes are a common occurrence in streambeds flowing over the Glen Rose Limestone and provide a passageway for a substantial amount of recharge to the aquifer.

Figure 4
Regional Structural Trends

Table 1.-Stratigraphic Units and Their Water-Bearing Properties

Figure 5

STRATIGRAPHY OF THE WATER-BEARING UNITS

In the description of the water-bearing properties of the geologic units, yields of wetls are described according to the following ratings:

	Yield Description
(gallons per minute)	

Pre-Cretaceous Rocks

Pre-Cretaceous rocks are exposed in the study area only along or north of the Pedernales River in Gillespie and Blanco Counties (Figure 5). These formations provide usable water in the vicinity of the outcrop area. It is possible that fresh to slightly saline water might be obtained from these formations in the northern one-third of the study area.

The Ellenburger, San Saba, and Hickory aquifers are the primary Paleozoic water-producing units. The aquifers include the San Saba Limestone Member of the Wilberns Formation and the Hickory Sandstone Member of the Riley Formation, both of Cambrian age, and the Ellenburger Group of Ordovician age. These aquifers yield small to large quantities of fresh to slightly saline water to wells in the Fredericksburg and Johnson City area.

Trinity Group

Based on their hydrologic relationships, the water-bearing rocks of the Trinity Group are organized into the following aquifer units: (a) the lower Trinity aquifer consisting of the Hosston Sand and Sligo Limestone Members of the Travis Peak Formation; (b) the middle Trinity aquifer consisting of the lower member of the Glen Rose Limestone, and the Hensell Sand and Cow Creek Limestone Members of the Travis Peak Formation; and (c) the upper Trinity aquifer consisting of the upper Glen Rose Limestone. Collectively these are referred to as the Trinity Group aquifer.

Lower Trinity Aquifers

The Hosston Sand Member of the Travis Peak Formation is the oldest Cretaceous rock unit in the study area and overlies Paleozoic rocks. Imlay (1945) correlates the Hosston Sand and the overiying Sligo Limestone with the Durango and Nuevo Leon Groups of the Coahuila Series of Mexico. Local drillers often refer to the Hosston as the "lower Trinity" or "second sand".

The Hosston and its surface equivalent, the Sycamore Sand, form a wedge of alluvial sediments deposited by aggrading streams on an uneven surface. Updip the unit consists predominantly of terrigenous clastics comprised of red and white conglomerate, sandstone, and claystone with the main constituent being a quartz sand. Downdip it becomes increasingly more dolomitic and shaly. Thin conglomeritic zones, near the base, persist through the downdip limit of the study area.

The thickness of the Hosston varies because of the uneven surface upon which it was deposited. At its updip limit, a portion of the Hosston or Sycamore has been eroded to form a disconformable surface upon which the Hammett Shale was deposited. Downdip the Hosston grades upward into the Sligo Limestone.

While the Hosston Sand Member of the Travis Peak Formation represents continental deposition, the Sligo Limestone Member was contemporaneously laid down in transgressive shallow marine waters.

The Stigo exists downdip where the Hosston grades upward into a sandy dolomitic limestone. The Sligo pinches out in the subsurface approximately along a line as shown in Figure 9. The Hosston and Sligo thicken south and southeast (Figure 10) to as much as 500 feet (150 m) near the Batcones fault zone. The approximate altitude of and depth to the top of the lower Trinity aquifer is shown on Figure 9.

Middle Trinity Aquifer

The Hammett Shale or its outcrop equivalent, the Pine Island Shale, is the result of the second transgressive marine phase which covered the Sligo and the updip eroded surface of the Hosston with

$$
\begin{gathered}
\text { EXPLANATION } \\
\text { - irso } \\
\text { Well used for control } \\
\text { Top number indicates alitude of base of } \\
\text { the Cretaceuous System, in feet above mean sea leve } \\
\text { Bortom number indicates depht to bose eo } \\
\text { the Cretaceous System, in feet below land surface }
\end{gathered}
$$

-

ta from geophysical logs
Data from drillers' logs
Data from other sources
-700-
Line showing approximate altitude of base Dashed where control is absent or limited. Interval 100 teet Datum is mean sea leve
\qquad
U, upthrown side; D , downthrown side Dashed where approximately located

Approximate Altitude of and Depth to the

Figure 9
Approximate Altitude of and Depth to the Top of the Lower Trinity Aquifer

> EXPLANATION • so Well used for control $\begin{gathered}\text { Number indicates stotil hickness of the } \\ \text { lower Trinity oavifer in feet }\end{gathered}$ -200Line showing approximate total thicknes, of the lower TTinity aquifer Dashed where control is obsent or limite Interval 50 feet

Figure 10
Approximate Total Thickness of the
shaly marine sediments. The Hammett is composed predominantly of dark blue to gray, fossiliferous, calcareous and dolomitic shale with thinly interbedded layers of limestone and sand. The unit pinches out in the northern portion of the study area and thickens downdip to approximately 80 feet $(24 \mathrm{~m})$. It consists of a heaving shale that caves in a newly drilfed well and must be cased off if further depth is desired. The unit is impermeable, thus confining the water in the underlying strata and serving as a hydrologic barrier between the lower and middle Trinity aquifers with the possible exception of leakage where faulting occurs.

The Cow Creek Limestone overlies the marine Hammett Shale and represents a seaward growth of the shoreline. Structural features within the Cow Creek indicate that the limestone was deposited in a beach or near-shore environment. The approximate altitude of and depth to the top of the Cow Creek are shown on Figure 11 .

The Cow Creek is a massive, fossiliferous, white to gray, shaly to dolomitic limestone composed of a fine to medium grained calcarenite with local thinly bedded layers of sand, shale, and lignite. It forms steep overhanging bluffs and cliffs where it crops out along the Pedernates, Blanco, and Guadalupe Rivers in the eastern part of the study area. The unit is often honeycombed in the outcrop. The Cow Creek attains a maximum thickness of approximately 90 feet (27 m) downdip, although 50 to 60 feet (15 to 18 m) is average over most of the area. Updip it thins to approximately 20 feet (6 m) before it becomes indistinguishable by grading into sand and shale (Figure 6). The updip portion of the Cow Creek has been eroded to form a disconformable surface for the deposition of Hensell sand. This disconformity disappears midway through the study area in the downdip direction.

The Cow Creek yields small to moderate amounts of fresh to slightly saline water.

The Hensell Sand Nember of the Travis Peak Formation is a time-transgressive unit that consists of alluvial and near-shore sediments deposited as the sea transgressed across the eroded Cow Creek, and is time-equivalent to the Glen Rose Limestone that was being deposited offshore.

The Hensell consists of both continental and marine deposits. Updip, in the outcrop along the Pedernales River, the Hensell (Gillespie Formation of Hilt and Vaughan, 1898) is composed of thick continental deposits of red clay, silt, sand, and
conglomerate with limestone beds in the subsurface, and rests on highily faulted pre-Cretaceous rocks. In the outcrop, the Hensell breaks down to a loose sand due to lack of induration and forms gentle slopes. The unit becomes gray and less sandy as it grades upward into the lower Glen Rose. Farther downdip past the pre-Hensell disconformity, the Hensell grades into marine deposits of silty dolomite, marl, calcareous shale, and shaly limestone (Figure 6). This zone is designated as the Bexar Shale (Forgotson, 1956).

The thickness of the Hensell varies considerably because of the nature of its upper gradational boundary with the Glen Rose and the uneven erosional surface on which it was deposited. A maximum thickness of 300 feet (91 m) is reported by Mount (1963) in Gillespie County. In northern Giliespie County, the Henselt abuts abruptly with pre-Cretaceous rocks of the Llano uplift. In general, the Hensel! thins by interfingering into the Glen Rose in a downdip direction from an average 150 feet (46 m) to 80 feet $\{24 \mathrm{~m}\rangle$. This aquifer is often referred to locally as the "first Trinity" or the "upper Trinity" sand. The approximate altitude of and depth to the top of the Hensell Sand are shown on Figure 12.

The Glen Rose Limestone is the uppermost formation of the Trinity Group and is exposed over approximately three-fourths of the study region (Figure 5). The Glen Rose along with the Hensell Sand represents a wedge of sediments deposited in a transgressing sea. In Comal County, George (1952) separated the Glen Rose into upper and lower members. The boundary between the two members is identified by a thin limestone bed containing numerous fossils of Corbula martinae (Whitney, 1952) that persists throughout the study area except where erosion has lowered the land surface below the bed.

The lower member of the Glen Rose Limestone consists of a massive, fossiliferous limestone at the base grading upward into thin beds of limestone, dolomite, marl, and shale. The top 15 to 20 feet (5 to 6 m) of the lower member, designated the Salenia texana zone, is a highly fossiliferows, nodular marl and limestone which is capped by the "Corbula bed." The member has a maximum thickness of approximately 320 feet (98 m) in the southern part of the study area and thins updip by grading laterally into the underlying Hensell Sand.

Rudist and coral reefs are characteristic of the basal massive section. A number of reefs exposed in the study area have been described by Perkins (1968, 1970) and Stricklin, Smith, and Lozo (1971). The

EXPLANATION

- 150 Well used for control
Top number indicates altitude of top of the Cow Creek Limestone,
in feet above mean sea level Bottom number indicates depth to top of the Cow Creek Limestone,
in feet below land surface
- 1030

Surface contact used for control Number indicates altitude of top
of the Cow Creek Limestone of the Cow Creek Limestone, Data points derived from topographic ond geologic maps -1050-
Line showing approximate altitude of top of the Cow Creek Limestone Dashed where control is absent or limited Interval 50 feet
Datum is mean sea lev
Outcrop of Cow Creek Limestone

$$
\underbrace{}_{\text {Contact }}
$$

Fault
U. Dashed where approximately located

Figure 11
Approximate Altitude of and Depth to the
Top of the Cow Creek Limestone of the

Middle Trinity Aquifer

EXPLANATION

- 1 25

Top number indicates altitude of top of the Hensell Sand or Bexar Shale.
in feet above mean sea level Bottom number indicates depth to top of
the Hensell Sand or Bexar Shale, he hensel Sand or Bexar sha
in feet below land surface

Surface contact used for control Number indicates altitude of top of the Hensell Sand, in feet above mean sea level Data points derived from
topographic and geologic maps

-1550

Line showing approximate altitude of top Dashed where control is absent or limite Interval 50 feet
Datum is mean sea level
Ens

Outcrop of the Hensell San
$\overbrace{\text { Fault }}^{\text {Contact }}$ Dashed where covered or approximately located

$$
\begin{aligned}
& \text { Approximate downdip limit of the sandy facies } \\
& \text { (Hensell Sand) of the middle Trinity oquifer }
\end{aligned}
$$

Figure 12
Approximate Altitude of and Depth to the
Top of the Hensell Sand and Bexar Shale of the Middle Trinity Aquifer
reefs consist of two basic types: the small, circular to slightly elongate mounds or patch reefs are less than 75 feet (23 m) in diameter and 30 feet (9 m) in thickness; the second type is the less numerous but more extensive tabular reef. The full dimensions of these reefs have not been determined but are on the magnitude of several hundred feet laterally by 50 feet (15 m) in thickness. A number of wells have been drilled through material that has been described as reef rock. The majority of the reefs are composed of Caprinid-type rudists and only a few are composed of coral with Montastrea being the predominant type. Some of the reefs show a high degree of porosity due to the dissolving of the original sheil material and leaving a cavity; however, unless the zone has become fractured the permeability remains low.

Because the lower member of the Glen Rose is massive, it is more susceptibie than the upper member to the development of secondary porosity which results from jointing, faulting, and the dissolving action of ground water, and hence is generally the more prolific water-producing zone. The zone is hydrologically connected to the underiying Hensell Member. Figure 13 shows the approximate altitude of and depth to the top of the lower member of the Glen Rose Limestone, which is the top of the middle Trinity aquifer. Total thickness of the middle Trinity is shown on Figure 14.

Upper Trinity Aquifer

The upper member of the Glen Rose Limestone consists of laterally continuous, alternating resistant and nonresistant beds of blue shale, nodular marl, and impure, fossiliferous limestone. The uneven resistance to erosion by the alternating beds results in the characteristic "stairstep" topography. The upper member thins updip from a maximum thickness of approximately 450 feet $(137 \mathrm{~m})$. In the northern portion of the study region where the lower member has pinched out, the upper member thins rapidly by grading laterally into the underlying Hensell Sand. The Glen Rose Limestone pinches out just north of the Pedernales River (Figure 6).

Two evaporite zones occur within the upper member. The first zone occurs at the base and because of its high resistivity curve on electric logs, it serves as a convenient correlation marker between the upper and lower members. The second evaporite zone is located near the middle of the member and has the same characteristics. At the outcrop and within the zone above the water table, the evaporite has
been leached out, resulting in slumping and distortion of the overlying rocks.

Fredericksburg Group

The Fredericksburg Group, which forms the caprock of the Edwards Plateau, overlies the Trinity Group deposits at the upper elevations to the north and west of the study area and to the south and east where it has been downfaulted along the Balcones fault zone (Figure 5). Many of the higher hilltops are capped by the resistant limestone. The group is composed of, in ascending order, the Walnut Clay, Comache Peak Limestone, and the Edwards Limestone (Table 1).

The Fredericksburg Group yields small to moderate amounts of fresh water to wells primarily in the sparsely populated northwestern portion of the study area. Many springs of very good chemical quality issue from near the base of the group throughout its extent in the study area.

Quaternary Alluvium

Alluvial deposits ranging in age from Pleistocene to Recent occur predominantly within stream valleys and consist of flood-plain, terrace, and alluvial fan deposits. The material is derived from locally eroded limestone and forms longitudinal or fan-shaped beds of gravel, sand, silt, and clay, often cemented by calcium carbonate. The beds are highly permeable, have a low dip, a maximum thickness of approximately 50 feet (15 m), small areal extent, and yield only small amounts of good quality water.

CHEMICAL QUALITY OF GROUND WATER AS RELATED TO USE

General Chemical Quality of Ground Water

All ground water contains minerals carried in solution, the type and concentration of which depend upon the environment, movement, and source of the ground water. Rainfall is relatively free of minerats until it comes in contact with the various constituents which make up the soils and component rocks of the aquifer; then, as a result of the solvent power of water, minerals are dissolved and carried into solution as the water passes through the aquifer. The concentration depends upon the solubility of the

Top number indicates altitude of top of
the lower member
ower member of the Glen Rose Lin
in feet above mean sea level
Bottom number indicates depth to top of
the lower member of the Glen Rose Limestone
in feet below land surface
Surface contact used for control
Number indicates altitude of top of
the lower member of the Glen Rose Limestone,
in feet above mean sea level
Data points derived from
topographic and geologic maps

- $900-$
Line showing approximate altititude of top of
the lower member of the Glen Rose Limestone
Dashed where control is absent or limited
Interval 50 feet
Datum is mean sea level
Outcrop of the lower member of the
Glen Rose Limestone

Approximate Altitude of and Depth to the Top of the Middle Trinity Aquifer

EXPLANATION
Well used for control
Number indicates total thickness of the
middle Trinity aquifer, in feet
-400-
Line showing approximate total thickness of the middle Trinity aquifer Dashed where control is absent or limited Interval 50 feet

Outcrop of the lower member of the Glen Rose Limestone
 Outcrop of the Hensell Sand
Outcrop of the Cow Creek Limestone

-

. . .
Approximate downdip limit of fresh to slightly saline water in the middle Trinity Aquifer
(After Duffin, 1974)

Figure 14
Approximate Total Thickness of the Middle Trinity Aquifer
minerals present, the length of time the water is in contact with the rocks, and the amount of dissolved carbon dioxide in the water. In addition, concentrations of dissolved minerals in ground water generally increase with depth and especially increase where circulation has been restricted due to faulting or zones of lower permeability. Restricted circulation retards the flushing action of fresh water moving through the aquifers, causing the water to become highly mineralized.

The source and significance of dissolved mineral constituents and properties of natural waters are given in Table 2. Chemical analyses of water from selected wells and springs in the study region are given in Table 6. The sampled wells and springs are indicated on the county well-location maps by a bar over the well number. Concentrations of sulfate, chloride, and total dissolved solids from samples taken from selected wells and springs in the study region are also shown on Figure 15.

The degree and type of mineralization of ground water determines its şuitability for municipal, industrial, irrigation, and other uses. Several criteria for water-quality requirements have been developed through the vears which serve as guidelines in determining the suitability of water for various uses. Subjects covered by the guidelines are bacterial content; physical characteristics, including color, taste, odor, turbidity, and temperature; and the chemical constituents. Water-quality problems associated with the first two subjects can usually be alleviated economically. The neutralization or removal of most of the unwanted chemical constituents is usually difficult and often very costly.

Total dissolved-solids content is usually the main factor which limits or determines the use of ground water. Winslow and Kister (1956) used an excellent, and very applicable, general classification of waters based on the dissolved-solids concentration in parts per million (ppm). The classification is as follows:
\quad Description
Fresh
Slightly saline
Moderately saline
Very saline
Brine

Dissolved-solids content (ppm)

Less than 1,000
1,000 to 3,000
3,000 to 10,000
10,000 to 35,000
More than 35,000

In recent years, most laboratories have begun reporting analyses in milligrams per liter (mg / l) instead of ppm. These two units, for practical purposes, are identical until the dissolved-solids concentration of water reaches or exceeds 7,000 units ($\mathrm{p} p \mathrm{~m}$ or mg / l). The concentrations of chemical constituents reported in this report are in mg / l. All of the chemical concentrations are below $7,000 \mathrm{mg} / \mathrm{l}$ and, therefore, the units are interchangeable. For more highly mineralized waters, a density correction should be made using the following formula:

$$
\text { parts per million }=\frac{\text { milligrams per liter }}{\begin{array}{l}
\text { specific gravity of } \\
\text { the water }
\end{array}}
$$

Public Supply

As the first step in setting national standards for drinking water quality under the provisions of the Safe Drinking Water Act of 1974, the U.S. Environmental Protection Agency (EPA) issued drinking water regulations on. December 10, 1975. These standards apply to all of the public water systems of Texas and became effective June 1977. The responsibility for enforcement of these standards was assumed by the Texas Department of Health on July 1, 1977. Minor revision of the standards became effective on November 30, 1977.

As defined by the Texas Department of Health, municipat systems are classified as follows:

1. A "public water system" is any system for the delivery to the public of piped water for human consumption, if such a system has four or more service connections or regularly serves at least 25 individuals daily at least 60 days out of the year.
2. A "community water system" is any system which serves at least four or more service connections or regularly serves 25 permanent-type residents for at least 180 days per year.
3. A "non-community water system" is any public water system which is not a community water system.

Standards which relate to municipal supplies are of two types: (1) primary and (2) secondary. Primary standards are devoted to constituents and regulations affecting the health of consumers. Secondary standards are those which deal with the esthetic
(Adapted from Doll and others, 1963, p. 39-43)

Constituent

or
\qquad Source or cause

Dissolved from practically all rocks and soils, commonly less than $30 \mathrm{mg} / \mathrm{I}$. High concentrations, as much as 100 mg / l, generally occur in highly alkaline waters.
Iron (Fe)

Calcium (Ca)
and
Magnesium (Mg)

Sodium (Na)
and
Potassium (K)

Bicarbonate (HCO_{3})
and
Carbonate $\left(\mathrm{CO}_{3}\right)$

Sulfate $\left(\mathrm{SO}_{4}\right)$

Chloride (Cl)

Fluoride (F)

Nitrate $\left(\mathrm{NO}_{3}\right)$

Dissolved from practically all rocks and soils. May also be derived from iron pipes, pumps, and other equipment.

Dissolved from practically all soils and rocks, but especially from limestone, dolomite, and gypsum, Calcium and magnesium are found in large quantitles in some brines. Magnesium is present in large quantities in sea water.

Dissolvad from practically all rocks and soils. Found also in oil-field brines, sea water, industrial brines, and sewage.

Action of carbon dioxida in water on capbonate rocks such as limestone and dolomite,

Dissalved from rocks and soils containing gypsum, iron sulfides, and other sulfur compounds. commonly present in some industrial wastes.

Dissolved from rocks and soils. Present in sewage and found in large amounts in oll-field brines, sea water, and industrial brines.

Dissolved in small to minute quantities from most rocks and soils. Added to many waters by fluoridation of municipal supplies.

Decaying organic matter, sewage, fertilizers, and nitrates in soil.

Significance

Forms hard scale in pipes and boilers. Carrled over in steam of high pressure boilers to form deposits on blades of turbines. Inhibits deterioration of zeolite-type water softeners.

On exposure to air, iron in ground water axidizes to reddish-brown precipitats. More than about $0.3 \mathrm{mg} / \mathrm{l}$ stain laundry and utensils reddish-brown, Objectionable for food processing, textile processing, beverages, ice manufacture, brewing, and other processes. Texas Department of Health (1977) drinking-water standards state that tron should not excead $0.3 \mathrm{mg} / \mathrm{h}$. Larger quantities cause unpleasant taste and favor growth of iron bacteria.

Cause most of the hardness and scale-forming properties of water: soap consuming (see hardness). Waters low in calcium and magnesium desired in electroplating, tanning, dyeing, and in textile manufacturing.

Large amounts, in combination with chloride, give a salty taste. Moderate quantities have little affect on the usefulness of water for most purposes. Sodium salts may cause foaming in steam boilers and a high sodium content may limit the use of water for irrigation.

Bicarbonate and carbonate produce alkalinity, Eicarbonates of calcium and magnesium decompose in steam boilers and hot water facilities to form scale and release corrosive carbon-dioxide gas. In combination with calcium and magnesium, cause carbonate hardness.

Sulfate in water containing calcium forms hard scale in steam boilers. In large amounts, sulfate in combination with other ions gives bitter taste to water. Texas Department of Health (1977) drinking-water standards recommend that the sulfate content should not exceed $300 \mathrm{mg} / 1$.

In large amounts in combination with sodium, gives salty taste to drinking water. In large quantities, increases the corrosiveness of water. Texas Department of Health (1977) drinking-water standards recommend that the chloride content should not exceed $300 \mathrm{mg} / \mathrm{l}$.

Fluaride in drinking water reduces the incidence of tooth decay when the water is consumed during the period of snamel calcification. However, it may cause mottling of the teeth, depending on the concentration of fluoride, the age of the child, amount of drinking water consumed, and susceptibility of the individual (Maier, 1950, p. 1120-1132).

Concentration much greater than the local average may suggest pollution. Texas Department of Health (1977) drinking-water standards suggest a limit of $45 \mathrm{mg} / \mathrm{l}$ (as NO_{3}) or 10 (as N). Waters of high nitrate content have, been reported to be the cause of methemoglobinemia (an often fatal disease in infants) and therefore should not be used in infant feeding (Maxcy, 1950, p. 271). Nitrate has been shown to be helpful in reducing inter-crystalline cracking of boilar steel. It encourages growth of algae and other organisms which produce undesirable tastes and odors.

Table 2.-Source and Significance of Dissolved-Mineral Constituents and Properties of Water-Continued

Constituent
or
property

Hardness as CaCO_{3}

Sodium-adsorption ratio (SAR)

Residual sodium carbonate (RSC)

Specific
conductance
(micromhos at $25^{\circ} \mathrm{C}$)

Hydrogen ion concentration (pH)

A minor constituent of rocks and of natural waters.

Chiefly mineral constituents dissolved from rocks and soils.

In most waters nearly all the hardness is due to calcium and magnesium. All of the metadic cations other than the alkali metals also cause hardness.

Sodium in water.

Source or cause

Significance

An excessive boron content will make water unsuitable for irrigation. Wilcox (1955, p.11) indicated that a boron concentration of as much as $1.0 \mathrm{mg} / 1$ is permissible for irrigating sensitive crops; as much as $2.0 \mathrm{mg} / \mathrm{l}$ for semitolerant crops; and as much as $3.0 \mathrm{mg} / \mathrm{l}$ for tolerant crops. Crops sensitive to boron include most deciduous fruit and nut trees and navy beans; semitolerant crops include most small grains, potatoes and some other vegetables, and cotton; and tolerant crops include alfalfa, most root vegetables, and the date palm.

Texas Department of Health (1977) drinking-water standards recommend that waters containing more than $1,000 \mathrm{mg} / \mathrm{l}$ dissolved solids not be used if other, less minaralized supplies are available. For many purposes the dissolved-solids content is a major limitation on the use of water. A general elassification of water based on dissolved-solids content, in mg / I, is as follows (Winslow and Kister, 1956, p. 5): Waters conteining less than $1,000 \mathrm{mg} / \mathrm{l}$ of dissolved solids are considered fresh; 1,000 to $3,000 \mathrm{mg} / \mathrm{l}$, stightly saline; 3,000 to $10,000 \mathrm{mg} / \mathrm{l}$, moderately saline; 10,000 to $35,000 \mathrm{mg} / 1$, very saline; and more than 35,000 mg / I, brine.

Consumes soap before a lather will form. Deposits soap curd on bathtubs. Hard water forms scale in boilers, water heaters, and pipes. Hardness equivalent to the bicarbonate and carbonate is called carbonate hardness. Any hardness in excess of this is called non-carbonate hardness. Waters of hardness up to $60 \mathrm{mg} / \mathrm{l}$ are considered soft; 61 to $120 \mathrm{mg} / \mathrm{l}$. moderately hard; 121 to $180 \mathrm{mg} / \mathrm{l}$, hard; mora than $180 \mathrm{mg} / 1$, very hard.

A ratio for soil extracts and irrigation waters used to express the relative activity of sodium ions in exchange reactions with soit (U.S. Salinity Laboratory Staff, 1954, p. 72, 156). Defined by the following equation:

$$
\operatorname{SAR}=\frac{\mathrm{Na}^{+}}{\sqrt{\frac{\mathrm{Ca}^{+++}+\mathrm{Mg}^{++}}{2}}},
$$

Where $\mathrm{Na}^{+}, \mathrm{Ca}^{++}$, and Mg^{++}represent the concentrations in milliequivalents per liter (me / I) of the raspective ions.

As calcium and magnesium precipitate as earbonates in the soil, the relative proportion of sodium in the water is increased (Eaton, 1950, p. 123-133). Defined by the following nquation:

$$
\mathrm{RSC}=\left(\mathrm{CO}_{3}{ }^{-}+\mathrm{HCO}_{3}^{-}\right)-\left(\mathrm{Ca}^{++}+\mathrm{Mg}^{++}\right)
$$

where $\mathrm{CO}_{3}{ }^{--}, \mathrm{HCO}_{3}{ }^{-}, \mathrm{Ca}^{++}$and Mg^{++}represent the concentrations in mifliequivalents per liter (me/l) of the respective ions.

Indicates degree of mineralization. Specific conductance is a measure of the capacity of the water to conduct an electric current. Varies with concentration and degree of iomization of the constituents.

A pH of 7.0 indicates neutrality of a solution. Values higher than 7.0 denote incraasing alkalinity; values lower than 7.0 indicate increasing acidity. pH is a measure of the activity of the hydrogen ions. Gorrosiveness of water generally increases with decreasing pit. However, excessively alkaline waters mav atso attack metals. The Texas Department of Health (1977) recommends a pH greater than 7.
qualities of drinking water. Contaminants for which secondary maximum contaminant levels are set in these standards do not have a direct impact on the health of the consumers, but their presence in excessive quantities may discourage the use of the watér.

Primary Standards

Prìmary standards for dissolved minerals apply to community water systems and are as follows:

	Maximum concentration $(\mathrm{mg} / \mathrm{I})$
Contaminant	
Arsenic (As)	0.05
Barium (Ba)	1.0
Cadmium (Cd)	.010
Chromium $\left(\mathrm{Cr}^{6}\right)$.05
Lead (Pb)	.05
Mercury (Hg)	.002
Selenium (Se)	.01
Silver (Ag)	.05
Nitrate (as $\left.\mathrm{NO}_{3}\right)$	45
Nitrate (as N)	10

Except for nitrate content, none of the above contaminant levels for toxic minerals applies to non-community water systems. The maximum of 10 mg / l nitrate as nitrogen (about $45 \mathrm{mg} / \mathrm{l}$ nitrate as NO_{3}) applies to community and non-community systems alike. Water having a concentration of nitrate (as NO_{3}) in excess of $45 \mathrm{mg} / \mathrm{l}$ poses a potential health hazard. A high concentration of nitrate is an indication of organic decomposition, usually within the source well. Steps should be taken to identify and rectify the source of the contamination.

Maximum fluoride concentrations are applicable to community water systems and they vary with the annual average of the maximum daily air temperature at the location of the system. These are shown in the following tabulation:
$\left.\begin{array}{ccc}\begin{array}{c}\text { Temperature } \\ \left({ }^{\circ} \mathrm{F}\right)\end{array} & \begin{array}{c}\text { Temperature } \\ \left({ }^{\circ} \mathrm{C}\right)\end{array} & \end{array} \begin{array}{c}\text { Maximum } \\ \text { concentration } \\ (\mathrm{mg} / \mathrm{l})\end{array}\right]$

Maximum contaminant limits for organic chemicals, as specified, apply to community water systems and are as follows:

Constituent | Maximum |
| :---: |
| concentration |
| $(\mathrm{mg} / \mathrm{l})$ |

1. Chlorinated hydrocarbans:

Endrin (1,2,3,4,10, $10-$	0.0002
hexachioro-6,7,-epaxy-1,4,4a,5,6,	
7,8,8a-octahydro-1,4-endo, endo-5,	
g-dimenthano napthalene).	

Lindane ($1,2,3,4,5,6$-hexachioro-
cyclohexane, gamma isomer).
Methoxychior (1,1,1-Trichloro. 1
2,2-bis (p-methoxyphenyl) ethane).
Toxaphene $\left(\mathrm{C}_{10} \mathrm{O}_{10} \mathrm{H}_{10} \mathrm{Cl}_{8}-\right.$ Technical
ohlorinated camphene, $67-69$
percent chlorine $)$.
2. Ghlorophenoxys:

2,4-D (2,4-Dichlorophenoxyace-	.1
tic acid).	
$2,4,5-\mathrm{TP}$ Silvex $(2,4,5-$ Trichloro-	
phenoxypropionic acid).	

Maximum levels for coliform bacteria, as specified by the Texas Department of Health, apply to community and non-community water systems. The limits specified are basically the same as in the 1962 U.S. Public Health Service Standards which have been widely adopted in most states.

In addition to the previously stated requirements, there are also stringent rules regarding general sampling and the frequency of sampling which apply to ail public water systems. Additionally, community water systems are subject to rigid radiological sampling and analytical requirements.

Secondary Standards

Recommended secondary standards applicable to all public water systems are given in the following table:

Constituent	Maximum level
Chloride (Cl)	$300 \mathrm{mg} / \mathrm{l}$
Color	15 color units
Copper (Cu)	$1.0 \mathrm{mg} / \mathrm{l}$
Corrosivity	non-corrosive
Foaming agents	$.5 \mathrm{mg} / \mathrm{h}$
Hydrogen sulfide ($\mathrm{H}_{2} \mathrm{~S}$)	. $05 \mathrm{mg} / \mathrm{l}$
Iron (Fe)	. $3 \mathrm{mg} / \mathrm{l}$
Manganese (Mn)	. $05 \mathrm{mg} / \mathrm{l}$
Odor	3 Threshold Odor Number
pH	>7.0
Sulfate (SO_{4})	$300 \mathrm{mg} / \mathrm{l}$

Constituent	Maximum leve!	Substance	Concentration (mg/l)
Dissolved solids	$1,000 \mathrm{mg} / \mathrm{l}$	Sulfate (SO_{4})	300
Zinc (Zn)	5.0 mg/l	Dissolved solids	1,000

The above secondary standards are recommended limits, except for water systems which are not in existence as of the effective date of these standards. For water systems which are constructed after the effective date, no source of supply which does not meet the recommended secondary standards may be used without written approval by the Texas Department of Health f The determining factor will be whether there is ant alternate source of supply of acceptable chemigal quality available to the area to be served.

After July 1, 1977, for all instances in which drinking water does not meet the recommended limits and is accepted for use by the Texas Department of Health, such acceptance is valid only until such time as water of acceptable chemical quality can be made available at reasonable cost to the area in question from an alternate source. At such time, either the water which was previously accepted would have to be treated to lower the constituents to acceptable levels, or water would have to be secured from the alternate source.

Domestic and Livestock

Ideally, waters used for rural domestic purposes should be as free of contaminants as those used for municipal purposes; however, this is not economically possible. At present, there are no controls placed on private domestic or livestock wells. In general, the chemical constituents of waters used for domestic purposes should not exceed the concentrations shown in the following table, except in those areas where more suitable supplies are not available (Texas Department of Health, 1977):

Substance	Concentration (mg/)
Chloride (Cl)	300
Fluoride (F)	1.4 to 1.6 *
Iron (Fe)	. 03
Manganese (Mn)	. 05
Nitrate (as N)	10
Nitrate (as NO_{3})	45

[^0]Many areas of south-central Texas do not have and cannot obtain domestic water supplies which meet the above recommended standards; however, supplies which do not meet these standards have been used for long periods of time without any apparent ill effects to the user. It is not generally recommended that water used for drinking purposes contain more than a maximum of $2,000 \mathrm{mg} / \mathrm{l}$ dissolved solids; however, water containing somewhat higher mineral concentrations has been used where water of better quality was not available.

Generally, water used for livestock purposes is subject to the same quality limitations as those relating to drinking water for humans; however, the tolerance limits of the various chemical constituents as well as the dissolved-solids concentration may be considerably higher for livestock than that which is considered satisfactory for human consumption. The type of animal, the kind of soluble salts, and the respective amount of soluble salts determine the tolerance limits (Heller, 1933, p. 22). In the western United States, cattle may tolerate drinking water containing neafly $10,000 \mathrm{mg} / \mathrm{l}$ of dissolved solids providing these waters contain mostly sodium and chloride (Hem, 1970, p.324). Waters containing high concentrations of sulfate are usually considered undesirable for livestock use. Many investigators recommend an upper limit of dissolved solids near $5,000 \mathrm{mg} / 1$ as necessary for maximum growth and reproduction. Hem (1970, p. 324) cited a publication of the Department of Agriculture of the state of Western Australia as recommending the following maximum upper limits for dissolved-sotids concentration in livestock water:

Animal

Dissolved solids (mg/l)

Poultry	2,860
Hogs	4,290
Horses	6,435
Cattle (dairy)	7,150
Cattle (beef)	10,000
Adult sheep	12,900

Water having concentrations of chemical constituents in excess of the Texas Department of Health's standards may be objectionable for many reasons. Brief explanations for these objections, as
well as the significance of each constituent, are given in Table 2.

Irrigation

The suitability of ground water for irrigation purposes is largely dependent on the chemical composition of the water. The extent to which the chemical quality will affect the growth of crops is in part determined by the climate, soil, management practices, crops grown, drainage, and quantity of water applied.

Primary characteristics that determine the suitability of ground water for irrigation, according to the U.S. Salinity Laboratory Staff (1954), are: (1) total concentration of soluble salts; (2) relative proportion of sodium to other cations (magnesium, calcium, and potassium); (3) concentration of boron or other toxic elements; and (4) under some conditions, the carbonate and bicarbonate concentration as related to the concentration of calcium and magnesium. These have been termed, respectively, the salinity hazard, the sodium (alkali) hazard, the boron hazard, and the bicarbonate ion hazard (U.S. Salinity Laboratory Staff, 1954, p. 69-82; Wilcox, 1955, p. 11-12; and L.yerly and Longenecker, 1957, p.13-15).

A high concentration of soluble salts in irrigation water may cause a buildup of salts in the soil. Saline soils decrease the ability of plants to take up moisture and nutrients from the soil resulting in decreased yields. This salinity hazard is expressed in terms of specific conductance, measured in micromhos per centimeter at $25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)$. In general, water having a conductance below 750 micromhos per centimeter is satisfactory for irrigation; however, salt-sensitive crops, such as strawberries and green beans, may be adversely affected by irrigation water having a conductance in the range of 250 to 750 micromhos per centimeter. Table 6 gives the specific conductance for selective water samples analyzed within the study area.

The physical condition of soil can be adversely affected by a high concentration of sodium relative to the concentration of calcium and magnesium in irrigation water. The sodium hazard is expressed as the sodium-adsorption ratio (SAR; see Table 6) which is the measurement of the relative activity of sodium ions in exchange reactions with soil. A high SAR in irrigation water affects the soil by forming a hard impermeable crust that results in cultivation and drainage problems. Under most conditions, irrigation waters having a percent sodium less than 60 (Table 6) and a low bicarbonate content are probably satisfactory. The sodium hazard becomes progressively greater as the sodium percentage increases above 60.

Boron is necessary for good plant growth, but rapidly becomes highly toxic at concentrations above acceptable levels. Maximum tolerable levels for various crops range from 1.0 to $3.0 \mathrm{mg} /$ (Scofield, 1936). High concentrations of Boron are not known to be a problem within the study region. Consult Table 2 for specific crops and their tolerance ranges.

A concentration of bicarbonate in irrigation water often causes calcium and magnesium carbonate to precipitate from solution upon drying, which results in an increase in the proportion of sodium in solution. The effect of higher proportions of sodium has been previously discussed. Water containing 1.24 to $2.5 \mathrm{me} / \mathrm{l}$ (milliequivalents per liter) of residual sodium carbonate (RSC; see Table 6) are considered marginal and those containing greater than $2.5 \mathrm{me} / \mathrm{l}$ probably are not suited for irrigation use (Wilcox, 1955).

Industrial

Chemical quatity standards for ground water used for industrial purposes vary greatly with the type of industry utilizing the water. The primary concern with many industries is that the water does not have constituents that are corrosive or scale-forming. Also of concern are those minerals that affect color, odor, and taste; therefore, water with a high content of dissolved solids is usually avoided. Table 2 lists the effect that most of the minerals have on industrial usage.

Treatment of Water

When ground water does not meet specific requirements for usage, various methods of treatment can be implemented to alter the chemical composition. Such treatments include softening, aeration, filtration, cooling, dilution, and the addition of chemicals. The type of treatment is dependent on the particular problem; however, the primary limiting factor is economics.

Chemical Quality of Ground Water from the Trinity Group Aquifer

The Trinity Group aquifer yields fresh to slightly saline water with very high content of hardness as calcium carbonate $\left(\mathrm{CaCO}_{3}\right)$ to almost all of the wells within the study region (Table 6). The majority of water samples that were analyzed indicated hardness within a range of 250 to $500 \mathrm{mg} / /$ although many samples were substantially higher and only a few were lower. This water would be classed as very hard (Table 2). Figure 15 illustrates the dissolved solids, sulfate, and chloride concentrations from selected wells.

EXPLANATION
Source of Water Upper member of the Glen Rose Limestone
Lower member of the Glen Rose Limestone Glen Rose Limestone, undifferentiate - Glen Rose Limest

- Hensell Sand
- Cow Creek Lime
- Cow Creek Limestone
- Sligo Limestone and Hosston

Sampled Well or Spring
so Sulfate concentration
${ }^{10}$ Chioride concentrotion
-
Approximate downdip limit of fresh to slightly saline woter in the upper Trinity aquifer
\rightarrow.
Approximate downdip limit of fresh to slightiy saline water in the middle Trinity aquifer

Figure 15
Sulfate, Chloride, and Dissolved-Solids Content in Water From Selected Wells and Springs

The lower Trinity aquifer provides fresh water with dissolved-solids content usually under $500 \mathrm{mg} / \mathrm{l}$ in much of Kerr and Bandera Counties. To the west and east of this area, the content of dissolved solids increases and usually ranges from 900 to $1,500 \mathrm{mg} / \mathrm{l}$.

The middle Trinity aquifer yields fresh to slightly saline water to almost all of the study area. Water in the lower member of the Glen Rose Limestone is normally. of very good quality although hard. Spring water from the lower Glen Rose is of excellent quality with dissolved solids often under $250 \mathrm{mg} / \mathrm{l}$. The Hensell Sand yields fresh quality water in the northern half of the studv area although high quantities of iron occur in a number of localities, Good quality water also occurs in the Cow Creek Limestone. Near the downdip limit of the study aree, water from the lower Glen Rose and Cow Creek increase rapidly in dissolved solids (Table 6). Much higher quantities of sulfate are the primary reason for the increase. Water from wells in a few localities contains fluoride in amounts greater than the recommended limit.

Weils developed in the upper Trinity aquifer generally produce water of poor quality. The low permeability of the upper member of the Glen Rose Limestone restricts water movement which causes an increase in mineral concentration. Slow movement and long contact of ground water with highly soluble evaporite zones result in excessive sulfate content. The approximate downdip limits of fresh to slighly saline water in the upper Trinity and middle Trinity aquifers are shown on Figure 15.

OCCURRENCE OF GROUND WATER IN THE TRINITY GROUP AQUIFER

Recharge, Movement, and Discharge

The primary source of recharge to the Trinity Group aquifer is from rainfall on the outcrop and seepage from lakes and streams. The upper and lower members of the Glen Rose Limestone and the Hensell Sand crop out over most of the study region, therefore, these units receive the greatest amount of direct recharge. The other units, Cow Creek Limestone, Sligo Limestone, and Hosston Sand, are recharged primarily by vertical leakage from the other strata. Average annual precipitation over the outcrop ranges from 25 to 35 inches (64 to 89 cm). The estimated effective recharge to the Trinity Group aquifer is about 200,000 acre-feet per year ($247 \mathrm{hm}^{3} / \mathrm{yr}$) within the study area. This estimate is based on the base-flow gain in the Guadalupe River between the Comfort and Spring Branch gaging
stations which is a region of very little ground-water pumpage. The base-flow gain is a result of discharge of ground water into the stream, and this discharge should approximately equal the amount of recharge, assuming that the aquifer remained approximately filled. The gain in base flow equates to an average annual recharge of 31,800 acre-feet ($39.3 \mathrm{hm}^{3}$) from precipitation in the 477.6 -square-mile $\left(1,237 \mathrm{~km}^{2}\right)$ drainage area between the two gages. The 67 acre-feet per square mile per year ($0.032 \mathrm{hm}^{3} / \mathrm{km}^{2} / \mathrm{yr}$) as applied to the total Frinity Group outcrop area of 2,985 square miles $\left(7,731 \mathrm{~km}^{2}\right)$ thus provides an estimate of the average annual recharge or sustained annual yield for the study region. This value is approximately 4 percent of the average annual rainfall.

The majority of streams in the study area traverse predominantly the middle Trinity members of the Travis Peak Formation. Although some recharge to the aquifer does occur, most of the streams show increases in base flow in the downstream direction indicating that ground water is moving from the formations to the streams. This is exemplified on the Guadalupe River where an average annual increase in base flow of 31,800 acre-feet $\{39.3$ hm^{3}) occurs between the Comfort and Spring Branch gaging stations. The principle exception is in the Cibolo Creek channel. Except during flooding conditions, all water in Cibolo Creek is diverted underground through sinkholes. The largest loss is observed between Boerne and Bulverde where the creek traverses the lower Glen Rose outcrop.

Lakes also recharge the aquifer at least locally. The water leve! in well DX-68-07-401, which is one-half mile from the shoreline of Canyon Lake, was measured before and during a major flood on the Guadalupe River. The water level in the well rose in relationship to the change in elevation of the lake surface which indicates a hydrologic connection. Not all wells in the vicinity of a lake should be expected to be recharged by the lake, due to impermeable barriers existing between the well and lake.

The Hosston Sand and Sligo Limestone Members of the Travis Peak Formation do not crop out within the study area but derive recharge by leakage from the overlying water-bearing strata. This source is primarily the Hensell Sand in the updip northern area where the Hammett Shale, which usually forms a hydrologic barrier at the base of the Hensell, is thin or absent. In the remainder of the study area where the Hosston exists, particularly in faulted areas, some leakage probably occurs through the Hammett. Figure 16 shows hydrographs of water levels in wells completed in the middle and lower Trinity aquifers superimposed on the hydrograph of the gain in base flow of the Guadalupe River (between the Comfort and Spring Branch gages)
near the wells during the same time period. The fluctuations in water levels of both wells appear to coincide approximately with fluctuations in the river's base flow, indicating that water in the middle Trinity is recharging the lower Trinity.

Recharge to the Cow Creek Limestone is also primarily due to vertical leakage from the overlying Henself Sand in the northern half of the study region. Midway through the area, the Hensell Sand grades into the Bexar Shale (Figures 6 and 12) which acts as a barrier to vertical recharge.

Water entering the Trinity Group aquifer generally moves słowly downdip to the south and southeast. The direction of flow is normally at right angles to the contours of the potentiometric surface and in the direction of decreasing altitude which is illustrated in Figures 17 and 18. Water-level measurements indicate that the average gradient of the potentiometric surface is 20 to 25 feet per mile (3.8 to $4.7 \mathrm{~m} / \mathrm{km}$). In areas of continuous pumpage, however, the ground water will flow toward these points of discharge. Locally, ground-water movement is also toward the points of natural discharge through springs.

Discharge from the fower Trinity aquifer occurs primarily by pumpage from wells. Middle Trinity discharge occurs both artificially by pumpage from wells and naturally by springs and seeps. Discharge from the upper Trinity is predominantly from natural rejection through springs and seeps. Discharge in the form of vertical leakage to underlying beds occurs from the middle and upper Trinity.

Hydraulic Characteristics

Hydraulic characteristics of an aquifer are generally described in terms of its coefficients of transmissibility and storage (see Definition of Terms). These values in the Trinity Group aquifer are highly variable due to the nature of the lithology. Limestones and calcareous-cemented sandstone and conglomerates depend on secondary porosity in the form of solution channels for the transmission of water. These solution channels are nonuniform in their occurrence and dimensions which results in unpredictable yields at any one location. Units composed of sand and conglomerate, such as the Hensell and Hosston, have higher yields updip to the north where there is less cementation.

Table 3 lists results from several pumping tests. The values were obtained from a combination of previously published results and recent pumping tests conducted by the Department's staff and private
individuals. For added coverage, additional coefficients of transmissibility were determined from specific capacities obtained from water well drilling contractors.

The average coefficient of transmissibility in the lower Trinity aquifer is about $10,000(\mathrm{gal} / \mathrm{d}) / \mathrm{ft}$ [124,000 (1/d)/m]. Highest values are in the Kerrvilie area. An average value of $1,700(\mathrm{gal} / \mathrm{d}) / \mathrm{ft}[21,000$ $(1 / d) / m]$ occurs in the middle Trinity. No values were determined for the upper Trinity aquifer although they can be expected to be substantially lower with respect to the lower and middle Trinity.

The coefficient of storage is a measurement of an aquifer's ability to store or release ground water from storage. In an artesian aquifer the coefficient of storage is small compared to that in a water-table aquifer, therefore a discharging artesian well will develop a cone of depression over a wider area in a shorter time. Artesian wells will have a storage coefficient generally ranging from 10^{-5} to 10^{-3} and this is usually about 10^{-6} per foot of thickness, while wells under water-table conditions will range from approximately 0.1 to 0.3 .

Four test holes were drilled by the Department of Water Resources in the study area to determine the hydrologic characteristics of the water-bearing units by laboratory analysis of cores taken from the holes. The results of the core analyses are listed in Table 4.

Water Levels

Ground water in the Trinity Group aquifer is predominantly under artesian conditions except in shallow wells in the outcrop where water-table conditions occur. The artesian conditions are a result of the water-bearing unit being overlain by a confining bed such as the Hammett Shale or Bexar Shale. Hydrostatic pressures are thus created which cause the static water level to rise in well bores above the level of the top of the aquifer.

Fluctuations in water levels are predominantly a result of seasonal climatic changes which affect the amount of ground water in storage. Water levels are usually highest in late spring and fall when rainfall is abundant and low during late summer when rainfall is scarce (Figure 16). In areas of heavy pumpage this does not always hold true.

There are no records to indicate long-term trends in water levels in the Hill Country region. Figure 19 shows some more recent trends. Over most of the study region, long-term trends will probably be dependent on climatic conditions. Historically, extended droughts have

Figure 16
Comparison of Water Levels in Lower and Middle Trinity Wells and the Gain in Base Flow of the Guadalupe River Between the Comfort and Spring Branch Gages

EXPLANATION - 鏗 Well used for control Letters indicate water-bearing unit 4. Lower member of the Glen Rose Limestone 8. Hensell Sand c. Cow Creek Limestone Top number indicates approximate altitude of water level in the middle Trinity aquifer, in feet above mean sea level, winter of 1977-1978 Bottom number indicates depth to water level in the middle Trinity aquifer, in feet below land surface

Line showing approximate altitude of water level Dashed where control is absent or limited Dashed where control is absent or
Interval loo feet
Datum is mean sea level
Outcrop of the lower member of the
Glen Rose Limestone
Outcrop of the Hensell Sand
Approximate downdip limit of fresh to slightly
saline water in the middle Trinity aquifer Cow Creek Limestone

Figure 17
Approximate Altitude of and Depth to Water Levels in Wells Completed in the Middle Trinity Aquifer, Winter of 1977-78

Well used for control
Top number indicates approximate altitude of water level in the lower Trinity aquifer,
in feet above mean sea level, $1975-78$ Bottom number indicates depih to water level in the lower Trinity aquifer,
in feet below land surface
in feet below land surface
-1300-
ine showing approximale altitude of water level Dashed where control is absent or limited Interval 100 feet
Datum is mean sea level

Approximate Altitude of and Depth to Water Levels in Wells Completed in the

County/Well	Member or Formation	Coefficient of Transmissibility [(gal/d)/ft]	Goefficient of Storage
Kerr			
RJ-56-63-603	Sligo and Hosston	22,000	5×10^{-5}
RJ-56-63-604	Sligo and Hosston	24,000	-
RJ-56-63-607	Sligo and Hosston	20,000	2×10^{-5}
RJJ-56-63-608	Cow Creek, Sligo and Hosston	46,000	7.4×10^{-4}
RJJ-56-63-604	Sligo and Hosston	19,000	5. $\times 10^{-5}$
RJ-56-63-901	Sligo and Hosston	15,000	3×10^{-5}

Gillespie

KK-57-4 1.902

Kendali

RB-68-01-30

RB-68-02-807

RB-68-11-412
Hensell

Hosston
600
7×10^{-5}

Bexar

AY-68-21-406

AY-68-19-501
Hosston
$3,312^{\text {a }}$

900

[^1]Table 4.-Results of Laboratory Analyses of Cores from Test Wells

Stratigraphic Unit**	Core Depth Interval\qquad (ft)	Porosity (Percent)	Specific Gravity	Permeability		Modulus of Elasticity ($\mathrm{lb} / \mathrm{in}^{2}$)
				$\begin{gathered} \text { Vertical } \\ {\left[(\mathrm{gal} / \mathrm{d}) / \mathrm{ft}^{2}\right]} \end{gathered}$	Horizontal $\left[(\mathrm{gal} / \mathrm{d}) / \mathrm{ft}^{2}\right]$	
KENDALL COUNTY Well RB-57-57-907						
Kcgrl	$160-161$	14.2	2.46	0.00048	Imp.*	602,000
	$166-167$	25.1	2.48	. 00035	0.0020	485,000
Kche	317.5-318.5	21.2	2.24	. 51	1.14	-
	$323-323.7$	22.4	2.36	. 00328	. 0086	-
	327.5-329	-	2.37	sample crumbled		431,600
	$335-335.9$	-	2.57	- -		530,000
	$340-341$	31.3	2.28	. 0039	sample crumbled	-
	$345-345.8$	31.4	2.36	. 0115	. 0263	-
	347.8-348.7	31.3	2.46	. 29	. 0134	408,600
	$354-354.6$	24.8	2.20	2.12	-	-
	$360-360.7$	30.9	2.18	. 22	23.95	-
	$362-362.7$	29.2	2.52	55.91	-	-
	374.5-375	13.4	2.47	12.43	-	-
Kcce	378.5-379	9.1	2.67	Imp.*	. 0009	857,700
	383-383.5	6.4	2.57	. 0005	. 00027	-
	388.5-389	5.6	2.59	. 016	. 032	-
	$392-392.6$	35.2	2.06	8.45	52.99	-
	398.6-399.3	12.27.3	2.49	. 0017	. 0214	746,300
	$402-402.8$		2.51	. 0047	. 0017	921,300
	409-409.8	13.2	2.50	. 0089	. 0012	804,900
	419.4-420	11.3	2.52	. 0019	. 0026	622,800
	422.4-423.2	32.3	2.31	. 266	1.86	809,700
Oe	508.5-509	1.2	2.79	. 00006	. 0037	1,259,000
	KENDALL COUNTY Well RB-68-11-718					
Kcgrl	254.8-255.8	9.1	-	0.0012	0.0063	792,700
	258.2-259.3	25.0	-	. 0082	. 0042	910,100
	301-302	22.7	-	. 108	. 012	721,300
	308.5-309.5	27.6	--	. 063	. 0056	1,042,100
	311.2-312.2	26.5	-	. 072	. 028	365,500
*impervious						
	mber of the Glen Sand ek. Limestone Sand ger Limestone	Limestone				

Table 4.-Results of Laboratory Analyses of Cores from Test Wells-Continued

[^2]Table 4.-Results of Laboratory Analyses of Cores from Test Wells-Continued

	Core Depth			Permeability		Modulus of
Stratigraphic Unit**	Interval (ft)	Porosity (Percent)	Specific Gravity	Vertical [(gal/d)/ft $\left.{ }^{2}\right]$	Horizontal [(gal/d)/ft ${ }^{2}$]	Elasticity ($\mathrm{lb} / \mathrm{in}^{2}$)

KENDALL COUNTY
Well RB-68-02-807-Continued

Kccc	$340-341$	37.5	2.18	2.61	0.026	345,000
	$350-350.5$	24.1	2.10	4.18	. 887	-
	354-355	18.2	2.17	. 025	. 0186	430,200
	360.5-361.5	22.3	2.24	. 0067	. 010	788,000
	$373-373.5$	26.8	2.24	. 20	. 103	-
	$379-380$	24.2	2.31	. 024	. 00182	489,300
	$391-392$	--	-	. 001	-	360,500
Kcho	$556-557$	24.2	2.27	. 024	. 0086	757,100
	662 -663	14.1	2.63	Imp.*	. 00022	1,012,300
	668 -669	7.4	2.66	Imp.*	Imp.*	671,000
	$677-678$	16.1	2.65	. 0211	. 00069	1,136,100
	$682-683$	1.0	2.80	-	-	-

* Imparvious
**Kegrl - lower member of the Gien Rose Limestone
Kche -- Hensall Sand
Kecc - Cow Creek Limestone
Keho - Hosston Sand
Oe - Ellenburger Limestone

Weil WA-69-19-401 (Trinity Group)

Well AZ-57-53-305 (Glen Rose)

Figure 19
Hydrographs of Water Levels in Selected Wells
caused abnormal lowering of water levels and in many instances wells have actually gone dry. Because the Cow Creek, Sligo, and Hosston are not directly recharged by rainfall, these units will be less affected by droughts than the Hensell and Glen Rose. High pumpage in areas of rising population growth is also trending toward rapid decline in water levels.

Figures 17 and 18 show the altitude of water levels in selected wells in the middle and lower Trinity aquifers, respectively. Water levels in numerous wells are also listed in Table 5.

Utilization and Development

Historically, ground water from the Trinity Group aquifer has been used for public supply, irrigation, industrial, domestic, and livestock purposes. With increased population growth and changing economic conditions, ground-water usage in the hill country has undergone some alteration.

Water from the lower Trinity aquifer is used almost exclusively for municipal and irrigation purposes. The cities of Kerrville and Bandera rely heavily on water from the Hosston Member of the Travis Peak Formation. Other areas such as southern Kendall and northern Bexar Counties have attempted to use lower Trinity water for public supply but have found that the chemical quality will not meet the standards of the Texas State Department of Health, In the past, several farge ranches, primarity in Bandera, Bexar, Kendall, and Kerr Counties, have used lower Trinity water to irrigate large grass fields but few of these wells remain active due to the cost of operating the pumps. Depth to the water-producing zone and the necessity to case off the Hammett Shale make drilling to the lower Trinity expensive and infeasible for most domestic needs.

The middie Trinity aquifer is the most widely used ground-water source because of its accessability and good chemical quality. It is the primary source for most domestic and livestock supplies as well as for many small communities and residential developments. Because of its high level of hardness, only a very few industries have been able to utilize the water. Irrigation, primarily in Gillespie County, is increasing, mostly in the form of drip systems for fruit and pecan orchards.

Comparatively few wells have been completed in the upper Trinity aquifer. These wells are exclusively for domestic and livestock use. Almost no new wells are being completed in this zone because of the poor quality and small quantity of the ground water being produced from the upper members of the Glen Rose Limestone.

AVAILABILITY OF GROUND WATER IN THE TRINITY GROUP AQUIFER

The amount of fresh to slightly saline ground water available for development from the Trinity Group aquifer annually in the study region is approximately 200,000 acre-feet ($247 \mathrm{hm}^{3}$), which is the approximate average annual recharge to the aquifer as discussed eariier. Much of this recharge is lost by natural rejection in the form of small springs, seeps, and evapotranspiration. Theoretically, this 200,000 acre-feet ($247 \mathrm{hm}^{3}$) annually of ground water can be developed without reducing the quantity of ground water in storage, although pumpage of this rate would probably cause a total depletion of the base flow of the rivers and streams that traverse the study region. In considering these figures of ground-water availability, it should be recognized that a single well, or a well field, cannot recover the total sustainable annual yield of the Trinity Group aquifer. This would require a large number of wells evenly spaced over the study region.

Ground-water availability should be of primary concern for any future development within the study region. Because of the small storage capacity of the Trinity Group aquifer, any large-scale pumpage should be preceded by adequate planning. Best yields generally occur in the outcrops of the lower member of the Limestone and the Hensell Sand (Figure 5) where rainfall has a better chance of entering the aquifer without being discharged through spring flow. Also, areas near creeks often have a better chance of developing solution channels that are necessary for large yield wells. Areas presently experiencing ground-water depletion due primarily to concentrated pumpage are in the Kerrville area and in northern Bexar and western Comal Counties.

GROUND-WATER PROBLEMS

Most ground-water problems in the south-central Texas hill country are related to insufficient well yield, less than desirable chemical quality, or a combination of the two. Before a well is drilled, it is important to consider the expected needs and the actual capacity of the tapped aquifer to meet those needs. As the well is drilled, there are several steps that can be taken to improve its efficiency.

Location of the well is the first point to consider. As a well is pumped, the drawdown of the water will form a cone of depression that expands outward from the well. When this cone of depression encounters the cone of depression from another pumping well, both wells will experience a barrier effect resulting in decreased vields. It is, therefore, helpful to know the
hydraulic characteristics of the aquifer in order to properly space the wells. This knowledge can be gained by conducting aquifer tests on nearby wells. The well site should also be located away from sources of surface contamination such as livestock pens and septic tanks.

Proper well completion is vital to an efficient well. An insufficiently cased borehole may collapse or sand-up at the water-producing interval. The type of rock encountered when drilling the well will determine the amount of casing needed. A well drilled in limestone will usually require only surface casing to protect from surface contamination. If sand or shale is encountered, the casing should extend through those zones. Wells drilled to the lower Trinity aquifer particularly require casing through the Hammett Shale. The entire length of casing should be cemented. For wells drilled in a loose, unconsolidated material such as the Hensell Sand in Gillespie County, the casing should be perforated or slotted, extend the entire depth of the hole, and then be gravel packed at the water-producing zone. Screens are often used instead of perforated or slotted casing. Proper well completion impoves the yield, protects from contamination, and extends the life of the well.

Acidizing a limestone water-bearing zone will often increase the yield by increasing the permeability of the adjacent formation. The amount of acid applied depends on the results desired and cost and normally ranges from 5,000 to 20,000 gallons $\{18,900$ to 75,700 liters) of 15 percent concentration of hydrochloric acid. Most domestic wells do not require acidizing for sufficient vields but the process is recommended for high-capacity wells.

Well development and pumping tests should be continued as long as is necessary to adequately clean out the bore hole and adjacent passages and to determine the most efficient pump size to install.

Chemical-quality problems in a well can be a dangerous health hazard. Pollution in the form of organic matter, such as sewage, may result in bacterial contamination and is usually identified by a high nitrate concentration. Bacterial contamination is most common in shallow wells and in wells where surface runoff is allowed to enter the borehole. Wells should be properly cased and cemented to help prevent surface contamination.

Ground water that contains excessively high levels of dissolved solids is encountered in many wells. The upper member of the Glen Rose Limestone in particular contains water with excessive amounts of sulfate. This highly mineralized water, even when mixed with better quality water from other zones, will often render water
from the well unusable. Again this contamination can be minimized or eliminated by proper casing and cementing of the problem zones.

Heavy pumpage of ground water from the Trinity Group aquifer in certain areas is resulting in a rapid decline of water levels. Further residential development is continuing in these areas, and continued water-level declines can be expected. Many areas throughout the study region are beginning to develop rapidly and in time will probably also experience water-level decline. A combination of heavy pumpage and drought conditions will likely result in many wells going dry.

RECOMMENDATIONS

Water levels in 89 observation wells in the study region are being measured annually to determine long-term changes. Additional observation wells should be established in areas not presently covered and especially in areas of suspected problems. In addition to the annual measurements, a number of observation wells should be measured monthly or quarterly to determine seasonal variations in water levels throughout the study region. Automatic recording equipment șhould be installed on wells both in the artesian zone and the water-table zone to determine more precisely the effect of rainfall on recharge.

A water quality monitoring program consisting of 77 wells has been instigated. These welfs should continue to be monitored to detect any changes in water quality resulting from well contamination and from possible saline-water encroachment due to heavy pumpage.

Aquifer tests shouid be conducted, especially in problem areas, to better determine the capabilities and future potential of the aquifer. Well logging should be continued in order to better define the formation horizons so that better well depth recommendations can be made.

A large portion of the study area is covered by "Cedar." (Juniper) trees which have been shown to be especially inefficient water users. Substantial increases in aquifer recharge couid be expected by reverting much of this land back to grass. Small dams along creeks would also improve recharge by slowing the rate of surface runoff.

Homeowners can benefit by installing larger water storage units and practicing water conservation. Rainwater retained in cisterns can be used in conjunction with ground water for increased supplies.

Adequate septic tanks should be installed, and raw sewage should never be allowed to drain into an abandoned well or into a creek or river.

The efficient utilization of ground water, especially for large-demand purposes, requires adequate planning. Some developments have experienced severe water shortages and water quality problems primarily due to the lack of such planning. Before development begins, a program of test drilling, test pumping, and
water-quality sampling should be instigated. The information gained will determine the most efficient well completion method, pump setting, well spacing, and feasibility of drilling additional wells. Large concentrated withdrawals in small areas should be avoided, and housing developments should not contain more housing units than their water system can support. Whenever possible, surface-water supplies should be considered to supplement the ground-water supply.

SELECTED REFERENGES

Adkins, W. S., 1933, The Mesozoic systems in Texas, in The geology of Texas, v. 1, Stratigraphy: Univ. Texas, Bur. Econ. Geology Bull. 3232, 1007 p.

Alexander, W. H., Jr., Myers, B. N., and Dale; O. C. 1964, Reconnaissance investigation of the ground-water resources of the Guadalupe, San Antonio, and Nueces River basins, Texas: Texas Water Comm. Bull. 6409; 105 p

American Geological Institute, 1957, Glossary of geology and related sciences: Am. Geol. Inst., 396 p,

Barnes, V. E., 1948, Ouachita facies in central Texas: Univ. Texas, Bur. Econ. Geology Rept. of Inv. no: 2, 12 p.
____1952-1956. Geologic maps, scale 1:31,680, of :7.5-minute quadrangles, Gillespie and adjoining counties: Univ. Texas, Bur. Econ, Geology Geol. Ouad. Maps 1-20

1963:1967, Geologic maps, scale $1: 24,000$, of 7.5-minute. quadrangles, Blanco and adjoining counties: Univ. Texas, Bur. Econ. Geology Geol. Ouad; Maps 25, 27, 29, and 31-34.

Bebout, : D. G., and Loucks, R, G., 1974, Stuart City trend, lower Cretaceous, south Texas, a carbonate shelf-margin model for hydrocarbon exploration: Univ. Texas, Bur. Econ. Geology Rept. of Inv. no. 78, 80 p.

Bebout, D. G., and Loucks, R. G., editors, 1977 Cretaceous carbonates of Texas and Mexico, applications to subsurface exploration: Univ. Texas, Bur. Econ. Geology Rept. of Inv. no, 89, 332 p.

Bureau of Economic Geology, 1974a, Geologic atlas of Texas, Austin sheet: Univ. Texas, Bur. Econ. Geology map.

1974b, Geologic atlas of Texas, San Antonio sheet: Univ. Texas, Bur. Econ. Geology map.

1974c, Geologic atlas of Texas, Seguin sheet: Univ. Texas, Bur. Econ. Geology map.

Carr, J. T., Jr., 1967, The climate and physiography of Texas: Texas Water Devel. Board Rept. 53, 27 p.

Cuyler, R. H., 1931, Vegetation as an indicator of geologic formations: Amer. Assoc. Petrol. Geologists Bull., v. 15, pt. 1, p. 67-78.

DeCook, K. J., 1960, Geology and ground-water resources of Hays County, Texas: Texas Board Water Engineers Bull. 6004, 170 p.

Doll, W. L.; Meyer, G., and Archer, R. J., 1963; Water resources of West Virginia: West Virginia Dept. Nat. Resources, Div. Water Resources, 134 p.

Duffin, G. L., 1974, Subsurface saline water resources in the San Antonio area, Texas: Texas Water Devel. Board file rept., 39 p .

Eaton, F. Mi, 1950, Significance of carbonates in irrigation waters: Soil Sci,, v. 59, p. 123-133.

Fisher, W. L., and Rodda, P. U., 1967, Lower Cretaceous sands of Texas, stratigraphy and resources: Univ. Texas, Bur. Econ. Geology Rept. of Inv. no. 59, 116 p.

Flawn, P. T., Goldstein, A., Jr., King, P. B., and Weaver, C. E., 1961, The Ouachita system: Univ. Texas, Bur. Econ. Geol. Pub. 6120, 385 p.

Fotk, R. L., 1959, Practical classification of limestones: Amer. Assoc. Petrol. Geologists Bull., v. 43, p. 1-39.

Follett, C. R., 1973, Ground-water resources of Blanco County, Texas: Texas Water Devel. Board Rept. 174, 95 p.

Forgotson, J. M., Jr., 1956, A correlation and regional stratigraphic analysis of the formations of the Trinity Group of the Comanchean Cretaceous of the Guif Coastal Plain; and The genesis and petrography of the Ferry Lake Anhydrite: Northwestern Univ., Ph.D. dissertation. (Summary in Trans. Gulf Coast Assoc. Geol. Socs., v. 6, p. 91-108.)

George, W. O., and others, 1952, Geology and ground-water resources of Comal County, Texas: U.S. Geol. Survey Water-Supply Paper 1138, 126 p.

Hellef, V. G., 1933, The effect of saline and alkaline waters on domestic animals: Oklahoma A\&M College, Expt. Sta. Bull. 217, 23 p.

Hem, J. D., 1970, Study and interpretation of the chemical characteristics of natural water: U.S. Geol. Survey Water-Supply Paper 1473, 2nd ed., 363 p.

Henningsen, R. E., 1962, Water diagenesis in Lower Cretaceous Trinity aquifers of central Texas: Baylor Univ., Baylor Geological Studies Bull, 3, 38 p.

Hill, R. T., 1901, Geography and geology of the Black and Grand Prairies, Texas: U.S. Geol. Survey 21 st Ann. Rept., pt. 7, 666 p.

Hill, R. T., and Vaughan, T. W., 1898, Geology of the Edwards Plateau and Rio Grande plain adjacent to Austin and San Antonio, Texas, with reference to the occurrence of underground waters: U.S. Geol. Survey 18th Ann. Rept., pt. 2, p. 193-321.

Holt, C. L. R., 1956, Geology and ground-water resources of Medina County, Texas: Texas Board of Water Engineers Bull. 5601, 289 p.

Imlay, R. W., 1945, Subsurface Lower Cretaceous formations of south Texas: Am. Assoc. Petrol. Geologists Buil., v. 29, no. 10, p. 1416-1469.

Kane, J. W., 1967, Monthly reservoir evaporation rates for Texas, 1940 through 1965: Texas Water Devel. Board Rept. 64, 111 p.

Klemt, W. B., Perkins, R. D., and Alvarez, H. J., 1975. Ground-water resources of part of central Texas, with emphasis on the Antlers and Travis Peak Formations: Texas Water Devel. Board Rept. 195, v. 1, 63 p.

Long, A, T., 1958, Ground-water geology of Real County, Texas: Texas Water Comm. Bull. 5803, 50 p.

Lozo, F. E., and Stricklin, F. L.، Jr., 1956, Stratigraphic notes on the outcrop basal Cretaceous, central Texas: Trans. Gulf Coast Assoc. Geol. Soc., v. 6, p. 67-78.

Lyerly, P. J. and Longenecker, D. E., 1957, Salinity control in irrigation agriculture: Texas A\&M Univ., Texas Agriculture Extension Service, Bull. 876, 20 p.

Maier, F. J., 1950, Fluoridation of public water supplies: Am. Water Works Assoc. Jour., v. 42, pt. 1, p. 66-67, 1120-1132.

Maxcy, K. F., 1950, Report on the relation of nitrate concentration in well waters to the occurrence of methemoglobinema in infants: Nati. Research Council Bull. Sanitary Eng. and Environment, App. D. p. 265-271.

Mount, J. R., 1963, Investigation of ground-water resources near Fredericksburg, Texas: Texas Water Comm. Memo. Rept. 63-03, 115 p.

Perkins, B. F., 1968, Geology of a rudist-reef complex (abstract): Geol. Soc. Amer.; Program, 81st Ann. Meeting, p. 223.

Perkins, B. F.; 1970, Genetic implications of rudist reef architecture (abstract): Amer. Assoc. Petrot. Geologist Bull., v. 54, p. 863-864.

Pettit, B. M., Jr., and George, W. O., 1956, Ground-water resources of the San Antonio area, Texas: Texas Board Water Engineers Bull. 5608, v. 1; 85 p., and v. 2, pt. 1, 255 p.

Reeves, R. D., 1967, Ground-water resources of Kendall County, Texas: Texas Water Devel. Board Rept. 60, 108 p .
_1969, Ground-water resources of Kerr County, Texas: Texas Water Devel. Board Rept. 102, 71 p.

Reeves, R. Di, and Lee, F. C., 1962, Ground-water geology of Bandera County, Texas: Texas Water Comm. Bull. 6210, 78 p.

Rose, P. R:, 1972, Edwards Group, surface and subsurface; central Texas: Univ. Texas, Bur. Econ. Geology Rept. of Inv. no. 74, 198 p.

Scofield, C. S., 1936, The salinity of irrigation water: Smithsonian Inst. Ann. Rept., 1934-35, p. 275-287.

Stricklin, F. L., Jr., Smith, C. I.; and Lozo, F. E.; 1971, Stratigraphy of lower Cretaceous Trinity deposits of central Texas: Univ. Texas, Bur. Econ. Geology Rept. of Inv. no. 71, 63 p.

Texas Department of Health, 1977, Drinking water standards governing drinking water quality and reporting requirements for public water supply systems: 17 p .

Tucker, D. R., 1962a, Central Texas lower Cretaceous stratigraphy (abstract): Trans. Gulf Coast Assoc. Geol. Socs. v. 12, p. 839-896.
___1962b; Subsurface lower Cretaceous stratigraphy, in Contributions to the geology of south Texas: South Texas Geol. Soc., San Antonio, p, 177-216.
U.S. Environmental Protection Agency, 1975, Water programs--national interim primary drinking water regulations: Federal Register, v. 40, no. 248.
U.S. Geological Survey, 1977, Water resources data for Texas, water year 1976: U.S. Geol. Survey Water Data Rept. TX-76-3, v. 3, 557 p .
U.S. Public Health Service, 1962, Public Health Service drinking water standards: U.S. Public Health Service Pub. 956, 61 p.
U.S. Salinity Laboratory Staff, 1954, Diagnosis and improvement of saline and alkali soils: U.S. Dept. Agr. Handb. 60, 760 p.

Walton, W. C., 1962, Selected analytical methods for well and aquifer evaluation: Hilnois State Water Survey Rept. 49, 81 p .

Welder, F. A., and Reeves, R. D., 1962, Geology and ground-water resources of Uvalde County, Texas: Texas Water Comm. Bull. 6212, 263 p.

Wermund, E. G., editor, 1974, Environmental units in carbonate terranes as developed from a case study of the southern Edwards Plateau and adjacent interior coastal plain, in Approaches to environmental geology, a colloquium and workshop; Univ. Texas, Bur. Econ. Geology Rept. of Inv, no. 81, p. 52-78.

Whitney, M. I., 1952, Some zone-marker fossils of the Glen Rose Formation of central Texas: Jour. Paleontology, v. 26, p. 65-73.

Wilcox, L. V., 1955, Classification and use of irrigation waters: U.S. Dept. Agr. Circ. 969, 19 p.

Winslow, A. G., and Kister, L. R., Jr., 1956, Saline-water resources of Texas: U.S. Geol. Survey Water-Supply Paper 1365, 105 p.

Young, K. P., 1967, Comanche Series (Cretaceous), south central Texas, in Comanchean (Lower Cretaceous) stratigraphy and paleontology of Texas: Soc. Econ. Paleontology and Mineralogy, Permian Basin Section, Pub. 67-8, p. 8.29.

A11 wells ere drilsed ualess othervi.sn nited in remurke collums.

Gcoup, wdi fferentiotrad.

See footnotes at end of table
handers coikty

Weli	onder	Oriller	$\left\lvert\, \begin{gathered} \text { Dale } \\ \text { comphoted } \end{gathered}\right.$	$\begin{gathered} \text { DepLh } \\ \text { of } \\ \text { well } \\ (\mathrm{ft}) \end{gathered}$	$\operatorname{cassin}^{\text {a }}$		$\left\{\begin{array}{c} u_{n+t e r} \\ \text { beartng } \\ \text { unit } \end{array}\right.$		Water Ieve!		$\begin{aligned} & \text { Method } \\ & \text { nff } \\ & \text { 1ift } \end{aligned}$	$\begin{gathered} \text { Use } \\ \text { of } \\ \text { wster } \end{gathered}$	Renarks
					$\begin{aligned} & \text { Dasm- } \\ & \text { etter } \\ & \text { (in.) } \end{aligned}$	Depth (ft)				Date of measarg ement			
* A5-68-18-701.	Frte $\mathrm{Xn}_{\text {nowles }}$	-- Ros:mant	1956	1,120	10	924	Kct	1,470	29.5	Apr. 1956	$\mathrm{T}_{75}{ }_{75}^{\mathrm{E}}$	İr	Well J-62 in Texas Katex Comiasion Rufle:in 6210, Perforatar froia 300 to 880 qeet. Opra hole from 926 to 1,120 feet, Yipld tocreaked fron 205 to 1,200 gal.fofn after beldizing. 1
25-201	Mea, Ireoe Mezurek	G. Yeinen	1954	651	7	315	$\mathrm{X}_{\mathrm{ch}} \mathrm{e}_{\text {, }}$ Kıce	1,100	$\begin{aligned} & 99.4 \\ & 7.2 \end{aligned}$	$\begin{aligned} & \text { Sept. } \\ & \text { Dec. } 22,1994 \\ & \text { De, } 1977 \end{aligned}$	$\underset{\square}{\text { Sub, }} \underset{1 / 2}{ }$	D	Welif f-bis tewas water Commerion yullotin 6210. Dpen fole from 315 to $6 S 1$ feet. If
202	Binford Baptigt Mission Church	do	1954	412	$\mathfrak{6}$	102	Kfrcl	1,195	132.7 92.4	$\begin{array}{ll} \text { Fob, } & 22, \\ \text { Jen, } & 1954 \\ 15, & 1959 \end{array}$	Sub, E	D	Wall P-17 in Texas hater Compatasion sulletin 6210. Ogen twite fxem 102 to 412 feet. 13
59-66-701	v. c. Dapuey	Smitin Drifliag Service	1954	500	7	282	$\begin{aligned} & \text { Regrl, } \\ & \text { xchut } \end{aligned}$	1,698	142	sug. 31, 1954	Sub,,$~ E$ $11 / 2$	-	Weit $\mathrm{c}-\mathrm{\lambda}$ in Texas Water Comatiseion Bultetin 62kO. Open hele fror 282 to 500 fone. If
9002 902	Medina Childrea's Hoce	do	3958	520	10	140	$\begin{aligned} & \text { Kcgrl, } \\ & \text { Kche } \end{aligned}$	1,600	$\begin{gathered} 20 \\ 75.9 \\ 5.5 \end{gathered}$		$\mathrm{sub}_{25} \mathrm{E}$	Irr	Vell C-S it Texas Nater Connission Bulletifn 62IO. Open hale from 140 to 520 feet. Reported yheld $500 \mathrm{gal} / \mathrm{min}$ with 200 feet drawdown.
	Mrs. Kartio Wright	๖.	1956	375	7	160		1,575	51	Feb, 6, 1956	${ }^{*}$	${ }^{*}$	Woil c-6 in Texre Water Compiesion Inlletin 6210 . ©pen hole from 160 to 375 feet. $1 /$
	Mext Maby Mo. 1	Tesoro Petroleum	1974	6,729	--	\cdots	\cdots	2,236	-"	--	--	-.	Ofl tese. 1
	Texas Patke and Wisiddifa Department	Edmoude Detilimg co.	1977	770	6	725	Kıce	1,835	900	Nov. 28, 1977	*	*	Oper hol.c from 725 to 770 feet. Cementod from 325 feet to sutface, Reproxted yield $60 \mathrm{gal} / \mathrm{min}$ with 185 feet drawdomm. Unused pablic ẹupply sen 11 .
	S. 13. Anderean No. 1	Genoral crude orl to,	1955	1,514	$\stackrel{\square}{-}$	--	--	1,873	-*	--	-.	--	Ofl teat. y
* 13-101	Joha F. Camp	$\begin{aligned} & \text { Sinith Drillitre } \\ & \text { Snivice } \end{aligned}$	1955	825	,	600	$\mathrm{K}_{\mathrm{cepr}} 1 \text {, }$ Kche	1,955	350 490.9 412.6 412.6 414.3		Sue, z	s	We11 b-s in Texse Mater Comaliswion Buthotin 6210. Open hole froul 600 to 825 foet. Obeervation well. 11
* 14-101	c. H. Brimarth	King stokngs	--	4 4,	?	36	$\mathrm{K}_{\mathrm{cg}} \mathrm{~g},$ Kche	1,662	2.4	May 1954	ᄃ, 4	${ }^{N}$	Well $\mathrm{E}-10 \mathrm{in}$ Texas Yater Coamiseion Bultetin 6210. Decpeneot from 100 to 445 feet 10 May 1954. Dpen bole from 36 to 445 feet. Unused Itvertock well. $1 /$
102		do	1953	558	y	--	Kegrl, Kchẹ	1,72?	166,0	3uly 20, 1953	$\begin{gathered} \text { Sub, } \\ 111 / 2 \end{gathered}$	D	Well E-9 in Texas Water Camiaelon Bulletin 6210. y
201	L. R. Neal	9 Soitb ordiding	1955	443	7	175	Kayx Kche, Kcee	1,609	54.0 89.2	$\begin{array}{lll} \text { June } & 24, & 1955 \\ \text { Dec. } & 16, & 197 \% \end{array}$	Sub, $\mathrm{L}^{\text {e }}$	D	Well B-15 in Texas Water Commission Bulletfn 6210. Ogen hotie from 175 to 4188 feet. I
202	R. W. Pagne, Je,	do	1955	400	7	160		1,562	38.6 14.5	$\begin{array}{lll} \mathrm{Jul}_{\mathrm{Y}} & 20, & 1955 \\ \text { Drec. } & 17, & 1958 \end{array}$	$\mathrm{J}, 18^{8}$	D, s	Kill c-20 in Texas Water Copgrisaiga Bulietin 6210. Open hole from 150 to 400 feet. I
* 301	s. Hund	King Stokes	1.953	150	6	20	Rogr	1,590	44.5	Mar. 29, 1954	.J, в	D, ${ }^{\text {b }}$	Well c-8 in Texak Wrier Coamiacion Bulletinn 6210, Dpan tole from 20 to 1.50 feet. $1 /$
501	Marri $=$ Miller	H. ¢. Kurphy Drillisis	1975	500	5	436	Kegre , Kcbe, Kıce	1,540	$\begin{aligned} & 66.2 \\ & 68.1 \\ & 62.4 \\ & 62.4 \\ & 64.0 \end{aligned}$		Suh, Ef	D, s	Ogen hole from 436 to 500 feet. Genented from 200 to 100 feect. Dbservation well.
502	J. Bagwell	$\begin{aligned} & \text { Smimith dritilner } \\ & \text { Sncyice. } \end{aligned}$	1955	6011	6	*-	$\begin{aligned} & \text { Kcgru, } \\ & \text { Kefrrl, } \\ & \text { Rehe } \end{aligned}$	1,660	$\begin{aligned} & 136.7 \\ & 174.6 \end{aligned}$	$\begin{array}{lll} \text { July } & 20, & 1955 \\ \text { Dec. } & 22, & 1977 \end{array}$	$\mathrm{Sub}_{1} \mathrm{~B}^{8}$	D	kill g-2 in Taxas Water Commission Bulletin 6210. 14
601	Medins. Water Supply Corp.	WTight wator Wella	2967	820	$\begin{aligned} & 8 \\ & 6 \end{aligned}$	400	$\begin{aligned} & \text { x.f.e, } \\ & \text { cho } \end{aligned}$	1,465	170	.kuly 1967	$\mathrm{Subs}_{15} \mathrm{~s}$	F	Scroences from 400 to 609 feet. Open thole from 609 to 610 feet. Pumy set at 380 faet.

ee footnotes at end of table

Sable 5. w-kecoris of Selected Water Wells, Sprinss, and 011 and Gae Testa--Continum

see footnotee at end of tabl

See foatnotes at end of table.
rable 5.--8ecords of seleected Weter Gells, springe, and onl and cas Testr-- continued

Werit	Onnex	Driller	$\left\lvert\, \begin{gathered} \text { Date } \\ \text { completed } \end{gathered}\right.$	$\begin{gathered} \text { Depeth } \\ \text { of } \\ \substack{\text { eil } \\ \text { (ft) }} \end{gathered}$	Casing		$\begin{gathered} \text { Water } \\ \text { bearing } \\ \text { vint } \end{gathered}$		Whater Level		$\begin{gathered} \text { Method } \\ \text { of } \\ 1 \mathrm{fft} \end{gathered}$	Use $\underset{\text { water }}{\substack{\text { of } \\ \text { w }}}$	Rematrks
					$\begin{aligned} & \text { Dian. } \\ & \text { ecter } \\ & \text { (iv.) } \end{aligned}$	$\underset{\substack{\text { Depthth } \\(\mathrm{ft})}}{\substack{\text { cep }}}$			Below surface datum (ft)	$\underset{\substack{\text { Date of } \\ \text { ocasarterient }}}{ }$			
AS-69-21-101	L. R. Tukn	South Dr11ling Survice	1955	400	7		$\underset{\substack{\mathrm{K} \varepsilon \mathrm{~g} \mathrm{grur}}}{ }$		$\begin{aligned} & 37 \\ & 43.5 \end{aligned}$	$\left\{\begin{array}{lll} \text { oct. } & 1955 \\ \text { Der. } & 14 & 1957 \\ \text { July } & \ddots & 1955 \end{array}\right.$	$\begin{aligned} & n \\ & n \end{aligned}$		Well p-19 in Texas Water Commisnion Bulletin 6210. Opell hole from 20 to 400 frect. If
22-201	P. 1.. Gurrinoct	do	1953	61.5	7	20	$\begin{aligned} & \text { Kcequa, } \\ & \text { Recrar, } \\ & \text { Rehe } \end{aligned}$	1,750	200			*	Well f-17 in Texas Water Lamultefion Bulleth 6210. Opfn hole from 20 to fis feet. 1
* $\quad \begin{array}{r}201 \\ 501\end{array}$	Ruth Whitetuead *o, 1 s. F. Frelley	Gulf 011 Cnrp. Smlth Drilling Service	$\begin{aligned} & 1965 \\ & 1955 \end{aligned}$	$\begin{array}{r} 7,148 \\ 570 \end{array}$	7	20		$\begin{aligned} & 1,950 \\ & 1,476 \end{aligned}$	115	$\text { Yar. } 1955$	с,	$\begin{gathered} \overline{-广} \\ \mathrm{n}, \mathrm{~s} \end{gathered}$	Ofl test. y', Well e-38 in Texas Waten Conmiseton Bultetin 6210. pper hole fromi 20 to 570 feet. \mathbb{Y}
301	Paul Knymer	Layue Texas co.	1956	1,000	8	1,000	Xrho	1,465	200	1956	$\underbrace{\text { Suh, }}_{10}$	0, 3	Well Mn2 in Texa: Kater CommireLon Bulletin 6210. Perforsted from 980 to 1,100 feet. Reported y celd $65 \mathrm{ga} 1 / \mathrm{mln}$) with 300 feet drawsom.
* 901	Arthur Rrfurt	Suetin Lioney	1973	330	6	26	Kcgr 1	1,280	17.1 14.7 14.7 12.1 1.1 16.8		Sub, \%	${ }^{\text {D }}$	
* 23-501	c. T. c.1ementes	do	1972	635	5	301	${ }_{\text {Kcgri }} \begin{aligned} & \text { Kehe } \\ & \text { Refe }\end{aligned}$	3,500	219.1 20.1 209.5 214.4 214.0		Sun, E	${ }^{\circ}$	Open hole from 301 tu 635 Ceet. Observation well, ${ }_{\text {a }} \ldots$ \ldots.
* 601	Dixje: Dude Maccl	Muckniomy Def11lug $\stackrel{0}{0}$.	1953	1,065	5	${ }^{812}$	$\underbrace{\substack{\text { Res, } \\ \text { Kcho }}}_{\text {Res, }}$	3,545	270	Scpt. 1954	$\mathrm{Sub}_{\substack{\text { Sub } \\ 2}}$	\%	Well hn73 in Taxas hater comiliselou bulletid 6210. Open hole from 312 to 1,085 feet. If
* 602	brich Elineseen	1. C. Murphy Urillitog	197\%	550	$\mathfrak{6}$	215		1,500	87.9 84.7 89.1 82.1 91.1		$\underset{2}{\text { sub, }}$ (I	Open hale frum 215 to 550 feet. observation mell.
* B01	3. 8. Merrick, Bstate	J. R. Jolioem Drilling Gの.	19:3	1,197	7	900		1,500	${ }_{315}^{275}$		$\stackrel{N}{ }$	${ }^{\text {N/ }}$	Wril m-11 in Texae Water Comisision Sulleth 6210, Open tone irom 900 to 1,197 fect, Reporterad yield 16 gaidmin with 75 feet drawdomi. 1 .
302	J. F. Merrick No. 1	shell 011 co .	1969	6,757	--	--	--	1, 5900	--	--	--	--	ofl text. y
* 901	J. S. Murtie	J. R. Inhnsout drilline. Co.	395.3	1,110	\cdots	--	$\underset{\substack{\text { Kccs, } \\ \text { Kcho } \\ \hline}}{ }$	1,420	135	July 1953	Sub, e	D, s	Well No3 is Trxas: Water Lémoieston Bulletin 6210. Yield ingreased fram 150 to 350 gel/min when actidizes. If
* 24-101	Rayulond HLicks	J. P. Sefued	1954	560	7	280		1,333	92	oct. . 1954	Sub, ${ }_{2}$	D	Well H-39 i.n Texas hater Commiasion Bulinatn s210. Open boln from 280 to 560 feet. Il
201	Bandera Nater Control anc Improvement District No, 1	N. R. Joturan Unilling Co.	1953	900	\cdots	--	Merso	1,2:87	--	--	*	N	We. 11 [t-42 in Texala Water Commisaion Pullentin 6210. Plugged puhlic nupply well.
202	Baucts kitne Cantrol und luproverent Dintrict No. 1 , well 4	+o	1953	${ }^{698}$	$\begin{aligned} & 15 \\ & 12 \end{aligned}$	342	Kcho	1,270	$\begin{aligned} & 55 \\ & 74.2 \\ & 95.7 \end{aligned}$		$\mathrm{T}_{40}{ }^{\text {R }}$	${ }^{p}$	We 11 tu-4 in Texas Whter Commfanion bulletiv 6210. Open hole from 743 to ags fest. Pump eet st 180 feet. Reported yield 1,227 gal/min with 215 feet dravidom. Acidized. 3

See footnotea at end of table
eandira coumty
Rable S.--Records of Selected hater Wells, Springe, and oil and cas reata--Continue

See footnotes at end of table

Table 5. \cdots - Becorde of Selected Water Nella, Springs, and Ofl and Gas Testr--Continued

Hell	owner	Driller	$\begin{gathered} \text { Date } \\ \text { cmplempled } \end{gathered}$	$\begin{gathered} \text { Depth } \\ \text { of } \\ \text { wel1 } \\ \text { wit } \end{gathered}$	Casing		Naterbearling usit	Altitudeof lend sarface (ft)	mater ievel		$\begin{gathered} \text { Hecthod } \\ \substack{\text { of } \\ \text { oft }} \end{gathered}$	$\begin{gathered} \text { Uas } \\ \text { of } \\ \text { water } \end{gathered}$	Remarks
					Díam- eter (in.)	$\underset{\substack{\text { Depth } \\(f t)}}{\substack{\text { (f) }}}$				$\underset{\text { Date of }}{\text { measurenent }}$			
AS 5 -69-24-601	B. Harker	J. R. Jolumsou Drilline Co.	-	925	11	${ }^{820}$	Kcho	1,405	116.4	Jan. 8, 1959	$\underset{\substack{\mathrm{sub}, \mathrm{E} \\ 60}}{ }$	Itr	NeK1 H-61 in Texas Water Commiskion Julletin 6210 . Open hole from B20 to 925 feet. Hump set at 550 feet. Reported yield $210 \mathrm{gal} / \mathrm{minn}$ with 84 fret 4 truwdown.
* 701		H. C. Murnhy Drilling	1964	120	,	120	$\mathrm{Kcgrgu}^{\text {d }}$	1,420	$\begin{aligned} & 25.3 \\ & 6.9 \\ & 29.1 \\ & 6.1 \\ & 6.6 \\ & 30.8 \\ & \hline \end{aligned}$		Sub, R	D	observation well.

bandira cointy
Table. f, --Chemical Analyser of water from Setected Wells and Springs

Water-bearing unit: Regr, Glen Rose Limestone; Kcgrur upper member of the Glen Roge Ligestone; Kogrt, lowar member of the glea Rose Limestone; Kche, Limeatone Member of the Travis Peak, Yormation! Kcho, Hosston Sand Menber of the Travis Peak Formation; Rct Trinity Group, undifferentiated.
ispolved solids : The hicarbonate "reported" is converted by computation (multiplylog by 0.4917) to an equivalent anount of carbonate, and the
Analyaes by Texas State bepartment of Health

Well	Waterbeating unit	Depth of well or sampled interval (Et)	Date of collection	$\left\|\begin{array}{c} \mathrm{silica} \\ \left(\mathrm{EiO}_{2}\right) \end{array}\right\|$	$\begin{aligned} & \text { Iron } \\ & (\mathbf{F} \in) \end{aligned}$	$\begin{aligned} & \text { Cal- } \\ & \text { cium } \\ & \text { (Cit) } \end{aligned}$	$\begin{gathered} \text { Kagna- } \\ \begin{array}{c} \text { suma } \\ \text { (Mug } \end{array} \end{gathered}$	$\begin{aligned} & \text { Sod- } \\ & \text { (um } \\ & \text { (Na) }) \end{aligned}$	$\left.\begin{gathered} \text { Potas- } \\ \text { sium } \\ (\mathbb{k}) \end{gathered} \right\rvert\,$	Bicarbonate $\left(\mathrm{HCO}_{3}\right)$	Sul$\left(\mathrm{SO}_{4}\right)$	$\begin{aligned} & \text { Ch10- } \\ & \text { r1de } \\ & \text { (C1) } \end{aligned}$	$\begin{gathered} \text { Fluo- } \\ \text { ride } \\ \text { (P) } \end{gathered}$	$\begin{gathered} \text { M1- } \\ \text { trate } \\ \left.\mathrm{NHO}_{3}\right) \end{gathered}$	Boron (B)	$\begin{array}{\|c\|c\|} \text { D18- } \\ \text { nolved } \\ \text { solvids } \end{array}$	Total hard- nets as CaCO 	Specific conduct ance (micromho at $25^{\circ} \mathrm{C}$)	PR	$\begin{aligned} & \text { Per- } \\ & \text { cent } \\ & \text { sod- } \\ & \text { fup } \end{aligned}$	Sodium adsorpt10n ratio (SAR)	Residual sodivan carbon- gee (RSC)
AS-68-17-101	$\mathrm{Kch}^{\text {a }}$	1,204	Nov. 21, 1975	12	\cdots	41	25	95	${ }^{1.3}$	353	49	50	2.0	< 0.4	--	460	205	763	8.5	48	2.8	1.6
401	Kche, Kegr 1 , Kece	420	Aug. 19, 1955	20	0.0	92	17	22	--	339	15	37	--	1.0	--	370	300	662	7.4	14	. 5	. 0
501	Kche, Kcgrl	390	Aug. S, 1974	12	--	67	54	67	--	356	191	36	2.9	1.5	--	606	390	950	7.9	27	1.4	. 0
501	rche, $\mathrm{Kogrt}^{\mathrm{I}}$	390.	July 13, 1976	11	\cdots	68	53	67	\cdots	356	176	37	2.7	1.9	--	591	390	965	7.7	27	1.4	. 0
501	Rehe, Kсgr 1	390	July 7, 1977	11	--	65	55	64	15	362	197	36	2.7	< . 4	\cdots	624	390	967	7.6	25	1.4	. 0
502	Kine, $\mathrm{K}_{\mathrm{cgr}} \mathrm{l}$, Kece	420	July 2, 1954	13	--	64	57	66	--	356	189	35	-*	. 0	--	599	394	977	7.9	27	1.4	. 0
601	Kche, $\mathrm{K}_{\mathrm{gr}}{ }^{1}$	400	Aug. 5, 2974	12	\cdots	74	53	58	--	360	182	34	3.4	.B	\cdots	594	403	926	7.9	24	1.2	. 0
18-701	Kct	1,120	Dec. 21, 1956	13	--	304	180	46	\cdots	316	1,260	20	--	1.4	--	1,979	1,500	2,270	7.4	6	. 5	. 0
69-06-902	Kche, $\mathrm{K}_{\mathrm{cgr}}{ }^{1}$	520	Feb. 1, 1952	13	. 0	86	64	34	9.2	351	190	34	2.6	1.0	0.5	607	478	982	7.8	13	. 6	. 0
13-101	$\begin{aligned} & \text { Kche, } \\ & \text { Kcgri } \end{aligned}$	825	Feb. 3, 1971	12	--	102	65	37	--	318	275	37	2.8	< . 4	--	687	520	1,050	7.6	13	.7	. 0
101	Kcke, Kcgri	825	Aug. 2D, 1974	9	. 1	114	66	59	\cdots	325	336	97	3.6	$<.4$	-	784	560.	1,091	8.1	19	1.0	. 0
14-101	Kche, Kcgr	455	May 6, 1954	9	--	516	421	124	--	274	2,910	25	-	. 0	--	4,139	3,020	4,220	7.7	8	. 9	. 0
301	Kogr	150	Aug. 24, 1955	12	.0	554	263	48	--	267	2,210	34	--	. 5	\cdots	3,252	2,460	3,430	7.2	4	. 4	. 0
501	Kcher, Kcgrl, Kecc	500	Aug. 8, 1974	10	-	510	40	23	--	361	2,070	25	1.4	< .4	--	1,855	1,440	2,001	7.7	3	. 2	. 0
501	Keho; Kcer 1, Kccc	500	July 19, 1976	${ }^{1}$	--	143	53	44	--	346	310	36	2.2	$<.4$	--	770	570	1,139	7.7	${ }^{-14}$. 7	. 0
603	Kche, Kc官rl, Kece	455	May 16, 1954	11	-".	476	209	28	--	292	1,770	18	\cdots	\cdots	-п	2,655	2,050	2,850	7.4	3	. 2	. 0
701	Kcgru	--	Nov. 7, 1975	10	--	97	2	6	-	295	10	19	$\cdot 2$	< . 4	--	283	270	476	7.9	5	. 1	. 0
701	Kegru	--	July 12, 1977	12	--	73	18	6	--	292	13	10	. 1	2.5	--	278	257	482	7.9	5	. 1	. 0

We 11	Water- bearing unit	Depth of well or campled interval (ft)	Date of collection	$\begin{aligned} & \text { silica } \\ & \left(\mathrm{SiO}_{2}\right) \end{aligned}$	$\begin{gathered} \text { Iron } \\ (\mathrm{Fe}) \end{gathered}$	$\begin{aligned} & \text { Cal- } \\ & \text { cium } \\ & \text { (Caz) } \end{aligned}$	$\begin{gathered} \text { Magoer } \\ \text { gium } \\ \text { (Mg) } \end{gathered}$	$\begin{aligned} & \text { Sod- } \\ & \text { fuu } \\ & \text { (Na) } \end{aligned}$	$\begin{gathered} \text { Potag } \\ \text { sium } \\ \text { sive } \\ (\mathrm{K}) \end{gathered}$	Bicarbomate $\left(\mathrm{HCO}_{3}\right)$	Sul$\left(\mathrm{SO}_{4}\right)$	$\begin{aligned} & \text { Chlo- } \\ & \text { ríde } \\ & \text { (c1) } \end{aligned}$	Flugride (F)	$\begin{gathered} \mathrm{Ni}- \\ \text { trate } \\ \left.\mathrm{HaO}_{3}\right) \end{gathered}$	Bordu (B)	Dissolved soldds	Total hstrd- Lesa ass CaCO_{3}	$\begin{aligned} & \text { spectific } \\ & \text { conduct- } \\ & \text { ance } \\ & \text { (micerouhhos } \\ & \text { at } 25^{\circ} \mathrm{C} \text {) } \\ & \hline \end{aligned}$	PH	Per cent sở- 1 um	$\begin{aligned} & \text { Sodium } \\ & \text { adsorp- } \\ & \text { tion } \\ & \text { ratfo } \\ & \text { (SAR) } \end{aligned}$	Residual zodifum tarbon ate (RSC)
AS-69-14-7D2	Kche, Kcer 1	487	Ave. 25, 1955	13	0.0	83	55	57	\cdots	337	215	39	--	1.0	--	628	433	1,010	7.4	22	1.1	0.0
901	Kohe, Kcerl, Kece	520	Aug. 29, 1955	12	. 0	580	76	31	--	220	1,560	16	--	. 5	\cdots	2,383	1,760	2,560	7.3	4	. 3	. 0
15-401	Kche, Keve	530		9	\cdots	95	56	37	--	366	175	45	3.0	< .4	--	600	466	954	7.7	15	. 7	. 0
402	Kche, Kcec	400	do	10	\cdots	85	50	41	\cdots	354	164	36	2.5	$<.4$	-*	562	419	988	7.9	18	. 8	. 0
501	Kche, Kcgrl, Kcec	485	Aug. 7, 1974	10	--	92	56	36	--	362	191	33	3.0	< .4	--	599	463	919	7.9	15	.7	.0
501	Kche, Kegri, Kece	485	July 19, 1976	10	--	90	57	34	15	362	189	32	2.5	< .4	--	607	459	932	7.6	13	. 6	. 0
501	Kche, Kegrl^{2}, Kcec	485	Ju1\% 12, 1977	10	--	83	55	37	--	362	177	30	2.5	$\leqslant .4$	--	572	436	907	7.6	16	.7	. 0
901	Kche, Kcgrl, Ksec	425	May 16, 1954	11	--	80	53	41	-*	390	142	28	--	. 0	--	546	418	915	7.6	18	. 8	. 0
16-401	Kche, Kcgri, Kcca	385	Aug. 6, 1974	9	--	116	75	29	--	342	315	32	4.0	$<.4$	\cdots	748	600.	1,074	7.9	10	. 5	. 0
401	Kche, Kegrl, Kcce	365	July 19, 1976	10	-	110	72	28	13	350	286	33	2.9	. 6	\cdots	727	570	1,065	7.6	9	. 5	.0
401	Kche, $\mathrm{K}_{\mathrm{Kgr}}{ }^{1}$, Kese	385	July 7, 1977	12	--	110	78	27	13	342	342	30	3.1	< .4	--	7 73	600	1,114	7.6	9	. 4	. 0
402	Ycgru	--	July 13, 1976	14	--	85	13	8	\cdots	296	14	15	. 3	2.0	\cdots	296	268	505	7.8	6	. 2	. 0
402	Kogru	--	Juiy 7, 1977	14	--	96	15.	9	\cdots	342	18	17	. 0	.7	--	338	304.	580	7.5	6	.2	. 0
801	Kche, Kcgrl, Kcec	420	Aug. 6, 1974	10	--	89	84	36	-*	373	266	28	4.9	1.2	--	702	570	1,075	7.8	12	.6	. 0
801	Kche, Kcgr 1, Kece	420	July 13, 1976	11.	--	72	50	37	14	372	121	34	2.4	. 9	\cdots	525	367	837	7.7	17	. 8	. 0
8 Cl	Kche, Kecc	420	July 7, 1977	12	--	68	49	36.	15	369	119	33	2.5	$<.4$	--	516	371	830	7.8	17	. 8	. 0
902	Xcho	950	Nov. 18, 1975	10	--	66	42	56	--	365	100	43	2.5	1.0	--	499	338	824	8.0	27	1.3	. 0
902	Keho	950	July 15, 1977	10	--	68	48	43	16	${ }^{368}$	120	39	2.5	$\leqslant .4$	--	527	368	945	7.7	19	-9	. 0
20-201	Kcce	872	Feb. 12, 1957	11	--	121	83	91	--	331	482	41	3.6	. 2	--	995	644	1,400	7.6	24	1.5	-0
801	Kche, Kece	490	do	12	--	194	142	45	--	336	810	26	3.6	1.3	--	1,399	1,070	1,780	7.3	8	. 5	. 0

Table 6, --Chemical Analyses of water Proin Selected Welk and springe -acontinued

Well	Water: bearing unit	Depth of vell or sampled interval (ft)	Date of collection	$\begin{aligned} & \text { silica } \\ & \left(\mathrm{SNO} \mathrm{O}_{2}\right) \end{aligned}$	$\begin{gathered} \mathrm{Ir} \boldsymbol{\mathrm { Fe }}) \end{gathered}$	$\begin{gathered} \text { CaI- } \\ \substack{\text { cive } \\ \text { (Ca) }} \end{gathered}$	Magne- ifum (if) (Hg)	$\begin{aligned} & \text { Sod- } \\ & \text { hum } \\ & \text { (Na) } \end{aligned}$	$\underset{\substack{\text { Potas- } \\ \text { Eific } \\(\mathbb{K})}}{ }$	Bicarbonte $\left(\mathrm{HCO}_{3}\right)$	$\begin{aligned} & \text { Su1- } \\ & \text { (**e } \\ & \left(\mathrm{SO}_{4}\right) \end{aligned}$	$\begin{aligned} & \text { Cblo- } \\ & \text { ride } \\ & \text { (C1) } \end{aligned}$	$\begin{gathered} \text { Fluo- } \\ \text { Fide } \\ (\mathrm{F}) \end{gathered}$		Baron (B)	Dissolved solida	$\begin{aligned} & \text { Total } \\ & \text { hard- } \\ & \text { ness } \\ & \text { ds } \\ & \mathrm{CaCO}_{3} \end{aligned}$	$\begin{gathered} \text { Specific } \\ \text { conduct- } \\ \text { ance } \\ \text { (microuhos } \\ \text { 日t } 25^{\circ} \mathrm{C} \text {) } \end{gathered}$	p	$\begin{aligned} & \text { Per- } \\ & \text { ceat } \\ & \text { sod- } \\ & \text { fum } \end{aligned}$	$\begin{aligned} & \text { Sodium } \\ & \text { adsorp } \\ & \text { tion } \\ & \text { ratio } \\ & \text { (SAR) } \end{aligned}$	$\begin{array}{\|c\|} \hline \text { Residuaz } \\ \text { sodivum } \\ \text { sosbone } \\ \text { zte } \\ \text { (RSC) } \\ \hline \end{array}$
A5-69-20-901	Kche, Kcgr 1	545	Aug. 21, 1974	10	--	398	228	30	--	349	1,600	26	4.9	5.7	-*	2,474	1,940	2,500	8.0	3	0.2	0.0
22-501	Keho, Kfgri , Kece	570	Jan. 17, 1957	11	\because	522	330	61	--	346	2,360	27	5.2	. 8	--	3,487	2,660	3,570	7.3	5	. 5	. 0
702	Kcho	1,000	Nov. 17, 1975	9	--	34	20	140	14	371	79	72	2.8	< .4	--	553	169	902	8.3	62	4.7	2.7
$901{ }^{\circ}$	$\mathrm{Kc}_{\mathrm{g} \mathrm{r}}{ }^{1}$	330	Aug. 22, 1974	12	--	115	19	10	--	375	44	16	1.2	< .4	--	401.	364	647	8.0	6	.2	.0
901	Kcgrl^{1}	330	July 19, 1976	10	--	105	49	21	5	901	216	21	1.7	< . 4	$\stackrel{+}{*}$	577	463	858	7.7	9	. 4	. 0
901	Kcgr 1^{-}	330	July 8, 1977	11	--	99	72	33	--	308	317	25	2.7	$<.4$	--	711	540	1,041	7.6	12	. 6	. 0
23-501	Kche, $\mathrm{K} \subset \mathrm{gr}_{1}$	635	Aug. 18, 1974	10	--	84	89	24	--	340	302	19	6.7	4.1	--	705	580	1,02s	8.1	8	. 4	. 0
501	Kehne, Kegr 1	635	July 19, 1976	10	--	78	96	21	--	355	286	16	5.6	4.0	\cdots	691	590	1,048	7.7	7	. 3	. 0
501	Rehe, Kcgri	635	July 8, 1977	12	--	82	77	41	17	344	299	23	4.3	1.2	--	725	520	1,055	7.8	14	. 7	. 0
601	Kcho, Kos	1,085	Jan. 1, 1957	13	--	32	21	134	--	360	51	73	2,8	. 0	\cdots	503	166	858	7.6	64	4.5	2.5
602	Kche, Kegr	550	Aug, 18, 1974	10	--	194	154	22	\cdots	372	800	21	4.8	< . 4	--	1,389	1,120	1,710	8.0	4	. 2	. 0
801	Kcho, Kcs	1,137	Jan. 17, 1957	13	--	39	20	137	15	364	70	${ }^{5} 5$	3.0	. 0	0.8	561	180	949	7.7	60	4.4	2,3
901	Xeho, Xca	1,120	July 15, 1977	10	--	35	20	116	14	348	48	68	2.5	< . 4	\cdots	485	171	908	7.8	57	3.8	2.3
24-101	Kche, Kcgr 1 , Kcce	560	Aبg. 16, 1955	13	0.0	72	52	46	--	362	146	32	-*	1.0	--	539	394	899	7.6	20	1.0	. 0
203	Kche, $\mathrm{K}_{\mathrm{cg} \mathrm{gr}} 1$, Kces	435	Nov. 2, 1945	14	. 2	73	51	38	21	362	139	37	2.8	. 0	--	553	392	933	7.2	16	. 8	. 0
204	Kcho	896	Mar. 22, 1950	11	1.6	50	33	\cdots	--	372	68	57	2.2	< . 4	--	492	261	--	--	--	--	. 8
205	Kche, Kagr 1 , Kece	467	Hoy. 2, 1945	13	. 1	86	62	39	20	358	220	36	2.4	. 0	--	654	464	1,070	6.9	15	. 7	. 0
206	Kcho	78.5	\$10v. 18, 1975	11	--	4.3	26	94	13	370	51	51	2.0	. 9	--	473	213.	788	7.9	47	2.7	1.7
502	Kche, Kegrl, Kcec	420	June 14, 1954	13	--	73	55	49	--	355	167	35	--	1.5	--	568	408	954	8.0	21	1.0	. 0
701.	Kcgru	120	Aug. 22, 1974	11	--	86	23	9	--	$31 ?$	39	16	.7	<4	--	338	308	557	8.1	6	.2	. 0
701	Kcgru	120	July 19, 1976	12	-	86	10	9	\cdots	264	35	13	.3	8.0	. 1	303	256	500	7.7	7	. 2	. 0
701	Kcgru	220	July 13, 1977	12	--	90	12	18	\cdots	301	25	11	. 2	4.2	\cdots	31.9	271	524	7.8	13	. 4	. 0

Location of Selected Wells, Springs, and Oil and Gas Tests in Bandera County

Table 5. \rightarrow Records of Selected hater heils, Springs, and ofl and Gas Tests

保

es footnotea at end of table.
rable 5. - Records of Selected hater Wells, Springs, and ofl and gat Testa-- Contsnued

					Casi	ng				leval			
Hell	anex	Driller	$\begin{gathered} \text { Dete } \\ \text { completed } \end{gathered}$	$\begin{gathered} \text { Depth } \\ \text { of } \\ \text { well } \\ (\mathfrak{f t}) \end{gathered}$	$\begin{gathered} \text { Diem- } \\ \substack{\text { etevr } \\ (\mathrm{iva})} \end{gathered}$	$\left\{\begin{array}{c} \text { Depth } \\ (\mathrm{ft}) \end{array}\right)$	$\underset{\substack{\text { Water } \\ \text { bearing }}}{ }$ unit		land surface (ft)	$\begin{gathered} \text { site of } \\ \text { measuremant } \end{gathered}$	$\begin{gathered} \text { Method } \\ \text { of } \\ \text { of } \end{gathered}$	$\begin{gathered} v_{\text {se }} \\ \text { of } \\ \text { watar } \end{gathered}$	kemsrks
AY-68-19-608	Theon Sprfags villa Water Coas Hell 4	Hsakin Pump and Strvice, Inc.	1971	505	7	205	$\begin{aligned} & \mathrm{K}_{\mathrm{Kcgrl} 1,} \\ & \mathrm{Roccc} \end{aligned}$	1,149	268	June 3, 1971	$\underset{\substack{\text { Sub, } \\ 71 / 2}}{ }$	${ }^{\text {P }}$	Opeu hole from 205 to 505 feet. Cemented from 205 fect to surtace.
* 610	R. C. Sesly	H. K, Schwope and Sone Water Well Drillfng	1975	440	6	227	$\begin{aligned} & \text { Kcgrl, } \\ & \text { Kelse, } \\ & \text { Keces } \end{aligned}$	1,350	240	Kar. 24, 1975	$\mathrm{Sub}_{11 / 2}$	D	Open hole from 227 to 440 feet, Gemented from 227 feet ta eurfacs, Reported yield 100 gal/min.
611	-- NGGee	w. W, Michols Well Drilling	1974	350	5	60	Kcgr1	1,250	115	Yeb. 3, 1974	Sub, p.	D	Doprn boife fram $\$ 0$ ta 350 feet. Cemented fram. 60 feet to aurface. Pump sot at 315 fort, fleported gield $10 \mathrm{gal} / \mathrm{minn}$.
61.2	Stage Coscly Hille Water Systell, well 1	Haskin Pump and Service, Inc.	2960	351	7	180	Kcgr1	1,180	${ }_{128 .}^{206}$	$\begin{array}{lll} \text { Aug. } & 11, & 1960 \\ \text { DCE. } & 28, & 1977 \end{array}$	${ }_{\text {Sab, }}^{10}$ e	p	Dopr hole from $280 \mathrm{bo}, 351$ feet. Lemented fram 180 fert to sut facr.
613	Stage Couch Hfils Water Systam, well 2	do	1967	455	\ldots	${ }^{225}$	$\begin{aligned} & \mathrm{K}_{\mathrm{cgrr1}} \mathrm{Kcoc}_{1}^{\prime} \end{aligned}$	1,204	214	Dec. 1968		r	Deepened frowl 360 to 455 feet and added liner in Feb. 1968. Cemmented Erom 225 feet to gutface.
614	Stagn Coach Hit1s Water System, well 4	do	1970	406	7	1 199		1,174	140	Jan. 21, 1974	$\underbrace{\text { ce }}_{\substack{\text { Sub, } \\ 10}}$	${ }^{\text {p }}$	Open hale from 189 to 406 feet. Gearnted from 189 feet to burface. Punf set at 399 feet.
615	Stage lasch tille Water System, well 5	do	1972	463	7	204		1,172	84	Apr. 1975	$\underset{10}{\text { Sub, }} \mathrm{E}$	P	Open hole from 204 to 483 fent. Cembented from 204 feet to burface.
616	$\begin{aligned} & \text { R. K. Marschs } 11 \text {, Je., } \\ & \text { Traikwod well }{ }_{4} \text {, } \end{aligned}$	5. W. Schwope nid Sous Weter Well Dxilling	2974	500	6	145	$\underset{\substack{\text { Kcgril } \\ \text { Xecc }}}{\substack{\text { ceg }}}$	1,315	260 272	$\begin{aligned} & \text { June } \\ & \text { May } \\ & \hline 1.7, \\ & \hline 1974 \\ & \hline 1974 \end{aligned}$	*	${ }^{N}$	Open hole fiom 345 to 500 Eeet. Cemented from 145 feet to surfnee. Reported yicld 67 gni/min with 240 feet drawdown. $1 /$
201	Frank Hatroes	$\underset{\substack{\text { Loula Mata } \\ \text { Sona }}}{ }$	1958	650	6	347	Xcgrl	1,367	364	Aug. 14, 197\%	Sub, s	D	Open holt from 347 to 650 feet.
802	E. x . Meiton	do	--	600	--	--		£,322	293.2	Aus. 7, 1974	--	D	--
803	M. 日. Kıischhalli, Jr.	Haskin Pump astd Snryice, Ine.	1966	505	7	407	Fagrt^{1}	1,371	290	June 1966	$\mathrm{Sub}_{3} \mathrm{~s}^{\text {s }}$	${ }^{\text {e }}$	Open foole from 407 to 505 feet. Cemented from 407 feet to surEuce. Acidizerl.
* 804	Kobert O1ive	H. N. Schwope and Sons Nater Nell Drillifng	1973	900	6	596	$\begin{aligned} & \text { Xecerl, } \\ & \begin{array}{l} \text { Kefrect, } \\ \text { Rece } \end{array} \end{aligned}$	1,38\%	3370.7	$\begin{aligned} & \text { Oct. } \\ & \text { Aus. } \\ & \text { A. } \\ & 1, \\ & \hline \end{aligned} 197974$	Sub, E	1	Open hole from 586 to 900 feet. Cemented from 586 Eeet to surface. Reported gleld 75 gal/inin.
805	Stage Caach Hills Water System, well 3	Haskin Parnp nad Serviev, Ine.	1964	634	8	400	Kcgr1	1,345	${ }_{292.8}^{433}$	$\begin{aligned} & \text { Apr. } \begin{array}{l} 14, \\ \text { Oct. } \\ 28, \\ \hline 1964 \\ \hline 1977 \end{array} \end{aligned}$	$\underset{5}{\text { Sus, }}$	n	Open hole from 400 to 634 feet. Cemented srom 400 feet to surface. Unused public kupply well.
901	San Antonio Parke and Recreatian Department, Fredertch Park	Hill Country Wa.ter, Inc.	1976	500	8	304	Kogr 1	1,155	350	иит. 22, 1976	$\begin{gathered} \mathrm{Sub}, \mathrm{~B} \\ 71 / 2 \end{gathered}$	P	Open hole from 304 to 500 feet. Cemented from 304 feet to eurface. Reported yield 25 gal/mio with 60 feet drewdom.
20-101	U.S. Govermment: CAip Stanley, well 16	--	\cdots	442	--	--		1,240	201	Feb. 19, 1960	Sub, s	${ }^{p}$	Prume set. 25416 feet.
102	Falt Oaks Ranch Water cio., well 9	Haskin Pump and Servien, Ips.	1978	485	${ }^{8}$	290	$\begin{aligned} & \mathrm{K}_{\mathrm{cgsc}}^{\mathrm{Kccc}}, \end{aligned}$	1,310	270	Kar. 16, 1978	$\substack{\text { Sub } \\ 20}_{\text {S }}$	${ }^{\text {r }}$	Opran hole firam 290 to 485 feet. Cemented from 290 frot to surfigen. Pump set at 420 Eeent. Actidzed.
103	Fait Oake Ranch Water Co., well 1	do	1979	525	$\stackrel{ }{ }$	290		1,315	270	Jsn. 11, 1978	$\underbrace{}_{20}{ }_{20}$	P	Open hale from 240 ta 525 teent. Cemented from 290 feet to eurface. Acidized.
104.	Faic 0ake Rench Water Lo. , well B	Loutx Bexemana and Sons	1978	525	8	316	$\begin{aligned} & \mathrm{K}_{\mathrm{g} f+1}, \\ & \mathrm{~K}_{\mathrm{ccc}} \end{aligned}$	1,325	..	-`	$\begin{aligned} & \text { Sub, E } \\ & 20^{\circ} \end{aligned}$	F	Open hole fram 310 to $\$ 25$ feet. Cementied from 310 feet to surface. Pump set at 4 fi3 feet. Acidized.

See footnotes at end of table.
bexar county

See footnotes at end of tatble.

Tabin 5, --fecorde of Smitected Kater hella, Springe, and fil and Gae Testa--Contioved

Wel1	Comer	${ }_{\text {rex }}$ iller	$\begin{array}{\|c\|} \text { uate } \\ \text { completed } \end{array}$	$\begin{gathered} \text { Depth } \\ \text { of } \\ \text { wel1 } \\ \text { (rt }) \end{gathered}$	casing		$\begin{gathered} \text { hater } \\ \text { bestink } \\ \text { unit } \end{gathered}$	$\begin{aligned} & \text { Altitude } \\ & \text { of land } \\ & \text { our face } \\ & \text { (ft) } \end{aligned}$	Waler level		$\begin{gathered} \text { Ketiod } \\ \substack{\text { of } \\ \text { lift }} \end{gathered}$	$\begin{gathered} \text { Uae } \\ \text { of } \\ \text { water } \end{gathered}$	Remarka
					$\begin{aligned} & \text { Dian- } \\ & \text { eter } \\ & \text { (1in.) } \end{aligned}$	$\left\lvert\, \begin{gathered} \text { veptst } \\ (\mathrm{ft}) \end{gathered}\right.$				Date of uledgurement			
* Aq -68-23-801 ${ }^{\text {a }}$	Canyon Lske Forest utility, Loc., Narthward tille Rubdivision, well 1	Raskin Pumí and Service, Inc.	--	971	8	404	$\mathrm{x}_{\mathrm{chr}}$	1,032	244	June 3, 1964	$\begin{gathered} \mathrm{sinlb}_{71 / 2}, \frac{1}{2} \end{gathered}$	${ }^{\text {r }}$	Docepened from 496 to 971 feet an June 3, 1964. Open hole from 404 to 971 feet.
	Canyon Lake Foreat otility, Yuc., Worthawad Hille Subdivituan woll 2		-	158	5	205	$\mathrm{K}_{\text {chr }}$	1.,1134	288.3	Mov, 3, 1977	Sub, B $11 / 2$	z	Defpencr to 408 feet in 1970. Open ho1e from 20.5 to 408 feet.
			1970.	538	5	282	Kegr	1,034	287.7	do	$\text { sub, } \sqrt{3}$	P.	Open hoie from 282 to 538 [eent, Cemented fram 282 feet to surlace.
\cdots 27-304	Belotes Little Lesgue сатр.		1969	290	7	47	$\mathrm{x}_{\text {cgra }}$	1,130	15s	Mar. 3, 1969	$\operatorname{Sulth}_{1.1 / 2}$	1	Open fule fram 47 ta 290 frot., Cemented from 45 fosit to surfinco. Pump aet st 256 Feet. Reported yield $20 \mathrm{gal} / \mathrm{ain}$ with 0 feet drawdonn.
* 515	Suill coblea'	$\begin{aligned} & \text { Fracke MLeeakranz arul } \\ & \text { Soutus } \end{aligned}$	1964	180	¢	26	$\mathrm{x}_{\text {cgru }}$	1,00.5	179	Hov. 16, 1965	$\mathrm{Sut}_{\substack{\text { che }}}^{\text {c }}$	${ }^{1}$	Dpen tole From 28 ta.jbO frot. Comented front 28 fert to surfiane,
* 28-101	McJonough Trothers, Yac., well 1	J. R. Johmaon vaillity Co.	1967	-1,470	${ }_{8}^{10}$	-7,470	xct	1,050	150	Apr. 7, 1967	$\mathrm{T}_{75}{ }^{\text {² }}$	Ind	Slotted from 781 to 1,470 feet. Cemented from 40 Eeet to surface. l'ump bel at 450 front.
104	Mclonsugh Brothers, tice., well 2	do	1967	1,503	${ }^{8}$	1,500	Kct	1.0550	150	Apr. 24, 1967	${ }_{75}{ }^{\text {7, }}$ E	Ind	Sloted from 587 to 1,500 feet. Cemunted from 200 feet to aurface. Reported yleld $450 \mathrm{ka} 1 / \mathrm{min}$ with 350 feet drandown. Acilized.
105	McDonough Drothers, luc., well 3	do	1969	1,260	8	"	Kct	1,050	326	3019 10, 1978	$\mathrm{T}_{60} \mathrm{E}^{8}$	Ind	Drilled to spproximately 1,500 feet snd naved back to 1,260 feet. Slottel. $1 /$
106	McDonough Frothere, Fac., well 4	do	1973	1,481	${ }_{8}^{12}$	$\underset{i, 432}{157}$	Kot	1,050	137	Hov. 14, 1973	${ }^{\text {T, }}{ }_{75}{ }^{8}$	Ind	Slotteri from 445 to 1,432 feet. ©pen forle from 1,432 to 1,481 feet. Cemmated from 156 feet to xurface, leported yield 800 gal $/ m i n$ with 184 feet तraxpown.
108	bexar Concrete cu.	Raskin l'ш甲 Anu Secvice, Inc.	1975	992	8	504	Kigr	1,045	$\begin{aligned} & 230 \\ & 230 \end{aligned}$	$\begin{array}{lll} \text { Kar. } & 25, & 1975 \\ \text { Nov. } & 21 ; & 1977 \end{array}$	*	*	Oper tuile from 504 to 992 foet. Cemented from 10 fact to surfanc. Unused fidustrisl well. Is
109	Mollouough Brothers, lue. . Nohsie Home Hatle ratc	*	--	550	8	--	Kcgr	1,105	-	"-	sub_{10}	P	-- .
206	Nchonough Prothers, Inc., belts Truck Lines	Hill Gountry h_{k} ter, Lisc.	1974	600	$\mathfrak{6}$	174	Kcgr	1,105	280	तay 25, 1974	${ }_{\text {Sub }}^{\text {Sub, }}$ (Ind	Open bole frum 174 to 600 foct. Cemented Erom 174 ta 130 frect and 10 feet to surface. Reported yield $2.5 \mathrm{gnl} / \mathrm{mdn}$.

[^3]Andlyses are in milligrame per liter except percent sodium, specific conductance, pH, sodium adnorption ratio ($\mathrm{S}_{\mathrm{d} k}$), and residusi acdium carbonate (RSC).
Water-bearing unlt; Kcgr, dien Rose Lfmestone; Kcgru, upper member of the Glen Rose limestane; Kcgri, lower member of the clen Rose limestone; Kile,
 Menber of the Travis Peak Firmition; Kcho, Hosston Band Menller of the Travts Peak Pormarion; Rec, Trinity Group, undifforentiated. The bicarbonute "reported" in converted by computation (multiplying by 0.4917) to an equivalent amount of carhonale, and the
Disalved solidu Mabicarbe figure is used the computation of thits sulu
Analyaes by Texas State Department of Health.

Wel1	Water: bearing unit	Depth of well or gampled fiterval (ft)	Date of collection	$\begin{gathered} \left.\mathrm{sillica}_{\left(\mathrm{SiO}_{2}\right)}\right) \end{gathered}$	$\underset{\substack{\text { Iroo } \\(\mathrm{Fe})}}{ }$	$\begin{aligned} & \mathrm{Ca1}^{\mathrm{c} 1-} \\ & \text { ctum } \\ & \langle\mathrm{Ca}\rangle \end{aligned}$	Magne${ }^{3} 10 \mathrm{~m}$ (M)	$\begin{aligned} & \text { Sod- } \\ & \begin{array}{l} \text { ivmo } \\ \text { (Na) } \end{array} \end{aligned}$	$\begin{gathered} \text { Potas. } \\ \begin{array}{c} \text { sium } \\ \text { sin } \end{array} \end{gathered}$	$\begin{gathered} \text { Bicar- } \\ \text { bonste } \\ \left(\mathrm{HCO}_{3}\right) \end{gathered}$	$\begin{aligned} & \text { Sul- } \\ & \text { fase } \\ & \left(\mathrm{SOO}_{4}\right) \end{aligned}$	$\begin{aligned} & \text { Chlo- } \\ & \text { ride } \\ & \text { (ci) } \end{aligned}$	$\begin{aligned} & \text { Fluo- } \\ & \text { ride } \\ & \text { (F) } \end{aligned}$	$\begin{gathered} \text { Hr- } \\ \text { trate } \\ \left(\mathrm{HO}_{3}\right) \end{gathered}$	Boron (B)	Dig= solved solids	$\begin{aligned} & \text { Total } \\ & \text { hard- } \\ & \text { neas } \\ & a s \\ & \mathrm{CaCO}_{3} \\ & \hline \end{aligned}$	$\begin{gathered} \text { Specific } \\ \text { conduct- } \\ \text { ance } \\ \text { (microwhos } \\ \text { at } \left.25^{\circ} \mathrm{C}\right) \end{gathered}$	pH	Rer cent sodfur	Sodium adeorption ratio (SAR)	Realdual EDDIUM carbon- ate (RSC)
AY-68-19-207	Kehe, Kcgr1,	500	Nov. 25, 1974	14	--	104	58	9	--	439	122	17	2.9	<0.4	--	543	500	840	7.9	4	0.1	0.0
207	Rche, Kcgr 1, Kece	500	JuIF 26, 1976	12	--	102	51	8	--	425	99	16	2.4	. 7	--	499.	462	795	7.9	4	. 1	. 0
208	Rcilo, Kce,	893	Nov. 38, 1977	11	--	64	25	34	--	325	39	16	1.0	11	**	360	264	599	7.8	22	. 9	. 0
208	Kcho, Kcs	893	Dec. 21, 1977	10	--	111	62	200	--	246	528	173	1.0	< 4	--	1,206	534	1,810	7.9	45	3.7	. 0
302	Kcho	1,070	A.\|cer. 5, 1977	13	--	310	169.	232	-n	255.	1,350	231	1.7	< . 4	-*	2,432	1,470	2,860	7.5	26	2.6	. 0
303	Kcoc	555	do	11	--	89	21	10	\cdots	337	17	20	$\cdot 4$	8.0	--	342	307	586	7.6	7	. 2	. 0
305	Kcgri	350	do	10	--	125	23	21	-	406	59	37	. 6	< .4	--	475	408	785	7.5	10	. 4	. 0
501	Kcho	950	Nov, 4, 1977	B	--	50	25	250	\cdots	296	267	182	1.2	< 4	--	929	227	1,500	7.9	70	7.2	. 3
504	Kcce Kcho	1,040	do	11	-	89	31	12	\cdots	317	80	13	. 8	2.3	--	394	349	635	8.4	7	. 2	. 0
610	Kche, Kegrl, Kece	440	J619 26, 1976	12	--	70	28	6	2.0	323	27	10	. 6	1.5	"	305	290	520	7.7	4	+1	. 0
611	$\mathrm{X}_{\text {cgel }} 1$	351)	Aug. 20, 1976	12	--	112	12	11	\cdots	350	12	19	.3	27	--	377	329	613	8,2	7	. 2	. 0
701	$\mathrm{K}_{\mathrm{cgr}} 1$	650	Hov. 27, 1974	14	-	93	19	8	--	300	60	12	. 4	4.0	--	357	312	567	7.9	5	. 1	. 0
902	Kche, Kcgrl, Kcec	600	do	19	\cdots	83	13	7.	\cdots	292	11	14	. 2	6.0	--	296	262	490	7.6	6	. 1	. 0
803	Kcgr 1	505	du	17	--	95	18	9	\cdots	344	13	15	. 4	13	--	349	311	570	8.1	6	. 2	. 0
803	Kcgr 1	505	July 1, 1977	1.3	--	92	17	9	\cdots	312	14	12	. 4	7.0	--	332	299	566	7.6	6	. 2	. 0
804	Kche, Kegre Kece	900	Rovev. 24, 197/4	10	-"	99	39	12	\cdots	300	161	14	.7	3.6	--	486	407	739	7.8	6	, 2	. 0
804	Kche, Kcgrl, Kece	990	July 26, 1976	11		110	46	12.	--	301	223	24	. 6	3.8	--	569	464	825	3.9	5	. 2	. 0
20-701	Kche, Kegrl, Kcce	715	do	12	--	195	64	10	5.0	304	492	13	1.8	$<.4$	0.2	942	750	1,200	7.5	3	. 1	. 0

BEXAR COUNTY

Well	Water bes.r 108 unit	Depth of well or sampled interval (ft)	Date of col1ection	$\begin{aligned} & \operatorname{sinca}_{1 \mathrm{ica}}^{\left(10_{2}\right)} \end{aligned}$	$\begin{aligned} & \text { Iron } \\ & \text { (Fe) } \end{aligned}$	$\begin{aligned} & \text { Ca1- } \\ & \text { citu } \\ & \text { (Ca) } \end{aligned}$	Magnealum (k)	$\begin{aligned} & \text { Sod- } \\ & \text { (urn } \\ & \text { (Na) } \end{aligned}$	$\begin{gathered} \text { Potas } \\ \text { givm } \\ \text { (K) } \end{gathered}$	Bicarbonate (HCO_{3})	Sul(SO_{4})	$\begin{aligned} & \text { Ch10- } \\ & \text { ride } \\ & \text { (C1) } \end{aligned}$	$\begin{gathered} \text { Fluo- } \\ \text { ride } \\ (F) \end{gathered}$		$\begin{gathered} \text { Boron } \\ \text { (B) } \end{gathered}$	$\begin{gathered} \text { Dis- } \\ \begin{array}{c} \text { soived } \\ \text { solide } \end{array} \end{gathered}$	Total hard- ness $\stackrel{28}{C a C O}$ CaCO_{3}	spectific conductance 	PH	$\begin{aligned} & \text { Yer- } \\ & \text { cent } \\ & \text { bod- } \\ & 1 \text { um } \end{aligned}$	Sodium adeorp- tion ratio (SAR)	Residual sodifum carbon- ate ate (RSC)$\|$
AY-68-20-801	Kegr	260	Apr. 28, 1943	14	-m	116	47	--	1.2	379	149	1.1	0.9	2.5	--	576	483	--	--	--	--	0.0
801	$\mathrm{Kcgeg}^{\text {c }}$	260	Junc 3, 1954	12	0.1	212	38	--	5.3	401	99	10	. 6	. 2	--	514	436	792	7.4	--	--	. 0
803	$\mathrm{Xegr}^{\text {c }}$	289	Aug. 10, 1943	9	--	101	12	--	6.9	357	8	10	. 2	1.2	--	390	302	--	7.4	--	--	. 0
803	Xc:gr	289	Junce 3, 1954	11	.0	113	15	--	5.5	403	10	10	. 2	1.2	--	378	344	647	7.5	--	-*	. 0
21-205	Ksgr	580	July 27, 1976	11	--	99	37	6	3.0	354	106	10	1.0	< 4	--	447	398	694	8.2	3	. 1	. 0
801	Koge	971	Nov. 4, 1977	31	-	223	153	26	--	396	925	1.7	4.2	< .4	--	1, 1.526	1,188	1,820	7.3	5	. 3	. 0
27-304	Kcgru	290	July 26, 1976	11	-	73	40	7	3.0	303	94	18	1.0	< $\quad .4$	--	389	345	621	7.9	4	.1	. 0
904	Xçgro	290	June 20, 1977	11	--	72	38	7	--	298	87	10	. 9	1.1	--	973	338	624	7.8	4	, 1	. 0
516	Kcgru	180	July 27, 1976	12	--	96	67	9	--	277	286	1.5	2.1	$<.4$	--	623	520	881	7.8	4	. 1	. 0
516	Kogru	180	June 20, 1977	11	--	62	47	8	3.0	285	112	14	2.0	< .4	--	399	351	642	7.8	5	1	. 0
28-101	Kct	1,470	July 22, 1975	14	--	156	74	185	13	275	700	126	1.2	3.5	--	1,407	700	1,830	7.8	36	3.0	. 0

Location of Selected Wells, Springs, and Oil and Gas Tests in Northern Bexar County

Table S.--Records of Snlectes Kater Kelle, Springe, and of1 and Ges Teste

Use of water
hatex-begring
units

mell	Ormex	Drilier	$\left\|\begin{array}{c} \text { Date } \\ \text { completed } \end{array}\right\|$		$\mathrm{Caxin}^{\text {d }}$		$\begin{gathered} \text { water } \\ \text { bearing } \end{gathered}$unit	$\begin{aligned} & \text { A1t. teule } \\ & \text { of land } \\ & \text { sur exce } \\ & \text { (fte) } \end{aligned}$	Water 1evel		$\begin{aligned} & \text { Method } \\ & \text { of } \\ & \text { iffet } \end{aligned}$	$\begin{gathered} \mathrm{U}_{\text {se }}^{\text {of }} \\ \text { water } \end{gathered}$	kemarks
					$\begin{aligned} & \text { nism- } \\ & \text { oter } \\ & (\mathrm{in},) \end{aligned}$	$\begin{gathered} \text { Depth } \\ (f t) \end{gathered}$			land. Burface (ft)	$\underset{\substack{\text { Dute of } \\ \text { measurement }}}{ }$			
Az-5y-36-864	IT, r. Grote	1mnnis Itz Well Drilline	1957	135	0	*-	${ }_{\text {xtip }}$	1,686	19.1 34.0 34.0 30.3 30.7 30.7 10.0 26.7 19.5 19.5 31.7		c	N	Perforated. Vmasce domatic and investock well. Obecruation mell. 31
806	-- Crota, Esatate	Lee polvado	1906	78	6	20	$\mathrm{x}_{\mathrm{c}} \mathrm{c}_{\mathrm{y}}$	1,540	9.8	$\begin{aligned} & \text { July } \\ & \text { July } \\ & \text { Juf, } \\ & \text { B, } \end{aligned}$	c, w	D, 8	Open hole from 20 to 78 feet. 4
* 37-505	J. v. Reno	-	1.954	360	--	--	Xche	1,530	s_{5}	1954	c, 8	D, 8	3
702	Erain sullemier	A. W. bultemeier	1920	126	6	-	Kctp	1,550	49.1 59.7 58.7 58.0 52.5 52.2 56.3 51.7 56.7 54.0 58.0		c, w	*	Unused 11vestock we11. Obtervation will. 2
* ${ }^{703}$	Julis sultemeter	\cdots	--	spriog	--	--	${ }^{\text {kegru }}$	1,510	--	--	Flowe	D, s	Teported flom 15 gal/min to 1941 and 196. ${ }^{\text {g }}$
* . 705	Freas Sultrmitar	A. h. Sultemetier	1929	a 2	5	--	K<gru	1.,565	37	July 3i, 2941	c, w	n, s	3
* 305	L. F. Stribliug	Ever Johnaou	1930	238	6	291	Kche	1,490	${ }_{1.17 .5}^{234.8}$	$\begin{array}{ll} \text { July } & 24, \\ \text { July } & 12961 \\ 1968 \end{array}$	c, \%	D, s	Open holc from 191 to 238 feet. 31
* 9004	J. R. Roea and Sorn	--	--	spring	-*	--		1,420	.-	--	${ }^{\text {Plows }}$	s	keported fiow 2 galimin on July 22, 1941. 3
$38-107$	Mra. D. D. Shatp	--	\cdots	Epriug	--	--	Kctp	1,310	--		H1ows	D; ${ }^{\text {s }}$	Repoteg flow 5 gal/min in 1941. 3
* 409	Hax Wenmehs	Virdell Brothere 5rilling Co.	1962	25.3	6	10	Kctp	1,420	120	1962	c, w	s	Open hole from 10 to 253 feet. Reported field $7 \mathrm{gab} / \mathrm{mdn}$. 3
* 39-602	Otto Hol1ingswarth	--	--	131	--	--	Katp	965	84.4	July 18, 1968	c, \%	s	?
* 701	bmil Jonst	Virdell Brothers Drilling Co.	--	125	10	..	Kche	980	..	--	$\mathrm{J}_{3}{ }^{\mathrm{B}}$	D, 5	Heported ytuld 56 gal/mid. 3%
* 703	Joho Ben Kennohs	--	-n	180	6	--	Xctp	1,005			c, ${ }^{\text {b }}$	3	Voubed domestic and 11vestrelt well, observgeion wel1. 3
* 44-503	Seto Sultemeier	~Ottmere	--	213	6	20	Kche	1,620	--	..	c, e	D, s	Opent hole from 20 to 213 feet. 3
* 30.5	Hermman Deike	$\begin{gathered} \text { Lonnicite well } \\ \text { Drilling } \end{gathered}$	196	188	\cdots	--	Kche	1,620	169	Nat. 27, 1967	Sub, e	D, s	feet dravidown. 3
* 701	Iypdon B, Johmeon, Eetate	-	194,	75	4	-	Kctp	1,430	40.6	July 29, 1968	c, N	D, 8	Reported yield 10 gri/min. 3
45-301	B111 Scriblina Mo. 1	Stratoray ofl corp.	1955	1,355	10	223	Ch	1,255	19.3	Met. 22, 1981	c, w	s	Did test econverter to water well. Open bole from 223 to 1,359 feet. $1 / 3$

Sef footnoter at and of trble.

Weh1					Csatng		$\begin{aligned} & \text { hater } \\ & \text { Sessink } \\ & \text { wnit } \end{aligned}$			5 level	Nethad $\stackrel{\text { of }}{\text { lift }}$ lift	$\begin{gathered} \mathrm{U}_{\mathrm{ec}} \\ \text { of } \\ \text { wster } \end{gathered}$	Remarks
	Onner	\because Driller	$\left\lvert\, \begin{gathered} \text { Luate } \\ \text { completed } \end{gathered}\right.$	$\begin{gathered} \text { Deplit } \\ \text { of } \\ \substack{\text { vell } \\ \text { fit } \\ \text { (ft }} \end{gathered}$	$\begin{aligned} & \text { Diam- } \\ & \text { eter } \\ & \text { (in. }) \end{aligned}$	$\begin{gathered} \text { Depth } \\ (\mathbf{(5 t)}) \end{gathered} .$				Date of weasur emont			
* Az-57-43-303 ${ }^{\text {306 }}$	L. P, Stribling do		$\begin{aligned} & \text {-- } \\ & \text {-. } \end{aligned}$	$\begin{aligned} & \text { Spring } \\ & \text { sprine } \end{aligned}$			$\begin{aligned} & \mathrm{K}_{\mathrm{g} \mathrm{r} 1} \\ & \mathrm{Kcgr} \end{aligned}$	$\begin{aligned} & 1,270 \\ & 1,375 \end{aligned}$			flowe Flows	v_{1} s	Reportion flow 6 \&al/min fa 1941. 3 2
* 704	Chartes Molf	Vizdell Mrothers Drilling co.			6	--	$\mathrm{rc}_{\text {ctp }}$		-	.. -- .	c, w	s	3
80.8	Clara kaller ho. 1 city of Johneon City	Johuson Cly.ty 011 Co .	$\begin{aligned} & 1933 \\ & 1950 \end{aligned}$	1,552	-	$\begin{gathered} -- \\ 30 \end{gathered}$	--	1,250	--		--	\cdots	011 tost. 3 Slotted from 10 to 30 feet. Gravel packed, 3
902				30	10		Qal	1,209	--			『	
* 907	Tom Mayficld		--	21	42	$\begin{gathered} 3 \\ -- \end{gathered}$	Kchr	1,170	$\begin{aligned} & 3 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { sapt. } 25,1968 \\ & \text { Msy } \quad 2,1969 \end{aligned}$	c,	8	Dug kell, curbed with rack. Open sobie from is to 21 feet. Flowe during wet 5 cnson. 21
917	T. n. offurne	Virsell Rrothe:rs Drilling Po.	1945	135	6			1,310	1.07 .2 134.3 110.8 109.8 109.3 12.5 12.5 15.3 115.3		sub, ए	s	Observation well. 3
* ${ }^{\text {4 }}$-901	$\underbrace{\text { JLu Davie }}$	E:ss1 Julatesust	1932	211	*	10	kcgru	1,160	14.3	July 12, 1038		n, s •	Open lole from 10 to $2 l l$ feet. Reported yteld 1.2 Eal $/ \mathrm{m}$ zin. 3
\% . 902		E. K. Ontas	1967	250	7	18	Kcgrl	1,130	110	1967	Sub, e	d, s	Open hole from 1 da to 250 foct. Roportad Fifelit 20 gal/asin. 3
* 905	x. W. Robinson	--	--	200	--	--	Kclie	1,126	\therefore	\because	c, w	s	3
* 47-201	Gua Stelier	Chazlee Lyendecker	1935	142	6	6	Kotp	1,020	119.8	July 15, 193b	c, s	v, s	Opell hole. fron 6 to 142 font. Repertinn ytuld 3 ga.1/山in. 3
* 402	Mra. F. M. Oltich	Virdell Brothere Drylling Co.	1965	400	8	--	Kche	970	--	-	Sub, E	0, s	31
* 52-101	Lyudon \mathbb{B}, John som, Estate	--	\cdots	65	--	--	Ketp	1,400	--	**	*	*	Deetroyed. 31
$\cdots 302$	Skagg Eanch	-- Cravene	1955	220	6	**	$\begin{gathered} \text { Kcerr, } \\ \mathrm{K} \subset \mathrm{ctip} \end{gathered}$	1,455	**	- --	$\mathrm{Sulb}_{1 / 1 / 2}^{\mathrm{E}}$	d, s	Keported yteld 60 gnl/min. 24
* 305	Nral 1 Suppe	--	--	225	-	--	$\begin{aligned} & \mathrm{K}_{\mathrm{cogr}, 1} \\ & \mathrm{Kcctp}^{2} \end{aligned}$	1,469	--'	--	Sub, B	D, s	31
* 508	Fellx Sultemeter	-- Grabu	1950	200	6	--	Kc\&ru	1,620	--	\because	c, w	s	3
* 603	w. w, गlesth	--	--	210	.	--	regr	1,510	\cdots	-. -- .	c, $\mathrm{E}^{\text {e }}$	D, s	2)
$\cdots \quad 804$	clarence Kılbotn	Trim Bunisa	"*	2610	6	--	Kıgr	1,680	$\begin{array}{r}50.9 \\ 42.5 \\ 415.5 \\ \hline\end{array}$	$\begin{array}{lr} \text { Auc. } & 9,1941 \\ \text { Muly } & 190, \\ \text { Mix. } & 24, \\ \hline 2989 \end{array}$	Sub, s	s	Donervation well. 3
		-.						${ }_{\substack{88.8 \\ 7.0}}$				
							.		5.2				
									9.4 99.1	Feh. ${ }^{\text {a }}$ 25, 1775 Jeav. 29,1976			
									3.0 85.1				
* 805	do	Barl Yonueon	1946	411	6	-.	Kegr	1,710	--	--	c, E	s	3
								:					

sce footnoter at end of table
bidaco colnty
Table 5, --Recoriè of Selected Water Wells, Springs, and 041 and Gate Terts-Contimuc

ω_{611}	ovier	metller	$\left\|\begin{array}{c} \text { bate } \\ \text { completed } \end{array}\right\|$	$\begin{gathered} \text { Deptht } \\ \text { of } \\ \text { ofll } \\ \text { (ft) } \end{gathered}$	Casing		$\underset{\substack{\text { Water } \\ \text { bearing }}}{ }$ unit		mater 1ovel		$\begin{gathered} \text { Method } \\ \substack{\text { of } \\ \text { Lift }} \end{gathered}$	$\begin{gathered} \text { vac } \\ \text { vater } \\ \text { water } \end{gathered}$	Remarke
					$\begin{gathered} \text { Diam- } \\ \text { etter } \\ \text { (iv.) } \end{gathered}$	$\begin{gathered} \text { Oeptin } \\ (\mathrm{fte} \end{gathered}$			Bellur landsurface (ft)	Date of measur exant			
* AZ-57-57.901	w. W. Hesth	Howard Craven	1951	425	6	150	Kegr	1,810	--	--	c, w	5	Open hole frow 150 to 425 feek. 3
902	do	-- Crutcher	1964	475	6	150	$\chi_{\text {chare }}$	1,850	235.8	Eacg. 1, 1968	c, \%	s	Oper hole from 1501 to 475 feet. \%
${ }^{903}$	Tagene fikios	--	--	260	-r	-*	Kcgr	1,585	--	--	c, w	n, s	3
* 33-10s	Morgan Ranct	--	*	500	--	--	$\mathrm{Xctp}^{\text {ctp }}$	1,640	-	--	c, E	D, s	3
206	Mrs. Vivian bryan	--	1.954	140	"-	--	Kcgrl	1,380	--	--	sub, E	D, 8	3
215	Whthets Ranch	--	--	spring	--	--	Kоgru	1,470	--	--	Plows	s	Reported flow 50 gal/min on Mry 21, 1959, 31
$\text { * } 217$	Ktneest Hosbs	Whrocl Brothers Drilling co.	1966	224	6	146	$\begin{aligned} & \text { Kogr, } \\ & \text { Ketp } \end{aligned}$	1,415	--	-"	Sub, E	Q, 8	Open hole from 148 to 224 feet. Reported yleld $12 \mathrm{~g} 31 / \mathrm{min} .4$
* 304	George k. Stanton	--	\cdots	Spring	"*	*-	K<gru	1,280	--	--	$\begin{aligned} & \text { Flows } \\ & \mathrm{J}_{2}, \mathrm{E} \end{aligned}$	d, s	Reported flow 10 gal/min on Sept. 20, 1968. 3
305	do	-.	1950	300	6	--	Rebr	1,445	214.4 214.4 213.7 217.5 216.9 213.1 213.1 206.9 21.9 212.5 212.5 214.9		N	*	Obacruation wall. 3
* 310	Tom Behaon	Wrigist Water Welis	1964	453	6	300		1,340	--	. --	sab, E	D, s	Ophn hole from 300 to 453 feet, Reported field $15 \mathrm{er} 1 / \mathrm{min} .2$
311	J. D. miemore	E. k. Omene	1967	202	5	-*	$\begin{gathered} \text { Kopr, } \\ \text { Kever } \end{gathered}$	1,320	120	2967	9ub, s	D	
* 501	c. c. cspas	D, N, Johnsop.	1938	1,005	10	81	$\begin{aligned} & \mathrm{Kcer}, \\ & \mathrm{~K}_{\mathrm{ctap}} \end{aligned}$	1,410	74.8	Aup. 6, 1941	c, k	s	Ofl test converted to water well. open hole frow 81 \& 1,005 fieet. 3
* 507	Reed Ranch	Dorsey smith	1964	300	7	--	${ }_{\text {kegr }}$	1,480	176	Aubs. 8, 1968	Sub, z	n, 8	3
$50 \cdot 6$	h. c. wintors	-n Merkel	1965	450	$\frac{7}{3}$	$\begin{aligned} & 340 \\ & 450 \end{aligned}$	Kche	1,560	--	\cdots	Sul, 8	s	Slatted from 330 to 450 feet, Ceapented from 40 feet to surfince, Reportad yicid $5 \mathrm{gal} / \mathrm{min}$. 3
509	do	--	2.965	501	4	501	Kcge	1,807	397	Nav. 29, 2965	c, w	s	Slotted from 996 to 501 feet. Reported yield $15 \mathrm{gal} / \mathrm{mln} .3$
55^{2}	तo	Pluk Kennedy	1939	174	5	178	$\mathrm{K}_{\text {cgru }}$	1,506	105	Aus. 6, 1941	c, b	s	Slotted. Reparted ydeld a mai/min. z^{3}
* 608	so	Virielis Brothers Drilline Go.	1965	80	B	41	Kegr1	1,320	--	--	Sub, ए	D, s	Open hole frow 41 to bo feet. Reported yield 10 gal/min. 3)
* 701	H11 mer Bludse 11	Frank Kennedy	1950	300	--	-.	Kcgr	1,505	50	Mar. 21, 196t	$\mathrm{c}_{r} \mathrm{E}$	n, s	Reported yield 5 gal/min. 3
705	w. w. Hentin	Howard Cravens	1951	300	6	--		1,840	-	--	g, s	s	3
* 707	A. R. Rose	Mrank Keanedy	1945	120	6	100	Kckr 1	1,480	92.6	Aug. 8, 7968	c, e	s	Dper fole from 100 to 120° fect. 3
* 802	E. T, Fudge	--	-.	Epring	\cdots	--	$\mathrm{xcgrax}^{\text {a }}$	1,495	--	$\stackrel{\square}{ }$	$\begin{aligned} & \text { R1ose } \\ & \mathrm{C}, ~ घ ~ \end{aligned}$	D, s	Reported flow 20 gal/min on Sept. 13, 1941 and लsr. 29, 1961. 31
* ${ }^{304}$	k, damolin	-. ${ }^{\text {Cwese }}$	1950	444	6	${ }^{20}$	Kogr	1,570	-	-	c, w	s	Open hole from so to 444 feet. 3
* 905	c^{2} gecose Hourlond	$\text { Graxfoxd }{ }_{\text {Well }}$ Drillinf.	1965	132	\square	132	Kegra	1, 380	60	1965	$\operatorname{sub}_{\substack{\text { s. }}}$	B, s	\$locted from 92 to 132 feet. Cemented from 20 feet to surfice. Pump ret at 107 feet. Repofted yield 15 gal/min witb 107 feet draindown. \%

See footnotes st end of tsble.

Table S. -Records of Belcoted hater Welle, Sprinps and Dil and gas Testa--Continsed

NcIr	Onder	Dxiller	$\left\|\begin{array}{c} \text { Date } \\ \text { completed } \end{array}\right\|$	$\begin{gathered} \text { Depth } \\ \text { of } \\ \text { well } \\ \text { (Et) } \end{gathered}$	Casing		$\begin{gathered} \text { hater } \\ \text { bearing } \\ \text { wnite } \end{gathered}$	$\left\|\begin{array}{c} \text { A1titule } \\ \text { of leade } \\ \text { surfaree } \\ \text { surt } \\ \text { (ft) } \end{array}\right\|$	kater Leve		$\begin{gathered} \text { Mothod } \\ \text { of } \\ 11 \mathrm{fL} \end{gathered}$	$\begin{gathered} \mathrm{U}_{\mathrm{ge}} \\ \text { af } \\ \text { witet } \end{gathered}$	Remarks
					$\begin{aligned} & \text { patan- } \\ & \text { ctec } \\ & \text { (in.) } \end{aligned}$	$\begin{gathered} \text { Depth } \\ \{f t y \end{gathered}$			Bolew aur face datuli (ft)	Date of measury ement			
* A2-57-43-906	Claude Dourlana	--	-	175	--	--	kcgra	1,453	--	--	c, x	δ	2
54.303	Glen fonktey	* ake	1953	190	7	--	${ }_{\text {xegr }}$	1,290	"-	--	c. ${ }^{\text {c }}$	5	Reported yleld 30 gal/min, 3
306	Rowin A \tys. 1 t	k. k. Magee	1967	200	7	200	Kctp	¢,150	60	Aus. 23, 1967	$\underbrace{}_{\substack{506 \\ 3 / 4}}{ }^{\text {c }}$	s	stotted. 3 .
307	do	-	--	18	48	-n		1,120	10.6	Sept. 23, 1968	c. :	D, s	Duy well curled with rock. 3 .
401	Henry Rindscil	. --	-.	$\mathrm{s}_{\text {¢тifing }}$	--	--	Regr 1	1, 519	--	--	Flosa	D, s	Reported flow 18 gali/min in 7938.3
402	J. N. \&arrelly, Mill Beat Spring	; --	--	spring	-n	--	Kogri.	1,160	-	-- .	$\begin{aligned} & \text { F1ows } \\ & \mathrm{c}, \mathrm{~B} \end{aligned}$	I	3.
403	J. w. Farrelly	T. J. Decker.	1943	170	--	--	Kche	1,180	\because	\because	J, E	8	$3{ }^{3} \because$
* 507	Louts Lanz	---	--	97	--	$\because-$	$\mathrm{K}_{\mathrm{V} \text { ת } \mathrm{A}},$ $\mathrm{K} \subset \in \mathrm{p}$	1,193	39.3	Sept. 26, 1966	c, e	D, s	$3 \ldots$
502	Mrs, R, A. Rt.chiurds	--	\because	Spring	--	--	${ }_{\text {Kıżtu }}$	1,190	-	--	$\mathrm{Flown}^{\text {chen }}$	s	3
503	M. 'r. Burchect	--	--	spriug $^{\text {den }}$	--	-	Kogr 1.	1,180	--	-.	Flows	n, s	3
504	\downarrow	--	--	Spring	--	\cdots	$\mathrm{x}_{15 \mathrm{c}} \mathrm{l}$	1, 100	--	--	Flowe		3
604	L. M. Murphy	.' - --	1898	169	${ }^{6}$	6		1,160	--	-.	c, w	n, s	Denpenod in 19.37. Open foule froml 6 to 169 teet, 3
* 701	Hrs, R, A. Ricfiardis	-- Kennely ${ }^{\text {a }}$ "	1942	375	$\mathfrak{6}$	2π	${ }^{\mathrm{Kcgr}}$, Kctp	1,360	--	" -" .	c, вं	s	Opin thaie from 20 to ' 375 Feet'. Reported yleld 3 gs 1/min. 3
702	do	Prank Kennedy	1940	372	¢	270	Kcgrl	1,495	257.9	Mar. 29, 1961	c, w	s	Cipon hole 'from 270 to 372 feet. Reported $11 / 2$ gal/min. 2/
* 804	do	P1nk Kemaedy	1940	130	5	20	ксевги	1,350	--	--	$\mathrm{c}_{8,}^{\text {¢ }}$,	n, s	Cpari fuple from 20 to 130 feet: Réported yield 8 gal(min. 3
* 901	Emil \%eckel	$\begin{aligned} & \text { Griavford we } 11 \\ & \text { Drsiling } \end{aligned}$	1967	598	6	--	$\pi_{C-B r 2}$	1,5so	75°	1967	Sub, E	D, s	3)
* 902	Joe Patterson	--	1905	285	--	\checkmark	K mgr].	1,370	-*	-	Sub, E	D, ${ }^{\text {s }}$	Reported yield 6 gal/min. 31
* 903	F. c. cit.1u:pie	$\begin{aligned} & \text { Glase and bible } \\ & \text { Dri.ninng co. } \end{aligned}$	1966	353	6	20	Kcgr	1,370	2.88	1966	Sul, b	D, s	Open hole from 20 to 353 foct, Repartend Firold 6 gel/min.
974	Mra. kuesell single tou	..	1948	720	10	\cdots	$\begin{aligned} & \text { Kogr, } \\ & \text { Kccp } \end{aligned}$	1,670	--	-.	c, pr	D, s	Repotetea yketd 5 gal/miv. 3
* 405	Krie. flanoll Jonea	Grinwford well Dralling.	196)	400	6	360	$\mathrm{K}_{\mathrm{cg} \mathrm{r}}$	1.1555	154.6 156.7 159.6 153.7 152.0 14.0 16.1 14.3 156.3 156.9		¢, E	\because	Teported yield 10 gel/wilu. obaervetion meli. 3
906	Randolph Costman	Hill Uountry Wlater, Tre.	1974	650	¢	${ }^{27}$	$\begin{aligned} & \text { xebr }, ~ \\ & x+4 \end{aligned}$	1,570	500	Sept, 11, 1974	${ }^{\text {a }}$	*	Open hole from 27 to 650 feet. Unused domestio and 2ivestock well. 1 .
	. . .												
											.	\therefore	

ee footnotes at end of table

mianco county

Table s.--Recorde of Selected Water We11s, Springs, and oil and case Tvata--Continued

					Cas					ef teycl			
Wel1	omer	Driller	$\left\|\begin{array}{c} \text { Dake } \\ \text { completed } \end{array}\right\|$	$\begin{gathered} \text { Depth } \\ \text { off } \\ \text { wel1 } \\ \text { (ftc) } \end{gathered}$	$\begin{aligned} & \text { Disam- } \\ & \text { (tter } \\ & \text { (1n.) } \end{aligned}$	$\underset{\substack{\text { vepth } \\(\mathrm{ft})}}{ }$	Watet bearlng unit			Date of mcasurement	$\begin{gathered} \text { Kecthod } \\ \text { uft } \\ \text { uift } \end{gathered}$	$\begin{gathered} \mathbf{y}_{\text {bef }} \\ \text { wafer } \\ \text { water } \end{gathered}$	Romarks
A2-57-55-101	K. X. Hodgea	--	--	145	--	--	$\mathrm{K}_{\text {cgr }}$	1,290	134.5 134.5 13.0 13.7 13.8 130.5 1829.5 13.2 13.4 127.5 133.1		$\mathrm{c}_{\mathrm{E}} \mathrm{m}$	${ }^{\wedge}$	Unused domestic and 1tvestock well. Observation we11. 3
103	Hodges Ratnch	--	--	Spring	\cdots	--	Kogru	1,180	-.	..	${ }^{\text {Flows }}$	1	Raportad flow $1 / 2 \mathrm{fal} / \mathrm{min}$ in 1938.31
104	Tom Parker	--	1943	312	--	--	Kcze	1,223	--	--	c, E	D, 3	3
* . 105	do	-- Dxens	1963	378	6	60	$\begin{aligned} & \text { Kogr, } \\ & \text { Ketp } \end{aligned}$	1,240	-.	-	Sub, E	D, s	Open hole from tol to 376 feet, Reported yicld $30 \mathrm{gal} / \mathrm{min} .24$
$\pm \quad 107$	Elen Longley	--	--	spriny	--	--		1,060	--	--	${ }^{\text {Flases }}$	${ }^{*}$	Reported flow 25 gal/min on May 27, 1969. 3
* 60-301	Gus Flugratis	. --	1920	315	--	\cdots	Kerr, Ketp	1,420	\square_{0}	Oct. 1961	c, e	D, s	R.ported yield 10 galimin. 3
* 303	Ree Doran	--	--	spring	--	--	Kсgru	1,400	--	--	$\begin{aligned} & \text { Frows } \\ & \mathrm{J}, \mathrm{~B} \end{aligned}$	-	Reported flowr 84 gal/mina in Aug. 20, 1941. 3
$\pm \quad 304$	do	-- Owens	1962	${ }^{128}$,	128	${ }_{\text {Kegri }}$	1,500	--	--	Sub, E	s	Yerforated from 109 to 128 feet. 3
* 305	do	so	1965	200	3	15	Regr	1,470	74.6	Aug. 13, 1968	c, ${ }^{\text {¢ }}$	8	Open hole from 15 to 200 feet. 3
309	Jolint J. Klepac	--	1962	232	6	76	Kctp	1,460	--	--	Sut, ε	$\mathrm{D}, \mathrm{I}_{\mathrm{s}} \mathrm{r},$	sloteed fyom 52 to 76 feet. Open hole fromil 76 to 233 feet. 3
+ 607	Kax C. Kluege and Hugo Brodbeck	E. 2. Owens	1969	110	5	110	$\mathrm{K}_{\text {cgru }}$	1,670	71.2	O6C. 24, 1968	c, w	s	Parforated from 100 ta 110 feet. Reported field 48 gal/min. 3
61-101	Mes. C. R. Nhitworth	do	1969	370	7	26	$\begin{aligned} & \mathrm{K}_{\mathrm{ccgr}} \\ & \mathrm{Xcttp} \end{aligned}$	1,455			c, w	s	Open hole from 26 to 370 feet. Dbkervation we.11. 3
$\pm \quad 105$	I. L. $\mathrm{smax}_{\text {m }}$	-- Trajner	197	2.90	--	--	${ }_{\text {Kcgru }}$	1,600	--	\cdots	c, w	s	3
* 106	R. s. Jones	-- © \%ers	1956	158	6	10	k̇ıgru	1,530	*	--	Sab, e	0,8	Open bole from 10 to 158 feet. Reported yield 50 gal/mill. 31
* 201	T. M. Phipps	--	-	Spring	"*	\cdots	Kegru	1,975	-	-	Flows	-.	Reported flow $84 \mathrm{gal} / \mathrm{min}$ on Aug. 20, 1941. 21
202	Gilbert $Z_{\text {brcher }}$	--	--	Spriog	--	--	Kegru	1,450	--	-.	Flows	D) 8	Reported flow 126 gal/min on Aug. 4, 1941, 3
209	Blanco State Paxk	--	-.	- ppring	--	--		1,300	--	--	Flows	*	Reported fiow $158 \mathrm{zal} / \mathrm{min}$ on Aug. 20, 1941. 3
210	Lagne smith	\cdots	1954	54	10	--	$\mathrm{K}_{\text {cegru }}$	1,400	--	--	T, \%	*	Conuad public aupply well. 3
* . 211	Jtm N, Ing 1.16 h	wilmex KeDopald	1974	941	${ }_{4}^{5}$	$\begin{gathered} 12 \\ 341 \end{gathered}$	Kcgr	1,430	105.4	Hov. 13, 1974	N	${ }^{\text {H }}$	Slatted from 301 to 341 feet + Gementred from 12 feet to surface. Plugged.
212	William A. Waiker	do	1972	21.7	4	217	$\mathrm{X}_{\text {ctitu }}$	1,405	--	--	Sub, ©	s	Slotted, Cemented frem 30 feet to surface.
* 233	do	do	1972	248	4	248	Kogr	1,410	56.9	Nov. 13, 1974	Sulb, E	v, s	Slotted from 90 to 110 feet and 170 to 220 feet. Comented Exom 3u feet to surfece.

see exotnotee at end of table.
rable 5 . \cdots Records of Selfeted water wellh, Springa, and 011 and Gas Texts--Continued

We11	Onser	Drilles	$\left\|\begin{array}{c} \text { Date } \\ \text { completed } \end{array}\right\|$	$\begin{gathered} \text { Depth } \\ \text { of } \\ \text { vell } \\ (f t) \end{gathered}$	Casing		Water bearing unit	$\left.\begin{gathered} \text { Alcitude } \\ \text { of 1and } \\ \text { surface } \\ (\mathrm{ft}) \end{gathered} \right\rvert\,$	Mater level		$\begin{gathered} \text { Method } \\ \text { of } \\ \text { lift } \end{gathered}$	$\begin{gathered} \mathrm{U}_{\text {se }}^{\text {of }} \\ \text { water } \end{gathered}$	Remarks
					$\begin{aligned} & \text { Miser- } \\ & \text { ater } \\ & \text { (in.) } \end{aligned}$	$\begin{gathered} \text { Ueptst) } \\ (\mathrm{ft}) \end{gathered}$				Date of measur שuncnt			
* AZ-57-61-214	Conway Johnaton	--	1959	\cdots	--	--	Kcgr	1,440	92	Nov. 13, 1974	Sub, e	D	Drilled ta 320 feet and plugged back to unknown depth.
225	Wesley Joe Dechert	--	"	${ }^{240}$	5	\cdots	Kсgru	1,400	--	\cdots	$\mathrm{Sub}_{\mathrm{ub}} \mathrm{E}$	D, s	-.
* 2216		--	--	14 B	4	1.45	Kegru	1,380	"	--	$\mathrm{Subs}_{1 / 2}{ }^{\text {B }}$	D	Open hoin from 145 to 148 fect. Pump wat at 145 feet.
304		--	-.	spring	--	--	Kcgrl	1,280	--	--	$\begin{aligned} & \text { PIows } \\ & c,{ }_{\mathrm{B}} \end{aligned}$	D, s	Reported flow 15 gal/min in 1939. 3
308	o. c. Collins	--	1967	450	B	--		1,290	--	--	Sub, ©	D, s	3
309	Henry Tricah	Alex Evans	1917	201	6	\cdots	Kegr1	1,290	25.5	June 2, 1935	c, ${ }^{\text {c }}$	s	3
404	N. т. Yett	E. R. Owen	1967	480	5	480	Kcgr	1,810	380	1967	c, w	s	Slotecd, Reported yield 20 gailmin with 60 feet drawdom. 3
406	max 0. Kluge	do	1967	170	5	170	Kıgr ${ }^{\text {c }}$	1,440	115	1967	Sub, re	D, s	S10tted from 160 to 170 reet. Heported yield $25 \mathrm{gnol} / \mathrm{min} .3$
* 501	Ted Moffett	$\begin{aligned} & \text { Crywfors Kell } \\ & \text { Drialing } \end{aligned}$	1965	375	7	$\stackrel{ }{-}$	$\begin{aligned} & \mathrm{Kcgr} \\ & \mathrm{~K} \subset \in \mathrm{p} \end{aligned}$	1,340	175	1966	$\begin{gathered} \text { Sub, E } \\ 11 / 4 \end{gathered}$	s	Meported yield 15 gal/win Fith 50 feet dravdoner. 3
502	w. т. Yete	E. R. Owens	1967	437	5	437	Kctp	1,500	180	1967	Sub, E	3	Sloited. Reported yteld 20 gal/min. 3
601	o. E. Crist N_{0}. y	E. L. Nixon	1940	1,331	--	--	\cdots	1,315	--	-.	--	--	OH1 test. $1 / 3$
* 604	A1vin Becknach	-	--	$\mathrm{spritgg}^{\text {d }}$	--	\cdots	KCBx ${ }^{\text {a }}$	1,320	-	--	${ }^{\text {Flowb }}$	s	Reparted flow 2 gal/min on Funn 6, 1938. 3
605	do	--	1916	290	8	7	Kegr	1,340	--	"		д, s	Open hole from 7 to 290 feet. Reported yield $10 \mathrm{gra} 1 / \mathrm{min} .2$
* 608	L. Cloud	--	--	90	6	\cdots	Kcgrl	1,320	--	--	c, в	o, st	31
* 609	do	-- 0xsm	£965	357	-	--	$\begin{aligned} & \mathrm{K}_{\mathrm{cgrx}} \\ & \mathrm{Kctp} \end{aligned}$	1,320	-	--	Scli, E	D, $\mathrm{s}^{\text {d }}$	3
* 613	Asthur Mate	-- Exawford	1361	216	5	--	Kegrl	2,410	--	--	c, e	D, s	Terforsted. 3
617	Jne Cloud	Clase ad Tucker Ine.	1977	380	6	22	$\begin{aligned} & \text { Kegr, } \\ & \operatorname{Retp}, \end{aligned}$	1,321	173	Jume 28, 1977		${ }^{1}$	Open hole from 22 to 380 feot. Reportes fiold $25 \mathrm{ga} 1 / \mathrm{mitn}$ with 200 feet drawdomi. If
B07.	Howard A. Doelbler	$\left\{\begin{array}{l}\text { R. R. Pence. Drillinis } \\ \text { Co. }\end{array}\right.$	${ }^{1969}$	155	7	${ }^{5}$	Kсgru	1,500	100	Auk. 1.6, 1968	$\underset{\substack{\mathbf{s}_{3}, 2 \\, ~ B}}{ }$	ε	Open hole from $\begin{gathered}\text { to } 155 \text { fect, Cementead from }\end{gathered}$? feet to eurface. Pump set at 127 feet. Reported yitid $10 \mathrm{gal} /$ mía witl 55 feet dramdown, 3
$\text { \# } 802$	Fred Poenisch	--	\cdots	spring	--	**	Kcgrus	1,430	--	-.	${ }^{\text {Plows }}$	s	Reported fion lese than 1 gal/ain av Aug. 19, 1968. 3
* 903	Reuteo Crge	Prisk Kennedy	1931	60	\square	20	Kggr1	1.,300	$\begin{aligned} & 25.3 \\ & 23.5 \\ & 25.7 \\ & 25.7 \\ & 27.8 \\ & 23.8 \\ & 25.4 \\ & 20.1 \\ & 25.5 \\ & 24.1 \\ & 26.7 \end{aligned}$		$\mathrm{Sub}_{\text {Sut }}^{1}$	s	Open bole from 20 to 60 feet. Observation we11. 3

Sce footnotes at end of table.

well	Comer	Driller	$\underset{\text { Date }}{\text { completed }}$	$\begin{gathered} \text { Depth } \\ \text { of } \\ \text { wel1 } \\ (\mathrm{ft}) \end{gathered}$			$\underset{\substack{\text { water } \\ \text { bearing }}}{ }$ unit	$\begin{gathered} \text { Altitude } \\ \text { of } \left.\begin{array}{c} \text { Rand } \\ \text { Eurface } \\ \text { (fac) } \end{array} \right\rvert\, \end{gathered}$	haster level		$\begin{gathered} \text { Method } \\ \text { of } \\ \text { of } \end{gathered}$	$\begin{gathered} \text { Cae } \\ \text { of } \\ \text { water } \end{gathered}$	Remarks
					$\begin{aligned} & \text { Drau- } \\ & \text { etere } \\ & \text { (1n.) } \end{aligned}$	$\begin{gathered} D_{\text {depth }} \\ (\mathbf{f t}) \end{gathered}$			${ }^{\text {Beligu }}$ burface datum \qquad	$\underset{\substack{\text { Date of } \\ \text { measurfement }}}{ }$			
* A2-57-61-806	Fred Poenisch	Frank Xemedy	1950	340	6	--	$\mathrm{Kcgr}^{\text {r }}$	1,510	--	--	c, w	ε	3
904	Oscar Yooss	$\begin{gathered} \begin{array}{c} \text { Crawford Well } \\ \text { Dri114g } \end{array} \end{gathered}$	1965	249	6	40	Kogr	1,405	175	May 1965		s	Open hole from 40 to 249 feet. Cemented from 40 feet to surf face. Hump tet 25231 feet. Reported yield 12 gel/min with 56 feet disawtown. 3
* 905	do	\%	1965	150	6	30	\#cgru	1,425	90	Dec. 1965	Sus, E	s	Open hole from 30 to 150 feet. Cemented frem 30 feet to aurface. Reported yield 20 gal/min With 10 feet drawdown. 3
* 905	Udo Rruemer	\cdots	1460	260	${ }^{6}$	10	$\begin{aligned} & \mathrm{K}_{\mathrm{cgzz}} \mathrm{krter} \end{aligned}$	1,320	--	--	c, w	D, ε	Open hole from 10 to 260 feet. Reported giteld $7 \mathrm{gol} / \mathrm{min}$. 3
62-103	Austin C. Webh	$\begin{aligned} & \text { Crsuford Well } \\ & \text { Dri11ing } \end{aligned}$	1966	180	s	30	Xcgrer^{1}	1,220	130	Oct. 10, 1966	Sub, e	D, 8	Open bole from 30 to 180 fect, Cemented from 30 feet to surface, Reportod yleld $20 \mathrm{gal} / \mathrm{fon}$ in witli 20 feet dxaydown. Y
106	Nirs. R. An日icherds, Jr.	Fink Renoedy	1939	185	6	20	Kegri	1,300	89 89.4 101.4 89.0 99.4 88.4 79.6 91.3 77.3 79.3 99.3		c, N	d, s	Deepened in 1956. Open fole from 20 to 185 feet. Dbservation well. 2
IOB	Joe S. Magnes	Virdell Erotilex Drilligg Co.	1956	350	--	--	$\begin{aligned} & \text { Rcgr, } \\ & \mathrm{Kc}_{\mathrm{ftp}} \end{aligned}$	1,340	--	--	Sub, e	D, s	3
* 109	do	\cdots	1935	160°	6	--	Kfgr 1	1,260	--	-*	C, B	$\mathrm{D}_{\mathrm{s}} \mathrm{s}$	31
207	John c. Doi1abite	-- Kock	1924	180	¢	170	Kçı1	1,335	--	--	c, w	D, S	Open hole from 170 to 180 feet. 3
209	Eajadhouse $\mathrm{sprrag}^{\text {a }}$	--	--	Spriog	--	--	Kegru	1,300	--	--	Flows	--	Reported flow 50 ga1/mín on May 20, 1969. Y
* . 301	Chasies Nognes, Jr.	Xatcher dxaliing co.	1968	340	6	-.		1,310	225	1968	Sub, E	D, s	3
403	A. J. Magzoner	--	--	Spring	--	\cdots	Kcgre^{1}	1,260	--	. --	PIows	--	3
* 405	Hopard cox		1966	360	-.	--	$\underset{\mathrm{K}_{\mathrm{cg} \mathrm{ctp}},}{ }$	1,380	"	--	Sub, E	D, s	3
406	c. A. Rust, Jr.	®. R. Owen	1968	120	5	17	Kegr1	1,320	90	Mar. 1966	$\mathrm{sub}_{1 / 2}{ }^{\mathrm{s}}$	D	Openthole from 17 to 120 feet. Reported yield $10 \mathrm{gal} / \mathrm{min}$. 3
* 407	do	do	1966	135	7	15	$\mathrm{K}_{\text {ça } 1}$	1,360	95	do	Sub, E	s	Open hole from 15 to 135 feet, Reported yield 2 1/2 ga1/min. 3
* 409	do.	do	1968	170	7	12	$\mathrm{K}_{\text {cgr }} 1$	1,350	123	do	Sub, E	s	Dpen hote from 12 to 170 feet. Reported yield 6 gal/min. 3)
400	Fradk R . W1112s	Crasford well DFI11緼	1965	179	6	40	$\begin{aligned} & \text { Kogr, } \\ & \text { Kcter } \end{aligned}$	1,230	135	Sept. 2, 1965	$\underset{1 / 2}{\substack{\text { Sub, } \\ 1}}$	D	Open hole from 40 to 175 feet. Cemented fram 40 feet to surface. Puop bet at 168 feet, Reported yield 7 gal/min, \}
$\pm \quad 502$	H. W11cox	do	1967	210	5	210	$\begin{aligned} & \mathrm{Kcgr}, \\ & \mathbf{k} \subset \mathrm{tg}, \end{aligned}$	1,24.5	180	Jan. 20, 1967	$\operatorname{Sckib}_{2}{ }^{\text {c }}$	D, 8	Per forated from 100 to 210 feet. Cenented from 60 feet to purface. Pump set at 189 feet. Roported yield $20 \mathrm{gal} / \mathrm{min}$ witl 0 feat draw down. ?

Sta footnoteg at pad of table

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \& \& \& \& \& CRat \& ng \& \& \& \& cri level \& \& \&

\hline Hell \& Dimer \& Dtiller \& $$
\left|\begin{array}{c}
\text { Dati } \\
\text { coatpleted }
\end{array}\right|
$$ \& $$
\begin{gathered}
\text { Depth } \\
\text { of } \\
\text { well } \\
(\mathrm{ft})
\end{gathered}
$$ \& $$
\begin{aligned}
& \text { Diam- } \\
& \text { eter } \\
& \text { (int, }
\end{aligned}
$$ \& Depeth
(ft) \& $$
\begin{gathered}
\text { Water } \\
\text { bearing } \\
\text { unit }
\end{gathered}
$$ \& \& \& Date of
ceasurement \& $$
\begin{gathered}
\text { Method } \\
\text { of } \\
\text { of }
\end{gathered}
$$ \& $$
\begin{gathered}
\text { Use } \\
\text { of } \\
\text { of } \\
\text { water }
\end{gathered}
$$ \& кепиarks

\hline * Az-57-62-503 \& Grace Heamin \& Kart Johnson \& 2936 \& 250 \& 6 \& 250 \& $$
\begin{gathered}
\text { Kogr, } \\
\text { kctep }
\end{gathered}
$$ \& 1,200 \& * \& -. \& c, в \& -, s \& Slotted, Reported yield 15 galmman 3

\hline * 506 \& E. A. Crate, Eatate \& Frank Kemardy \& 1940 \& 400 \& \cdots \& -- \& $$
\begin{aligned}
& \mathrm{Kcgr}, \\
& \mathrm{Kctp}
\end{aligned}
$$ \& 1,235 \& \cdots \& -- \& Sub, 5 \& D, s \& 3

\hline * 707 \& Euery M1x \& $$
\begin{aligned}
& \text { Crawford We } 11 \\
& \text { Drfliling }
\end{aligned}
$$ \& 1965 \& 150 \& 6 \& 20 \& $$
\begin{gathered}
\mathrm{Kcgr}, \\
\mathrm{Kctp},
\end{gathered}
$$ \& 1,180 \& 40 \& Doc. 1965 \& $\operatorname{sub}_{\substack{\text { Sub } \\ 3 / 4}} \mathrm{E}$ \& D, 8 \& Open hole from 20 to 150 feat. Cemented from 20 feet to aurface. Porop aet at 127 feet. 3

\hline * 68005-107 \& Urax ford milis farcli \& -. \& -- \& 500 \& \cdots \& .- \& $$
\begin{aligned}
& \text { Kcgr, } \\
& \text { Kctot }
\end{aligned}
$$ \& 1,580

1 \& 266.7 \& Aus: 20, 1968 \& c, w \& s \& 3

\hline * 201 \& stLon zuercher \& Willie Pigher \& 1912 \& 210 \& \bigcirc \& 12 \& $\mathrm{K}_{\mathrm{cgr}} 1$ \& 1,990 \& 198.5 \& do \& c, w \& D, s \& Open hole frum 12 to 210 feet. Reported yizld $6 \mathrm{gal} / \mathrm{min} .3$

\hline * 202 \& do \& -- \& 1912 \& 263 \& 6 \& 6 \& $\mathrm{Xeggr1}$ \& 1,380 \& 190 \& 1967 \& Suf, st \& D, s \& Deepened frour 190 tu 263 feet fs 196\%. Open hale from to to 26.3 feet. 3

\hline * 203 \& ת. ग. Reveridge \& -- \& -- \& 100 \& -- \& -- \& $\mathrm{K}_{\mathrm{cg} \mathrm{B}}$ \& 1,410 \& -- \& -- \& c, w \& s \& Reported yield 6 gal/mina. 3

\hline * 206 \& do \& $$
\begin{aligned}
& \text { Grauford We } 1,1 \\
& \text { Drflling }
\end{aligned}
$$ \& 1966 \& 258 \& 6 \& 20 \& Kegx \& 1,430 \& 85 \& 1966. \& Sub, E \& D, s \& Open hale fram 20 to 258 feet. 3 \%

\hline * 301 \& Luther Hill \& John Kest \& 1902 \& 906 \& ${ }^{8}$ \& 7 \& $$
\begin{aligned}
& \mathrm{K}_{\mathrm{cgr},} \\
& \mathrm{Kcta}
\end{aligned}
$$ \& 1,385 \& -- \& -- \& c, w \& D, s \& Dpen hole frow ? to 306 feet. 3

\hline * 302 \& do \& -- \& 1905 \& 350 \& ${ }^{6}$ \& 10 \& $$
\begin{aligned}
& \mathrm{K}_{\mathrm{K}+\mathrm{g} \mathrm{r}_{1}}
\end{aligned}
$$ \& 1,370 \& 255.4 \& Ju1y t, 1938 \& Sub, e \& v, s \& Open hole from 10 ta 350 feet. Reported yield 2 za. 1/min. 3

\hline * 309 \& H. P. Stover \& -- \& -- \& 92 \& 6 \& -- \& K<grı \& 1,270 \& 33.1 \& Aug. 22, 1968 \& c, 8 \& D, 8 \& 3

\hline 601 \& Albert Specht Mo. 1 \& . - \& 1931 \& 1,430 \& - \& -- \& -- \& 1, 1,320 \& -- \& -- \& \cdots \& -- \& Dit test. y 3

\hline * 602 \& Joe Sawyer \& $$
\begin{aligned}
& \text { Crswford Well } \\
& \text { Dri11ing }
\end{aligned}
$$ \& 1966 \& 180 \& 6 \& 20 \& Kcgr \& 1,400 \& - \& \cdots \& \[

$$
\begin{gathered}
\text { Sub, } \Sigma \\
1 \\
1 / 2 \\
\Sigma
\end{gathered}
$$
\] \& D, s \& Open foole from 20 to 180 feet. Reported yleld 15 gel/min. 2

\hline * 06-102 \& L. W, chick \& Frankl Xeunedy \& 1945 \& 200 \& 6 \& -- \& $$
\begin{gathered}
\mathrm{Kcgr}, \\
\mathrm{Kctp},
\end{gathered}
$$ \& 1,240 \& -- \& -- \& c, в \& D, 8 \& Reported ydeld 50 gal/min. 3 l

\hline
\end{tabular}

For chemical analysea of water, Pee Table 6 .
H Geophyaical loks in files of che Texae Depar
解
$\frac{3}{3}$ Werl aleo appeest in Texas water Development Board Report 174.

Anslyses are in tilligrame per liter except percent podium, specific conductance, pli, sodium adaorption ratio (BAR), and reaidual godium carbonate (RSC)
Watex-bearing unit: ©al, alluviun; Kcgr, Glen Rose Limeatone; Kcgru, upper member of the Glen Rose Limestonc; Kcgrl, lower member of the flen Ros Digrolved Limestone; Kctp, Travig Pesk Formation; Kche, Hensell Sand Member of the Travig Poak Formation,
(The bicarbonate "reported" is converted by computation (multiplying by 0.4917) to an equivalent amount of carbonate, and the
Anslysee by Texas state Department of Health.

Hell	Waterbearing unit	Depth of well or sampled interval (ft) (ft)	Date of collectiou	$\begin{aligned} & \mathrm{s}(11 \mathrm{ca} \\ & \left({\mathrm{S} 10_{2}}\right) \end{aligned}$	$\begin{aligned} & \text { Iron } \\ & (\mathrm{Fe}) \end{aligned}$	$\begin{aligned} & \text { Cal- } \\ & \text { calum } \\ & \text { (Ca) } \end{aligned}$	$\begin{gathered} \text { Mogne- } \begin{array}{c} \text { sium } \\ \left(M_{g}\right) \end{array} \end{gathered}$	$\begin{aligned} & \text { sod- } \\ & \text { fum } \\ & \text { (Ma) } \end{aligned}$	$\begin{gathered} \text { Potag- } \\ \text { Sium } \\ (\mathrm{K}) \end{gathered}$	$\begin{aligned} & \text { bicar- } \\ & \text { bonate } \\ & \text { (Hico }) \end{aligned}$	$\begin{aligned} & \text { Sul- } \\ & \text { fate } \\ & \left(80_{4}\right) \end{aligned}$	$\begin{aligned} & \text { Chio- } \\ & \text { ride } \\ & \text { (C1) } \end{aligned}$	$\begin{gathered} \text { Fluo- } \\ \text { ride } \\ \text { (F) } \end{gathered}$		Boron (B)	$\begin{array}{\|c\|c\|} \text { Dig- } \\ \text { Boived } \\ \text { Bollds } \end{array}$	Total hardne88 as CaCO_{3}	$\begin{aligned} & \text { Spectific } \\ & \text { conduct } \\ & \text { ance } \\ & \text { (microwhos } \\ & \text { at } 25^{\circ} \mathrm{C} \text {) } \end{aligned}$	PH	$\begin{aligned} & \text { Per- } \\ & \text { cent } \\ & \text { sod- } \\ & \text { fodur } \end{aligned}$	Sodium tion ratio (SAR)	Residual sodivum carbon- ate (RSC)
AZ -57-36-806	Kctp	78	Aus. 12,1977	26	--	94	52	14	--	540	6	22	0.5	< 0.4	--	480	447	805	7.5	6	0.2	0.0
37-505	Kche	360	May 1, 1969	-	--	65	49	--	\cdots	424	120	75	--	\cdots	--	--	364	1,040	3.7	--	--	. 0
703	Kcgris	--	Ju19 31, 1941	--	--	100	54	9	--	494	25	28	\cdots	28	--	487	473	--	--	4	.1	. 0
705	Kcgru	82	Aug. 10, 1977	28	-	82	43	14	\cdots	417	22	28	. 5	9.4	\cdots	421	380	710	7.9	7	$\cdot 9$. 0
805	Kche	238	May 1, 1969	-	--	78	47	--	--	456	18	22	--	--	\cdots	\cdots	368	755	7.2	\cdots	--	. 0
904	Kcgri	--	TJuly 11, 1941	--	\cdots	B6	14	21	\cdots	34 B	15	12	. 2	2.0	.-	321	274	--	--	14	. 5	. 2
38-407	Retp	-	July 25, 1941	--	\cdots	80	31	27	"*	360	35	25	. 3	26	\cdots	401	329	--	\cdots	15	. 6	. 0
409	Ketp	253	Aug, 10, 1977	14	--	76	24	9	--	312	24	16	. 3	7.2	--	323	289	520	8.3	6	.2	. 0
39-602	Ketp	131	July 18, 1968	12	--	93	41	9	1.6	408	42	15	.4	21	--	435	400	763	7.1	5	$\cdot 1$. 0
701	Kche	125	May 1, 1969	--	\cdots	94	29	--	--	380	20	26	--	\cdots	--	--	354	714	7.1	--	--	. 0
709	Ketp	180	Mar. 14, 1947	--	--	116	37	27	--	460	23	49	--	38	--	516	551	--	-	12	. 5	. 0
44-501	Kche	213	Apr. 30, 1969	--	-*	94	57	--	--	440	59	58	--	--	--	--	469	975	7.1	--	\cdots	. 0
505	Kehe	188	do	--	--	104	70	\cdots	--	358	133	156	--	--	0.2	--	548	1,220	7.3	--	--	. 0
701	Katp	75	July 29, 1968	22	--	83	55	51	1.8	476	38	73	.7	18	\cdots	581	446	985	7.4	20	1.0	. 0
701	Kstp	75	Aug. 10, 1977	25	--	88	52	55	--	482	37	24	. 7	17	--	535	434	965	7.8	22	1.1	. 0
45-303	Kcgrg^{1}	--	Aug. 19, 1941	\cdots	-*	106	30	19	--	464	13	25	--	\cdots	--	421	388	--	--	10	-4	. 0
308	Kcgru	--	Aug. 18, 1941	--	\cdots	--	--	\cdots	--	354	9	19	--	--	--	331	\cdots	--	--	--	--	.
704	xcte	200	smg. 12, 1968	9	--	92	26	19	. 9	324	21	43	, 3	37	--	407	336	706	7.8	11	. 4	. 0
902	Qat	30	A0g. 11, 1977	18	--	125	64	30	--	539	48	51	. 4	99	**	709	575	1,121	8. 1	10	. 5	. 0
907	Kehe	21	May 2, 1969	\cdots	--	87	53	--	\cdots	478	39	31	\cdots	-	. 1	--	435	846	7.1	--	--	. 0
46-901	$\mathrm{rc}_{\mathrm{c}}^{\mathrm{gr}}$ 1	211	July 13, 1968	--	--	128	44	2	--	415	132	22	1.9	--	--	532	503	--	--	1	. 0	. 0
902	Kegra^{1}	250	Sept, 19, 1968	12	\cdots	104	67	21	9.6	400	227	18	3.2	< . 4	\cdots	658	535	1,020	7.4	-	. 3	. 0
902	Rcgr 1	250	Juty 29, 1976	12	--	226	123	58	18	360	850	39	2.2	$<.4$	-	1,505	1,070	1,790	7.6	10	. 7	.0
902	Kcgr 1	250	Aug. 11, 1977	13	-*	248	127	62	--	359	903	99	2,1	< . 4	\cdots	1,571	1,142	1,900	7.7	11	.7	.0
905	Kche	200	May 2, 1969	--	--	86	33	-*	--	314.	46	36	--	64	--	--	350	771	7.3	-	\cdots	. 0
47-201	Retp	142	А48. 9, 1977	18	--	88	15	9	\cdots	322	13	9	. 3	15	-	325	280	530	7.9	6	. 2	. 0

We11	Water- bearl ng unit	Depth of well or sampled interval (ft)	Date of collection	$\begin{array}{\|l\|l\|l\|l\|l\|l\|l\|} \hline 11 i c a \\ \left(810_{2}\right) \end{array}$	$\begin{aligned} & \text { Iron } \\ & (\mathbf{F e}) \end{aligned}$	$\begin{aligned} & \text { Ca1- } \\ & \text { caum } \\ & \text { (Csa) } \end{aligned}$	Magnesivm (Cl)	$\begin{aligned} & \text { Sod- } \\ & \text { fum } \\ & \text { (Ma) } \end{aligned}$	$\begin{gathered} \text { Potas } \\ \substack{\text { sium } \\ (\mathrm{K})} \end{gathered}$	Bicar $\left(\mathrm{HCO}_{3}\right)$	Sulfate (SO_{4})	$\begin{aligned} & \mathrm{Chlo-} \\ & \text { ride } \\ & \text { (C1) } \end{aligned}$	$\underset{\substack{\text { riude } \\ \text { ride } \\(F)}}{\substack{\text { che }}}$	$\begin{gathered} \mathrm{NI}_{1-} \\ \text { trate } \\ \left(\mathrm{NO}_{3}\right) \end{gathered}$	$\underset{\text { (B) }}{\substack{\text { Boron } \\ \hline}}$	$\begin{gathered} \text { Dis- } \\ \text { solved } \\ \text { solide } \end{gathered}$	Total hard- певв CaCO_{3}	$\begin{aligned} & \text { specificte } \\ & \text { conduct- } \\ & \text { ance } \\ & \text { (microch } \\ & \text { at } \left.25^{\circ} \mathrm{C}\right) \end{aligned}$	pH	$\begin{aligned} & \text { Per- } \\ & \text { cent } \\ & \text { sod- } \\ & \text { luo } \end{aligned}$	Sodium adzorption ratio (SAR)	Residual sodium carbon- ate (RSC)
A2-57-47-4.02	Kche	400	May 22, 1969	--	\cdots	86	37	--	--	398	24	33	--	\cdots	--	--	366	763	7.7	--	--	0.0
52-101	Kelp	65	Oct. 7, 1951	23	--	91	56	49	--	470	38	87	--	21	--	596	458	1,080	7.7	19	0.9	. 0
302	$\underset{\substack{\mathrm{Kcgre} \\ \mathrm{Kcte}}}{ }$	120	July 29, 1976	18	-"	170	18	31	--	434	61	75	0.4	55	0.2	641	497	1,005	7.8	12	. 6	. 0
305	kogr, Kctp	225	Ju1y 31, 1968	10	--	560	202	80	21	278	1,970	118	. 3	--	\cdots	3,097	2,230	3,340	7.1	7	. 7	. 0
508	Kegru	200	Aug. 1, 1968	10	--	258	166	49	16	236	1,080	93	2.5	. 1	--	1,790	1,330	2,210	7.7	7	. 5	. 0
603	Kcgr	210	do	12	--	83	35	12	1.8	340	49	26	. 4	11	--	397	351	669	7.4	7	. 2	. 0
805	$\mathrm{Kcgr}^{\text {c }}$	411	July 30, 1968	9	93.0	255	162	67	14	420	944	100	3.2	. 0	--	2,690	1,300	2,250	7.1	10	. 8	. 0
901	${ }_{\text {Kogr }}$	425	A4g. 1, 1968	7	27.0	288	107	26	19	354	862	26	1.6	5.2	--	1,779	1,160	1,860	7.2	5	. 3	. 0
902	Kcgru	475	do	9	--	340	86	22	9.3	240	976	2.3	1.1	.1	--	1,584	1,200	1,920	7.4	4	. 2	- 0
903	Kcgr	280	Aug. 12, 1977	12	--	98	22	8	\cdots	378	19	16	. 4	1.1	--	362	337	610	7.9	5	.1	-0
59-105	Kctp	500	Aug. 7, 1968	12	--	78	42	9	2.2	384	56	15	. 5	1.8	--	405	367	691	7.5	5	.2	. 0
105	Ketp	500	Aug. 11, 1977	14	--	79	43	10	--	${ }^{\text {® } 1}$	53	16	. 5	2.9	--	405	370	670	7.9	5	.2	. 0
208	Kcgrl	140	Aug. 7, 1968	13	--	128	16	13	1.0	340	28	46	.3	42	--	454	386	782	7.4	7	. 2	. 0
208	Kcgrl	140	Aug. 11, 1977	16	-r	143	18	23	--	368	49	67	. 3	44	--	540	431.	870	7.6	10	.4	. 0
215	Regru	--	May 21, 1969	--	\cdots	78	2 D	\cdots	--	312	11	8	"-	\cdots	--	--	277	521	7.7	--	--	. 0
217	Kcgr, Ketp	224	Oct, 25, 1968	-.	-"	--	--	--	--	374	994	22	--	--	--	-	710	1,240	7.7	--	--	--
304	Rc8ru	--	Sept, 20, 1968	12	--	99	16	6	1.3	356	14	10	. 2	10	--	343	313	588	7.6	4	1.	. 0
310	$\begin{aligned} & \text { Kcgr, } \\ & \text { Kctpp } \end{aligned}$	453	Oct. 3, 1968	--	--	\cdots	--	--	--	304	2,260	40	--	--	--	--	2,460	3,460	7.3	--	--	--
311	$\begin{aligned} & \text { Kcgr, } \\ & \text { Kctp } \end{aligned}$	202	Oot. 24, 1968	--	--	--	\cdots	--	\cdots	412	32	27	--	--	. 1	-	425.	824	7.3	\cdots	--	--
501	$\begin{aligned} & \text { Kcgr, } \\ & \text { Kct: } \end{aligned}$	1,005	Aug. 6, 1941	\cdots	\cdots	379	138	78	--	336	1,312	23	3.3	1.0	--	2,099	1,515	".	--	10	, 8	. 0
507	Kcgr	300	Aug. 6, 1968	10	--	255	103	16	12	346	760	21.	2.4	. 0	--	1,349	1,060	1,700	7.4	3	$\cdot 2$. 0
508	Kche	450	May $\quad 21,1969$.	--	--	610	374	--	--	113	2,900	55	**	--	--	--	3,460	4,010	7.3	--	--	. 0
509	$\mathrm{Xegr}^{\text {r }}$	50.	do	--	--	500	101	--	--	340	1,340	26	**	--	--	--	1,660	2,430	7.2	--	--	. 0
512	${ }_{\text {Kegru }}$	178	Aug. 6, 1941	--	--	492	165	98	--	348	1,720	32	--	\cdots	--	2,680	1,910	--	--	10	. 9	. 0
512	Kcgru	178	May 21, 1969	--	\cdots	542	177	--	-r	${ }^{336}$	1,760	30	--	"	--	--	2,080	2,930	7.2	--	\cdots	. 0
608	Kegri	80	do	--	-*	100	17	\cdots	--	346	22	20	\cdots	--	--	--	${ }^{320}$	630	7.6	--	--	. 0
701	Kcgr	300	Aug. 8, 1968	10	--	87	19	10.	1.1	312	26	21	$\cdot 4$	10	--	337	295	573	7.5	7	. 2	. 0
705	Kcgru	300	Aug. 1, 1968	9	--	79	41	11	3.7	378	52	21	-4	4.5	--	407	366	7 D 2	7.3	6	2	. 0
707	Kcgr ${ }^{1}$	120	Aug. 8, 1968	11	--	106	22	14	1.7	376	23	30	. 6	7.5	\because	405	355	688	7.8	8	. 3	. 0

Table 6. --Chealical Analyaes of Water From Selected Welle and Springs--Continued

Well	Water bearing unit	Depth of well or sampled interval (ft)	Datt of collection	$\begin{aligned} & \text { Silica } \\ & \left(\mathrm{S1O}_{2}\right) \end{aligned}$	$\begin{aligned} & \text { Iron } \\ & \left(\mathrm{P}_{\mathrm{e})}\right. \end{aligned}$	$\begin{aligned} & \text { Ca1~ } \\ & \text { clum } \\ & \text { (Ca) } \end{aligned}$	$\begin{aligned} & \text { Magne-- } \\ & \text { stuma } \\ & \text { (Mg) } \end{aligned}$	$\begin{aligned} & \text { Sod- } \\ & \text { Sum } \\ & \text { (Na) } \end{aligned}$	$\begin{gathered} \text { Potas- } \\ \text { sium } \\ \text { (k) } \end{gathered}$	$\begin{aligned} & \text { Bycar- } \\ & \text { bonate } \\ & \text { (HCOO } \end{aligned}$	$\begin{aligned} & \text { Su1- } \\ & \text { £ate } \\ & \left(\mathrm{SO}_{4}\right) \end{aligned}$	$\begin{aligned} & \text { Ch10- } \\ & \text { ride } \\ & \text { (ci) } \end{aligned}$	$\begin{gathered} \text { Flue- } \\ \text { Tide } \\ \text { (F) } \end{gathered}$	$\begin{gathered} \text { mi- } \\ \text { trate } \\ \left(\mathrm{rop}_{3}\right) \end{gathered}$	$\begin{gathered} \text { Borop } \\ \text { (B) } \end{gathered}$	$\begin{gathered} \text { Dis: } \\ \text { solved } \\ \text { solidid } \end{gathered}$	Total hard- near as CaCO	Epecific conduct ance (microwhos at $25^{\circ} \mathrm{C}$)	pH	$\begin{aligned} & \text { Per- } \\ & \text { cent } \\ & \text { nod- } \\ & \text { iux } \end{aligned}$	Sodium adaarp tion (SAR)	
AZ-57-53-802	$\mathrm{K}_{\mathrm{cgrg}} \mathrm{I}$	-	Aug. 13, 1941	--	--	--	--	--	--	323	B	11	--	--	\cdots	294	--	\cdots	--	--	--	--
804	Kegr	444	A43. 2, 1968	12	\cdots	106	35	B	2.6	372	86	12	0.9	25	-r	470	408	765	7.5	4	0.1	0.0
905	Kcgru	192	Aug. 23, 1968	11	3.4	595	163	32	11	304	1,850	62	3.0	. 0	--	2,910	2,160	3,060	7.4	3	. 2	. 0
906	Rcgru	125	do	10	9.9	552	67	14	4.2	358	1,310	30	1.2	. 0	--	2,263	1,650	2,400	7.3	2	. 1	. 0
54-303	$\mathrm{K}_{\mathrm{cgr}}$	190	Sept. 19, 1968	13	. 2	74	42	7	2.7	384	36	12	.7	9.0	--	386	353	660	7.6	4	11	. 0
306	$K_{\text {cte }}$	200	May $\quad 2,1969$	"-	--	110	7	--	--	344	12	11	--	--	\cdots	--	304	590	7.1	--	--	. 0
307	Kcgr 1	18	do	-"	--	80	16	-	\cdots	290	21	13	-"	--	--	-.	266	524.	7.3	\cdots	--	. 0
401	$\mathrm{Kcgrg}^{\text {l }}$	--	June 9, 1938	--	\cdots	57	15	9	\cdots	297	20	16	. 1	12	--	231	204	--	--	9	. 2	.7
402	Kcgir 1	--	do	--	\cdots	B5	23	5	\cdots	317	20	14	.1	22	--	325	309	--	-*	3	.1	. 0
403	Rche	170	Oct. 3, 1968	--	\cdots	418	169	--	--	304	1,510	20	--	--	0.3	\cdots	1,740	2,580	7.2	--	---	. 0
501	Kcgr, Kctp	97	May 21, 1969	--	--	112	14	--	--	312	22	16	\cdots	--	. 1	--	337	675	7.8	\cdots	\cdots	. 0
502	Kcgru	--	Jupe 17, 1998	\cdots	-.	--	--	--	\cdots	323	12	14	--	--	--	304	--	-	--	--	--	\cdots
503	Kegrl	--	do	--	--	--	--	--	\cdots	354	9	16	--	--	--	328	--	--	\cdots	--	--	\cdots
504	Kcgr 1	--	do.	\cdots	--	82	10	3	\cdots	268	10	16	--	--	--	253	246	--	--	3	. 0	. 0
604	$\begin{aligned} & \mathrm{Kcgr}, \\ & \mathrm{Kctp} \end{aligned}$	1 1¢ 1	Aug. 11, 1977	11	--	90	9	?	--	304	19	12	.2	2.2	--	299	263	496	7.1	5	. 1	. 0
701	$\begin{aligned} & \mathrm{Kcgr}, \\ & \mathrm{Ketp}^{2} \end{aligned}$	375	May 20, 1969	--	--	so	54	--	--	352	150	10	\cdots	$\stackrel{ }{ } \stackrel{ }{ }$	--	--	422	805	7.6	--	**	- 0
702	${ }_{\text {cegrl }}$	372	Aug. 26, 1941	--	--	122	85	74	\cdots	41.5	288	15	2.6	--	--	790	652	--	\cdots	20	1.2	. 0
804	${ }_{\text {Kegru }}$	130	Hay 20, 1969	--	\cdots	98	23	--	--	366	30	16	--	-	. 1	--	399	640	7.7	--	-」	. 0
901	Kegr1	598	Sept. 12, 1968	10	--	8_{88}	69	16	7.2	458	136	22	1.6	. ${ }^{\text {' }}$	--	575	504	936	7.1	6	. 3	. 0
902	Kcgri	285	Sept. 13, 1968	10	--	169	139	39	12	406	648	43	4.1	< . 4	--	1,258	993	1,710	6.9	7	. 4	. 0
903	Kcgr	353	do	11	--	157	138	33	13	406	608	45	5.6	2.5	-	1,212	--	1,660	7.2	7	. 4	. 0
904	Kcgr, Kctp	720	Sept. 30, 196日	\cdots	--	--	--	--	--	316	540	42	--	--	. 4	--	780	1,430	8.0	--	-r	-*
905	${ }^{\mathrm{Kcgr}}$	400	Oct. 25, 1968	--	\cdots	--	-	--	-*	400	25	13	--	--	. 0	--	354	652	7.8	\cdots	-*	--
906	Kcgr, Ketp	650	Sept. 11, 1974	10	-*	136	68	36	\cdots	468	196	73	6.1	. 4	--	755	620	1,151	7.8	11	- 6	. 0
55-103	Kc8r ${ }^{\text {c }}$	--	July 13, 1938	\cdots	--	95	22	2	\cdots	366	14	13	--	--	\cdots	326	329	--	$\bullet-$	1	.0	. 0
104	$\mathrm{K}_{\text {cgr }}$	312	Sept. 18, 1968	13	-	25.5	160	42	1.5	400	964	30	2.1	2.7	--	1,666	1,290	2,080	7.6	7	. 5	. 0
105	Kcgr, Ketp	378	Sept. 19, 1968	12	--	86	23	7	1.7	336	22	12	. 5	9.5	--	338	309	578	7.6	5	. 1	. 0
107	Kcgr 1	--	do	11	--	${ }^{87}$	16	7	1.3	320	16	13	. 2	6.6	--	315	283	549	7.6	5	. 1	. 0
60-301	Kcgr, Retp	315	Peb, 22, 1961	11	--	55s	168	14	-*	290	1,760	26	--	. 0	--	2,676	2, 880	2,920	7.3	1	.1	. 0

Well	Waterbearing unkt	Depth of well or sampled interval (ft)	Date of collection	$\begin{aligned} & \mathrm{sinfed}_{\left(111 \mathrm{~s}_{2}\right.} \end{aligned}$	$\begin{aligned} & \mathrm{Iton} \\ & (\mathrm{Fe}) \end{aligned}$	$\begin{aligned} & \text { Cal- } \\ & \text { ctum } \\ & \text { (Ca) } \end{aligned}$	$\begin{gathered} \substack { \text { Magne- } \\ \begin{subarray}{c}{\text { sium } \\ \text { (Mg }){ \text { Magne- } \\ \begin{subarray} { c } { \text { sium } \\ \text { (Mg }) } } \end{gathered}$	$\begin{aligned} & \text { Sod- } \\ & \text { fum } \\ & \text { (Na) } \end{aligned}$	$\begin{gathered} \text { Poctas- } \\ \text { sium } \\ (\mathrm{K}) \end{gathered}$	Bicarbonate $\left(\mathrm{HCO}_{3}\right)$	$\begin{aligned} & \text { Su1-1- } \\ & \text { Eate } \\ & \left(\mathrm{SO}_{4}\right) \end{aligned}$	$\begin{aligned} & \text { Ch1o- } \\ & \text { ride } \\ & \text { (ci) } \end{aligned}$	$\begin{gathered} \text { Fluo- } \\ \text { ride } \\ \text { (F) } \end{gathered}$	$\begin{gathered} \mathrm{Ni}_{\mathrm{i}-} \\ \text { trate } \\ \left(\mathrm{NO}_{3}\right) \end{gathered}$	$\begin{gathered} \text { Boron } \\ \text { (B) } \end{gathered}$	Dis- solved solids	Total hatd- ness as CaCO_{3}	$\begin{aligned} & \text { Specific } \\ & \text { conduct- } \\ & \text { Bnce } \\ & \text { (nancromhos } \\ & \text { at } 25^{\circ} \mathrm{C} \text {) } \\ & \hline \end{aligned}$	pH	Percent sod14010	Sodidm adaorp t10n ratio (SAR)	Residus sodifur Soarbon- ate (RSC) (RE
AZ-57-60-303	Regru	--	Au8. 20, 1941	\cdots	-- .	68	21	12	..	275	25	18	--	8.0	--	287	258	--	--	9	0.3	0.0
304	Kcgr 1	128	Al.g. 13, 1968	10	0.6	75	27	日	1.5	366	30	18	0.4	2.8	--	334	298.	575	7.4	5	. 2	. 0
305	Kcgr	200	do	11	--	${ }^{88}$	23	12	1.6	326	42	19	. 4	16	\cdots	368	314	622	7.4	в	. 2	. 0
309	Kcgr, Ketp	232	Jan. 24, 1967	11	--	67	24	9	1.3	294	18	18	. 4	2.2	--	295	266	526	7.6	7	. 2	. 0
607	Kcgru	110	Oct. 24, 1968	--	--	81	41	--	--	344	100	9	--	$\stackrel{ }{ }$	0.1	--	370	690	7.8	--	--	. 0
61.101	$\begin{aligned} & \mathrm{Kcgr}, \\ & \mathrm{Kctp}, \end{aligned}$	370	Aug. 25, 1963	--	--	570	282	71	--	248	2,280	54	--	--	--	3,378	2,580	3,510	6.8	6	. 6	. 0
105	Kcgru	190	Ang. 14, 1968	10	--	232	93	20	11	404	624	26	2.1	. 0	--	1,216	696	1,600	7.2	4	. 2	. 0
106	Regro	158	Aug, 16, 1968	8	--	72	24	6	1.3	300	32	12	. 6	1.4	--	304	278	530	7.5	4	.1	. 0
201	Kegru	--	Aug. 20, 1941	--	--	100	18	14	--	360	25	12	--	17	--	363	321	\cdots	--	9	. 3	. 0
202	$16 \mathrm{E}_{\text {gru }}$	*	Aug. 4, 1941	--	--	100	17	4	--	348	18	1.8	--	--	--	328	320	--	--	3	. 0	. 0
209	$\mathrm{Kcgrrl}^{\text {chem }}$	-.	Aug. 20, 2941	--	**	105	22	29	--	329	31	56	.3	46	\cdots	451	354	--	--	15	${ }_{6} 6$. 0
210	Kcgru	54	Appr. 19, 1968	--	1.2	102	25	10	\cdots	334	26	33	. 4	41	\cdots	570	358	780	--	6	12	. 0
210	Kıgreu	54	July 18, 1969	\cdots	. 0	106	26	11	-*	356	25	27	. 8	41	\cdots	590	37 k	800	--	6	. 2	. 0
211	${ }_{\text {KcgF }}$	341	Nov. 13, 1974	12	\cdots	328	150	12	6.0	315	1,190	19	5.0	$<.4$	--	2, 817	1,440	I, 960	7.2	2	.1	. 0
211	$\mathrm{K}_{\mathrm{cgr}}$	341	do	12	--	333	138	11	5.0	314	1,080	19	2.7	9.0	--	1,764	1,400	1,990	7.1	2	.1	. 0
211	${ }_{\text {K }}^{6} \mathrm{Br}$	34.	do	11	--	380	139	12	6.0	306	1,180	19	4.1	9.0	\cdots	1,910	1,520	2, 100	7.1	2	.1	. 0
211	$\mathrm{Xegr}^{\text {r }}$	341	do	11	--	427	139	12	5.0	900	1,310	19	4.4	10	--	2,084	1,640	2,200	7.1	2	.1	. 0
211	Kcgr	34.	do	11	--	446	148	12	6.0	296	1,430	19	4.1	9.0	--	2,230	1,720	2,300	7.0	1	.1	. 0
211	$\mathrm{K}_{\text {cht }}$	341	do	11	\cdots	489	146	13	6.0	292	1,540	19	3.8	8.0	--	2,379	1,820	2,400	7.0	2	.1	. 0
211	$\mathrm{Regr}^{\text {r }}$	341	Apr. 29, 1975	14	--	186	73	10	\cdots	334	4.55	19	1.8	4.9	--	927	760	1,250	7.3	3	. 1	. 0
212	Kegru	217	Wov. 13, 1974	10	--	L05	24	10	. 1	364	51	$2 ?$.4	2.5	--	40.3	364	671	7.5	6	. 2	. 0
213	${ }_{\text {Kggr }}$	248	do	10	--	107	25	10	. 1	368	54	22	-4	2.5	--	411	371	685	7.4	6	. 2	. 0
214	Kegr	320	do	11	--	79	85	158	2.0	387	30	380	.5	3.1	--	938	550	1,700	7.3	30	2.9	. 0
215	Kcgru	220	do	11	--	83	37	11	2.0	383	30	25	. 6	4.7	--	392	361	675	7.4	6	. 2	. 0
216	Kcgrus	148	Apt. 29, 1975	12	--	97	28	9	$\checkmark-$	395	22	20	. 5	4.4	--	387	357	680	7.6	5	.2	. 0
216	Kogru	148	Toly 24, 1975	12	--	105	28	9	--	406	31	20	. 5	1.7	--	406	379	680	7.5	5	. 2	. 0
304	Xegr 1	--	June 7, 1938	--	--	138	11	12	--	4.27	21	20	.1	22	--	434	392	--	--	6	. 2	. 0
308	Kegr, Kctp	450	Oct. 2, 1968	--	-	\cdots	$\stackrel{ }{ }$	--	--	322	365	20	-*	-	--	--	615	1,150	7.7	--	--	-*
309	Kcgrl	201	June 2, 1968	--	--	143	18	28	--	366	96	38	. 2	49	\cdots	552	552	-- .	--	12	. 5	. 0
404	Rcgrl	480	Aug. 15, 1968	12	-.	72	41	7	4.5	360	60	10	1,2	. 0	--	384	348	647	7.6	4	${ }^{1}$. 0
406	Kogr ${ }^{\text {l }}$	170	Oct. 24, 1968	-*	\cdots	--	--	\cdots	-.	330	1,230	\cdots	-	--	--	--	1,540	2,250	7.5	--	\cdots	--

Table 6, --Chenical Anslyses of Water Froci Selperted Wehls and Springa--Cuntinued

We1t	Water - bearing HIT	Depth of well or sampled interval (ft)	Date of collection	$\begin{array}{\|c} \mathrm{S} 11 \mathrm{ca} \\ \left(\mathrm{SiO}_{2}\right) \end{array}$	$\begin{aligned} & \text { Iron } \\ & (\mathrm{Fe}) \end{aligned}$	$\begin{gathered} \mathrm{Ca} 1- \\ \text { cium } \\ \text { (Csa) } \end{gathered}$	$\begin{gathered} \text { Magne- } \\ \text { Slum } \\ \text { (Mgg) } \end{gathered}$	$\begin{aligned} & \substack { \text { Sod- } \\ \begin{subarray}{c}{\text { uma } \\ (\mathrm{Na}){ \text { Sod- } \\ \begin{subarray} { c } { \text { uma } \\ (\mathrm { Na }) } } \end{aligned}$	$\left\|\begin{array}{c} \text { Potas- } \\ \text { sivm } \\ (\mathrm{k}) \end{array}\right\|$	Bicarbonate (HCO_{3})	Sul(SO_{4})	$\begin{aligned} & \text { Chlo- } \\ & \text { ride } \\ & \text { (C1) } \end{aligned}$	$\begin{gathered} \text { Fluo- } \\ \text { ride } \\ \text { (F) } \end{gathered}$	$\begin{aligned} & \mathrm{NL}- \\ & \text { trate } \\ & \left(\mathrm{NO}_{3}\right) \end{aligned}$	foron (B)	$\left\lvert\, \begin{gathered} \text { DIt- } \\ \text { solved } \\ \text { soldds } \end{gathered}\right.$	Total hardnegs $\stackrel{3}{6}$ CaCO_{3}		pH	$\begin{aligned} & \text { Per- } \\ & \text { cent } \\ & \text { god- } \\ & \text { Iod } \end{aligned}$	Sodium adsorption ratio (SAR^{2})	Restdual sodium carbon- ate (RSC) $\|$
A.2.57-61-501	Regr, Kctp	375	${ }^{4618.15, ~ 15, ~} 1968$	10	--	150	10	ζ	1.1	392	87	9	0.2	6.8	--	471	415	759	7.2	2	0.1	0.0
502	Ketp	437	do	10	--	75	22	6	2.5	312	18	1.2	. 3	8.5	--	307	278	531	7,8	4	. 1	. 0
604	$\mathrm{K}_{\mathrm{cgrg}}{ }^{\text {I }}$	--	June 6, 1938	--	\cdots	100	10	24	--	360	25	16	--	--	--	352	291	--	\cdots	1.5	. 6	. 0
605.	Kcgr	290	July 30, 1976	10	--	103	8	5	2.0	333	12	9	. 2	9.3	--	316	290	525	7.6	4	.1	. 0
608	Kcgr ${ }^{1}$	90	Sept. 12, 1968	21	-	122	32	8	1.1	499	26	14	. 9	. 1	--	458	436	787	7.4	4	11	. 0
609	Kcgr, Rctp	357	do	10	-.	46.5	197	196	36	274	1,960	122	2.4	. 0	--	3.123	1,970	3,500	7.5	17	1.9	. 0
613	Kegri	216	Oct, 1, 1968	--	--	--	--	--	--	354	24	15	--	--	--	--	332	617.	7.5	--	--	--
801	Kegru	15.5	Aug. 16, 1968	12	--	76	57	10	4.8	444	65	14	2.0	. 0	\cdots	459	424	780	7.4	5	. 2	. 0
802	Kcgrv	\cdots	Aug. 19, 1968	11	--	81	16	5	. 7	304	10	10	. 2	4.2	\cdots	287	270	505	7.5	4	. 1	. 0
803	Xegri	60	July 29, 1976	10	--	101	9	5	1.0	311.	28	7	. 3	$<.4$	-".	314	289	519	7.7	4	.1	. 0
806	Kcgr	340	AUS. 20, 1958	10	--	142	51	14	3.3	396	269	20	, 8	2.8	--	687	564.	1,020	7.5	5	. 2	. 0
904	Kcgr	249	(4ug. 19, 1968	12	--	76	30	7	1.6	346	30	10	2.0	. 0	--	398	313	589	7.5	5	.1	. 0
904	Kcgr	249	July 24, 1975	10	-r	85	30	7	-.	348	40	12	2.2	$\leq .4$	--	357	336	595	8.2	4	.1	. 0
904	${ }^{\text {K }} \mathrm{C} \mathrm{g} \mathrm{r}$	249	Ang. 1, 1977	12	--	80	36	8	..	351	52	11	2.0	$\because .4$	--	379	349	614	8.1	5	. 1	. 0
905	Rcgru	150	Aue. 19, 1968	9	--	72	9	7	2.5	244	14	12	. 3	7.0	--	252	2 7 7	443	7.7	6	. 2	. 0
908	$\mathrm{K}_{\mathrm{cgx}},$ Kct.p	230	do	10	--	190	24	10	1.1	424	68	22	.6	. 0	--	474	76	787	7.5	5	. 2	. 0
62-103	yegrer^{1}	180	Supl. 12, 1968	11	--	64	24	9	1.6	278	27	16	. 1	3.6	--	292	258	515	7.3	7	. 2	. 0
108	$\begin{aligned} & \text { Kcgr, } \\ & \text { Kcc(P) } \end{aligned}$	350	May 20, 2969	--	--	325	157	--	--	270	1,320	139	-.	--	--	--	1,460	2,750	7.3	--	--	. 0
109	Kcgr)	160	do	..	-.	90	${ }^{27}$	--	--	324	57	22	--	${ }^{*}$	--	-	336	700	7.5	--	--	. 0
207	Kegrl	180	do	--	-	82	40	\cdots	--	354	84	14	--	--	--	--	369.	711	7,5	--	--	.0
2.09	kegia	--	do	\therefore	\cdots	99	13	-	--	342	15	11	--	--	0.0	--	300	573	7.4	-.	--	. 0
301	$\mathrm{K}_{\mathrm{cgr}} \mathrm{r}_{\text {, }}$ Kctp	340	Scper 16, 1968	13	--	107	62	12	4.7	456	142	26	1.5	. 0	--	592	522	972	7.3	5	. 2	. 0
405	$\begin{aligned} & \text { Kcgr, } \\ & \text { Kctp } \end{aligned}$	360	Sept. 11, 1968	10	-	146	44	11	2.7	330	266	16	. 6	3.5	\cdots	662	546.	966	7.9	4	. 2	. 0
405	$\begin{aligned} & \mathrm{Kcgr}, \\ & \mathrm{Kclp} \end{aligned}$	360	July 30, 1976	10	--	72	16	6	--	. 275	13	12	. 4	1.6	--	266	247	457	7.8	5	. 2	: 0
405	$\begin{aligned} & \text { Kcer, } \\ & \text { Kctp } \end{aligned}$	360	Aug, 1, 1977	14	\cdots	71	17	.	--	283	12	11	. 6	2.2	\cdots	273	249	465	7.7	6	. 1	. 0
406	Kegr ${ }^{\text {c }}$	120	Sept. 11, 1968	11	--	90	27	7	1.5	360	36	12	. 9	. 1	--	362	336	623	7.3	4	.1	. 0
407	Kegrl	135	do	9	--	100	10	6	. 7	340	60	10	. 4	9.0	--	372	290	555	7.2	4	. 1	. 0
409	${ }_{4 C 8 \mathrm{c}}{ }^{1}$	170	do	11	-"	80	24	9	1.2	348	12	14	. 5	. 2	--	322	298	569	7.3	6	. 2	. 0
410	$\begin{aligned} & \mathrm{Kcgr}, \\ & \mathrm{Kctp} \end{aligned}$	175	Oec. 1, 1968	--	\cdots	\cdots	\cdots	\cdots	--	348	51	11	--	--	. 0	--	340	614	8.2	-	..	--

Table 6...Chemical Analyaus of Warer From Selected Wella and Sprírgs--Continued

We11	Water - bearing tatil:	Depth of well or sampled interval (ft)	Date of collection	$\begin{gathered} \text { Sifes } \\ \left(\mathrm{siO}_{2}\right) \end{gathered}$	$\underset{(\mathrm{Fe})}{\underset{(\mathrm{Fe})}{ }}$	$\begin{aligned} & \text { Ca1- } \\ & \text { cIum } \\ & \text { (Ca) } \end{aligned}$	$\begin{gathered} \text { Hagne- } \\ \substack{\text { suma } \\ (\mathrm{Mg})} \end{gathered}$	$\begin{aligned} & \text { Sod- } \\ & \text { ium } \\ & \text { (Na) } \end{aligned}$	$\begin{gathered} \text { Potas- } \\ \text { sium } \\ (\mathbf{K}) \end{gathered}$	Blcarbonate $\left(\mathrm{HCO}_{3}\right)$	$\begin{aligned} & \text { Su1-1- } \\ & \text { fste } \\ & \left(\mathrm{SO}_{4}\right) \end{aligned}$	$\begin{aligned} & \text { Chlo- } \\ & \text { ride } \\ & \text { (C1) } \end{aligned}$	$\begin{gathered} \text { Pluou } \\ \text { ride } \\ \text { (F) } \end{gathered}$		$\begin{gathered} \text { Borod } \\ \text { (B) } \end{gathered}$	$\begin{array}{\|c\|} \text { Dig- } \\ 301 v e d \\ 5011 d s \end{array}$	Total hard- ness $\xrightarrow[\mathrm{CaCO}_{3}]{\text { à }}$	Spectific condect ance (micromhos at $\left.25^{\circ} \mathrm{C}\right)$ at $25^{\circ} \mathrm{C}$)	pr	Percent sociam	Sodium adsotption ratío (SAR)	$\left(\begin{array}{c} \text { Residual } \\ \text { zodive } \\ \text { carboñ } \\ \text { ste } \\ \text { (RSC) } \end{array}\right.$
Az-57-62-502	$\begin{aligned} & \mathrm{Kcgr}, \\ & \mathrm{Kctp}, \end{aligned}$	210	Sept. 16, 1968	10	\cdots	78	24	10	1,1	. 320	13	15	0.3	16	\cdots	324	--	563	7.6	7	0.2	0.0
503	$\begin{aligned} & \mathrm{K}_{\mathrm{c} \in \mathrm{Br}} \\ & \mathrm{Ketg} \end{aligned}$	250	Aug. 12, 1977	12	\cdots	71	26	10	\cdots	305	17	19	. 3	15	--	319	285	545	8.0	7	. 2	. 0
506	$\begin{aligned} & \text { Kıer, } \\ & \text { Kctip } \end{aligned}$	400	Sept. 16, 1968	10	--	68	21	6	1.3	280	14	11	. 3	8.6	\cdots	277	256	490	7.5	5	. 1	. 0
707	$\begin{aligned} & \mathrm{Kcgr}, \\ & \mathrm{Kctp}, \end{aligned}$	150	Sept. 12, 1968	10	\cdots	84	19	5	1.1	330	17	8	. 5	. 6	--	307	288	541	7.4	4	. 1	. 0
68-05-107	$\begin{aligned} & \text { Kcgr, } \\ & \text { Xct.p } \end{aligned}$	500	Aug, 20, 1968	12	--	96	23	7	1.0	372	18	13	.4	9.2	--	362	334	622.	7.7	4	. 1	. 0
201.	Kcgr 1	210	July 7, 1938	--	\cdots	146.	10	11	\cdots	499	41	31	-	10	--	450	406	--	--	6	. 2	. 0
201	$\mathrm{K}_{\text {chr }}$	210	May 20, 1969	-	-r	128	8	--	--	3.88	26	22.	\therefore	--	--	--	351	683	7.4	--	--	. 0
202	KCgT 1	263	July 7, 1938	\cdots	--	120	11	8	\cdots	354	28	17	. 2	26	--	384	347	-.	\cdots	5	'. 1	. 0
202	Kcgrl	263	Aug. 1, 1977	13	--	119	7	7	--	328	23	15	. 2	15	--	361	326	580	7.8	4	. 1	. 0
203	Kcgr	100	Aug. 20, 196日	12	1.4	490	170	11	9.0	304	1,640	10	2.5	. 3	--	2,508	1,920	2,660	7.3	1	. 1	. 0
206	${ }_{\text {Rcgr }}$	258	Aug. 21, 1968	10	--	100	32.	8	1.7	372	72	15	. 7	3.4	--	425	--	703	8.0	4	.1	.0
301	$\begin{aligned} & \text { Kcgr, } \\ & \text { Kctep } \end{aligned}$	306	Masy 20, 1969	--	--	66	4.3	\cdots	--	404	22	13	--	--	--	--	342	66.2	7.5	--	--	. 0
302	$\mathrm{Kcgr},$ Kctp	350	slo	--	-*	82	58	--	\cdots	388	154	17	--	*-	\cdots	--	443	864	7.5	--	--	. 0
309	Kcgr 1	92	AUg. 22, 1968	11	. 3	97	24	9	1.3	312	79	18	1.8	. 0	--	397	340	657	7.4	5	12	. 0
602	Kcgr	180	Aug. 21, 1968	13	--	86	37	в	2.0	364	6.5	13	1.1	. 0	--	404	366	678	7.4	4	${ }^{1}$. 0
602	$\mathrm{Kcgr}^{\text {r }}$	180	July 30, 1976	13	-	92	35	9	3.0	362	72	13	1.0	. 5	--	416	976	670	7.6	5	.2	. 0
06-102	$\begin{aligned} & \mathrm{R}_{\mathrm{cgr}} \mathrm{~K}_{\mathrm{c} \cdot \mathrm{c}_{\mathrm{l}}} \end{aligned}$	200	Ang. 22, 1978	11	-	82	23	8	1.1	332	25	12	. 6	3.4	--	329	299	570	7.6	5	+2	. 0

EXPLANATION

11 welle fre drilled unless othervise noted is reminck colus
Watex level

Sce toot ate at and of table.

Table 5. Recnrids of Selected Kister Wells, Sprinys, and dil and Gat Teate--Continued

wel1	anner	vxiller	$\left\|\begin{array}{\|c\|} \text { Date } \\ \text { completes } \end{array}\right\|$	$\underset{\substack{\text { vepth } \\ \text { ofld } \\ \text { will } \\(\vec{i})}}{ }$	Cas:ing		$\underset{\substack{\text { huster } \\ \text { hexriog }}}{\text { n }}$ unil	$\begin{gathered} \text { Alcicule } \\ \text { of ladd } \\ \text { sur face } \\ \text { (fos) } \end{gathered}$	Water level		$\begin{gathered} \text { Nesthod } \\ \text { Df } \\ \text { Dift } \end{gathered}$	$\begin{gathered} u_{5} \in \\ \text { of } \\ \text { waler } \end{gathered}$	Remerks
					$\begin{aligned} & \text { ulano- } \\ & \text { ereer } \\ & \text { (in.) } \end{aligned}$	$\underset{(\mathrm{ft})}{\substack{\text { neptin }}}$			lanè surface (f t)	Date of mea surement			
DX-68-06-706	Gуптив:s Lave Developminnti Cu.	$C_{\text {raw ford }}$ well Drilline	1964	184	--	**	Kegrl, Kece	930	151	Oct. 10, 1964		P	Scremned From 218 to 228 feet. Qemented from 218 feet to surface. Reported ydeld 17 Ralfmin with 5 feet drawdown.
801	W.S. Army Corpe of Eugineers, Ciame: hyll well 1	Mrat and wild otilling co.	1965	228	${ }_{3}^{4}$	$\begin{aligned} & 218 \\ & 228 \end{aligned}$	Kegrl	969	72	Sov. 1, 1965	$\mathrm{Sub}_{2}, \mathrm{e}$	${ }^{\text {F }}$	
901	11. S. Ammy Conpe of Engineners, lottert Creek well 1	do	1966	218	${ }_{3}^{4}$	$\begin{aligned} & 2008 \\ & 2108 \end{aligned}$	Kegre	955	74	W: L. ${ }^{\text {c }}$ 16, 1966	$\underset{\substack{\text { Suh, e } \\ 2}}{ }$	${ }^{p}$	Screened From 208 to 218 Leet. Cewtiled fron $20 \mathrm{H} \beta$ feet to :urtace. Hump eet $s t 102$ [eet. Reported yinld 17 gol/min whth is feet drawdonn.
9112	Cunyon Springa Reaort Whter Cn., we $\$ 12$ Canyon Lake H1lig	--	--	$\stackrel{-}{ }$	--	--	--	1, 120	--	--	Suh, e	F	--
903		--	..	--	--	--	..	1,070	--	-*	Suh, E	P	-
904	do	-.	--	--	-.	--	--	1,000	"-	--	$\mathrm{Sub}_{\substack{\text { Sut, } \\ 5}}$	P	---
905	do	Kıt:scher Drilliug co.	1967	396	--	--	Kegrl	1.,130	--	-.	$\mathrm{Suk}_{5}^{\text {S }}$, E	г	-*
07-401	Hancock Ofk Hills Water System	Owen Dritilug co.	\cdots	345	6	\cdots	Kegrl	1,001	$\begin{aligned} & 175.9 \\ & 174.6 \\ & 163.7 \end{aligned}$	$\begin{array}{lr} \text { Feb. } & 9,1978 \\ \text { Aus. } & 4,978 \\ \text { Aus: } & 10, \\ \hline 1978 \end{array}$	$\stackrel{\text { sub, }}{\text { n. }}$ E	${ }^{*}$	--
701	U.S. Arroy Cotps of Bnginemre, Jacobe Crect Fark well 1	Ward And Nard Drilling co.	1965	404	${ }_{3}^{4}$	396 404 104	Kegrl	965	75	Oct. 22, 1965	$\underset{\substack{\text { Sub, } \\ 2}}{\text { e }}$	Y	Screenes from 394 to 4134 frent, Cemnentes from 394 leet to burface. Reported yield 17 gal/mio with 9 feet drawdown.
* 702	1.s. scmy Corpe of 5ogincers, Jacotu Creek Park we11 2	do	1265	440	4	4430	${ }_{\text {Ycgrs }}$	985	路	Sept, 19, 1965	$\operatorname{sub}_{\substack{\text { Sub, }}}^{\text {E }}$	1	Screesed from $\left\langle 30\right.$ to $\mathrm{F}_{\mathrm{f}} 0$ feet. Gementer from 430 fent to surfiace. Reported yfeld $14 \mathrm{gal} / \mathrm{min}$ with 54 fetet drawduwt.
713	U.S. Anmy Corps of Fogineere, canyon Park wall 1	do	1965	307	$\stackrel{4}{3}$	297 307	$\mathrm{K}_{\mathrm{cgr}} 1$	989	112	Det. 25, 9965	$\underset{\substack{\text { Sub, } \\ 2}}{\text { c }}$	F	Screened from 297 to 307 font, Cemented from 297 teet to burface. Keported yield 16 gal/min with 16 feet inswduwa.
704	$\begin{aligned} & \text { IT.S. Army Corpa of } \\ & \text { Rne.inents, Csayoon } \\ & \text { Esrk well? } \end{aligned}$	-o	1965	2.70	4	260 270	Kcgr 1	970	98	Dact. 12, 1965		${ }^{p}$	Scremped from 260 to 270 feet. Gemented from 260 foet to surlisce. Keported yle1d 17 gal/nin with 2 Ebet draviown.
705	v.s. Army corpe of ©nginemes, Cenyon Part writ 3	山*	1965	274	4	264 274	kcgrl	1,015	132	Sept. 5, 1965	$\operatorname{sich}_{\substack{\text { Sub, } \\ 2}}$	r	Yoreened frow 264 to 274 feet. Cemented from 7.64 feet to eurface. Keported yle1d $15 \mathrm{gal} / \mathrm{min}$ with 28 feet drimacow.
706	u.s. Anwy Gotps of Engineers, Canyon Prek well 4	da	1965	266	4	${ }_{266}^{256}$	Kcgrl	970	87	Sept. 7, 1965	$\operatorname{such}_{\substack{\text { che }}}$	r	Sirreened frow 256 to 266 feet. Cemented from 256 fret to markace. Keported yteld 16 gal/min wt th 7 frect dramerovm.
747	U, s. Aruy Dorps of Engineery, canyou Park well 5	du	1965	2.60	4	250 260	Kcegr 3	950	72	Sept. 21, 1965	$\mathrm{such}_{2} \mathrm{E}$	p	Streeved frow 250 to 260 feet. Cemented from 2511 fret to turface. Heported yteld 17 gal/min with 5 foet drawdem.
108	Canyou Lake Y, nch c1ub, well 2	Kutecher Drillidg co.	1976	315	${ }^{6}$	98	${ }_{\text {K¢gr }}$	1,040	125.	Sug. 18, 1976	$\mathrm{Snc}_{2} \mathrm{~S}_{2}$	r	Open bole from 96 to 315 feen. Gementen from 96 fent to turface. Reported yield 15 gal/win with 75 feet drandown.
1.2-302	Texas Parke and Wildijte Departwent	--	1978	520	--	--	xcbo	1,2910	-- -	\cdots	\cdots	--	, 13
* 70.3	Mrs. Max Langenberg	Class and Tucker, Inc.	1975	340	6	60	Kcgr 1	1,3810	275	Aus. $\{, 1975$	Sut, E	D	Open hoie froul 60 to 340 feet. Gemented from fib fert to surface. Reported yfeld $20 \mathrm{gal} / \mathrm{m} \ddagger \mathrm{m}$.

Table 5. \cdots Recorda of selected hater weile, Springe, and oni and Gas Testancontinued

Nell	Onner	Driller	$\begin{array}{c\|} \text { Date. } \\ \text { compleLed } \end{array}$	$\begin{gathered} \text { Depth } \\ \text { of } \\ \text { well } \\ \text { (ft) } \end{gathered}$	- Casing		$\underset{\text { bearing }}{\substack{\text { mater } \\ \text { ber }}}$ unit		Wator level		$\begin{gathered} \text { Method } \\ \text { of } \\ \text { ILft } \end{gathered}$	$\begin{gathered} \text { vese } \\ \text { wof } \\ \text { water } \end{gathered}$	Remaiks
					$\begin{aligned} & \text { nlem- } \\ & \text { eter } \\ & \text { (in.) } \end{aligned}$	$\begin{gathered} \text { Depteth } \\ (\mathbf{f t}) \end{gathered}$			$\begin{aligned} & \text { Below } \\ & \text { land- } \\ & \text { surface } \\ & \text { datwow } \end{aligned}$ $\text { (} \mathbf{f e} \text {) }$	Date of mearurement			
* DX-68-12-90I	Mre. A. June McFalls	$\underset{\text { Hinc. }}{\text { Hil Courtry Mater, }}$	1972	360	7	58	Kegrl, ${ }^{\text {Kece }}$	1,200	$\begin{aligned} & 200 \\ & 176.6 \end{aligned}$	$\begin{aligned} & \text { Sepp. } 20,1972 \\ & \text { Aug. } 29,1974 \end{aligned}$	Sub, E	D	Copeo hole from 3 to 360 feet. Reported yiteld $20 \mathrm{gal} 1 / \mathrm{mfn}$.
	John c. Anz	do	1972	420	6	91	$\mathrm{K}_{\mathrm{Cg} \mathrm{g}} \mathrm{I}$, Kche, Kece	1,243	${ }_{237.9}^{230}$	$\begin{aligned} & \text { Aug. } \\ & \text { Aug. } \\ & 29, \\ & 19,1972 \\ & \hline 1972 \end{aligned}$	Sub, E	D	Open hole from 91 to 420 feet. Beported freld ${ }^{18} \mathrm{gal} / \mathrm{min}$ n. Actidized.
	Gatry Fuller	do	1974	420	6	100	Kcgri	1,200	330	Fob. 22, 1974	$\underset{\substack{\text { Sub, } \\ \text { it }}}{\text { c }}$	D	Oper hole from 100 to 420 feet. Cemented from 100 feet to surlate. keported yzelid $15 \mathrm{ga} 1 / \mathrm{min}$.
	Comal Indepeadert Schoal Dfttrict, Buiverde Middle Spheol	do	1976	467	6	84	Kegrl	1,180	285	Mst. 10, 1976	$\underbrace{}_{\substack{\text { Sub, } \\ 3}}$	P	Opea hole from 84 to 467 fect. Cemented from 84 feet to sur face. Reported yieId 8 gal/min.
	Bulverde Utility Co.., well 5	do	1973	540	7	256	$\underset{\mathbf{K}_{\mathrm{ccec} \mathrm{gr}}}{\mathrm{~K}_{1},}$	1,240	325	Dec. 27, 1973	$\begin{gathered} \text { Sub, } \\ 11 / 2 \\ \hline \end{gathered}$	P	Open hote from 256 to 540 feet. Cemented from 256 feet to surface. Reported yfeld $10 \mathrm{ga} 1 / \mathrm{mfn}$.
	Bulverde Ueflity Co.. rell 6	da	1974	580	6	170	$\begin{aligned} & \text { Xcgr1, } \\ & \text { kcece } \end{aligned}$	1,240	400	Juty 21, 1974	$\begin{gathered} \text { Sub, } \\ 11 / 2 \end{gathered}$	P	cpen hole from 170 to 580 fect. Gemented from 170. feet to surface. Reported yield $17 \mathrm{gal} / \mathrm{mint}$.
	Bulverde veility Go., Ne1t 7	do	1974	600	6	171	$\begin{aligned} & \text { Keget1, } \\ & \mathrm{Rececg}^{2} \end{aligned}$	1,180	330	July 17, 1974	$\mathrm{Sub}_{\mathrm{i}, \mathrm{~F}}^{\mathrm{F}}$	p	Open hole from 171 to 600 feet. Cemanted from 171 feet to burface. Reported yield 15 gal/ain.
	Bulverde utility co., well 8	do	1974	545	6	171	$\begin{aligned} & \text { Kcgrl, } \\ & \text { Kscice } \end{aligned}$	1,270	$\begin{aligned} & 400 \\ & 482 \end{aligned}$	$\begin{array}{lll} \text { July } & 25, & 1974 \\ \text { July } & 1978 \end{array}$	$\underset{\mathbf{L u b},}{\substack{\text { B/2 }}}$	r	Drilled to 700 fert and caved back to 545 feet. open hole from 171 to 545 feet. Cemented from 171 feet to sutface. Reported gield $35 \mathrm{gel} / \mathrm{m} / \mathrm{n}$ - 1 j
	Bulverde vellifty co. well 9	do	1974	595	6	168		1,200	250	July 30, 1974		p	Open hale from 168 to 595 feet. Cemented from I68 fiet to burface. Eeported yie1d 24 gal $1 / \mathrm{min}$.
	Bulverde koptist Cturect	do	1975	500	6	121	$\begin{aligned} & \text { Xcgri, } \\ & \text { Kche, } \\ & \text { Kcece } \end{aligned}$	1,225	285	Apr, 21, 1975	Sub, E	P	Open hole from 121 to 500 foet. Cemented from 121 feet to surfaco. Reported yield 15 gal/min.
	Hsakin Water Co., Oak Villeke Morth well 3	Haskin Pump and Service, Itre.	1973	316	7	205	$\begin{aligned} & \text { Kegrl, } \\ & \text { Kcect } \end{aligned}$	1,163	364	May 5, 2973	${ }_{\text {Sub, }}^{15}$	P	Open hole from 20S to 816 teet. Pump set at 490 feet.
	Canypon Lake Mobile tlome Eatatea, well 2	Kutgcher Drifilins co.	1972	530	8	252	Kegr 1	1,200	${ }^{3} 25$	0ct. 31, 1972	$\operatorname{Subb}_{15} \mathrm{E}$	P	Oped hole from 252 to 530 fent. Cemented from 252 fett to surface. Reported gield 135 gal/min.
	Canyon Lake Mobile Home Estatex, well 1	до	1964	460	${ }^{8}$	82	Kcgr^{1}	1,200	320	- Jume 2z, 1964	$\underset{5}{\text { Sub, }}$	\%	Opin tole from 82 to 460 feet. Cemented frox 82 feat to surface. Reported yie1d 20 gali/ain whth of feet drawdown.
	Canyon Lalce Hobile Howie Estates North	--	--	350	\cdots	\cdots	${ }_{4 \times g r 1}$	1,120	--	-.	$\begin{gathered} \mathbf{S u b b}_{3} \\ 31 / 2 \end{gathered}$	8	- ..
	Canyon Lake Hilla, Rolling kills	Kutscher Drilling © 0	1972	475	8	48	$\begin{aligned} & \text { Kcgr1, } \\ & \text { Kcecc } \end{aligned}$	1,120	210	Apr. 2I, 1972	$\stackrel{\text { Sub }, ~}{p} 1 ; 2$	P	Open hole from 48 to 475 feet. Cemented from 4 feet to surface. Reparted yfeld 25 go.i/ain.
	Canyod Lake His1s, Lake Vien Park	--	-	330	$\stackrel{3}{ }$	90.	RegrI	1,080	--	--	$\mathrm{Sub}_{5} \mathrm{~g}$	P	Open hole frow go to 330 faet.
	do	E. R. Owen Nater We 11 Contractar	1963	335	8	96	${ }_{2} 8 \mathrm{gr} 1$	1,120	--	--	$\begin{gathered} \text { Sub, } \\ \hline \end{gathered}$	P	Open hole from 96 to 335 feet.
	Canyon Entetpriges, Inc., Tho Oaks well 5	Kutacher Drilling co.	1964	200	6	42	Kıgr 1	980	42	Nov. 7, 1964	--	*	Open hole from 42 to 200 feet. Cemented froon 42 feet to surfece. lisuaed publie *upply well.
	Canyor Spriags keatrt Nater Co., well 1	--	-	$\stackrel{ }{-}$	--	\cdots	\cdots	1,100	\cdots	--	$\underset{7: 1 / 2}{\text { Sub, }}$	E	-

see footootes at end of table.

See footwotes at end of table.
conkat. connty
ratire S.--Recoeds of selected water Wells, Springs, and oriland Gas Tests--Continved

Hell	Onner	priller	$\begin{gathered} \text { Dale } \\ \text { completed } \end{gathered}$	$\begin{gathered} \text { Depth } \\ \text { of } \\ \text { weli } \\ \text { (ft) } \end{gathered}$	caeing			$\begin{gathered} \text { altilude } \\ \text { of land } \\ \text { sucface } \\ \text { (iit) } \end{gathered}$	Nater Level		$\begin{aligned} & \text { Nethod } \\ & \text { of } \\ & \text { lifet } \end{aligned}$	$\begin{gathered} \text { Use } \\ \text { of } \\ \text { water } \end{gathered}$	Remarke
					$\begin{gathered} \text { Diam- } \\ \text { cter } \\ (t h+) \end{gathered}$	$\underset{\substack{\text { Deptet } \\(\mathrm{f})}}{ }$			Below land- surface BStum Bitu (ft)	$\underset{\substack{\text { Thate of } \\ \text { meas:urevent }}}{\substack{\text { nen }}}$			
5x-68-15-203	Tom Sherdidan eropertits, Inc. Caryon Laxe Villape Poal well	$\underset{\substack{\text { Hi11 Courtry } \\ \text { Inc, }}}{\substack{\text { Nater, }}}$	1974	660	8	54	$\begin{aligned} & \text { Kcgru, } \\ & \text { Kcgrif } \end{aligned}$	1,080	395	July 9, 1974		${ }^{1}$	Opno holc from 5月 to 660 feet. Cemented frov 54 feet to surface. Heported field $18 \mathrm{gal} / \mathrm{mfl}$.
204	8. D. Devid, Je.	K. R. Owen kiter Well Contractor	1962.	502	--	so	Kcgru, Kep,rl	830	-	--	${ }_{\substack{\text { ssb, } \\ 10}} \mathrm{~s}^{\text {e }}$	P	Open hole frout 80 to 502 Eeet. Cemented from 80 feet to surface,
205	ло	hill Country hater, ac.	1975	460	6	180	$\underset{\substack{\mathrm{K}_{\mathrm{cgrgx}} \mathrm{grx}}}{ }$	830	55	May 27, 1975	$\underset{71 / 2}{\substack{\text { Sub, } \\ \underset{1 / 2}{b}}}$	${ }^{\text {r }}$	Open tole from 180 to 460 feet. Cementited from 180 feet to earface. Reported yield for gol/min.
501	'ou Sheriulsn Propertis.s, Tres, Ponderosa lhit ?	do	1974	460	6	40	Kegru	760	358	July 12, 1974	$\underbrace{\text { E }}_{\substack{\text { sub, } \\ 3}}$	P	Open twie from 40 to 460 feet. Gemented From 40 gect to surface, Reported yteld $10 \mathrm{ga} 1 / \mathrm{mit}$.
19-301	Rglph E. Fair, Jr., weIl 1	J. R. Jalankan Dril. 1ing	1973	1,008	--	--	Kcgr], Kece, Kes, Kcho	1,2,00	125	Yele . 12, 1976	*	N	$\underline{1} /$
$21-201$	Bulverde veility Ca., well 1	Kutashrex Drilling co.	1967	695	\dagger	152	$\begin{aligned} & \text { Regerl, } \\ & \text { Rccec } \end{aligned}$	1,2\%0	--	--	Sub, er	P	Opell hole itum 152 to 635 fent, Gementer from 152 feet th surface, Acldized.
202	Rulverde Utility co., well 2	Dealer Supply ca.	1971	635	7	152		1,340	116	Nov. 15, 1971	N	N	Open hole frow 152 to 635 feet. Cemented fixnm 152 feet to surlise. Tenorted yfeld $10 \mathrm{gal} / \mathrm{min}$ with 30 fent drawnown. Mnused public aupply well. Acidfzed.
203	Bulverse viility Co., well 3	tifll Country Mster, Inc.	1972	580	7	2711	$\begin{gathered} \mathrm{Kcpr1} \\ \mathrm{Kccc} \end{gathered}$	1,230	375	Smpt. 7, 1972	${ }_{\text {Sub, }}^{10}$	${ }^{p}$	Open tule from 2011 to 58 H feet. Cemented frow 200 fient to suxface. Reported yield 65 gel/win. nctazed.
204	Buiverde utiflty co., we 114	Ho	1973	630	7	255	$\begin{aligned} & \mathrm{R}_{\mathrm{n} \cdot \mathrm{gr}, 1,1}, \end{aligned}$	1,230	425	June 22, 1976	$\underset{\substack{\text { sub, } \\ 20}}{ }$	e	Opea hole from 2.55 to 630 feet, Cemented from 255 Etel to surface. Roported yield 30 gal/buia. Acidij.zed.
301	Has:lein Water Go., OAk villap North, well 1	Haskiv fiunp snu Service, Inc.	1968	480	7	200		1,100\%	$\begin{aligned} & 150 \\ & 184 \end{aligned}$	$\begin{aligned} & \text { Sept. } 10,1968 \\ & \text { May } \\ & 17,1978 \end{aligned}$	Sub, E	p	Open hole froul 200 to 480 Eect. Cemented from 200 feet to sucface.
302	Hsakin Water Co. Oak Village North, whll 2	do	1968	523	7	200	$\begin{gathered} \mathrm{K}_{\mathrm{Kcprer}} \mathrm{Ccce}, \end{gathered}$	1,015	205	Nov. 20, 1968	$\mathrm{S}_{1 \mathrm{sub}, \mathrm{E}}$	${ }^{\text {P }}$	Open bole frnm 2 no to 523 feet. Demented froal 2no foet to surface.
22-401	Mr.s. Glıгл Wuest Heidenaal, Natural gridge Cavern	Kutscleer Drilling ca..	1796	330	7	15	Lgyxu	1,105	280	Msy 26, 1964	$\underset{2}{\text { Sab, }}$ ¢	P	Open sole frou 15 to 3 3o feet. Crmented from 15 tett in :urface, Reported yleld $30 \mathrm{gal} / \mathrm{milu}$.

Table 6.--Chemical Analyses of water From Sclected Wells and Springs
Analysee arc in milligrams per liter except percent solicut, specific conductance, pll, soikum adsorption ratio (sAR), atul restdall sodium carbonate (RSC)
Weller-hearing unit: Kcgrl, lower member of the Glen Ruse Limestone; Kche, Heneell Sand Mcmber of the Travis Peak Formativn; Kecc; Cow Creek Limestone
issolved solide Rember of the Travis Peak Formacton,
The bicartonate "reported" ia convertea by compotation (mis
analyses by Texas State Deparlment of Health

Wel1	Waterbearing unil	Depth of sampled Interval \qquad	Date of collection	$\begin{aligned} & \text { silics } \\ & \left(\mathrm{Sin} \mathrm{O}_{2}\right) \end{aligned}$	$\begin{aligned} & \text { Irod } \\ & (\mathrm{Fe}) \end{aligned}$	$\begin{aligned} & c_{\mathrm{a} 1} 1- \\ & c_{1 \mathrm{um}}^{(\mathrm{Ca})} \end{aligned}$	Magne${ }^{\text {Bium }}$ (M8)	$\begin{aligned} & \text { Sod- } \\ & \text { fum } \\ & \text { (Na) } \end{aligned}$	$\left.\begin{gathered} \text { Potas } \\ \text { sium } \\ \text { sic } \end{gathered} \right\rvert\,$	Bicarbonate (HCO_{3})	$\begin{aligned} & \text { Sul- } \\ & \text { fate } \\ & \left(80_{4}\right) \end{aligned}$	$\begin{aligned} & \text { chlo- } \\ & \text { ride } \\ & \text { (c1) } \end{aligned}$	$\begin{gathered} \text { Fluo- } \\ \text { ride } \\ \text { (P) } \end{gathered}$	$\begin{gathered} \mathrm{Ni}- \\ \text { trate } \\ \left.\mathrm{trac}_{3}\right) \end{gathered}$	$\begin{gathered} \text { Boron } \\ \text { (B) } \end{gathered}$	$\begin{gathered} \text { bis- } \\ \text { Bolved } \\ \text { solfids } \end{gathered}$	Total hard- ness CaCO_{3}	$\begin{gathered} \text { Specific } \\ \text { conduct- } \\ \text { ance } \\ \text { (mincerion } \\ \text { at } 25^{\circ}{ }^{\circ} \text { c) } \end{gathered}$	pH	$\begin{aligned} & \text { Per- } \\ & \text { cent } \\ & \text { s.od- } \\ & \text { f.um } \end{aligned}$	$\begin{aligned} & \text { Sodium } \\ & \text { adsorp } \\ & \text { tion } \\ & \text { ratio } \\ & \text { (SAR) } \end{aligned}$	$\begin{array}{\|c} \text { Residual } \\ \text { soduun } \\ \text { carbun- } \\ \text { ate } \\ \text { (RSC) } \end{array}$
IXX-68-06-403	kece	--	Oct. 7, 1943	--	--	84	24	11	--	352	17	16	--	3.8	--	329	308	--	--	7	0.2	0.0
403	Kece	-*	Mar. 28, 1945	--	-	-.	--	--	--	271	9	13	--	1.8	\cdots	\cdots	201	--	--	--	--	--
403	Kcee	--	June 29, 1977	12	--	71	10	6	--	254	10	10	0.2	< 4	--	2446	220	422	7.8	6	.1	. 0
704	kccc	120	do	13	--	94.4.	11	7	--	334	9	1.0	. 3	$<.4$	--	308	283	526	7.6	5	11	. 0
07.702	Kcgrl	440	Ju1y 27, 1977	13	--	115	15	8	--	390	21	14	. 2	2.5	--	380	347	600	7.9	5	${ }^{1}$. 0
12-703	xegrl	340	Aug. 20, 1976	11.	--	98	17	6	--	357	16	10	.4	2.3	\cdots	336	316	559	8.2	4	${ }^{1}$. 0
703	Kegrl	340	Juae 29, 1977	14	--	90	15	5	"-	334.	11	9	.4	2.4	--	311	286	528	7.9	4	$\cdot 1$. 0
901	Rche, Kcerl, Kcce	360	Nov. 24, 1974	15	-	72	32	15	--	346	42	13	. 5	$<\quad .4$	-.	360	310	589	7.9	9	. 3	. 0
901	Kcile, Kegrl, Kece	360	July 25, 1975	10	--	76	31	13	--	354	37	12	. 5	< . 4	--	353	315	590	7.7	日	. 3	. 0
902	Kche, Kegrl, Kcac	420	Nov. 24, 1974	15	-n	93	18	7	--	342	19	13	.5	6.0	--	339	307	560	7.7	5	11	. 0
902	Kche, Kcgri, Kecc	420	Aug. 3, 1976	11	--	89	22	8	3.0	333	27	12	. 6	4.7	\cdots	341	315	563	8.5	5	, 1	. 0
13-604	$\mathrm{K}_{\text {cgr }} 1$	420	Aus. 2, 1976	10	--	83	в	6	1.0	253	12	11	. 2	4.7	--	260	239	438	8.6	5	. 1	. 0
806	Kche, Kegrl, Kcce	500	do	12	--	81	44	20	4.0	368	87	21	1.1	6.0	--	457	382	735	7.8	10	, 4	. 0

EXPLANATION

Public supply we
Industrial well
$\stackrel{\ominus}{\bullet}$ Irrigation well
Domestic or livestock well
Oil or gas well
or gas
Test hole

Unused or abandoned well
$\stackrel{\odot}{\bullet}$
dicates flowing we
Spring
201
Line above well number indicates chemical analysis given in Table 6

Bose mop from Texas Deportment of
Highwoys ond Public Tronsportation

Location of Selected Wells, Springs, and Oil and Gas Tests in Comal County
gillespie courty
Table S. --Records of selected Nater Nelle, Springe, snd orl and Gae Teate

Use of witer
Water-bearlag uits

well	Onmer	Dritier	$\left\|\begin{array}{c} \text { Date } \\ \text { completed } \end{array}\right\|$	$\begin{gathered} \text { Deptb } \\ \text { of } \\ \text { vell } \\ \text { (fit }) \end{gathered}$	casidg		$\begin{gathered} \text { Water } \\ \text { beiring } \\ \text { wnit } \end{gathered}$	$\begin{gathered} \text { Altitude } \\ \text { of land } \\ \text { aurface } \\ \text { (ft) } \end{gathered}$	Water level.		$\begin{gathered} \text { Hethod } \\ \text { of } \\ 1 \mathrm{fft} \end{gathered}$	$\begin{gathered} u_{8 \varepsilon} \\ \text { of } \\ \text { water } \end{gathered}$	Remarke
					$\begin{aligned} & \text { Dhas. } \\ & \text { Btere } \\ & \text { (in. } \end{aligned}$	$\begin{gathered} \text { Depth } \\ (\mathrm{ft}) \end{gathered}$			$\begin{aligned} & \text { Below } \\ & \text { land- } \\ & \text { surgace } \\ & \text { datum } \end{aligned}$ $\begin{aligned} & \text { datum } \\ & (\mathrm{ft}) \end{aligned}$	Date of messurement			
* kx-5b-34-307	Edwin Anderegs	--	--	170	--	--	Kche	1,874	141.8	Hov. 21, 1969	c, u	- D, s	..
* 40-401	Mercus Rode	$\begin{aligned} & \text { Lonnte Itz Well } \\ & \text { Drilling } \end{aligned}$	1955	155	${ }^{6}$	155	Rehe	2,840	113.4	Dat. 22, 1966	$\underbrace{\text { E }}_{\substack{\text { Sub, } \\ 3 / 4}}$	D, s	Sloted from 115 to 155 feet.
* 47-301	Mrs. Gordon Ridd	--	1.925	14	6	--	$\begin{gathered} \mathrm{K}_{\mathrm{cggrg}} \mathrm{~K}, \end{gathered}$	1,945	4.4	Mov. 6, 1969	c, w	n	Urusind livestock well.
* 48-404	Martiu Ditenar	--	--	102	--	--		1,995	13.5	Oct. 14, 1969	$\begin{gathered} c, N, \\ z / 4 \\ 3 / 4 \end{gathered}$	0, s	- --
901	-- Hayden, zetace	Thuneand Is iand Di.1 ©	--	1,505	--	-*	--	1,350	--	--	--	--	OH1 test.
* 55-2n2	ghaton Peller	-.	--	101	7	--	$\underset{\mathcal{K}_{\mathrm{ccgr}} \in, ~}{ }$	1,944	72.4	0ct. 15, 1969	c, ¢	d, s	--
* 302	J. $\mathrm{B}_{\text {c }}$ Johnson, Jr.	--	--	168	6	--	$\underline{x}_{c} \mathrm{f},$ Xogr	2,030	--	--	c, w.	s	--
* 56-402	Mrix. J. Hurdin Penny	-- Shaper	19.52	250	6	250	${ }^{\text {Kege, }}$ Kche:	1,992	80.2	Nov. : O, 1969	c, ${ }^{\text {a }}$	s	--
* 57-34-402	Loulz Lee trume	-- Model	--	213	7	--	Kche	2,010	133.1	Hov. 7, 1969	c, w	s	- -- .
* 501	Billy Teagut	--	--	30	--	--	Kche	1,705	--	--		D, s	- --.
* 502	Lousa Lee Arana	- -	--	68	${ }^{36}$	\cdots	Kche	1,770	42.4	Nov. 7, 1969	3, E	s	--
503	Levy Erxch	--	${ }^{-}$	66	6	--	$\mathrm{K}_{\text {che }}$	1,815	49,1	± 0	c	w	Unused 1dvestock wecli,
* 903	Louls Lee Brung	vilton Cart Vater	1951	78	\cdots	\cdots	Relie	1,788	16	Oct. 30, 1969	c, e	D, s	--
* 904	Levg grecb	Lonase Itx Nell Dr1114ng	196\%	118	8	118	xche	1,790	45.5	Oet. 10, 1969	${ }_{\text {sub, }}^{1 / 2} \mathrm{E}$	d, s	--
35-703	Raymond willue	Thane Star Pump Sevvice	1976	245	8	28	Xche	1,720	3.5	July 12, 1976	$\underset{, 1 / 2}{\text { Esb, }}$	Irr	Opea bole frod 2 S to 245 feet, Reported yield 115 gal/min.
* 41-102	Gue raese	do	3960	275	--	--	*che	2,937	171.3	Nov. 4, 2969	$\operatorname{sun}_{1 / 2}{ }^{\text {R }}$	D, 8	--
301	city of Predertskaburg, Stehlitg No. 2	Rat R1ppe	1948	500	${ }_{10}^{16}$	$\begin{aligned} & 2.51 \\ & 3: 12 \end{aligned}$	Kche,	1,985	$\begin{aligned} & 194.0 \\ & 195.9 \end{aligned}$	$\begin{array}{ll} \text { May } & 2,1962 \\ \text { Nove }^{2} & \text { B, } \\ 1962 \end{array}$	$\underbrace{\text { sub, }}_{90}$ E	${ }^{\text {F }}$	ofl tost converters to pater well. Reworken in 1962. Slotted from 218 to 332 feet. Gravel packed. Open hole from 332 to 500 feet. Puup get at 300 feet. Reported yfeld 300 gal/min. 2/
* 609	Peul Stehline	Kilton care valer	--	9.2	--	--	Kclie	1,901	--	--	${ }_{3}^{3}{ }_{1}^{E}$	D, s	Prmp 59 tat 91 fect.
611	Axtbur danz	Loue Stari Puly Service	1985	143	5	143	kctue	1,770	32	Sept. 10, 1975	$\operatorname{sul}, ~ E ~_{s}^{5}$	Itr	Rertorated. Repurted yield $40 \mathrm{ga} 1 / \mathrm{mln}$.

rable S. --Hecorde of Selected Water Wells, Springe, ond oil and Gas Teste--Continced

See footnotes at end of table.
cillespit cougty
Table 5.--Records of Selected Nater Wills, Springe, and of1 and Gas Testa-Continced

Mell^{1}	coner	oriller	$\left\lvert\, \begin{gathered} \text { Date } \\ \text { completed } \end{gathered}\right.$	$\begin{gathered} \text { Deptht } \\ \text { of } \\ \text { well } \\ (\mathbf{f t}) \end{gathered}$	caetng		$\begin{gathered} \text { Mater } \\ \begin{array}{c} \text { hearing } \\ \text { bantc } \end{array} \end{gathered}$	$\left\|\begin{array}{c} \text { altitude } \\ \text { of lend } \\ \text { sut face } \\ \text { (} \mathrm{ft}) \end{array}\right\|$	kitet level		$\begin{gathered} \text { Method } \\ \text { pf } \\ 11 \mathrm{ft} \end{gathered}$	$\begin{gathered} \text { Uqe } \\ \text { of } \\ \text { water } \end{gathered}$	Remarks'
					$\begin{gathered} \text { Diam- } \\ \substack{\text { eten } \\ \text { (1nn.) }} \end{gathered}$	$\underset{\substack{\text { Depth } \\(\mathrm{It})}}{ }$				Date of ตcavervemed			
* xK-57-50-304	R. S. King -arayborn	Lone Gtar Pump Service E. 6e G. Loclite	1974	91 1,030	5 .-	- ${ }^{11}$	Kehe	1,570 1,600	$\begin{aligned} & 49.4 \\ & 41 \end{aligned}$	$\begin{gathered} \text { Dec. } \\ \text { Dec, } \\ \text { De, } \\ 2, \\ \text { I. } \\ \hline \end{gathered}$	$\underset{\text { Sub, }}{ }{ }^{\text {E }}$	Irr . .	Perforatel. Rcppotrad gield 60 gal/min, $\mathfrak{z f}$ 011 teat.

\pm For chemical analyser of watet, see Trato 6.

Analyser are in milligrams per 1iter except percent sodium, apectic conductance, pif, zodiun adsorption ratio (SAR), and restdual sodium carbonate (RSC).
Water-bearing unit: Kcf, Fredericksbury Grous, undifferentiated; Kcgr, Glen Rose Limeatone; Kche, Hensel1 Sand Member of the Trav1s Peak Formation
Dissolved eolids : The bicarbonges "reported" is converted by computation (moltiplying by 0.4917) to an equivalent amount of carbenate, and the
Analyseb by Texab State Department of Health.

Well	Waterbearing unit	Depth of sampled interval	Date of collection		$\begin{gathered} \text { Tron } \\ (F \epsilon) \end{gathered}$	$\begin{aligned} & \text { Cai- } \\ & \text { clum } \\ & \text { (Ca) } \end{aligned}$	$\begin{gathered} \text { Magne- } \\ \substack{\text { (ium } \\ \text { (Mg })} \end{gathered}$	$\begin{aligned} & \text { Sod- } \\ & \text { fum } \\ & \text { (Ma) } \end{aligned}$	$\left.\begin{gathered} \text { Potas } \\ \text { Aive } \\ \text { (K) } \end{gathered} \right\rvert\,$	01carbonate (HCO_{3})	$\begin{aligned} & \text { Sul- } \\ & \text { fate } \\ & \left(\mathrm{SO}_{4}\right) \end{aligned}$	$\begin{aligned} & \text { Ch1o- } \\ & \text { r(de } \\ & \text { (c1) } \end{aligned}$	$\begin{gathered} \text { F1uo- } \\ \text { ride } \\ (\mathrm{F}) \end{gathered}$		Boron (B)	$\left\lvert\, \begin{gathered} \text { Dis- } \\ \text { solved } \\ \text { solida } \end{gathered}\right.$	Total hardfibss日星 CaCO_{3}	$\begin{gathered} \text { Specific } \\ \text { conduct- } \\ \text { ance } \\ \text { (micrombomo } \\ \text { it } 25^{\circ} \mathrm{C} \text {) } \end{gathered}$	PR	$\begin{aligned} & \text { Fer- } \\ & \text { cent } \\ & \text { sod- } \\ & \text { ium } \end{aligned}$	Sodium adgorption ratio (SAR)	Residual sodium carbon- ate (REC)
8k-56-38-301	Kche	170	nov. 21, 1969	16	--	91	44	23	--	436	23	45	0.4	7.0	--	463	410	781	7.7	11	0.4	0.0
40-401	Kche	155	Oct. 22, 1969	14	--	84	44	24	--	434	19	40	. 5	< . 4	--	439	392	754	7.5	12	. 5	. 0
47-302	Kche, Kegr	84	Wov. 6, 1969	6	--	40	26	20	--	200	18	44	1.7	3.0	\cdots	257	208	474	7.5	17	. 6	. 0
48-404	$\mathrm{Kcgr}^{\mathrm{Kcgr}}$ xcf	102	Oct. 14, 1969	12	--	71	29	18	"*	338	11	30	.3	$<.4$	--	337	295	584	7.5	12	.4	. 0
55-202	$\begin{aligned} & \text { Krgre, } \\ & \text { Kcf } \end{aligned}$	101	Oct, 15, 1969	12	-	81	41	12	--	436	${ }^{8}$	18	. 4	$<.4$	--	387	373	666	7.6	7	. 2	. 0
302	$\begin{aligned} & \mathrm{Kcgr} r, \\ & \mathrm{Keff}^{2} \end{aligned}$	169	Oct. 16, 1969	12	--	66	40	13	--	382	10	21	.4	$<.4$	\cdots	350	328	609	7.6	-	.3	. 0
56-402	Kche, Kcgr	250	Nov. 20, 1969	8	--	71	40	6	--	398	8	9	. 4	$<.4$	--	338	344	595	7.6	4	.1	. 0
57-34-402	Kche	217	Nov. 7, 1969	10	--	42	33	9	-*	289	6	11	$\cdot 7$	- 4	--	254	240	451	7.9	8	. 2	. 0
501	Kche	30	do	19	-.	92	56	23	\cdots	407	33	94	. 5	5.0	--	522	460	904	7.4	10	.4	. 0
502	Kche	68	do	22	--	81	139	54	--	560	61	165	1.2	155	--	953	770	1,510	7.6	13	. 8	. 0
503	Rche	66	do	12	-*	${ }_{6} 6$	57	12	--	500	12	27	. 5	6.0	--	458	448	792	7.4	5	. 2	. 0
803	Kche	78	Oct. 30, 1969	13	-	75	47	24	--	451	27	27	. 5	5.0	--	430	384	732	7.6	12	. 5	. 0
804	Kche	118	do	13	-	78	39	9	--	397	10	21	.4	3.0	--	368	353	632	7.5	5	. 2	. 0
41-102	Kche	275	Nov. 4, 1969	11	--	83	33	16	17	320	24	32	. 3	77	--	451	343	715	7.9	9	.3	. 0
609	Rehe	92	loce. 29, 1969	13	--	59	45	17	--	372	19	26	.5	< . 4	\cdots	362	334	645	7.3	10	.4	. 0
801	kelie	42	Dee. 3, 1975	15	--	73	40	13	\cdots	381	14	27	.4	< .4	-*	370	347	645	8.4	8	. 3	. 0
802	kche	--	do	19	--	96	23	48	--	371	26	56	.4	39	-.	499	935	788	8.3	24	1.1	. 0
803	Kche	120	Peb. . 5, 1976	17	--	92	41	42	--	365	34	94	. 5	27	\cdots	526	401	915	7.5	19	. 9	. 0
901	Kche	400	May 25, 1956	--	0.6	58	42	19	--	384	25	28	. 5	2.7	--	--	32.	--	7.8	12	. 4	. 0
901	Kche	400	Dec. 1, 1960	12	--	62	39	18	\cdots	342	20	34	. 3	3.8	--	35%	315	657	7.0	11	.4	. 0
42-306	Kche	295	Det. 30, 1969	8	--	52	30	7	--	292	8	12	. 2	< .4	--	261	254	460	7.6	6	12	. 0
306	Kche	295	July 23, 1974	12	\cdots	54	34	9	--	314	9	15	.3	. 6	-	288	275	506	8.0	7	.2	. 0
49-102	Rche	80	Nov. 13, 1962	19	-"	- 94	48	48	--	412	31	110	. 2	10	--	563	431	906	7.2	19	1.0	. 0
103	Xche	115	do	23	--	146	58	196	--	426	104	378	. 2	39	--	1,154	603	1,690	7,2	41	3.4	. 0

cIlladspie connty
Table f.--Chemicsl Analyses of water From Sclected hel1s and Springs--Continued

Well	Water - bearing unit	Depth of well or sampled interval (ft)	Date of collection	$\begin{aligned} & \text { S11ica } \\ & \left(\mathrm{SiO} 0_{2}\right) \end{aligned}$	$\begin{aligned} & \text { Iron } \\ & \text { (Te) } \end{aligned}$	$\begin{aligned} & \text { Cail- } \\ & \begin{array}{c} \text { cium } \\ (\mathrm{Caz}) \end{array} \end{aligned}$	$\begin{aligned} & \text { Magne- } \\ & \text { 日lum } \\ & \text { (10\&) } \end{aligned}$	$\begin{aligned} & \text { Sod- } \\ & \text { fum } \\ & \text { (Mas) } \end{aligned}$	$\begin{gathered} \text { Potas } \\ \text { sfum } \\ (\mathrm{K}) \end{gathered}$	Blcar: bonate $\left(\mathrm{HCO}_{3}\right)$	sul- fate $\left(\mathrm{SO}_{4}\right)$	$\begin{aligned} & \text { Ch1o- } \\ & \text { ride } \\ & \text { (c1) } \end{aligned}$	$\begin{gathered} \text { Pluo- } \\ \text { ride } \\ (\mathrm{F}) \end{gathered}$	$\begin{aligned} & \mathrm{H} \mathbf{H}- \\ & \text { trate } \\ & \left(\mathrm{rat}_{3}\right) \end{aligned}$	Bor on (B)	$\left\lvert\, \begin{aligned} & \text { Dis- } \\ & \text { solved } \\ & \text { solvide } \end{aligned}\right.$	Total hardneag ${ }^{2} 8$ CaCO_{3}	$\begin{aligned} & \text { Specificic } \\ & \text { conduct } \\ & \text { since } \\ & \text { (uiceromhoe } \\ & \text { st } 25^{\circ} \mathrm{C} \text {) } \end{aligned}$	p^{H}	$\begin{aligned} & \text { Per- } \\ & \text { rent } \\ & \text { sod- } \\ & \text { fum } \end{aligned}$	$\begin{array}{\|c\|c\|} \hline \text { Sodium } \\ \text { adsoorp- } \\ \text { tlor } \\ \text { ratio } \\ \text { (SAR) } \\ \hline \end{array}$	Res idual sod fum carbon(RSC)
KK-57-49-108	Kche	79	Dec, 2, 1975	20	--	112	50	139	--	436	82	214	0.4	63	--	894	484	1,490	8.3	38	2.7	0.0
303	Kche	151	Dec. 3, 1975	20	--	98	63	41	4.0	434	33	136	. 4	6.0	--	614	499	1,050	8.7	15	. 7	. 0
304	Kche	214	Nov. 27, 1962	20	0.3	80	66	45	--	398	47	132	. 7	19	--	605	470	1,095	7.4	17	. 9	. 0
304	Kche	214	Dec. 3, 1975	20	--	78	61	67	\cdots	425	50	133	.9	15	--	633	446	1,060	7,8	25	1.3	. 0
50-304	Sche	90	Aug. 2, 1977	30	--	124	S1	109	--	520	59	160	. 3	30	--	819	520	1,330	7.6	31	2.0	. 0

> EXPLANATION Public supply well Ø Industrial well © Irrigation well

Domestic or livestock well
Oil or gas well
Oil or gas well
\otimes
Test hole
Test hole
क- $\% \phi\rangle$
Unused or abandoned well
Solid circle indicates flowing well
$\stackrel{a}{\text { Spring }}$
Spring
$\overline{201}$
Line above well number indicates chemical analysis given in Table 6

thays comaty

 Water－beating unlts

We11	¢onner	Drillek	$\begin{gathered} \text { Date } \\ \text { completed } \end{gathered}$	$\begin{gathered} \text { Depet } \\ \text { of } \\ \text { ofll } \\ \text { (} \mathrm{fe}) \end{gathered}$	Casing		$\underset{\substack{\text { Nater } \\ \text { bearing }}}{\text { n }}$ unit	Alefitudeof landsufface ${ }_{(f t)}^{5 u c t}$	Water Ievel		$\begin{aligned} & \text { Kethod } \\ & \text { of } \\ & \text { lifet } \end{aligned}$	$\begin{gathered} \text { Use }_{\text {se }}^{\text {of }} \\ \text { water } \end{gathered}$	Remarks
					$\begin{aligned} & \text { Dlan- } \\ & \text { etere } \\ & \text { (in-) } \end{aligned}$	$\underset{\substack{\text { Deptl } \\(f+)}}{ }$				Date of meagur ement			
＊LR－57－47－302	P．N．Agnell	Glasa sid Fucker， Inc．	1971	111	5	111	KCgrl	910	80	1971	c， N	s	Porforated from 92 to 96 foet．Pump set at 105 feet．
601	S．H．Huribut Mo． 1	M．B．Rudman	1977	4，620	－－	\cdots	\cdots	864	\cdots	＂	－－	－－	Oil teer．1／
55－301．	Jsck Arown	Glass and Tućker，	1977	S10	6	298	$\begin{aligned} & \mathrm{K}_{\mathrm{K} \text { čr }} \\ & \mathrm{Kcece}^{2} \end{aligned}$	2，367	304	Jund 21， 1977	－	ग	Open hole from 288 to 510 feet．Cenented from 60 feet to surface．Reported yletd $50 \mathrm{ga} 1 / \mathrm{min}$ whth 0 feet drawdam． $1 /$
602	John R．Kartindsle， betate．	do	1972	470	，	22	$\begin{aligned} & \mathrm{Kcgrin}, \\ & \mathrm{Kocc} \end{aligned}$	1，260	320	Kay 9， 1972	Sub，${ }_{1}$	P	Open hole from 22 to 470 feet．Gemented from 22．Feet to burface．Reported yield $60 \mathrm{ga} 1 / \mathrm{min}$ ．
＊ 603	M．S．フamb	do	1977	480	6	220	Kcgr1	1，370	325	Junt 26， 1977	－－	－	Opan fole from 2ZU to 4月口 frest．Gemented foom 40 feet to surfice．Regorted yield $20 \mathrm{gal} / \mathrm{mlu}$ ． $\mathrm{i} /$
＊ 6005	Attis milkerson	da	1977	480	6	41	$\begin{aligned} & \text { Kcerr1, } \\ & \text { Kcch1, } \\ & \text { Kcce } \end{aligned}$	1，255	236	Junte 27，19\％	Sub，e	－	upen toile from 41 to 480 fexe ． $1 /$
901	J．L．Harue 1 l Mo，	Shell ofl co，	1956	4，660	－．	－．	－．	1，379	\sim	－－	－－	－－	We 11 c－33 in Texae Board of hater Enbineert Bulletin 6004．Oil trist， $1 /$
901	Olsa A．Kelly，yr．	G1ane and Eucker， Inc．	1977	480	6	23	Kegrl	1，350	318	June 14， 1977	$\mathrm{Sub}_{3} \mathrm{~s}$ ，e	I	Open hole frow 23 to 480 feet．Pump net et 441 feet．Reported yield $25 \mathrm{gal} / \mathrm{min}$ with 50 fect．of drawdown． $1 f$
＊56－101	Jerty Meleor	do	1973	500	6	20	$\mathrm{x}_{\text {¢gx }}$	1，290	320	Aug，13， 1973	Sub，B	D， 5	Opens hole from 20 to 500 feet．Cemented from 20 feet to eurface．Reported yield $100 \mathrm{gai} / \mathrm{m} 5 \mathrm{u}$ witht 160° feeer drawdiwn．
＊ 201	Whiey hayden	＂	－．	290	6	6	Xcgru	1，124	107	act．1， 1974	\cdots	${ }^{N}$	Open hoile fram 6 to 290 fete，$\underline{1 /}$
＊ 202	do	－－	1974	365	6	20	$\mathrm{K}_{\mathrm{cgt}}$	1，171	－－	－－		D	Open hole from 20 to 365 feet．
＊2n3	do	Ricbara h．Bible Driting Co．	1974	165	5	20	Kıżru	1，100	\％o	0ct．1， 1974	N	＊	
204	v，F．Taylar	Glase and Tucker， Iac．	1976	455	$\mathfrak{6}$	44	$\underset{\mathrm{K}_{\mathrm{c} g \mathrm{gr} \mathrm{ru}}}{\mathrm{Kc},}$	1，145	$\begin{aligned} & 220 \\ & 2014 \end{aligned}$	$\begin{array}{lll}\text { Sept．} & 11, & 1976 \\ \text { Olct．} & 14, & 1977\end{array}$	＊	＊	Open tole from 44 to 455 feet．Cemented from It feet to surface．Reportod yleld 15 gal／min with 235 feet drswdowa．1／
＊ 401	AnEゆne A11en，Hal．nut sprini	$\stackrel{-}{\square}$	\cdots	5pring	．．	－－	Rcgru	1，145	－＊	－－	Elows	ロ	Sprimg B－44 in Texas Eosard of Water Engineers Sulletin 6004，Bstfmated flow 50 palfoin．
＊ 701	J．D．Spllar	G1ase and Tucker， Inc．	1974	260	5	260	Kcgr	1，085	65	May 2， 1974	$\mathrm{Sub}_{1}^{\text {Sub }}$	D，$\dot{6}$	gerforated frow 60 to 65 feet sud 220 to 240 feet．Cenented frou 40 feet to surflace． Pump set at． 140 foot．Reported yilld $150 \mathrm{gal} / \mathrm{m}$ m n vith 195 feet dravdown．

see footnotes at and of table．

Well	Dwas	Driller	$\left\lvert\, \begin{gathered} \text { Dete } \\ \text { completed } \end{gathered}\right.$	$\begin{gathered} \text { Depth } \\ \text { of } \\ \text { vell } \\ (\mathbf{f t r}) \end{gathered}$	Casing		Waterbearing unit	$\left\|\begin{array}{c} \text { A1titude } \\ \text { of land } \\ \text { Burfare } \\ \text { (ft) } \end{array}\right\|$	Natar 2 evel		$\begin{gathered} \text { Method } \\ \substack{\text { of } \\ l_{i} \mathrm{ft}} \end{gathered}$	$\begin{gathered} \text { Use } \\ \text { of } \\ \text { water } \end{gathered}$	Remarkı
					$\begin{gathered} \text { Diem- } \\ \substack{\text { ecer } \\ \text { (1n. }} \end{gathered}$	$\left.\begin{array}{c} \text { veptt1 } \\ (\mathrm{ft}) \end{array}\right)$				Date of шeas arc fment			
LR-57-56-702	Dripping. Springs Nater Supply Corp. da	Glssa and Tucker, Inc.	1975	345	6	45	$\begin{aligned} & \mathrm{Kcgin}, \\ & \mathrm{~K} \leq e c . \end{aligned}$	1,030	--	--		r	Open hole from 45 to 345 feat, Gemented from 41 feet to surfiace. Actdized. $1 /$
		Texsa Water Wells, Inc.	1964	820	a	700	Kcec, Kcho	1,030	--	--	${ }_{\substack{\text { T, } \\ 10}}$	${ }^{\text {P }}$	Sloted from 315 to 345 fret, 395 to 440 Eeet, 495 to 560 feet, 600 to 640 feet, and 660 to 690 fect. Open hole firion 700 to 820 feet. cemented from 310 feet to surface. Purp sert at 200 feet.
901	J. e. Towers	-.	1961	.-	--	--	${ }_{8 c}{ }_{\text {gr }}$	1,050	--	\cdots	Sub, E	D	--
63-501	A. D. Reichert	Olabe and Tueket, tric.	1974	625	$\dot{\square}$	39	Kst	1,270	300	Avg, 20, 1975	$\underset{\mathcal{S} / 4}{\mathrm{sub}_{1}}$	D	Open thole from 39 to 625 feet. Cemented from 39 feet to surPare. Pump set at 399 feet. Reported yield $30 \mathrm{gol} / \mathrm{min}$.
601	Woodcreek Development, Westeide well 4	Central Texes Dtilling co.	1976	300	B	25	$\underset{\substack{\text { Rceril, } \\ \text { Recc }}}{\text { Reg }}$	1,000	--	--		trr	Open hole Exam 2.5 to 300 leet. Cemented from 25 feet to surface,
901	6. น. Hasclike	Kutseber Dra, 11 ing co.	..	225	6	90	$\begin{aligned} & \mathbf{R}_{\text {cegrit }} \\ & \mathrm{Recc}^{\prime} \end{aligned}$	970	31.0	$\begin{aligned} & \text { Sept. } \\ & \text { 288, } 1977 \\ & \text { Nov. } \\ & 177 \\ & 1997 \end{aligned}$	\%	\cdots	Upen frole from 90 to 225 faet. Cemented from gin feet to surface. $1 /$
802	Dayal 8. Peters	Central Texss Dxiliting co.	1974	230	8	20	$\underset{\substack{\text { Kegri, } \\ \mathrm{Kcoc}}}{\mathrm{K}}$	1,065	${ }_{132}^{129.9}$	$\begin{aligned} & \text { Sept. 22, } 1977 \\ & \text { Now. } 17,1977 \end{aligned}$	w	*	opell hole from 20 to 230 frect, 1/
803	do	do	1977	207	a	24	$\begin{aligned} & \text { Kcgri, } \\ & \text { Kccce } \end{aligned}$	2,015	*	--	$\mathrm{Sub}_{3} \mathrm{~S}^{\text {E }}$	Irr	Open hole from 24 ta 207 feet. Cemented from 24 feet to surface. Pramp set at 190 feet. Reported yield 60 gal/win.
901	Woodereek Development, Weatside well 1	do	1976	300	6	56		1,050	-.	--	${ }_{30}^{\text {Sub, e }}$	Irr	Open hole from 56 to 300 feet. Ceroesthed from 56 feet to surface. Reported yield $250 \mathrm{ga} 1 / \mathrm{mln}$.
902	Woodcreek Development, Neatilde well 2	do	1976	370	8	13	$\begin{aligned} & \mathrm{X}_{\mathrm{cger}, \mathrm{l}} \\ & \mathrm{xcccc}^{\prime} \end{aligned}$	1,055	--	-	$\underbrace{\text { e }}_{\substack{\text { Sab, } \\ \text { za }}}$	Ift	Open hole from 13 to 370 fcet, Compnted from 13 feet to surface. Reported gield 100 gal/min,
903	Koodercek Developpent, Nesteide well 3	do	1976	300	8	21	$\begin{gathered} \mathrm{Kcgrl}_{\mathrm{Kcce}}, \end{gathered}$	1,045	-*	--		Irr	Open hole from 21 ta 300 feet. Cemented from 21 feet to surface. Reported Field $200 \mathrm{gAl} / \mathrm{min}$.
904	Woodereck Tievelopment	do	1976	400	30 8	180 240	Rese	2,005	80	Mar. 30, 1976		P, Irr	Open hole from 240 to 400 feet. Cemented from 180 feet to aurface. Reported yield 300 gak/min with 10 feet drawdown.
905	Woodcreek Development, Jacob's well	--	-.	Sprins,	--	.	Rece	930	*	-	${ }^{\text {F1aws }}$	N	Spriag D-69 in Texes Doard of Water Enkinecrs Bulletins 6004 sad 5608 . Batimated flow 1,070 gavisman on fart. 26, 1955.
64-701	Joe M. Redinger	Owen Drilling co.	1974	287	6	19	Kcgr	1,030	110	Aug. 29, 1974	$\underbrace{\text { E }}_{\substack{\text { Sub, } \\ i \\ 1 / 2}}$	Ind	open hole from 19 to 2.87 fent. Cemented froa 19 feet to surface. Prump set at 275 fect. riporred yifld is gal/ous with 177 feet draxdown.
702	Koodercek Developtant, Eastside $u \in 111$	Centras Texaa	1974	400	6	32	$\begin{gathered} \mathrm{Kcger}, \\ \mathrm{~K}_{\mathrm{ccec}} \end{gathered}$	940	-20	Jupe 5, 1974	$\mathrm{Sub}_{20} \mathrm{So}^{\text {E }}$	Irr	Oped hole from 37 to 400 fect. Cemented frow 32 Eeet to sarface.
703	Woodereek Defrlopment, - Eastside vell 2	\cdots	--	460	$\stackrel{ }{*}$..	$\underset{\mathrm{K}_{\mathrm{kcce} \mathrm{cc}}}{ }$	950	\cdots	--	$\underset{20}{\substack{\text { sub, } \\ \hline}}$	Irr	. - --
704	Woodcreek Development, Eqstific wel1 3	--	--	450	ε	\cdots	$\begin{aligned} & \text { Kcgri, } \\ & \text { Kcecer } \end{aligned}$	9.55	-	-	$\underset{20}{\substack{\text { sub, } \\ \text { en }}}$	Ixt	**
705	Wimberiy Water Supply Coxp:, we11 1	Cantrnl Taxak Drilling co.	1975	400	10	280		920	"	-		${ }^{8}$	Opes hole from 180 to 400 feet. Cementer from 180 feet to surface. Pump set at 300 fert.

Soo footnotes at and of table.
hays coumt

well	Onnex	detilen	$\left\lvert\, \begin{gathered} \text { Vate } \\ \text { coupleted } \end{gathered}\right.$	$\begin{gathered} \text { Depth } \\ \text { of } \\ \text { will } \\ \text { (ftt } \end{gathered}$	$\mathrm{Cas}_{\text {cing }}$		$\begin{aligned} & \text { water } \\ & \text { beari.ng } \\ & \text { unit } \end{aligned}$		hater level		$\begin{aligned} & \text { Methood } \\ & \text { Oift } \\ & \text { 1ift } \end{aligned}$	$\begin{gathered} \mathrm{n}_{\text {se }} \\ \text { ot } \\ \text { water } \end{gathered}$	Remarks
					$\begin{gathered} \text { Digam } \\ \text { eLer } \\ \text { (in.). } \end{gathered}$	$\binom{\text { Depth }}{\text { (ft }}$			$\begin{gathered} \text { Below } \\ \text { sard- } \\ \text { surffoce } \\ \text { datyon } \\ \text { dit) } \end{gathered}$	Date of messur cacnt			
LTR－57－64－706	Wimberly Water Supply Corp．，woll 2	Autatit limmp コחぶ Supply 6 ．	3956	4.5	\％	280	$\begin{aligned} & \text { Kencl, } \\ & \text { Recoc } \end{aligned}$	920	2.5	Alug．3n， 1956	$\underbrace{}_{\substack{\text { Suh，} \\ 30}}$	F	Dpen holre frem 180 th 415 feret，Cempented frow 180 feet to surfrce．Pump set at 220 feet． Heported yield $242 \mathrm{gsi} / \mathrm{min}$ with 64 feet drawdowil．
707	Wi，mbery y Water：Supply Gorp．，well 3	finas and Tuertur， Ioc．	1974	430	－－	180	$\begin{aligned} & \begin{array}{l} \text { Kepy } \\ \text { Recce } \end{array} \end{aligned}$	97．n	－－	－－	$\underset{\substack{\text { Suh, } \\ .00}}{ }$	p	Onn hein from 1 ko to 400 tent，Gementen from 180 fept to eurfnce．
708	Wimberizy Water．Supply C口Tp．	Elbert Will ismmun	1994	620	$\stackrel{1}{6}$	22		1，050	14.5	Apr．20，1978	n	n	Opers Isole Ericul 22 iu 620 itech．Ommes publiv surply wri！1 $+\underline{l} /$
＊58－49－10：3	Ammnda sunann	Richaral T，Bable Irvilling co．	$196{ }^{\circ}$	705	7	$3 n$		1，1911	－－	－－	$\underset{\substack{\text { Sub，} \\ 2}}{ }$	D	Open hozr fram 300 to 70.5 feset，Pimp ：set at 683 feet．
＊ 114	Sohn C．Stam．ry	Centent Texans Ivilitide co．	1.970	${ }^{66 \%}$	7	844	Koho	1，135	$\begin{aligned} & 350 \\ & 219.5 \end{aligned}$	$\begin{aligned} & \text { Apr. } \quad 2 \mathrm{k}, 1970 \\ & \text { Sept. } \\ & \text { S, } \end{aligned}$	Sub，в	D	S1nttiad frim 571 tin 6is fiemt and 676 to B4／Fent．Dpen holn from 844 to 860 frot． celsented fram 565 feet to sarface．Reported yie1山 15 g 31 ／max．$/$
1.15	Mre．F．J，Turck	S．W．©．19as	1.931	623	6	－	Kogr	1，700	－－	－－	Sub，ז	D	Ralletio 600\％．Ifeepened from 235 to 623 feet Iv Nov． 1950.
402	c，A．smara	Roy λ ．Parrex Drilling Co，	196\％	495	8	17	Kogr	1，280	295	nov．18， 1962	$\begin{gathered} \text { Subs } p \text { p } \\ 11 / 2 \end{gathered}$	ס	Open hole from at to 495 feet．Reported yield 15 gal／will with 25 feet drawdown．
403	do	Glave sud Tukker， luc．	194／	400	8	－－	$\mathrm{H}_{\text {cegre }}$	1．， 790	－－	－－	c，e	D	－－
$=4114$	Wilburi Postar	brisilug Co．	197\％	350	6	40	$\begin{aligned} & \text { Regrll, } \\ & \begin{array}{l} \text { Kclie, } \\ \text { Kcrer } \end{array} \end{aligned}$	1，152	360	Mny ．11， 1973	＊	N	Open hole from to to 750 fert． $1 /$
505	－－Porsy \％o． 1	－－	－－	－－	－－	－－	－－	1，157	－－	－－	－－	－－	1／
68－08－1．01	Wimberiy Water Sirghly Спп：	－－	1．96\％	1，2665	${ }^{*}$	－－	Kct	1，08，	370	Ont．14， 1977	＊	${ }^{1}$	Abandoned． $1 /$
102	do	G1s：s：and Tuckes， Tnc．	1478	555	－－	－－	 Koce	8911	－－	－－	－－	${ }^{\text {p }}$	［1／

Table 6.--Chenical Analyfer of wacer trom Selected Welle and springe

Water-bearing unit Kcgr, gles knse Lemestone; Kcgru, upper member of the glep kose Limentone; Kcgrl, lower member of the Clen Rose Limestone; Rche, densell Sand Member of the Travis Peak Formatien; Kcce, cou Geek Limestonc Mumber of the Travis Peak Formation; Kcho, Hoaston Sand Menber of the Travis Pesk Formation; Kul, Trintity Group, undifferentisted.
Dissolved rolide the bitcarbonate feported is (omstiplying by 0.4917) to an equivalent amount of carbenate, and the carbonat Analyses by Texas State Department of Hesith

Well	Waterbearing unit	Jrepth of well or sampled interval (ft)	Date of collection	$\begin{aligned} & \text { silica } \\ & \left(5 \mathrm{iO} \mathrm{O}_{2}\right) \end{aligned}$	$\underset{(\mathrm{Fe})}{\mathrm{Ir} \circ \mathrm{n})}$	$\begin{aligned} & \text { Cal- } \\ & \text { cium } \\ & \text { (cas) } \end{aligned}$	Hingnesism (Ng)	$\begin{aligned} & \text { Sod- } \\ & \text { (cum } \\ & \text { (Na) } \end{aligned}$	$\left.\begin{gathered} \text { Yotas } \\ \text { rium } \\ (\mathrm{K}) \end{gathered} \right\rvert\,$	Bicarbonate $\left(\mathrm{HlCl}_{3}\right)$	Sul- fate $\left(\mathrm{SO}_{4}\right)$	$\begin{aligned} & \text { Chlo- } \\ & \text { ride } \\ & \text { (Cl) } \end{aligned}$	$\begin{aligned} & \text { Fluo- } \\ & \text { ride } \\ & \text { (F) } \end{aligned}$	$\begin{gathered} \text { H1- } \\ \text { trate } \\ \mathrm{HzO}_{3} \mathrm{HO}_{3} \end{gathered}$	Bor on (B)	Disgolved solids	Total hard- ness $\stackrel{\text { as }}{C 8}$ CaCO_{3}	$\begin{gathered} \text { Specific } \\ \text { conduct- } \\ \text { snce } \\ \text { (micromhos } \\ \text { at } \left.25^{\circ} \mathrm{C}\right) \\ \hline \end{gathered}$	PH	$\begin{aligned} & \text { Per- } \\ & \text { cent } \\ & \text { fod- } \\ & \text { ium } \end{aligned}$	Sodivm adsorp tion ratio (SAR)	$\left\|\begin{array}{c} \text { Res idual } \\ \text { sodium } \\ \text { carbon- } \\ \text { ate } \\ \text { (RSC) } \end{array}\right\|$
LR-57-47-302	$\mathrm{Kcgrg}^{\text {c }}$	111	May 26, 1972	15	--	81	99	13	--	410	14	22	0.3	7.0	--	392	365	645	7.6	7	0.2	0.0
55-609	Kegr ${ }^{\text {l }}$	460	June 16, 1977	12	**	180	198	35	16	399	690	43	3.5	< 4.4	\cdots	1,314	1,020	1,680	7.6	7	.4	. 0
605	Kche, Kcgr1, Kces	480	June 27, 1977	10	-*	96	86	27	--	455	216	30	3.6	1.4	--	693.	590	1,065	7.8	9	. 4	. 0
605	Kche. Kegrl, Rcer	480	do	12	--	261	166	64	--	351.	1,060	52	2.3	. 8	--	1,790	1, 340	2,030	7.8	9	.7	. 0
56-101	Kcgr	500	Aug. 4, 1976	11	--	145	115	45	13	455	470	40	3.2	1.3	--	1,057	830	1,450	7.6	8	. 5	. 0
201	Kcgru	290	Dct. 1, 1974	12	--	690	24	13	--	345	1,460	26	1.5	55	--	2,451	1,820	2,380	7.4	2	$\cdot 1$. 0
202	Kcgr	365	do	10	--	630	75	15	--	340	1,540	21	2.8	. 2	--	2,461	1,880	2,440	7.3	2	$\cdot 1$. 0
202	$\mathrm{Kcgrgr}^{\text {r }}$	365	July 25, 1975	8	--	520	85	13	-.	348	1,270	28	2.2	$<.4$	--	2,097	1,660	2,170	7.5	2	. 1	. 0
202	${ }_{\text {Xcgr }}$	365	Aus. 1.8, 1977	13	-*	635	109	$1 / 4$	\cdots	353	1,619	20	2.1	< . 4	--	2,586	2,093	2,600	7.6	1	. 1	. 0
209	Kcgru	165	Oct. 1, 1974	12	--	115	83	13	--	417	258	22	2.1	< .4	\cdots	710	630	1,096	7.6	4	. 2	. 0
403	Kcgru	--	Sept. 2, 1937	\cdots	--	87	19	--	1.0	30.5	20	20	--	--	--	297	297	-	--	\cdots	--	. 0
701	$\mathrm{Kcgr}^{\text {c }}$	260	Aus. 4, 1976	11	-	48	16	6	1.0	207	15	10	. 2	$<.4$	--	209	186	362	8.1	7	.1	. 0
901	$\mathrm{Kcgr}^{\text {r }}$	--	Apx, 21, 1977	9	4.1	101	46	8	--	32.5	174	14	1.5	$<.4$	--	517	441	787	7.5	4	11	. 0
901	Kcgr	--	June 24, 1977	10	\cdots	118	55	8	--	332	239	15	1.8	< 4	--	610	520	907	7.6	3	.1	. 0
63-501	Kct	625	Aus. 4, 1976	10	--	81	22	7	2,0	318	19	12	. 3	2.8	--	312	294	524	8.4	5	. 1	. 0
58*49-103	Kohe, Kcgri, Kcre	705	Ju1y 1, 196日	12	--	174	67	12	. 0	970	371	19	2.4	1.0	-"	840	710	1,570	7.3	4	-1	. 0
114	Kcho	850	Sept. 3, 1970	15	-.	221	168	93	--	357	1,050	58	2.5	$<.4$	-	1,783	1,240	2,120	7.4	14	1.1	. 0
118	$\mathrm{K}_{\text {chr }}$	623	Aug. 26, 1952	12	--	178	111	29	--	421	547	30	2.6	. 2	--	1,13.6	900	1,540	7.4	7	.4	. 0
118	Kcgr	623	Sept. 17, 1975	12	--	217	169	37	--	304	960	35	2.7	< .4	--	1,582	1,240	1,880	8.0	6	. 4	. 0
118	${ }_{\text {K¢g }} \mathrm{r}$	623	June 28, 1977	13	-	204	134	33	13	382	790	31	2.4	2.0	--	1,410	1,060	1,750	7.5	6	.4	. 0
402	Yegr	495	Jan. 8, 1969	12	--	174	67	12	--	370	371	19	2.4	1.0	--	${ }^{840}$	710	1,172.	7.3	4	$\cdot 1$. 0
403	Kegrı	400	do	12	--	12.3	70	13	--	448	205	17	2.9	2.0	--	665	590	1,054	7.3	5	. 2	. 0
403	Hcgru	400	Jume 24, 1977	11	"	92	32	15	--	412	19	25	$:^{2}$	5.1	--	401	363	689	7.7	8	. 3	. 0
404	Kche, segr1, Kece	750	Tab. 日, 1969	10	--	85	27	7	--	362	12	15	.4	7,2	--	341	325	582	7.4	4	.1	. 0

EXPLANATION

> Public supply well Ø Industrial well
$\stackrel{\ominus}{\text { Irrigation well }}$
Domestic or livestock well
Oil or gas well
Test $\stackrel{\otimes}{\text { hole }}$

- - - - ϕ

Unused or abandoned well
Solid circle indicates flowing we -
Spring
Line above well number indicate chemical analysis given in Table 6
\qquad
\longrightarrow^{2}

- 234 Kilometers

Sose mop ont Puras Depariment

Location of Selected Wells, Springs, and Oil and Gas Tests in Hays County

1able 5. \cdots Recorda of Selected Water Welle, springe, and ofl and gas teeta

vee of water
Wacer-bcaring
D, 山ouesticic; Irv, irrizalion; n, wonc; e , public supply; s , hivnstork.

well	Ommer	Driller	$\left\lvert\, \begin{gathered} \text { Date } \\ \text { complezed } \end{gathered}\right.$	$\begin{gathered} \text { Depth1 } \\ \text { of } \\ \text { wil } \\ (\mathrm{ft}) \end{gathered}$	$C_{\text {ceing }}$			$\begin{aligned} & \text { A.1.t.tuit } \\ & \text { of land } \\ & \text { Surface } \\ & (\mathrm{ftg}) \end{aligned}$	Water kevel		$\begin{gathered} \text { Method } \\ \text { nfod } \\ \text { nift } \end{gathered}$	$\begin{gathered} \text { Wee } \\ \text { of } \\ \text { of } \end{gathered}$	Remarks
					$\begin{aligned} & \text { Dism- } \\ & \text { itcen } \\ & \text { (1n.) } \end{aligned}$	$\underset{(\mathrm{ft})}{\substack{\text { vep.th }}}($			Eelon 1andburface daturs (ft)	Dste of meat:urement			
${ }^{\text {REP-57-50-701 }}$	Hoherbeerger inothers	8. L. Reborn	1917	200	8	10	Kce, ${ }_{\mathrm{Kcgra}}$	2,030	59.5	Apr. 8, 1965	c	${ }^{*}$	Oif test drilined to 720 feet, nlurexed hank to 200 feet and converted to water well. open hole froin 10 to 260 leet. Unused since 1952. 2/
* 202	Moarue xıinksiek	w. Fester	1914	433	6	--	$\mathrm{K}_{\mathrm{cg} \mathrm{g}}$	1,685	289.8	Feb. 22, 1940	\cdots	N	Detiroyed. 2/
	milton moos	-"	1926	371	8	200	Kcg t , Xㄷㅏㅡㅡㅡㄹ	$t, 752$	$\begin{aligned} & 137.6 \\ & 136.3 \end{aligned}$	$\begin{array}{ll} \begin{array}{l} \text { Feb. } \\ \text { Apr. } \end{array} & 21, \\ 7, & 1943 \\ 1965 \end{array}$	c, в	D, s	Open tole from 200 to 371 feet. $2 /$
* 51-701	v. A. sctur 1 tr	--	1926	420	6	--	$\begin{aligned} & \text { Kcgr, } \\ & \text { Recle } \end{aligned}$	1,735	275.1	Fet. 19, 1940	$\underset{z, 1 / 2}{c}$	D, s	$\underline{\text { w }}$
* 801	Heury Echladoer	A. M. Cunuingham	1919	211	6	--	$\mathrm{K}_{\text {¢¢agu }}$	1,770	$\begin{array}{r} 75.2 \\ 139.5 \end{array}$	$\begin{array}{ll} \text { Kir. } & \text { h, } 1,240 \\ \text { Aug. } & 9, \\ \hline \end{array}$	$\begin{gathered} c, w, \\ \underset{i / 2}{E} \end{gathered}$	v, s	Deepeued staul 180 to 21 L feet. Inump set at 160 feet, 2/
* 57-304	Michard T. Davis		196.3	550	?	5	Rche	1,885	350 350.0 354.7 356.7 36.2 356.6 356.6			s	Perforsted fram 507 to 550 fect. Pump :set at 430 fent, Reported Fiald $15 \mathrm{gni} / \mathrm{min}$ with 70 fect. drawdown, Ohservation well. 2/f
* 601	R.oy Mit limann	do	1958	375	5	--	$\underset{\substack{\mathrm{z}<\mathrm{Br} \\ \mathrm{Xcha}}}{\mathrm{K}}$	1,700	194.8	Aug. 33, 1.965	$\begin{gathered} c, k_{r} \\ \frac{k}{3 / 4} \end{gathered}$	s	naportad yi.cle 14 mal/min. ${ }^{\text {a }}$
* 903	Felix t.4 Barth	\cdots	1890	265	6	15		1,239	$\begin{aligned} & 64.7 .7 \\ & 64.7 \\ & 64.7 \end{aligned}$		c, в	D, s	Open hole from 15 to 265 feet.. Pump bet st 105 feet. Reported yield 5 gal/min with 40 feet drewdowd. 2/
* 905	Travin Eat1ey	Sope	1960	356	6	200	Xche	1,630	150	1960	$\underbrace{\text { s }}_{\substack{\text { Sub, } \\ 1}}$	d, s	Open bole from 200 to 356 feet. $\underline{1 /}$
906	Mre. G. Steiu	--	1900	260	$\stackrel{ }{*}$	40	Kigarl, Kclie, кесе	1,500	96.8	Feb. 22, 1940	c, w	D, s	Open hale from 40 to 260 fext. 2/
907	Stater of Texres	Texsa Department of hister kesources	1977	585	*	*		1,610	77	Apr. 27, 1977	K	${ }^{1}$	Reported yield 3 gal/min with 185 feet drawdowat. Plugged. 1/
* . 58.201	Otto grabbe	--	789	${ }^{6}$	7	-	Kcgra	1,815	31 36	$\begin{array}{ll} \text { Yel. } & 21, \\ \text { Apx. } & 1940 \\ 7, & 1905 \end{array}$	$\mathrm{J}_{3 / 4}^{\mathrm{E}}$	D, s	$\underline{2 /}$
* 202	J, L. Riboum	louts Pergmano end Sone	1961	435	7	366	$\begin{aligned} & \text { Xergri., } \\ & \text { Xoher } \end{aligned}$	1,800	310	Dec. 1961		D, s	Open luile fros 366 ta 435 feet. Reported yjeld $5 \mathrm{gal} / \mathrm{min}+2 /$

Set footnotes at end of table.

ste footnotes st end of twine.

Trable 5, --Rucords of Sclected Water Welle, Springs, and Oi. 1 and Gas Teats n-Copetinuod

$\mathrm{we}_{\text {el }}$	Onner	Pri.11er	$\left\|\begin{array}{c} \text { Date } \\ \text { completed } \end{array}\right\|$	$\begin{gathered} \text { Depth } \\ \text { of } \\ \text { well } \\ (\mathrm{ft}) \end{gathered}$	Gasing		$\begin{array}{\|c\|c\|} \substack{\text { Water } \\ \text { beaning } \\ \text { unit }} \\ \text { unt } \end{array}$	$\left\{\begin{array}{c} \text { altitude } \\ \text { of land } \\ \text { surface } \\ \text { (ft) } \end{array}\right.$	Water level		$\begin{gathered} \text { He thod } \\ \text { पif } \\ \text { lift } \end{gathered}$	$\begin{gathered} \text { Uee } \\ \text { of } \\ \text { oftor. } \end{gathered}$	Remariks
					$\begin{gathered} \text { ingul } \\ \substack{\text { efer } \\ \text { (in.) }} \end{gathered}$	$\underset{(\mathrm{ft})}{\substack{\text { Oepth }}}($			Be F (ny land datum (ft)	Date of weacuremert			
* Rb-57-59-b04	w. \%f. Cothrum, well 3	Edmunde Orisinag co.	1964	737	${ }^{11}$	180	$\begin{aligned} & \text { Retp, } \\ & \text { Rcloge } \end{aligned}$	1,430	$\underset{\text { fi, }}{106}$	$\begin{aligned} & \text { Aus. } \\ & \text { Apt. } \\ & \text { A1, } 19,1965 \\ & \hline 1975 \end{aligned}$	c, e.	s	Opon hole from 180 to 387 feet. Reported yteld 275 gel/unt. 2/
807	w. If. Cothrum, wel1 5	\sim	--	5.5s	،	55s	Xeho	1,460	66	Apr. 5, 1977	\cdots	N	1 1 .
808	w. H. cotbrice	--	--	800	10	800	Kcbo	1,440	32	Mar. 3, 1977	${ }^{N}$	N	Covgd in at 461 feet sati sberdoped. $1 /$
809	W, H, Cothrum, mell 6	--	-*	4,200	12	435	Xelis	1,480	$6{ }^{2}$	Het. 3, 1977	N	N	Dritied to 4, 200 teet and plugsed back to S06 fecti; Oper hole from 435 to 506 ferter. I/
901	W. H. Cothrum, we21 12	--	--	650	B	650	xcho	1,640	107	Hot. 9, 1977	N	${ }^{*}$	Gsued in at 590 feet, $1 /$
* 60-101	ท. L. iture	Bnb Prpr	1915	140	8	90	$\chi_{\text {¢greu }}$	1,665	$\begin{aligned} & 89.5 \\ & 94.5 \end{aligned}$	$\begin{array}{cc} \text { Ksr. } & \text { 4, } \\ \text { Aug. } & 1040 \\ \text { AO } & 1965 \end{array}$	0, W	D, s	Deepened from 106 to 140 fege, Opan hols from 90 to 140 fert. Reported yield 2 gat/oin with 34 feet drawdown. $2 /$
- 501	David w. orraberg	--	-	220	G	40	$\mathrm{Ktg}_{8} \mathrm{fu}$	1,630	129.2	Aug, 17, 1965	*	H	Opes hole from to to 220 feet, $2 /$
* 608	Jack Ef: mer	-.	1918	125	6	20	repriv	1,525	41.9 40.3	$\begin{array}{cr} \text { Msis. } & 4, \\ \text { A4g. } & 1.640 \\ \text { A. } & 1965 \end{array}$	c, w	D, s	
604	Devid N. Gesmberg	--	-	Spetug	--	--	$\mathrm{Kccgrab}^{\text {d }}$	1.,555	--	-*.	${ }^{\text {F10wn }}$	s	Extimated fiow 40 gat/orin on July 9, 1975, \%/f
801	N. E, Eckerman	Tona cox	1900	184	6	--	Kсgru	1,680	180	Mas. 19840	${ }_{\text {c, }}^{1} \mathrm{E}$	D, s	$\underline{2 /}$
$\mathrm{S}_{1} 12$	P1111 Nyers	--	--	Spring	-.	--	Kcgru	1,560	--	--	Flowa	s	Reported flow $50 \mathrm{gal} / \mathrm{min}$ on How. 24, 1964. $2 /$
* 907	Elmer Wilke	--	1933	250	6	--	Kegra	1,710	${ }^{95.1}$	$\begin{array}{ll} \text { Mar. } & 24, \\ \text { Hov. } & 1940 \\ \text { H4, } & 1964 \end{array}$	c, w	3.	3
* 68-04-301	Ci.ty of comanort, well 1	J. R , Johusan Drilline Co.	1947	295	10	195	Xche	1,420	33	July 7, 1947	${ }_{15}^{15}$	P	Dra.iled to 420 feet and plugged back to 295 freet. Opon hole from 195 to 295 Eect. Reportod Field 110 gal/min vith 125 feet drawown. 3
* . 302	City of Comitort, wett 4	Louis Rergmastl and Solt	1949	300	10	233	Kche	3,465	125.2	Oce. 19, 2961		P	Open Gole from 213 to 300 fert. Cempnted frow 213 feet to sumface. Reported yfeld 75 gal/min. 3
303	City of comfort, well 3	du	2957	310	10	174	Kche	1,400	61	Apr. 1957	$\mathrm{Sub}, \mathrm{~B}_{10}$	F	Open hole ffom 174 to 310 feene, Ftarp set as 295 feet. Reported yineld $60 \mathrm{ga} 1 / \mathrm{mdn}$ ofth 120 feet dxawdovin, si
\%. 306	Roy Robinean	กo	1963	350	8	91.	$\begin{aligned} & \mathrm{K}_{\mathrm{Cgsr} \mathrm{I}} \mathrm{Kche} \end{aligned}$	1,550	98.6 9.6 .8 104.8 104 106 107.4 111.8 10.4 10.4 11.6 11.8 112.8 106.5		$\mathrm{Sub}_{3} \mathrm{~S}_{\text {c }}$	$D_{\text {d }} \mathrm{E}$	Open hoile from 91 to 350 feet. Cempurted froco 91 fect to surface. Plump set at 315 fient. aeported yield $50 \mathrm{gan} / \mathrm{min}$ with 245 feret denovdown. Obsorvạtion well. $3 /$
309	City of comfort, well 5	do	1955	415	10	220.	Kche, Kece	1,460	$\begin{aligned} & 122.9 \\ & \mathrm{kOB} .7 \end{aligned}$	$\begin{aligned} & \text { Junce } \\ & \text { Mag, } \\ & \text { 20, } \\ & \hline 19,1955 \end{aligned}$	$\operatorname{sub},_{\sin _{5}} \mathrm{e}$	P	Open hole from 220 to 415 feet. Cemented from 220 feet to surface. Pump qet at 350 feet. Reporter gield $160 \mathrm{ga1/min}$ with 238 font deawdownt Actuized, 3
* 310	Crity of Comfort, well 4	us	1963	390	10	172	Kclie, Kсяге	1,420	$\begin{aligned} & 1220 \\ & 121.2 \end{aligned}$	$\begin{array}{ll} \text { Mny } & 1963 \\ \text { Mar. } & 20, \\ 1975 \end{array}$	$\underset{15}{\text { Sub, } \mathrm{E}}$	P	Deepented from 300 to 640 feet in 1972. Laved back to 300 feet. Upen hole frion 172 to 300 feen. Cemented from 172 feet to surface. Fentp: set at 268 feet. Raporfed yield $123 \mathrm{gal} / \mathrm{min}$ w, th 150 Eaet drawdown. \%.

See footnotes at and of table.

										or level			
NeII	onner	briller	$\left\{\begin{array}{c} \text { Date } \\ \text { completed } \end{array}\right.$	$\begin{gathered} \text { Depth } \\ \text { of } \\ \text { wel1 } \\ \text { (ft) } \end{gathered}$	$\begin{gathered} \text { Diäu- } \\ \text { etere } \\ \text { (ine.) } \end{gathered}$	$\left.\begin{array}{c} \text { Depth } \\ (\mathrm{ft}) \end{array}\right)$	$\begin{gathered} \text { Water } \\ \text { beating } \\ \text { msit } \end{gathered}$	$\begin{gathered} \text { A1t itude } \\ \text { of liand } \\ \text { Burface } \\ \text { (ft) } \end{gathered}$	Melow lazddatum (ft)	Date of mea surement	$\begin{gathered} \text { Method } \\ \text { of } \\ \text { of } \end{gathered}$	$\begin{gathered} \text { Use } \\ \text { of } \\ \text { of cer } \end{gathered}$	hemarke
20-68-01-3i2	Harry Seidencticker	$\underset{\substack{\text { T.ourt } \\ \text { Soux } \\ \text { Sorgman } \\ \text { and }}}{ }$	1970	2 iso	*	150	kche	1,440	$\begin{array}{r} 117.7 \\ 2.7 \\ 94+3 \\ 94.4 \\ 25.5 \\ 103.4 \end{array}$	$\begin{array}{lll} \text { July } & 10, & 1974 \\ \text { Heb. } & 21, & 1975 \\ \text { Jsn. } & 30, & 1976 \\ \text { Feb. } & 16, & 1977 \\ \text { Feb. } & 17, & 1978 \end{array}$	Suls, E	${ }^{\nu}$	Ojen hole from 160 to :280 feet. Cemerited from 160 feet tor surfẹce. Reported yield 32 gal/min with 30 fent drawdome OhsnTration well.
313	City of © c amfart, we. 116	do	1.97u	3 so	${ }_{8}^{10}$	158	Kchs	1,485	36.6	Ksr. 20, 1975	$\underbrace{\text { e }}_{\substack{\text { Sub, } \\ \text { is }}}$	p	Open bole from 300 to 350 feet. Pump set at 330 Esect. Roported pleld $1: 9 \mathrm{p} \quad \mathrm{nl} / \mathrm{mLa}$,
601	c. к. Schaefer	D. Rdvards	1954	208	7	40	Keyr_{1} $\mathrm{xchn}_{\mathrm{c}}$	1,420	33	Suly 2959		D	Upen bule frowl 40 to 208 feet. 2/
603	B. 1. Blermaan	Tout s bergman and Sons	1961	32.5	5	167	$\begin{aligned} & \text { Regri, } \\ & \text { Kclite } \end{aligned}$	1,500	90	Jume 1961		D) s	Opes bole from 167 to $325 \mathrm{feet} .2 /$ $:$
* 604	Mre. Fatelle biderman	Bild Rast	1930	275	6	--	$\mathrm{Kc}_{\mathrm{cgr}} \mathrm{l}$	1,500	(123.3	$\begin{aligned} & \text { Felv. } \\ & \text { nosy } \\ & 17 \% \\ & 1940 \\ & 1965 \end{aligned}$	Sub, e	D, 5	$2 f$
901	[d Brlow, Mo. 1	Mggoolis Petroleum Ca	195.3	6,512	"*	$\stackrel{ }{-}$	--	1,712	--	-n	--	--	
* 904	R. 11uder	W. Rus:	1930	105	${ }^{1}$	40	$\chi_{\text {xcgrs }}$	1,710	${ }_{8}^{86,2} 8$	$\begin{array}{ll} \text { Apri } & 11, \\ \text { 11, } 1940 \\ \text { Jun } & 22, \end{array}$	c, b	D, 8	open hole from 40 to zilis frect, Reported field 3 gol/roin with 15 feet drawdoms. 2/
* 02-103	R. J. Rose	--	1925	100	*	--	KCgr1	1,380	39.7 39.8	$\begin{array}{lll} \text { Fib. } & 22, & 1940 \\ \text { Apr. } & 20, & 1965 \end{array}$	$\mathrm{T}_{1} \mathrm{f}_{1}$ E	D, 8	Pump set at go teot, Reported yield 10 gal/min with 40 feet drswdom. $\frac{2 /}{}$ /
* 104	c. Voigt	--	1886	150	6	50	Kc\&rl	1,100	40	Feb. 1940	$\begin{gathered} \text { c, } \begin{array}{c} \text { E, } \\ 1 / 2 / 2 \end{array}, ~ \end{gathered}$	D, 8	Open hole from 50 to 150 frot. ${ }^{2 /}$
* 1.05	c. c. Bouremorth, Sr_{r}.	B. Paye	1920	2.28	6	50	KCgr1	1,460	$5!$	do	$\operatorname{sum}_{\substack{\text { sub, } \\ 1}}^{\text {e }}$	D	Open holn from 50 to 228 feect, $2 /$
* 106	Willian c. sprawnt,	Luvie Bergmann ank กัד	1964	315	8	153	Rehe, Kcce	1,405	60 52	$\begin{array}{ll} \text { Apr. } & 1964 \\ \text { Apt: } & 10, \\ 1975 \end{array}$	${ }_{\text {T, }}^{35}$	${ }_{\text {trer }}$	Upen torle from 1.53 to 315 feet. Pump betc ai 240 fect. Reported yy.erd 227 gal 1/min wifth 145 teet drawluwn. Reported yteld Incressed from 60 to 227 \&iv/min ufter joidizing $2 j$ from 60 to 227 \&ul $1 / \mathrm{min}$.ffer 3etdizing. $\frac{2 f}{}$
* 107	R. K. Eniliock	do	1952	223	7	136	$\underset{\substack{\mathrm{K} \mathrm{egrrir} \\ \mathrm{~K}_{\mathrm{obc}}}}{ }$	1,400	${ }_{68.8}^{65}$	$\begin{aligned} & \begin{array}{l} \text { July } \\ \text { July } \\ 2.1 \end{array}, 1965 \\ & \hline 1965 \end{aligned}$		D, s	Open hole Erom 10 th 223 fact. Reparted yield $20 \mathrm{gsl} / \mathrm{min}$ with 34 feest rxawtovm. 2/
109	Hex. H. P. Orought fels	--	1910	300	*	40	$\begin{aligned} & \text { Kegrl, } \\ & \text { Kche } \end{aligned}$	1,450	704.9 120.2	$\begin{array}{llll} \text { Feb. } & 22, & 1940 \\ \text { July } & 12, & 1965 \end{array}$	c, v	D, 8	Opar hole fram 40 to 300 teet. $\underline{2 /}$
* 201	R. L. Clift	--	1925	250	6	--	$\mathrm{K}_{\text {cy }} \mathrm{L}$	1,560	${ }_{180}^{177.6}$	$\begin{aligned} & \text { Peb. } \\ & \text { July, } \\ & \text { Jul } \end{aligned}$	${ }^{\text {c, }}{ }_{1}{ }^{\text {E }}$	o, s	27
* 202	Eruat Maqquart.	$\begin{aligned} & \text { H. W. Schavepe and } \\ & \text { Sonn Nater well } \\ & \text { Drili ing } \end{aligned}$	1964	301	7	288	Kcgrl	1,560	24.5	Sept. 1964	${ }_{\substack{\text { Sub } \\ 3 / 4}}^{\text {ctex }}$	$\stackrel{1}{1}, 5$	Open hole fros 28B to 300 feet: Reported yideld $15 \mathrm{ga} / \mathrm{min}$. 3
* ${ }^{\text {2п3 }}$	E. Ni eden feld	B. Psge	1.929 .9	275	6	90	$\begin{aligned} & \mathrm{K}_{\mathrm{Kcgrr}}, \end{aligned}$	1,5zu	t71.2	Peb. 21, 1940	$\begin{gathered} \mathrm{c}, \mathrm{w}, \\ \mathrm{k}, \\ 3 / 4 \end{gathered}$	п, 8	Despened from 2.25 to 23.5 fant. Open holn from 80 to 275 feet. 3.
* 204	Jrick V. Busbee	$\underset{\substack{\text { Louse } \\ \text { Soute }}}{\text { Berpainn and }}$	1953	210	6	154	Kcgrı, Kclibe	1,40n	84.1	July 21, 1965	$\mathrm{SaO}_{1}, \mathrm{E}$	D, 8	Open hole from 15 多 to 210 feet. Cemented fram 154 feet to surface. Reporter yield $43 \mathrm{ekl} / \mathrm{min}$ wis Lis 14; feet ofrawdowat ?
* 301	A. Zoeller	A. Mecke!	1912	198	*	40	Kegr 1	1,185	64.7	Juiy 20, 1965	c, w	n, s	Open hole frosit 40 to 198 feet. [33 .
$\begin{array}{ll} * & 401 \\ \hline \end{array}$	Mre. Mike Ruwch	--.	7904	120	${ }^{36}$	50	$\mathrm{K}_{\text {ckr }}$	1,40;	34.6 .32 .9	$\begin{aligned} & \text { Feb. } \\ & \text { 2uiy } \\ & \text { Jus, } \\ & 8,19650 \end{aligned}$	^	${ }^{N}$	Dug welf curbed wicli rock and later drilled from 50 to 170 fect. Open hule firow so co. 120 Leec. $-2 f$
				-		

see footnotes at end of table.
xgmate cousty
Tah1e 5.--Recoris of Selected Water Nehls, Springa, and oil and Gas Tests--continugd

Kell	Onner	briller	$\begin{gathered} \text { Wate } \\ \text { completed } \end{gathered}$	$\begin{gathered} \text { Depth } \\ \text { of } \\ \text { well } \\ \text { (ft) } \end{gathered}$			Waterbegaring unic	$\left\|\begin{array}{c} \text { Altitude } \\ \text { or lande } \\ \text { surfact } \\ \text { (fte) } \end{array}\right\|$	Water level		$\begin{gathered} \text { Mecthod } \\ \text { of } \\ \text { liftef } \end{gathered}$	$\begin{gathered} \mathrm{p}_{\mathrm{fe}} \\ \text { of } \\ \text { water } \end{gathered}$	Remprke
					$\begin{aligned} & \text { nlam- } \\ & \text { eter } \\ & \text { (in.) } \end{aligned}$	$\left.\begin{array}{c} \text { Deptet } \\ (\mathrm{ft}) \end{array}\right)$			Belowlandsurface(ft) dater	$\underset{\text { Date of }}{\text { measur fament }}$			
\times R日-68-92.502	E. H. Treiber	O. Rechentain	1912	163	6	22	$\begin{aligned} & \mathrm{K}_{\mathrm{cgel}, 1,} \\ & \text { Kche } \end{aligned}$	1,356	$\begin{aligned} & 41 \\ & 43 \end{aligned}$	$\begin{array}{lll} \text { Jan. } & 30, & 1940 \\ \text { Kay } & 5, & 1965 \end{array}$	c, \quad.	D	Dempenof from 125 to 1.63 feet. Open thole from 22 to 163 fett. 3
sos	F. M, Treiher	-- •	1922	221	\square	100	$\begin{aligned} & \mathrm{K}_{\mathrm{Kg} \mathrm{~g} I 1,} \\ & \text { Kche } \end{aligned}$	1,330	$\begin{aligned} & 38.3 \\ & 36.8 \end{aligned}$	$\begin{array}{lll} \text { Feb. } & 22,1940 \\ \text { July } & 13, & 1965 \end{array}$	c, 6	0,5	Open trale fram 100 to 221 feet. 31
601	a. Brinknann	4. Leonar ${ }^{\text {d }}$	1896	170	8	40	$\begin{aligned} & \text { Kccril, } \\ & \text { KCiene } \end{aligned}$	1,320	30.4	July 14, 1965	$\underset{i / 2}{ }$	N	Dipen hole from 40 to 170 foget. 2
603	Korert D. yeverage		1954.	345	10	301	$\begin{aligned} & \text { Kocr 1, } \\ & \text { Kche, } \\ & \text { Kece } \end{aligned}$	1,310	$\begin{aligned} & 15.5 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Mayy } \\ & \text { Avg. } \\ & \text { An, } \end{aligned} 1965$	$\mathrm{T}_{30}{ }^{6}$	Ifr	Torgforates from 85 to 100 feet 4 ned 173 top 231 feet. Oper bole from 301 to 945 feet. Yield intreased frem 150 to $564 \mathrm{gal} / \mathrm{m} 1 \mathrm{n}$ after acidizing. ?f
605	Hes. G. K. nolecanp	\sim	--	Spring	--	..	$\mathrm{K}_{6} \mathrm{~g} \mathrm{r} 1$	1,315	\because	--	${ }^{\text {P1aws }}$	5	Kessured flow $143 \mathrm{gal} / \mathrm{min}$ on Apr, 9,1940 and $160 \mathrm{~g}^{\text {al/min }}$ on Aug. 11, 1.965. 3f
${ }_{608}$	Johs 5 weeney	そOuis Ricrigmant and Sons	1966	360	6	240	Kchs Reces	2,420	$\begin{aligned} & 131.1 \\ & 10.1 \\ & 109.1 \\ & 109.3 \\ & 109.1 \\ & 109.9 \end{aligned}$		Sub, x	D	Open hole from 240 to 369 feet. Cemented from 240 feet to eurface. Pump set at $16 B$ foret. Reported yield 24 gal/min with 32 feet drawhown. Observation uetl.
609	Altan Grisam	do	1975	288	6	161	$\begin{aligned} & \text { Kefue, } \\ & \text { Knges } \end{aligned}$	1,355	$\begin{aligned} & 60 \\ & 79 \end{aligned}$		\cdots	N	Open thale from $16 t$ to $2 . a t$ fiet. Cemented from 161 foest to surface. Reporyted pield 35 gal/dia with 4 feat drawdown. 1
705	Arthur P. Below	--	..	spring	--	--	Regru	1,660	--	--	${ }_{\text {flowa }}$	s	
* ${ }^{\text {bor }}$	Otro Rust	W. Rust	19.9	200	6	50	K.cgr 1	1,450	40.9	Junt 12, 1965	c. w	D, s	Oper higle fron 30 tu 200 feet, 3 y .
* 804	B. E. Nclson	H. W. Scluyope ans sone haler kell Drilling	1964	579	6	197	$\begin{aligned} & \mathrm{Kcgrel}_{1,} \\ & \mathrm{~K}_{\mathrm{che}} \\ & \mathrm{~K}_{\mathrm{cce}} \end{aligned}$	1,543	237	Ang. 10, 1965	$\stackrel{\text { sub, © }}{3}$	$\mathrm{D}_{1} \mathrm{E}$	Open hole from 197 to 529 reet. Cemented from 197 feet to cur Eace. Reported yifld 20 ghi/min. 3
907	Scate of Texas	Texen Department of Water kesoutces	1978	708	6	485	Kcho	1,430	108 101	$\begin{aligned} & \text { Fach. } \\ & \text { Mar. } \\ & 7, \\ & 7,1978 \\ & 1974 \end{aligned}$	n		Dpan hole from 485 to 708 feet, Cemented from 485 feet to burface. Roported yicld $50 \mathrm{gal} / \mathrm{min}$ with 60 [tet drambown: Dbacrvation woll, ij
902	Peery J. Lasas	--	--	sptiuig	--	--	Sogri	1,360	--	--	Rious	s	
903	Harey Schewtz	--	--	270	6	100	$\begin{aligned} & \mathrm{K}_{\mathrm{K} \mathrm{cgrr} 1,} \\ & \mathrm{Rshre} \end{aligned}$	1,410	125	spr. 1965	c, er	n, s	Deepenta from 170 to 270 feeic. Dpan hole from 100 to 270 feet. Fump bet rit 180 feet. Y
* 904	da	Louis Bergmant and Sons	196\%	2.50	5	209	Kcgr1	1,50s	119.6 117.9 117.0 118.0 118.7 119.2 119.5			s	Open hole fron 1.08 to 250 feet. Pumg sei at 147 feet. Reported ydeld $40 \cdot$ gal/min with 5 ferit dxawdown. Wetetevation woll, ?
905	10ui: Mugars	-	--	spri.ng	--	-	Kçgru	1,380	--	--	rlows	s	Cstimatad flow $25 \mathrm{gal} / \mathrm{min}$ on suly 7, 1975. 2f
906	de	--	--	$5_{59 \mathrm{cting}}$..	--	Kıgru	1,360	--	--	Tluws	s	
907	Yts. .e. Puchmizt.	-	1890	200	6	40	$\dot{x}_{\text {cgr }}$	1,425	$\begin{aligned} & 43.8 \\ & 42.6 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Apr. } \\ & \begin{array}{c} \text { pec. } \end{array} \\ & 17, \\ & 19, \end{aligned} 1965$	c, w	D, s	Ogan hole from 40 to 200 Eeet. 2f
909	Fred sartel	\cdots	--	Spring	--	--	Rogru	1,440	--	--	Elows	n, s	Estimated flow to gni/min on Juply B, 1975. \%f
03-101	Sisterdale Community Center	-- Наха,	1917	100	6	20	Rogr 1.	1.,405	29	Teb. 1940	c, H	0	Open forle from 20 to 100 faget. z
102	Hes D. Timber Lake	H. K. Schwope and Sona Water Nell Detlling	1.963.	190	7	132	Kahe	1,290.	26.1 14.3		$\underset{1}{s w b}$	$\mathrm{Itrj}_{\mathrm{s}} \mathrm{p}$,	Opat hale froa 132 to 190 f teet. Pugy sot it 185 fret, Reported yinld 20 gat $1 / \mathrm{min}$ with 20 feet drawdown. 3/
307	Eugene tbell	R. Schwar:	1900	120	. 6	30	$\begin{aligned} & \mathrm{K}_{\mathrm{K} \mathrm{grg} 1} \mathrm{C}, \end{aligned}$	1,285	30	Feb. 19, 1940	J, E\%	$\mathrm{D}_{\mathrm{r}} \mathrm{s}$	Opep hole from 30 to 120 feet: 3

See footnotes at end of table.

Ne11	coner	Drisler	$\left\|\begin{array}{c} \text { Date } \\ \text { completer } \end{array}\right\|$	$\begin{gathered} \text { Septh } \\ \text { fut } \\ \\ (\mathrm{ft}) \end{gathered}$	Csanng		$\begin{gathered} \text { MaLer } \\ \text { SearIn } \\ \text { waIte } \end{gathered}$	$\begin{gathered} \text { AItitude } \\ \text { of 1sid } \\ \text { xur isce } \\ (\mathrm{fi}) \end{gathered}$	uster level		$\begin{gathered} \text { Mectiod } \\ \text { of } \\ \text { of } \end{gathered}$	$\begin{gathered} \text { use }_{\text {of }}^{\text {of }} \\ \text { water } \end{gathered}$	Remarke
					$\begin{aligned} & \text { Hamw } \\ & \text { eter } \\ & \text { (is, } \end{aligned}$				landsurface ${ }_{\text {(CL) }}$	Mate of medsurfewent			
* Rr -68-03-103	Saw Noolvin	Lout:: Berématur aud Sona	1965	200	*	99	Kebe, Kecec	1,280	$\begin{array}{r} 77.4 \\ 8.5 \\ 71.9 \\ 11.9 \end{array}$		$\mathrm{S}_{\substack{\text { Sub, } \\ 7 \\ 1 / 2}}$	Irr	Open hole from 99 to 200 frect. fiemented from 99 feet to surface. Pump set at 168 Eeet. observation well.
* $\quad 1.01$	Holt Athnerna	do	2951	1.85	6	158	Rehe	1,305	84	June 19, 1951	$\begin{aligned} & \dot{\pi} ; \boldsymbol{e} \\ & 111 / 2 \end{aligned}$	d, s	Opent hole froiil 158 to 185 feet. Reported yleld $30 \mathrm{ga1/min} .2 /$
* 4,0'5	0. B, Bectre	--	1914	160	b	--'	$\begin{gathered} \text { Kcciri, } \\ \text { cclue } \end{gathered}$	${ }^{1,285}$	63	「cb. 1940	c. $\cdot 1$	D, 8	$\underline{2 /}$
501	do	**	1927	210	${ }^{6}$	--	$\begin{aligned} & \mathrm{X} \text { Xegr, } \\ & \text { Kche } \end{aligned}$	1,373	1458.9	$\begin{array}{ll} \text { Reb. } & 19,1940 \\ \text { Aug. } & 25, \\ 1965 \end{array}$	c, \boldsymbol{w}	s	
\% 605	Andrew G. Cowlea	Loufe korgmant and Sons	1950	188	6	17	$\chi_{\text {cegr }} 1$	1,366	120	nec. . 1964	${ }_{1 / 2}{ }_{1 / 2}$	\pm	Open hole from 17 to 189 leet. Reported yseld 6 gill/mith with tif feet: dralwdiwn. I3)
606	${ }^{\text {rasul }}$ S. R.amzau	-..	--	Spting	-	--	${ }_{\text {Kgral }}$	1,200	--	-	${ }^{\text {Plows }}$	s	
* 607	Asurew G. Cowles		1953	540	5	353	Kek, Kchion	1,363	197	Sept. 1953	${ }^{\mathrm{c}} \mathrm{c}^{\text {b }}$	s	Open hole from 363 to 540 feet. Reported yield 8. gat/wiu. $\frac{2 /}{}$
* 608	so	do	1971	321	6	225		1,\%00	--	--	Sub, E	D	Opens hole from 225 to 321 feert, Cementesd firnm 225 feet to surface. Reported yfeld 15 pal/min.
* 701	y, B. Kest	do.	1955	460	6	230	$\begin{gathered} \text { Regri, } \\ \text { Kche che } \end{gathered}$	1.,522	270	July 15, 1955		n, s	opmen tiole trom 230 tu 460 feec. Beported yipld $15 \mathrm{gal} / \mathrm{mdn} \cdot \mathrm{n} /$
* 702	A1vin Herbst	R. Rust	1905	220	${ }^{8}$	20	Kegri	1,365	${ }_{\substack{89.8 \\ 92.1}}$	Peb. Aug. 30,	$\begin{gathered} \varepsilon_{r}, b_{1} \\ \cdot E_{1 / 4} \end{gathered}$	v, s	Open hole from 20 to 220 fect, Reported yiceld s ga1/witu with 22 feet oramkiown ? 3
706	Letoy Puls	Lout: Bergmatun and Sons	1965	360	*	${ }^{232}$	$\begin{gathered} \mathrm{K}_{\mathrm{Kcgrl}}^{\substack{\mathrm{K} \mathrm{cbe}}}, \end{gathered}$	1,395	166	Dno. 8, 1965	$\mathrm{c}_{3}{ }^{\text {r }}$	d, s	Opes hole from 2.32 ta 360 fret, Cemented from 232 leet to surface. Pump set at 710 fere. Reported yleld $100 \mathrm{gal} / \mathrm{win}$ with 182 feet drawdown.
707	R. Reate	H. W , Schwore ind Some Water Well arililag	1977	275	6	239	Rece	1,370	83	Sept. 22, 1977	--	-	Oyen the froid 239 to' 275 feet. Y
* 903	Coldinn Fime Gues:t Ranch	--	1928	290	6	--		1,300	141	Prb. 28, 1940	Sulus	D, s	3
* 04-101	Joe Hgag	Charlects Schmary,	1906	120	8	20	Kogr1	1,405	40 60	Dec. ${ }^{\text {do }}{ }^{\text {cen }} 1964$	${ }_{1 / 2}{ }^{\text {c }}$	o, s	Open hole from 20 to $120^{\prime \prime}$ feec: 3
* 103	Kendall County Schnol	--	--	100	\cdots	--	Kegra^{1}	1,460	$\begin{aligned} & 40.7 \\ & 4.8 \end{aligned}$	$\begin{aligned} & \text { Peb, } 28,1.9411 \\ & \text { Juiy } \\ & 6, \end{aligned}$	c, н	3	3
201	R. Scriuetz	. --	--	Spriug	\sim	--	Kсе, ${ }^{\text {a }}$	1,430	\because	\cdots	Flows	s	Extimated Clow 1589 l /uin on July 11, 1975. 3
* 202	Bill	--	-.	2.26	6	10		1,410	91	Now. 1964	c. E	D, 8	Open hole from 10 to 2226 fers. 4
203	Sam Edmonson	--	--	${ }_{\text {sprinis }}$	--	\cdots	Kcgrl	1,385	:-	--	?10ws	s	Reported frow 2.5 gs 1 /ouin on siov. 24, 1964. 34
206	S. E. Seidrtck, o. 1	c. G. Negton	19960	1,040	..	\cdots	--	1,470	--	. --	--	--	011 Lests. \% 3
* 207	Snm finlz Stever \ldots	--	1960	300	7	288	Kclie	1,360	53.5	How. 20, 1994	$\begin{gathered} \operatorname{subp}_{1 / 2}^{\mathrm{R}} \\ 1 \end{gathered}$	D	Open hole from 288 to 300 feet. 3
* 3 302	s. Lusoli	A. ©. Kneupper	1.909	304	6	--	$\begin{aligned} & \text { Keprı1, } \\ & \text { Rehre } \end{aligned}$	1,465 \because \cdots	150.6	.Hov. 12, 1964 -	¢, в	d, s	Repurted yfeld 5 gal/oilo with 200 fect drawdown. 3

See footnotes at and of table.
xindall coemty
Table s.--Records of geticted pater Wella, Springe, and 011 snd Gas Yeeta いContinued

Wef. 1	Onner	driller	$\begin{gathered} \text { Date } \\ \text { campleted } \end{gathered}$	$\begin{gathered} \text { Depth } \\ \text { def } \\ \text { welt } \\ (\mathrm{ft}) \end{gathered}$	$\operatorname{cosersma}^{\text {a }}$		$\begin{array}{\|c} \text { Mater } \\ \text { bearing } \\ \text { unit } \end{array}$	Altitude of land futeface $(f t)$	Water Level		$\begin{gathered} \text { Method } \\ \substack{\text { of } \\ 11 \mathrm{ft}} \end{gathered}$	$\begin{gathered} \mathrm{U}_{\mathrm{se}} \\ \text { of } \\ \text { vater } \end{gathered}$	Rematrks
					$\begin{aligned} & \text { Disao } \\ & \begin{array}{c} \text { eter } \\ \text { (inn.) } \end{array} \end{aligned}$	$\underset{\substack{\text { depth } \\(\mathbf{f t})}}{ }$			Belon landdastum (it)	$\begin{aligned} & \text { Dace of } \\ & \text { meacurement } \end{aligned}$			
* RB-68-04-907	F. н. Heldetch	c. Burwe 11	195.5	260	6	20	$\begin{aligned} & \text { Kcerll, } \\ & \text { Kche } \end{aligned}$	1,380	140	Nov. 1964	${ }_{1 / 2}{ }^{\text {c, }}{ }^{\text {m }}$	D, s	Open hole from 20 to 260 fret. 31
* 309	Bob Mathie	Loule 3ergasulu and Son*	1961	160	7	131	$\chi_{\text {cırat }} 1$	1,350	45	Teh, 1961		ग	Open 1otie from 131 ta 1 BO Eeet. Reported yield 29 geri/ain. 3
* 310	J. W. . Rogera	$\stackrel{\cdots}{\text { Fnndilin }}$ co., Ine.	\cdots	79	--	10	KCgr 1	1,360	--	--	c, E	D	Open hole from 10 to 99 feet.
401	A11en Hosg		1950	300	5	200		1,3i5	-.	-	$c_{\text {c, }} k$	s	011 test drilled to 1,364 feet and comverted to water well. 1
* 503	D. P. Mascla		--	300	в	20	$\begin{aligned} & \text { Kcarı1, } \\ & \text { Kchehe } \end{aligned}$	1,365	255	Apt. 1940	$\begin{aligned} & c_{j} u, \\ & \substack{v \\ 3 / 4} \end{aligned}$	D, s	open hole fram 20 to 300 fret. 36
* 504	Robert Young		1904	312	s	\$		1,365	197	do	$\begin{aligned} & \mathrm{c}, \underset{1}{\mathrm{~K}} \\ & 1 \mathrm{l} / 2 \end{aligned}$	b, s	Dpen hole from 3 to 312 feet. 3
505	-- Hagel ${ }^{\text {rtein }}$	c. G. Newton B. Bdge	1950	2,342	--	--	\cdots	1,315	--	-.	Oil test. yy
6012	A. C. Rneupport		1939	119	8	20	K<grt	1,290	68.6	3sa. 11, 1969	c, w	¢, s	Open hole frow 20 to 119 feet. 36
* 602	c. D. wyere	--	--	${ }_{\text {spring }}$	--	--	Kcgrl	1,205	--	--	Flows	s	Reported flow $20 \mathrm{gai} / \mathrm{min}$ an April 3, 1940 and $30 \mathrm{na} .1 / \mathrm{man}$ an Jisn. 25, 1965, 26
* 606	A, G. Kneupper	--	--	35	36	12	$\mathrm{K}_{\text {ger }}$	1,21,0	${ }_{16.6}^{17}$	$\begin{array}{lll} \text { Apro } & 12,1940 \\ \text { Jan, } & 11,1965 \end{array}$	${ }^{*}$	*	Dug well eurbed witth rack. Open bole fram 12 to 35 fect. 3
607	c. D. Myers	--	--	${ }^{\text {Spring }}$	--	--	${ }_{\text {Kcgrl }}$	1,205.	-.	..	${ }^{\text {Flowe }}$	8	Eatimated flow 3on gni/min on July 11, 1975,
* 701	Mrs. J, Ebri11, Cave without a Namo	-.	-.	100	--	--	$\mathrm{K}_{\mathrm{rgq} 1}$	1,130	--	--	cf, e	ס	Soutce is from atream in cave. Reported streanf1 tw 60 gal/min. 3)
* 801	Dosner Corp.	--	1928	100	${ }^{\circ}$	20	Xcce	1,141	$\begin{aligned} & 78.7 \\ & 78 \end{aligned}$	$\begin{array}{cc} \text { Apr. } & 8,1940 \\ \text { Oct. } & 16,1964 \\ \text { July } \\ \text { Sept. } & 6,1965 \\ \text { Sept. } & 1965 \end{array}$	c, w	s	Open hole frea 20 to 100 feet. 3
* 803	Lakecraft, Ioc.	Hill countey hater,	1977	${ }^{220}$	7	45	Xase	1,140	75	Mar. 24, 1977	$\begin{gathered} \text { Sub, } \\ 1 \\ 1 \end{gathered}$	p	Open hole from 45 to 120 fert, Cmmented firom 45 feet to surface, Reported yiold Io es $1 /$ ain with 10 feet drawdom.
906	do	do	1971	140	7	50	Kece	1,140	90	Mat. 25, 1977	$\underset{\text { Sub, }}{\substack{\text { E } \\ \hline}}$	F	Open bole from 50 to 140 feet. Cemproted ftam 48 feet to surfice. Reported pield to gaifain with 10 feet drasdown.
805	do	K. W. Schwope and Sone Kater We11 Drillivg	1976	475	6	335	Ketho	1, 130	120 72		s	N	Open hole from 335 to 475 feet. Cemented from 335 fect to surface. Reported yie 1 d 6 gal/min. Unused pubife supply we11, I
896	do	do	1976	450	6	336	Reho	${ }_{1,140}$	100	Msy 18, 1976	N	N	Open hole from 336 to 450 fret. Cemented from 336 feet to surface. Reported yteld 5 gal/min. 2hused public tupply well.
$\pm \quad 901$	J. M. Edge	--	--	100	-	20	Kcoo	1,146	67	Apr. 12, 1940	c, w	D, 8	Open hole from 20 to 100 feet. y^{\prime}
* 902	Ha1 Hatwell	--	\cdots	Spriag	.-	--	Kcgrl	1,093	--	--	Flows	s	Reported flow 99 gal/win on April 2, 1940 and $200 \mathrm{ga1} 1 / \mathrm{min}$ on Mav. 20, 1964. 3
903	do	--	--	Sprins	--	-.	K<gr1	1,093	--	--	Plowa	в	Reported flow 23 gal/min on April 2, 1940 and $50 \mathrm{gal} / \mathrm{min}$ on How. 20, 1964. 3
90\%	do	--	--	${ }_{\text {spring }}$	--	--.	${ }_{\text {Kgbr }}{ }^{\text {d }}$	1,093	--	--	Flows	8	Beported flow 11 galfoin on Aprit 2, 1940 and $20 \mathrm{gad} / \mathrm{min}$ on Mov, $20,1964.3$

see footnotes st end of table.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{hell} \& \multirow[b]{2}{*}{Dmar} \& \multirow[b]{2}{*}{Driller} \& \multirow[t]{2}{*}{} \& \multirow[b]{2}{*}{$$
\begin{gathered}
\text { Depth } \\
\text { wifl } \\
\substack{\text { well } \\
(\mathrm{ft})}
\end{gathered}
$$} \& \multicolumn{2}{|l|}{} \& \multirow[b]{2}{*}{$$
\begin{array}{|c|c|}
\substack{\text { Nater } \\
\text { bearring } \\
\text { ODit }}
\end{array}
$$} \& \multirow[b]{2}{*}{$$
\begin{gathered}
\text { Alttitude } \\
\text { of land } \\
\text { surfane } \\
\text { (fte) }
\end{gathered}
$$} \& \multicolumn{2}{|r|}{Water Lever} \& \multirow[b]{2}{*}{$$
\begin{gathered}
\text { Kethod } \\
\text { of } \\
\text { lift }
\end{gathered}
$$} \& \multirow[b]{2}{*}{$$
\begin{gathered}
\text { UE8 } \\
\text { Of } \\
\text { water }
\end{gathered}
$$} \& \multirow[b]{2}{*}{Reverka}

\hline \& \& \& \& \& $$
\begin{aligned}
& \text { Diedu- } \\
& \text { Stere } \\
& \text { (tiv.) }
\end{aligned}
$$ \& $$
\underset{\substack{\text { Depth } \\(f t)}}{ }
$$ \& \& \& \qquad \& Date of
measurgment \& \& \&

\hline * 巨к-66-04-905 \& Hs 1 Hefvell \& -- \& - \& $\mathrm{spring}^{\text {a }}$ \& -- \& - \& Kegrl \& 1,093 \& -- \& -- \& Plown \& 8 \& Reparted FLom 45 kal/min an Aptil 2, 1940 and $840 \mathrm{gal} / \mathrm{min}$ on Nov. 20, 1964, 3

\hline * 906 \& 4. P. Lux \& -- \& 1910 \& 360 \& 6 \& -* \& $\underset{\substack{\text { Kes, } \\ \text { Kcho }}}{ }$ \& 1,275 \& 125 \& Hov. 1964 \& ¢, E \& d, s \& 3

\hline * 908 \& Dommer Corp. \& *- \& ${ }^{2} 890$ \& 105 \& 8 \& 40 \& Kogrl \& 1,160 \& 58.2
57.3 \& \& c, ${ }^{\text {k }}$ \& 3 \& Oper hole from 40 to 105 feat. ${ }^{\text {\% }}$

\hline * 909 \& Micholas $\mathrm{N}, \mathrm{Golden}$ \& C. Harwe 11 \& 1954 \& 365 \& 5 \& 200 \& $\underset{\substack{\text { Kce, } \\ \text { Kcliog }}}{ }$ \& 1,115 \& 124.5
103.
99.9
98.0
88.0
79.8
109.9
142.5
146.1
104.6
95.6
99.0
93.0
82.0
95.0
82.0
91.0 \& \& Sub, e \& ग \& Spen hole from 200 to 365 feet: Heported yield $10 \mathrm{gal} / \mathrm{min}$ with 105 fect drandown. Obsiefration ve11. 3)

\hline * 05-102 \& N. kneupper \& F. Treubseh \& 1947 \& 260 \& 5 \& 10 \& Kcgri \& 1,365 \& 120 \& Nov. 1964 \& c, N \& D, s \& Open fole from 10 to 260 fect. Reported yield 8 gal/min. 2

\hline * 402 \& Matrin Gass
\ldots \& \& 1971 \& 225 \& 6 \& 151 \& K_{pc} \& 1,273 \& 115.4
109.1
109.1
10.6

16.4 \& $$
\begin{array}{ll}
\text { July } & 9, \\
\text { Feb. } & 1974 \\
\text { Feb. } & 20, \\
\text { Hebl } & 1975 \\
\text { keb. } & 16,1977 \\
\hline 16, & 1978
\end{array}
$$ \& c, w \& ع. \& Open hole from 151 to 225 fete. Cemented from 151 feet to surface, Obseryntion well.

\hline * 502 \& B. Sattler \& -- \& 1924 \& 160 \& $\mathfrak{6}$ \& 20 \& Kcgrl \& 1,275 \& 148.6 \& Dec. 27, 1964 \& $$
\begin{aligned}
& c_{1} \mathrm{~N}_{x} \\
& \mathrm{E} / 4 \\
& 3 / 4
\end{aligned}
$$ \& \mathfrak{n}, E \& Open hole from 20 to 160 fact. 3

\hline * 09.301 \& Edwit Lindner \& - \& 1938 \& 230 \& s \& -- \& Kcgra \& 1,220 \& 124.4 \& Apr. 10, 1940 \& n \& * \& Gaves in and sbasodomed. 3

\hline * 10-20s \& E. Offenhauser \& \& 1959 \& 840 \& 5 \& 586 \& Xefer_{1}, xche, x.cos \& 1,880 \& 535 \& Oct. 1959 \& Subs_{3} \& D, 8 \& Open hole from 586 to 340 feet, Reported yzeld ${ }_{9}$ galfoln. 4

\hline * 203 \& staney cravey \& so \& 1965 \& 600 \& 7 \& 365 \& | Kcgr1, |
| :--- |
| Kche, |
| Kace | \& 1,615 \& 341.3

337.7
337.5
332.5
331.5
331.0 \& \& $\underset{1}{\text { Sub, }}$ = \& \square \& Open hole from 365 to 600 feet. Cemented from 365 feet to surfice. Pump set at 421 feet. Teported yinl.d 15 g 31 /mir with 78 feet drawdow, Observation mail.

\hline * 301 \& c. S. Teague \& -- \& -- \& 350 \& 4 \& - \& Kegrl \& 1,560 \& 157 \& June 3, 1965 \& $\mathrm{c}_{2} \mathrm{E}$ \& D, s \& Pump eet at 210 feet. 3

\hline * 502 \& L. A. Nordan \& -- \& -- \& Spriug \& -- \& -- \& efra $^{\text {¢ }}$ \& 1,740 \& -- \& -- \& Flowe \& 8 \& Eatimated flow 10 eal ${ }^{\text {dmin on }}$ on July 7, 1975. 3

\hline 502 \& do \& -- \& 1960 \& 1,167 \& ${ }^{8}$ \& 1,167 \& $$
\begin{gathered}
\text { Kan } \\
\text { Kcho }
\end{gathered}
$$ \& 1,805 \& 500 \& Aug. 1960 \& ${ }_{\text {c, e }}^{3}$ \& ${ }^{*}$ \& Slotted from 920 to 1,167 feet, \% 3

\hline * 601 \& Arthur F. Leeach \& Louts Bntaman and
Sans. \& 1956 \& 230 \& 6 \& 168 \& Kegra \& 1,700 \& 169.1 \& $\begin{array}{llll}\text { July } & 28,1965\end{array}$ \& c, ${ }_{1}$ \& d, s \& Open boit froul 168 to 230 feet. 3

\hline 611 \& C1bolo Dake Wnter Ca. \& -- \& -- \& 540 \& - \& 244 \& Kegrl, Kece \& 1,460 \& 230 \& Wov. 12, 1979 \& sub_{3} \& P \& Dempmed from 488 en 540 feet. S1orted 11 ner added. Cementod from 244 feet to surface. keported yield 35 gal/sill with 20 feet drawdom.

\hline
\end{tabular}

See footnotee at end of table.

Sat footnoter at end of table.
table s.--Records of selected water Welis, springs, and oll and Gas Testr--continued

see footnotel at end of table.

Table 3.--Recorde of selected hater helle, springe, and ofl and Gas Teara--Continued

ω_{611}	owner	Dethler	$\left\lvert\, \begin{gathered} \text { Date } \\ \text { completed } \end{gathered}\right.$	$\begin{gathered} \text { Depth } \\ \text { of } \\ \text { well } \\ (\mathrm{ft}) \end{gathered}$	Casing		$\begin{gathered} \text { Mater } \\ \text { bearing } \\ \text { uni } \mathrm{in} \end{gathered}$	$\begin{gathered} \text { Aletitude } \\ \text { os land } \\ \text { surface } \\ (\mathrm{ft}) \end{gathered}$	Nater level		$\begin{gathered} \text { Kechood } \\ \text { of } \\ \mathrm{t}_{1} . \mathrm{ft} \end{gathered}$	$\begin{gathered} \text { Use } \\ \text { of } \\ \text { water } \end{gathered}$	Remarks
					$\begin{aligned} & \text { Diam. } \\ & \text { eter } \\ & \text { (in.) } \end{aligned}$	$\underset{\substack{\text { nepth } \\(\mathrm{ft})}}{ }$			1andsurface $\underset{(\mathrm{ft})}{\mathrm{dstum}}$	Date of meaturement			
\%в-68-11-415	Foothilla Nobile Kome Ranch, Arnex	Loula Bergmann and song	-"	--	--	--	--	1,455	--	--		P	--
* 501	George ${ }_{\text {dsalea }}$	do	1963	249	7	200	Kcgr 1	1,600	170.3	Feb, 3, 1965		D	Open hole from 200 to 249 fect.
* 507	Mra. Willism Yonavich	co	1971	595	6	290	Xegxi, Kche, Kcce	1,613	383.6	July 23, 1974	Sub, E	D	Opeo hole from 290 to 595 feet.
508	Mrs. Leblie Bowman, Jr.	$\begin{aligned} & \text { H. W. Schuope gnd } \\ & \text { Sona Water Werl } \\ & \text { Dr111ing } \end{aligned}$	1973	260	6	125	$\mathrm{K}_{\text {cgr }}$ 1	1,490	$\begin{aligned} & 135 \\ & 121 \end{aligned}$	$\begin{aligned} & \text { Mar. } \\ & \text { Aug. } \\ & \text { Aus, } \\ & 4, \\ & 4,1973 \end{aligned}$	Sub, E	Irr	Open hole from 125 to 260 fect. Cemented from 125 feet to surface, Reported yicId $65 \mathrm{ga} 1 / \mathrm{min}$.
601	Clifford Mopers, Sistate, well 1		1963	346	6	35	${ }_{\text {cxy }}$	2,400	200	1943	c, er	d, s	Open hole from 75 to 346 feet. 3
602	Cliffard Mooera, Batate, well 4	Arno harz	1947	${ }^{8}$	95	5	Kogrl	2,383	$\begin{aligned} & 7.5 \\ & 1.2 \end{aligned}$	$\begin{aligned} & \text { Oct. } \\ & \text { Oct } \\ & \text { July, } \\ & 31, \\ & 1951 \\ & 1975 \end{aligned}$	3us, ${ }^{\text {c }}$	${ }^{*}$	Oug well curbed with rock, Reported yiele 150 gal/min with $1 / 2$ foot ourswown. Unased ircigation we11, 3
- 603	cliffard Moders, Eatate, well 6	--	--	55	5	--	Kegri	1,405	31.6	Dct. 36, 1951	c, н	D, 8	3
604	Clifford Mnoere,	--	--	Spring	--	\cdots	Kcgr 1	1,374	-	\cdots	Fhows	s	Eetimatied flow $150 \mathrm{gal} / \mathrm{mln}$ on July 15, 1975. 3
605	Clifford Moocre, Estate, well 11	-	\cdots	15	-*	.-	Kcgrl	2,460	\cdots	-	v	*	Open pit to etream chamal. 3
606	Clifford Mboris, Estate, well 14	Louis Bergmant and Sons	1947	362	6	--	$\mathrm{K}_{\text {cgrt }}$	1,421	240	Dee. 1947	c, \%	s	Reported yteld to gal/min, $3 /$
607	G. B. Renzau	Dill kust	--	60	6	6	Rogri	1,420	39.9	$\mathrm{m}_{\text {cv }}$. 1, 1951	C, ${ }_{1}$	D, 8	Open hole froms to onfert, \%
* 610	Pleasant Valley Cocumunity Center	--	192 a	240	6	--	$\mathrm{KCgrgr}^{\text {c }}$	1,535	213.7	Apr. 8, 1940	c, к	п	y
201	city of goerne, well 5	Dingman ditiling Co.	1928	464	8	444	xcce	1,479	${ }_{260}^{187.8}$	$\begin{aligned} & \text { Apr. } \\ & \text { June } \\ & \text { J9, } \\ & 19595 \end{aligned}$	${ }^{*}$	n	Drilled ta 938 Feet and plugged bsck to 464 feet. Open hole from 444 to 464 feet. Reparted yield 135 gal/min. Aeldiznd. Ahandoned, 3
* 703	L. Mas retak	--	--	180	4	--	Kcgru	1,520	$\begin{gathered} 130.8 \\ 112.8 \end{gathered}$		"	»	Abandoned. 3
* 70\%	L. A. Lama	A. Vernex	1914	100	4	19	Kсgru	1,465	77.4	Aus. 24, 1965	c, w	$D_{2} \mathrm{~s}$	Spen hole from 10 to 100 Esest . 3
707	Caty of Boerne, veril 10	H. W. Schwope and Sone Kater Wel1 Drillida	1965	425	10	268	$\begin{aligned} & \text { Xegrl, } \\ & \text { Xche, } \\ & \text { Kcoce. } \end{aligned}$	1,380	211.8	June 10, 1965	${ }_{25}^{7,1}$	P	Open hole from 268 fo 425 feet. Rump net st 396 fect. Reparted yiteld 128 gal/ulin. Actdized. IV 3
708	Clty of Boerne, wells	Loufe tergmana and Soat	1962	357	12	275	$\begin{gathered} \text { Kogrl, } \\ \mathrm{K}_{\mathrm{chehe}} \end{gathered}$	1,385	206 211.7 201.6 211.8 197.3		n	๙	Open hole froe 275 to 357 feet. Cemented from 275 feet to surface. Reported yitd $140 \mathrm{gal} / \mathrm{m1n}$ with 60 fect drawdown. Act1dixed. Unueed publle supply well. observation we11, is
* 710	Mrs. M. A. Shumard	do	1938	70	8	20	Kcgr1	1,410	$\begin{gathered} 34.1 \\ 32.1 \\ 31 \\ 31,6 \end{gathered}$	Apr. 8, 1940 3s. 27 1965 Mgr. 4 1965 Acg. 3, 1965 1965	c, w	D	Dreperned fram 35 to 70 feet in 1949. Open hole from 20 to 70 feet. 3

See footrater at and of table.

see footnotes at end of table.

Table 5.--Records of Selected Mrter Welle, Springe, and O11 and Cas Tests-Continued

Wel1	Osner	Driliter	$\begin{gathered} \text { Dato } \\ \text { coapleted } \end{gathered}$	$\begin{gathered} \text { Bepth } \\ \text { of } \\ \text { well } \\ (\mathrm{ft}) \end{gathered}$	${ }_{\text {Castor }}$		$\left.\begin{array}{\|c\|c\|} \text { Waster } \\ \text { bearing } \\ \text { uoit } \end{array} \right\rvert\,$		aster Ievel		$\begin{gathered} \text { Mcthod } \\ \text { of } \\ \text { Dift } \end{gathered}$	$\begin{gathered} U_{z e} \\ \text { vf } \\ \text { water } \end{gathered}$	Remarks
					$\begin{gathered} \text { Diam- } \\ \substack{\text { eter } \\ \text { (in. })} \end{gathered}$	$\begin{gathered} \text { Depth } \\ (\mathrm{ft}) \end{gathered}$			Belowe 1andsurliace dacum (ft)	Date of messurement			
* 88 -69-12-203	Donner cotp,	Pr, Laubech	1940	410	8	42		1,235	179.6	Asg. 3, 1965		D, s	Open hole from 42 to 410 feet. 3
* 20B	${ }^{\text {atinin J. Smith }}$	**	--	358	6	-	Kegrin Kehe, x_{ccos}	1,385			Sub, E	D, s	Deopened from 250 to 352 feet in 1956. obervistion we11. 3
* 209	H. B. 8'brien	w. Ruse	1928	365	6	40	Xcgri	1,400	250	oct. 1964	${ }^{\text {c, }}{ }_{1}{ }^{\text {b }}$	5, s	Open hole frou 40 to 365 feet. 3
301	Arion Richter	Lou1a Bergasant and Sons	1975	555	4	$\begin{aligned} & 297 \\ & 555 \end{aligned}$	Kcho	1,240	208	Sept. 25, 1975	$\mathrm{sub}_{2}^{\text {Sub }}$	D, 3	Slotted from 258 to 555 feet. Cemenced fram 70 feet to eurface. Pump wet it 4 zid feret. Reported yisid $10 \mathrm{gal} / \mathrm{min}$ with 4 feet drendom.
401	Lens Kune and Jog Hickel	Abererombie Co. And Harrisan axl Coz	1930	2,252	..	**	--	1,352	--	--	--	--	O11 test. 3
402	Sob Stunn	..	--	${ }^{\text {3pring }}$	\cdots	--	Kcgrl	1,350	--	\cdots	Howe	s	Estimated flow 20 gal/min on July 15, 1975. 3
* 409	Joe E. Nicket	W. Whekel	1902	352	6	- . .	kcgrt	1,360			$\underset{\text { c, }}{\substack{\text { B }}}$	d, s	Pump sct ot 303 feet. Reported gield 5 gal/min with 36 feet drawdown. Observation $a \in 11$. 3
* 410	ม. 8. Eergusom	\cdots	--	290	6	--	Kegrt	1,320	165	Mis. 1940	c, 0	n, s	3
* 411	Lawtenge B, Duens	F. W. Schwope and Sone Nater Nel1 	3964	260	6	60	$\mathrm{K}_{\mathrm{sgr}} 1$	1,350	230.6	Oct. 2, 2940	$\mathbf{S u b h}, \mathrm{B}_{1}$	$\mathrm{D}_{2} \mathrm{~s}^{\text {s }}$	Open hale frow 60 to 260 feet. Reported ydeld $20 \mathrm{gnt} / \mathrm{min} .3$
412	Kenneth Marquasat	Geotach Drilling Corp.	1976	330	6	38		1,320	179	Mar. 27, 1976	3	N	Open hole fran 38 to 330 fent, Cempntent from 38 feet to surface. Plurgent, if
* 501	B. F. Laubseh	E, Wehe	1935	425	7	20	Kcgr1	1;470	330	Kar. 1940	$\underset{1}{\mathrm{C}, \mathrm{~B}_{1}}$	D, s	Drepened frote 409 to 425 feet. Open hole from 20 to 425 feet. 3
* 502	Alfred Engel, matate	A. Schwarz	1900	410	s	19	Kcgri	1,435	350	Mar. 9, 1940	c, e	n, s	Deepened from $3 B 5$ to 410 feet in 1950. Open hole from 18 to 410 feet. 3
* 503	R. к. सиля	w. Leonard	1925	310	θ	12	Kcgr1	1,400	304	Mar. 1940	$c, w,$	D, 3	Open holo fron 12 to 310 feec. 3

See footnotes at end of teble.

Table 5.--Recorde of Selected Water Nells, springs, and firiland Ges reats--Centinuch

kell	avier	Driller	$\begin{gathered} \text { Date } \\ \text { campleted } \end{gathered}$	$\begin{gathered} \text { Depth } \\ \text { of } \\ \text { well } \\ (\mathrm{ft}) \end{gathered}$	creang		$\begin{gathered} \text { warer } \\ \text { bearing } \\ \text { unit } \end{gathered}$	$\begin{aligned} & \text { Altitude } \\ & \text { of land } \\ & \text { surface } \\ & \text { (ft) } \end{aligned}$	Mater liver		$\begin{gathered} \text { Nethod } \\ \text { of } \\ \text { offt }^{2} \end{gathered}$	$\begin{gathered} \text { Use } \\ \text { of } \\ \text { wster } \end{gathered}$	Remarks
					$\begin{gathered} \text { onsma } \\ \substack{\text { eteren } \\ \text { (in.) }} \end{gathered}$	$\left.\begin{array}{c} \text { Depth } \\ (\mathrm{ff}) \end{array}\right)$			Below 1.anddatum (ft)	Date of measurement			
R®-68-12-704	Gtern 1.t. harquarde	Lsuis: Bergmann and Sooe	1967	447	6	113	Kegrl, Kece	¢, 4ux	260	Apr. 25, 1978	$\mathrm{Sub}_{\mathrm{q}} \mathrm{s}$	D, 8	Deepened from 350 to 447 fect in 1978. Open hole from 113 to 447 feet. Cemented froul 113 feet to aurface. Purp eet st 330 feet. 1)
* 19-201	ז. K. smith, st, Eutate	do	1968	490	7	208	ксgru	1,920	188 2111.4 119.2 196.1	$\begin{array}{ll} \text { Feb. } & 21, \\ \text { Jan. } & 1975 \\ \text { Jef. } & \text { 30, } \\ \text { Pef } & 1476 \\ \text { Reb. } & 14, \\ \hline 177 & 1978 \end{array}$	c, 6	E	Open hole from 208 to 490 feot. Pump set st 460 feet. Observation vell.
* 301	Das Brasvell	\%o	1969	490	$\frac{8}{6}$	23 340	Kcgr 1, Kchter Kccce	1,497	349.7	Alg. 3, 1974	Sub, B $11 / 2$	1	Open hole from 340 to 490 feet. Pamp eet at 470 feet.
* 19-101	A. Veodler	--	190n	90	6	--	Kcgru	1,450	$\begin{aligned} & 70.8 \\ & 6.7 \end{aligned}$	$\begin{aligned} & \text { Jan. } \\ & \text { Nov: } \\ & 23, \\ & \hline 23940 \\ & 1964 \end{aligned}$	$\mathrm{c}_{2} \mathrm{~K}$	D, s	3
* 102	Mrs. Treom C. Lanybein	--	1925	135	4	20	Kogru	1,495	${ }^{\text {a }}$	Jsa. 1940	$\mathrm{c}_{1} \mathrm{l}_{1}$	d, s	Open hole from 20 to 135 fent .3
* 103	H. D. Bordelon	-	-.	390	6	50	Kcgrt	1,445	190	Apr. 1940	${ }_{\text {Sub, }}^{1}{ }_{1}$	D, s	Deepened From 370 to 390 feet 1 u 1962. Open hole from 50 to 390 fect. 3
* 106	A. M. B1edenhmin, Ix.	$\underset{\substack{\text { Lnuts } \\ \text { Sons }}}{\text { Bexgmann and }}$	1966	440	,	181	Kegr1, kene, ucc	1,475	324	June 11., 1966	$\begin{gathered} \text { Sub, } \\ { }_{11 / 2} \end{gathered}$	D	Open hole from 181 to 440 feat. Cenented from 181 feet to surface. Pump set at 420 feet. Reported yield 19 gal/ula with 70 feet drawdown.
202	Eel-Atre Mobile Park	do	1955	417	'	84	$\begin{aligned} & \text { Kсget } \\ & \text { Kcce } \end{aligned}$	1,395	$\begin{aligned} & 237 \\ & 241 \end{aligned}$	$\begin{array}{ll} \begin{array}{ll} \text { Dec. } & 14, \\ \text { Jan, } & 15, \\ 15, & 1964 \end{array} \end{array}$	$\mathrm{Sub}_{\substack{\text { c, }}}^{\text {e }}$	${ }^{\prime}$	Open hole frow 34 to 417 fent. Reported yield $16 \mathrm{gal} / \mathrm{min}, 3$
* 204	R. L. Hast1ngs	do	1963	425	6	44	Kegr1, Koce Koce	1,390	237.8	Aug. 2, 1965	$\begin{gathered} \text { Sub, } \\ { }_{11 / 2}{ }^{5} \end{gathered}$	-	Open haln from 44 to 425 feet, nmp set at 378 foet, Reported yfeld $1.4 \mathrm{go} 1 / \mathrm{min}$ with 170 foet drawdom, 3

* For chrmical analyzee or watier, see table 6.

Table f.--chemical Analyaes of hater Frum Selected wella and Springs
Ans1ysea are in milligrams per liter except percent sodium, spectfic conductance, pli, podium adgorption ratio (SAR), and restdual sodium carbonate (RSC).
Water-besring unit: Kcgr, Glen Roae Limestone: Kcgru, upper member of the Glen Rose Limestone; Kcgrl, Lowct nember of the cien Rose Limestone; Kctp, Trasts Pesk Formation; Kche, Henaell Sand Vember of the LYav/s Peak Eormation; Kcce, Cour Creek Limestone Member of the Travia Peak Formilion; Kca, sligo Limes.tone Mender of the Travis Peak Formation; Kcho, Hoaston Send Member of the Travis Peak Formation.

Andyguts by Texas state Deparcment of Health.

Well ..	Waterbearing unit	Depth of vell or日aupled interval (ft)	Date of collection	$\left\lvert\, \begin{aligned} & \mathrm{S} 11 \mathrm{ica} \\ & \left(\mathrm{SiO} \mathrm{O}_{2}\right) \end{aligned}\right.$	$\begin{aligned} & \text { Iron } \\ & (\mathrm{Fe}) \end{aligned}$	$\begin{aligned} & \text { cal- } \\ & \text { cium } \\ & \text { (Ciu) } \end{aligned}$	$\begin{gathered} \text { Magne- } \\ \begin{array}{c} \text { sium } \\ \text { sius } \end{array} \\ (\mathrm{Hkg} \end{gathered}$	$\begin{aligned} & \text { Sod- } \\ & \text { fum } \\ & \text { (Na) } \end{aligned}$	$\begin{gathered} \text { Potas } \\ \begin{array}{c} \text { iium } \\ (\mathbb{k}) \end{array} \end{gathered}$	Bicar$\left(\mathrm{HCO}_{3}\right)$	$\begin{aligned} & \text { Sul- } \\ & \mathrm{faste}^{2} \\ & \left(\mathrm{SO}_{4}\right) \end{aligned}$	$\begin{gathered} \text { Ch1o- } \\ \text { Cride } \\ \text { (C1) } \end{gathered}$	$\begin{aligned} & \text { Fluo- } \\ & \text { ride } \\ & \text { (F) } \end{aligned}$	$\begin{gathered} \mathrm{Ni}- \\ \left.\begin{array}{c} \text { Crite } \\ \left(\mathrm{NO}_{3}\right) \end{array}\right) \end{gathered}$	$\begin{gathered} \text { Boron } \\ (\mathrm{B}) \end{gathered}$	$\begin{gathered} \text { nit- } \\ \text { solved } \\ \text { solidid } \end{gathered}$	Total hard- กฮฺย as CaCO_{3}	$\begin{gathered} \text { Specific } \\ \text { conduct } \\ \text { ance } \\ \text { (micromhos } \\ \text { at } 25^{\circ} \mathrm{C} \text {) } \end{gathered}$	pH	$\begin{aligned} & \begin{array}{l} \text { er- } \\ \text { cent } \\ \text { sod- } \end{array} \\ & \text { fumb } \end{aligned}$	Sodium adsorp tion ratio (SAR)	$\left\{\begin{array}{c} \text { Res idual } \\ \text { sodivi } \\ \text { carban- } \\ \text { ata } \\ \text { (RSC) } \end{array}\right.$
208-57-50-702	Kcgr	433	Pell. 21, 1940	--	--	108	65	31	--	972	252	24	--	--	--	662	535	--	-"	11	0.5	0.0
801	Kche, Kcgr	371	do	--	--	129	84	38	--	421	299	66	--	--	--	823	667	--	--	11	. 6	. 0
51-701	Kehe, KCgr	120	Fcb. 19, 1910	\cdots	--	94	73	42	\cdots	390	193	70	2.3	\cdots	--	666	535.	-	\cdots	15	. 7	. 0
801	$\chi_{\text {cgru }}$	211	Mar. 4, 1940	-*	--	129	41	5	--	451	177	21	--	--	--	614	. 573	--	--	2	. 0	. 0
57-304	Xche	550	Apr. 23, 1974	11	--	70	42	50	--	362	49	80	1.2	<0.4	--	481	349	834	7.4	24	1.1	. 8
601	xche, Kegr	375	Oct. 1.3, 1965	9	"-	318	128	1.3	--	234	1,060	30	3.6	. 0	--	1,676	2,320	2,190	8.6	2	.1	. 0
903	Kche, Kagri	265	Feb. 7, 1940	-	--	99	49	64	"	378	119	106	\cdots	\cdots	..	622	450	--	\cdots	24	1.3	. 0
905	Kshe	356	July 23, 1976	13	--	. 87	45	66	--	360	95	300	1.6	< .4	--	585	401	1,001	7.7	26	1.4	. 0
906	Kche, kegrl, Kece	260	Feb, 22, 1940	-*	-*	209	48	19	**	427	114	29	--	--	--	528	469	--	--	8	. 3	. 0
58-201	${ }_{\text {Kegru }}$	80	Feb. 21, $19 \% 0$	--	--	126	23	31	--	416	32	14	. 1	50	--	510	409	-	\cdots	14	. 6	. 0
202	$\begin{aligned} & \text { Kches } \\ & \text { Kcgri } \end{aligned}$	435	sepr. 1, 1965	15	--	106	66	62	-n	360	253	74	3.0	. 0	--	756	536	1,200	7,1	20	1.1	. 0
402	Kche	315	Apr. 24, 1974	11	3.4	68	40	47	--	370	43	65	1.2	- .4	--	459	334	796	7.4	23	1.1	. 0
40.	Kclse	315	Juiy 21, 1976	14	2.7	74	41	48	--	370	63	66	1.2	$<.4$	--	492	354	839	7.7	23	1.1	. 0
502	Kohe, Kegrl	190	Feb. 21, 1940	--	--	62	33	23	--	317	43	24	. 1	--	--	340	290	--	--	15	. 5	. 0
502		190	July 21,1977	15	-"	66	35	12	\cdots	327	30	23	.3	1.9	-	34.3	309	576	8,4	s	. 2	. 0
701	Kche, Kcgr	500	A48. 23, 1957	13	--	476	227	31	19	314	1,830	26	5.2	1.5	--	2,783	2,120	3,000	--	3	-2	. 0
703	Xehe, Kegr1	350	Feb. 22, 1940	--	--	136	50	63	\cdots	372	224	99	1.5	--	--	756	596	--	\cdots	20	1.1	. 0
... 700	Ycgr 1	156	Feb, 21, 1940	--	-*	64	.42	58	--	305	83	85	--	--	--	481	331	--	--	28	1,3	. 0
706	Kclue	200	.Tuly 21, 3977	14	\cdots	66	41.	59	--	${ }^{327}$	76	85	1.4	$<.4$	--	503	335	870	7.9	28	1.4	. 0
HOL_{1}	Kegr 1	$\therefore 180$	Teb. 21, 1940	\because	\cdots	73°	48	60	\cdots	360	102	76	\cdots	\cdots	--	536	379	--	--	26	1.3	. 0
..... 59.302	Kcgry.	300	Mar. . 4, 1940	\cdots	--	103	75	17	-- .	409	224	25	--	--	--	645	566	--	--	6	. 3	. 0

Table 6...Chemics1 Analyaes of watcr $\mathrm{Y}_{\mathrm{r} \text { om }}$ selected Wellg and Springa--Continucd

Wel 1	Waterbeating unit	Depth of well or sampled interval (ft)	Date of collection	$\begin{aligned} & \mathrm{silica} \\ & \left(\mathrm{~S} 1 \mathrm{O}_{2}\right) \end{aligned}$	$\begin{gathered} \text { Tron } \end{gathered}$	$\begin{gathered} \text { cal } 1 . \\ \substack{\text { cium } \\ (\mathrm{Ca})} \end{gathered}$	$\begin{aligned} & \text { Magne- } \\ & \text { sive } \\ & \text { (Mg }) \end{aligned}$	$\begin{aligned} & \text { Sod- } \\ & \text { fuma } \\ & \text { (Ns) } \end{aligned}$	$\begin{gathered} \text { Yotas- } \\ \text { aivm } \\ \text { (K) } \end{gathered}$	bicar. bunate $\left(\mathrm{HCO}_{3}\right)$	$\begin{aligned} & \text { Sul- } \\ & \text { fate } \\ & \text { (site } \end{aligned}$	$\begin{aligned} & \mathrm{Ch} 10- \\ & \text { ride } \\ & \text { (cle } \end{aligned}$	$\begin{gathered} \text { Fluo- } \\ \text { ride } \\ \text { (F) } \end{gathered}$	$\begin{aligned} & \text { wi- } \\ & \text { (rate } \\ & \left(\mathrm{NO}_{3}\right) \end{aligned}$	Boron (B)	$\begin{aligned} & \text { Dis- } \\ & \text { solved } \\ & \text { solidd } \end{aligned}$	Total hard- ness CaCO_{3}	$\begin{gathered} \text { Specific } \\ \text { conduct } \\ \text { ance } \\ \text { (micramhos } \\ \text { at } 25^{\circ} \mathrm{C} \text {) } \\ \hline \end{gathered}$	pH	$\begin{aligned} & \text { Per- } \\ & \text { Sent } \\ & \text { cent } \\ & \text { sod } \\ & \text { Lum } \end{aligned}$	$\begin{array}{\|c} \text { Sodium } \\ \text { adsorp- } \\ \text { tion } \\ \text { ratio } \\ \text { (SAR) } \\ \hline \end{array}$	Residual sodium carbont ate (RSC)
R1-57-59-402	Kche, Kcerr1	232	Feb. 19, 1940	--	--	73	48	57	--	366	104	65	1.1	--	-"	528	379	--	--	25	1.2	0.0
403	Kches, $\mathrm{K}_{\mathrm{cgr}} \mathrm{I}$	232	July 23, 1976	14	--	32	46	51	11	345	130	69	2.5	<0.4	--	575	397	921	7.7	21	1.1	. 0
403	Kchè, KcgrI	232	July 22, 1977	16	--	79	43	52	--	351	104	67	1.4	$\leqslant .4$	--	535	376	890	7.9	23	1.1	. 0
701	Kche, Kegrl	250	Feb. 19, 1940	-*	\cdots	77	45	52	--	348	102	70	--	--	--	517	378	--	--	23	1.1	. 0
801	$\begin{aligned} & \text { Ketp, } \\ & \text { Kcho } \end{aligned}$	600	Aug. 17, 1965	13	-	68	41	so	10	3.64	112	83	1.5	. 0	0.6	588	338	1,000	7.2	33	1.8	. 0
802	$\begin{aligned} & \text { Kctp, } \\ & \text { Kctho } \end{aligned}$	600	do	13	--	62	40	$8 / 4$	--	336	87	76	1.6	--	. 0	528	319	946	7.1	36	2.0	. 0
sor	Kctp,	787	Ju19 22, 197\%	17	--	69	45	62	\cdots	334	113	73	1.5	< .4	\cdots	545	356	903	8.3	27	1.4	. 0
60.101	Kcgru	140	Kar, 4, 1940	-*	--	99	37	--	--	268	134	9	--	35	--	447	398	--	\cdots	--	--	. 0
501	Kı́gru	220	nug. 13, 1965	10	--	160	105	11	--	364	500	20	3.0	. 2	--	988	${ }^{931}$	1,440	7.2	3	$\cdot 1$. 0
601	Khgru	125	mar. 4, 1940	\cdots	--	183	25	46	--	305	106	73	--	245	--	827	560	--	--	15	. 8	. 0
604	Kegru	--	Joly 9, 1975	8	--	69	19	8	--	253	10	16	. 5	33	--	287	252	490	7.8	6	. 2	. 0
B01	Kcgru	184	xair. 4, 1940	--	-	110	84	29	--	476	236	20	--	--	--	733	622	--	-.	9	. 5	. 0
907	Kcgru	250	do	--	--	299	${ }^{81}$	78	-	293	945	16	1.6	--	--	1,564	1.,080	---	--	14	1.0	. 0
68-01-301	Kche	295	Joly 15, 1947	-	--	174	83	99	--	318	166	380	--	. 0	--	1,078	776	1,950	-*	22.	1.5	. 0
301	Kehe	295	3uly 21, 1977	12	--	101	57	88	--	362	1.78	163	1.6	$<.4$	--	788	488	1,300	8.1	30	1,9	. 0
302	Kche	300	O65. 18, 1961	12	-.	92	56	99	14	358	164	156	1.9	. 0	. 5	771	460	1,300	7.0	91	2.0	.0
306	Kche, Kcgrl	350	Apr. 15, 1974	11	-.	97	53	99	11	356	16๐	160	2.2	. 2	--	776	461	1,360	7.3	31	2.0	. 0
306	$\begin{aligned} & \text { Kche } \\ & \text { Kcgíl } \end{aligned}$	350	July 22, 1975	9	--	101	51	103	--	361.	159	164	2.0	$<.4$	--	766	464	1,250	7.6	33	2.0	. 0
306	Kefig, Kcgr 1	350	July 21, 1977	12	--	9	52	101	15	356	165	158	1.9	$<.4$	--	778	458	1,260.	7.6	31	2.0	. 0
309	Kche, Kcec	415	Jan. 29, 1966	14.	--	195	日6	110	15	436	175	38.5	2.1	1.2	. 5	i, 198	840	2,040	6.9	22	1.6	. 0
310	Kche, Kece	300	Aug. 10, 1965	12	0.0	99	64	93	13	370	178	1.64	1.6	. 0	. 5	907	510	1,380	7.3	28	1,7	. 0
601	Kabe, Kogr 1	208	doct. 20, 1961	18	$=$	101	31	83	2.6	374	130	54	. 6	44	. 2	652	380	1,030	6.7	32	1.8	. 0
603	Kches, Kcgr	325	Dec. 24, 1966	14	--	. 90	61	66	--	364	- 173	. 96	2.4	. 2	--	.681	476.	1,140	7.4	23	1.7	. 0
604	Kcgr 1	275	Feb. 7, 1940	--	.*	98	37	9	--	366	91	16	--	--	--	430	398	--	-	5	${ }^{1}$. 0
904	Kcgru	105	Apt. 11, 1940	-	--	389	171	16	--	207	1,472	17	2.7	\cdots	*	2,175	1,700	--	--	2	.1	. 0

Table 6. --Chemical Anslyses of Water From salectech Wells and Springs--Continued

Well	Water- bearing un1t	Depth of vell or sampled interys 1 (ft)	Date of collection	$\left\|\begin{array}{l} s 111 c a \\ \left(810_{2}\right) \end{array}\right\|$	$\begin{gathered} \text { Iron } \\ (\mathrm{Fe}) \end{gathered}$	$\begin{aligned} & \text { Calv } \\ & \text { cium } \\ & \text { (Caz) } \end{aligned}$	Magnesium (阬)	$\begin{aligned} & \text { Sod- }- \\ & \text { fum } \\ & \text { (Na) } \end{aligned}$	$\begin{gathered} \text { Potas- } \\ \begin{array}{c} \text { Bium } \\ (\mathrm{K}) \end{array} \end{gathered}$	Bicarbonate $\left(\mathrm{HCO}_{3}\right)$	$\begin{aligned} & \text { Sul- } \\ & \text { fate } \\ & \left(80_{4}\right) \end{aligned}$	$\begin{aligned} & \text { Ch1a- } \\ & \text { ride } \\ & \text { (Cli) } \end{aligned}$	$\begin{gathered} \text { Fluo- } \\ \text { ride } \\ \text { (F) } \end{gathered}$		Baron (B)	$\left\|\begin{array}{c} \text { Dfa- } \\ \text { solved } \\ \text { solids } \end{array}\right\|$	$\begin{array}{\|l} \hline \text { Total } \\ \text { hasd- } \\ \text { ness } \\ \text { as } \\ \text { cacco } \\ \hline \end{array}$	Spectific conduct- ance (micknanhos $\left.a c \mid 25^{\circ} \mathrm{C}\right)$	pH	Percent sadinm	$\left.\begin{array}{\|c\|} \hline \text { Sodfuem } \\ \text { adkorp- } \\ \text { tion } \\ \text { ratio } \\ \text { (SAR) } \end{array} \right\rvert\,$	Residual sodium carbon ate (RSC)
Rid-68-02-103	Kcgr 1	100	Feb. 22, 19410	--	--	87	46	47	--	${ }^{36 \%}$	75	91	-.	\cdots	"	528	409	-	-	20	1.0	0.0
104	Kcer 1	150	So	--	--	82	50	58	--	354	98	102	\cdots	--	*	564	411	--	--	24	1.2	. 0
105	Kcgr 1	228	-	--	--	104	14	16	--	305	13	27	--	65	-	388	319	\cdots	\cdots	10	$\cdot 3$.0
106	Kche, Kcee	315	July 21, 1965	14	--	94	65	100	16	356	168	182	1.9	0.2	0.6	417	466	1,320	6.8	29	1.9	. 0
107	Kche, Regr ${ }^{\text {t }}$	22.3	do	14	--	91	58	92	13	360	16.3	154	2,0	. 2	. 6	764	456	1,320	6.8	2.9	1.8	. 0
109	就ches Xcgr^{2}	300	Feb. 22, 1940	--	--	82	51	75	--	390	94	111	1.6	--	-*	606	417	-	--	28	1.6	. 0
201		250	Pell, 2i, 1940	--	--	110	57	56	\cdots	384	197	76	1.6	--	--	686	510	--	--	19	1.0	. 0
202	$\mathrm{Xeg}_{\mathrm{gr}} 1$	300	July 23, 1976	13	--	99	51	22	\cdots	405	112	38	1.1	< 4	--	535	455	856	7.7	9	. 4	. 0
203	Kelse, Kegr 1	275	Eelb. 21, 19.40 .	--	--	45	45	72	--	336	79	70	--	--	--	476	298	--	--	34	1.8	. 0
204	Kche; Kcgrg_{1}	210	July 21, 1965	14	--	74	44	63	30	364	86	92	1.7	. 5	. 4	453	365	997	7.3	27	1.4	. 0
901	$\mathrm{K}_{\mathrm{cgr}} \mathrm{l}$!	198	Feb. 22, 1940	--	--	12 t	10	15	--	342	12	18	--	75	--	419	346	--	--	9	.3	. 0
401	Kcgrgr^{1}	120	do	--	--	109	29	4	--	376	47	19	\cdots	20	\cdots	413	393	--	-	2	. 0	. 0
502	Kche, Kegri	163	Jan, 30, 1940	--	--	86	56	126	--	415	154	154	\because	\cdots	\cdots	780	444	--	--	38	2.5	. 0
505	$\begin{aligned} & \text { Kclie, } \\ & \text { Kcgrl } \end{aligned}$	221	Preb. 22, 1940	--	--	71	38	98	\cdots	372.	79	123	\cdots	--	--	581	333	--	--	39	2.3	. 0
601	Kche, Xegr 1	170	dio	n.	--	71	39	82	--	366	79	96	--	--	--	546	339	\cdots	--	35	1.9	. 0
609	Kchc, Kc Krl Kcce	315	Aug. 11, 1965	11	-	155	3	175	--	41.6	163	186	1.8	. 0	. 8	902	400	1,420	7.6	49	3.8	. 0
605	Regr 1	--	Apr. 9, 1910	-	--	76	21	6	\cdots	275	43	15	-2	--	--	296	278	"-	\cdots	s	.1	. 0
f05	$\mathrm{Kigitl}^{\text {l }}$	--	July 8, 1973	15	-.	105	11	11	--	340	21	18	. 4	4.6	--	353	307	587	7.4	7	.2	. 0
608	Kehe, Kcec	360	July 10, 1974	13	--	80	49	127	--	353	151	168	2.4	< . 4	\cdots	764	401	1,180	7.5	41	2.7	. 0
608	Kefie, Koce	360	Joky 21, 1976.	10	\cdots	72	4	121	16	340	142	168	2.1	- . 4	--	747	382	1,250	7.9	40	2.6	. 0
606	kehe, Kcce	360	July 21, 1977	12	--	80	47	131	--	355	148	166	2.1	< . 4	--	761	392	1,260	7.9	42	2.8	. 0
801	${ }_{\text {Kcgr }}$	200	Feb. 8, 1940	--	--	1.06	22	12	--	384	17	16	. 2	30	--	392	353	--	--	7	.2	.0
804	Kehe, Kegr3, Kcec	529	Aug. 10; 196.5	11	--	119	96	53	--	366	198	60	3.4	. 0	\because	920	692	1,390	7.4	14	. 9	. 0
902	${ }^{-1}{ }^{\text {kegrl }}$.	-..	apt. 9, 1940	--	-	116	28	8	--	415	59	17	.2	-	\cdots	4.32	407	--	\cdots	4	. 1	. 0
903	Kche,	270	3uly 22, 1977	12	--	158	34	2.	--	460	135	48	..	2.9	\cdots	6.37	540	986	8.3	8	. 3	. 0

Table 6...Chemical analyses of Water From Sclectod Wella" and Springs--Continued

Kelı	Water- bearing unit	Depth of well or sampled interval (ft)	Date of collection	$\begin{aligned} & \text { Silicas } \\ & \left(\mathrm{SiO}_{2}\right) \end{aligned}$	$\begin{aligned} & \text { Iron } \\ & (\mathrm{Fe}) \end{aligned}$	$\begin{aligned} & \text { cal- } \\ & \text { civu } \\ & \text { (Ca) } \end{aligned}$	Maguesium (kg)	$\begin{aligned} & \text { Sod- } \\ & \text { ium } \\ & \text { (3la) } \end{aligned}$	$\left\|\begin{array}{c} \text { Potas- } \\ \text { Bium } \\ (\mathrm{g}) \end{array}\right\|$	Bicarbonate $\left(\mathrm{HCO}_{3}\right)$	$\begin{aligned} & \mathrm{Sul-} \\ & \begin{array}{c} \text { sate } \\ \text { fate } \\ \left(\mathrm{SO}_{4}\right) \end{array} \end{aligned}$	$\begin{aligned} & \text { Ch10- } \\ & \text { ride } \\ & \text { (C1) } \end{aligned}$	$\begin{gathered} \text { Fluo- } \\ \text { Fide } \\ \text { (F) } \end{gathered}$	$\begin{gathered} \mathrm{MI} \\ \substack{\text { trate } \\ \left(\mathrm{NO}_{3}\right)} \end{gathered}$	$\begin{gathered} \text { Boron } \\ (\mathrm{B}) \end{gathered}$	Dis ablved solids	Total hard- ness 8日 CaCO_{3}	Specific conduct ance (micromhos at $25^{\circ} \mathrm{C}$)	pH	$\begin{aligned} & \hline \text { Per- } \\ & \text { cent } \\ & \text { Bod- } \\ & \text { ium } \end{aligned}$	Sodium adsorption ration (SAR)	Residual sodium carbon- ate (RSC)
RB-68-02-904	Kegre 1	250	July 9, 1974	12	--	98	16	6	--	343	17	12	0.5	1.2	--	331	311	558	7.6	4	0.1	0.0
909	Kegru	--	Eeb. 24, 1940	--	-"	52	24	1.0	--	238	30	16	.2	--	--	249	230	--	--	9	. 2	. 0
907	Kcgr 1	200	Jan. 30, 1940	--	--	44	43	16	--	299	47	20	--	--	--	317	287	--	--	11	.4	. 0
909	Kcgro	--	Apr. 9, 1940	--	--	92	25	3	--	372	15	11	\cdots	--	\cdots	328	330	--	--	2	. 0	. 0
03-101	Kegr 1	100	Feb. 9, 1940	--	--	122	66	34	--	409	193	66	--	--	--	669	551	--	--	12	. 6	. 0
102	Mctue	190	Aug. 19, 1965	13	--	62	40	101	--	972	120	74	1.6	. 5	--	595	319	1,890	7.3	41	2.4	. 0
102	Kche	190	July 22, 1977	15	--	88	32	52	\cdots	375	80	53	1.1	4.4	\cdots	505	353	840	7.8	24	1.2	. 0
107	Kche, Kcgr 1	120	Feb. 19, 1940	--	--	60	40	103	--	372	122	76	--	--	--	583.	915	--	--	42	2.5	. 0
$10{ }^{6}$	Kehe, Xece	200	Apr. 18, 1974	11	--	61	37	92	11	366	101	81	2.0	1.3	--	577	306	945	7.5	39	2.2	. 0
401	Kctam	185	Mar. 4, 1457	13	--	51	33	127	-- '	378	96	90	--	2.0	--	597	262	1,050	7.6	51	3.4	. 9
405	Kche, Kegrl	100	Feb. 19, 1940	\cdots	--	84	53	120	--	372	175	142	--	--	--	756	427	--	\cdots	38	2.5	. 0
501	xche, Kegrl	210	do	--	--	75	30	25	--	354	30	34	. 3	--	--	368	334	--	-"	15	. 6	. 0
605	Kcgr 1	188	Jan. 25, 1966	13	--	100	31	12	\cdots	408	20	24	. 5	14	--	415	376	73	7.2	6	. 2	. 0
605	Kcgr 1	188	July 28, 1977	17	--	112	26	13	--	440	23	20	.4	2.5	\cdots	430	388	710	7.9	7	. 2	. 0
606	Kcgr 1	--	July 10, 1975	14	-	126	12	10	--	410	12	21	. 3	9.0	--	405	365	680	7.3	6	. 2	. 0
607	Kcho, $\mathrm{K}_{\mathrm{c}} \mathrm{s}$	540	Jan. 25, 1966	9	--	46	30	276	14	356	192	265	2.0	1.0	\cdots	1,010	240	1,740	7.5	70	7.7	1.0
608	Kilie, Kese	321	July 28, 1977	13	\cdots	80	51	28	--	357	116	27	2.0	$<.4$	--	492	413	798	8.6	13	. 6	. 0
701	Kche, $\mathrm{K}_{\mathrm{GBr}}{ }^{1}$	460	Apt. 29, 1956	--	--	--	--	-	--	426	--	20	--	--	--	229	\cdots	810	8.2	--	--	--
702	Kcgrgr^{1}	220	Feb, 19, 1940	--	--	79	72	4	--	427	91	40	--	--	--	495	494	-	--	2	. 0	. 0
903	Kche, Kagra^{1}	290	do	-n	-*	94	50	47	--	403	150	38	1.6	--	--	578	442	-	--	19	. 9	. 0
04-101	Rcgr ${ }^{\text {d }}$	120	do	--	-	89	45	--	\cdots	342	98	19	--	\cdots	-.	419.	408	--	--	--	--	. 0
103	Kcgrl	100	do	--	--	88	20	11	--	299	55	1.3	.3	\cdots	--	398	302	--	--	7	. 2	. 0
201	Kcgru	--	Aaug. 17, 1965	11	--	116	14	12	--	372	30	16	.3	17	--	399	347	669	7.5	7	. 2	. 0
202	Kche, Rcgr 1	226	Pug. 19, 1965	13	--	129	9	14	--	392	35	36°	.5	36	--	435	360	750	7.1	8	. 3	- 0
207	Kche	900	33n. 26, 1966	11	--	139.	15	12.	\cdots	348	111	20	$\cdot 3$	5.8	--	485 ,	408	454	7.2	6	$\cdots{ }^{-}$. 0
207	Kche	300	July 27, 1977	13	--	129	14	11	-	351	89	16	.3	5.9	--	450.	379	717	7.7	6	+2	. 0
302	Kche, Kcgr 1	304	Feb. 28, 1940	--	--	1.14	60	4	--	464	126	20	-	\cdots	--	552	532	--	--	2	. 0	. 0
907	Kche, Kegr^{2}	260	Aug. 17, 1965	11	--	142	30	10	-n	340	21	56	.6	14日	--	585	478	1,070	7.1	4	. 1	. 0

Tatie 6.--Chemical Analyaeg of Water From Selected wella and Springs.-Continued

Wel1	Waterbearing unit	Depth of well or sampled interval (ft)	Date of collection	$\begin{aligned} & \mathrm{Silica} \\ & \left(\mathrm{SiO}_{2}\right) \end{aligned}$		$\begin{aligned} & \text { cal- } \begin{array}{c} \text { cal- } \\ \text { cium } \\ \text { (Gat) } \end{array} \end{aligned}$	$\begin{gathered} \text { Magne- } \\ \text { asium } \\ \text { (M8) } \end{gathered}$	$\begin{aligned} & \text { Sod- } \\ & \text { ium } \\ & \text { (Ma) } \end{aligned}$	$\left.\begin{array}{\|c} \text { Potas } \\ \text { Sifm } \\ (\mathrm{K}) \end{array} \right\rvert\,$	Bicarbonate $\left(\mathrm{HCO}_{3}\right)$	$\begin{aligned} & \text { Sul- } \\ & \text { fate }^{2} \\ & \left(\mathrm{SO}_{4}\right) \end{aligned}$	$\begin{aligned} & \text { Ch10 } \\ & \text { Y1de } \\ & \text { (cle) } \end{aligned}$	$\begin{gathered} \text { Flue- } \\ \text { ride } \\ (\mathrm{P}) \end{gathered}$	$\begin{gathered} \mathrm{Mi}- \\ \text { trato } \\ \left(\mathrm{rOH}_{3}\right) \end{gathered}$	Boron. (B)	$\begin{aligned} & \text { ois. } \\ & \text { solved } \\ & \text { solvide } \\ & \text { solfod } \end{aligned}$	Total hard- ness 98 CaCO_{3}	$\begin{gathered} \text { Spectific } \\ \text { condect } \\ \text { anee } \\ \text { (micromhos } \\ 2 t 25^{\circ} \mathrm{C} \text {) } \end{gathered}$	PH	$\begin{aligned} & \text { Ser- } \\ & \text { cear } \\ & \text { sodr } \\ & \text { inour } \end{aligned}$	$\begin{aligned} & \text { Sodium. } \\ & \text { Adsorf } \\ & \text { tion } \\ & \text { ratio } \\ & \text { (SAR) } \end{aligned}$	
RB-68-044-309	Kcgrl^{1}	180	3uly 23, 1976	14	--	98	22	日	--	368	14	19	0.4	13	0.1	369	3.36	620	7.5	5	0.1	0.0
309	Kegrl	180	July 27, 1977	14	\cdots	99	21	9	\cdots	365	11	16	.4	14	--	764	334	620	7.3	6	\cdot ?	. 0
310	$\mathrm{K}_{\text {cgr }} \mathrm{l}$	79	July 22, 1976	15	--	116	12	15	\cdots	364	23	21	$\cdot 3$	27	--	408	342	671	7.9	9	$\cdot 3$. 0
503	Kcthe, Kcer , Kcgr^{2}	300	Apr. 12, 1940	--	--	86	44	18	--	342	93	42	--	\cdots	--	451	397	--	--	9	-3	. 0
504	Kche, Kcgrl	312	do	\cdots	--	81	39	7	--	378	34	18	--	--	--	364	364	-*	--	4	. 1	. 0
601	${ }_{\mathrm{Kc} \cdot \mathrm{gri}}$	21.9	do	--	--	72	42	32	--	366	6.5	37	\cdots	n.	--	427	351	--	--	16	.7	, 0
602	Kcprl	--	Apr. 3, 1940	--	--	107	18	7	--	384	20	15	--	-*	--	355	341	--	-"	4	11	. 0
606	Kcgr 1	35	Apr. 12, 1940	--	--	1.29	18	2	--	415	14	32	--	--	-	399	396	--	--	1	. 0	. 0
701	Kc.gr 1	--	Jan. 17, 1940	--	--	93	18	15	--	37.	12	15	--	--	\cdots	335	306	--	--	10	. 3	. 0
801	Kcce	100	Apr. 8, 1940	--	\cdots	95	1.6	22	\because	390	-18	14	\cdots	--	--	358.	311	--	--	13	. 5	. 1
803	Kcce	120	Joly 27, 1977	16	--	193	25	14	--	495	18	1.24	.3	4.9	\cdots	638	588	1,053	3.3	5	, 2	. 0
901	Kcce	100	Apt. 12, 1940	--	--	54	44	40	--	360	31	40	--	--	\checkmark	406	317	--	--	22	. 9	0
902	Kcgr 1	--	Appr. 2, 1940	--	--	82	13	4	--	275	25	11	. 2	--	-n	270	258	--	--	3	. 1	. 0
905	Kcrr ${ }^{1}$	--	do	--	--	${ }_{76}$	13	22	--	299	28	16	.2	--	--	299	243.	--	--	16	. 6	. 0
909	Kcgr 1	--	Ave. 3, 196.5	14	--	102	16	9	1.3	344	30	18	1.	8.8	. 1	368	320	644	7.0	6	. 2	. 0
906	Kcho, Kcs	360	July 25, 1965	10	--	98	46	272	--	294	264	342	1.1	28	--	1,205	434	2,063	6.9	58	5.6	. 0
908	$\mathrm{k}_{\mathrm{cgra}}{ }^{1}$	105	Apr. 3, 1940	--	--	${ }^{87}$	${ }^{23}$	8	\cdots	${ }^{372}$	\because	17	--	--	--	317	314	--	\cdots	5	.1	. 0
909	$\begin{aligned} & \mathrm{K}_{\mathrm{cho}}, \\ & \mathrm{Kce} \end{aligned}$	965	Aug, 3, 1965	12	--	so	40	447	16	276	400	460	1.0	3.0	4.2	1,568	290.	2,630	7.1	76	11.4	. 0
909	Retho, Kci	365	Apr. 15, 1974	1.1	--	59	36	437	"*	270	359	479	2.5	5.5	-.	1,521	295	2,400	7.5	76	11.0	. 0
909	$\begin{aligned} & \text { Kcbo, } \\ & \text { Kcs } \end{aligned}$	365	July 22, 1976	11	*	53	35	449	17	275	362	487	1.9	2.9	--	1.,554	277	2,450	7.7	77	11.7	. 0
909	Kcho, Ков	365	July 27, 1977	13	"*	62	31	435	--	273	368	442	1.9	< . 4	--	1,487	285	2,370	7.8	77	11.2	. 0
05:102	Kogr 1	260	Jan. 25, 1966	9	--	78	34	8	2.2	336	56	15	. 8	1.0	--	369	336.	645	7.4	5	± 1	. 0
102	Kegr 1	260	July 27, 1977	12	--	112	39	9	--	365	39	16	${ }^{4}$	9.0	--	395	35?	640	8, 1	5	+2	. 0
402	Kcce	225	July 9, 1974	12	--	81	29	11	\cdots	364	14	1.7	. 5	. 2	-*	343.	324.	596	7.6	7	, 2	. 0
502	Kcgr 1	160	Jan. 25, 1966	11	--	82	12.	6	1.3	284	4	10	${ }^{4}$	14	-*	280	252	498	7.3	5	.1	. 0
09-301	Kcgru	230	Apri. 10, 1940	--	-	439	147	6	\cdots	293	1,390	21	-"	--	--	2,147	1,700	--	--	. 7	. 0	. 0
10-201	${ }^{K} \mathrm{ch} \mathrm{he}$ e, Kegrl, Kcee.	840	J3n. 24, 1966	10	--	480	210	19	\cdots	340	1,700	20	4.6	. 2	--	2,604	2,060	2,93D	7.2	1	. 1	. 0

Table 6.--Chemical Analyecs of Water From Sclected Wells and Streams-Contanue

Well	Water bearing unft	Depth of well or sampled interval (ft)	Date of collection	$\begin{array}{\|l\|l\|} \hline \text { silica } \\ \left(\mathrm{S} 10_{2}\right) \end{array}$	$\begin{aligned} & \mathrm{Ifon} \\ & (\mathrm{Fe}) \end{aligned}$	$\begin{aligned} & \text { cal- } \\ & \text { cium } \\ & \text { (Ca) } \end{aligned}$	$\begin{gathered} \text { Msgne- } \\ \text { stum } \\ \text { sfium } \\ \text { (Mg } \end{gathered}$	$\begin{aligned} & \text { Sod- } \\ & \text { fum } \\ & \text { (Naz) } \end{aligned}$	$\left\lvert\, \begin{gathered} \text { Potas- } \\ \begin{array}{c} \text { Bive } \\ (\mathrm{K}) \end{array} \end{gathered}\right.$	$\begin{aligned} & \text { Bicar } \\ & \text { bonate } \\ & \left.\mathrm{HCOO}_{3}\right) \end{aligned}$	$\begin{aligned} & \text { sul- } \\ & \text { fate } \\ & \left(\mathrm{sita}_{4}\right) \end{aligned}$	$\begin{aligned} & \text { Ch10- } \\ & \text { ride } \\ & \text { (c1) } \end{aligned}$	$\begin{gathered} \text { Pluo- } \\ \text { ride } \\ \text { (F) } \end{gathered}$	$\begin{gathered} \mathrm{Ni}^{\prime}- \\ \text { (rate } \\ \left.\mathrm{NO}_{3}\right) \end{gathered}$	$\underset{(\mathrm{B})}{\text { Boron }}$	D1s" solved solids	$\begin{array}{\|l\|l} \hline \text { Totas } 1 \\ \text { hard- } \\ \text { ness } \end{array} .$	$\begin{array}{\|c} \text { Specific } \\ \text { conduct- } \\ \text { anee } \\ \text { (micromho } \\ \text { at } \left.25^{\circ} \mathrm{C}\right) \\ \hline \end{array}$	pr	Per- cent sod= fum	Sodium addorp- tron ratio (SAR)	$\left.\begin{array}{\|c\|} \hline \text { Res idual } \\ \text { sodfum } \\ \text { carbon } \\ \text { ste } \\ \text { (RSC) } \end{array} \right\rvert\,$
RE-68-10-203	Kche, Kcgri, Kcec	600	July 9, 1974	10	--	150	110	18	\cdots	361	520	16	4.0	1.3	--	1,006	830	$1,340$	7.4	5	0.2	0.0.
301	Kcgrg^{1}	350	Jan. 29, 1940	--	--	120	47	4	\cdots	. 336	191	16	1.2	--	--	544	494	\cdots	\cdots	2	. 0	. 0
501°	Kcgru	--	Apr. 10, 1940	--	--	--	--	--	**	323	--	13	\cdots	--	--	171	\cdots	--	\cdots	--	-*	-
502	Ǩcho, $k_{c s}$	1,167	July 2B, 1965	15	--	62	44	262	19	320	200.	335	1.4	1.5	: 1.6	1,098	336	1,920	7.0	61	6.2	. 0
601	Kcgru	230	do	12	--	1/2	101	21	--	422	405	14	2.9	. 0	\cdots	895	770	1,340	6.8	3	.1	. 0
613	Rege 1	152	July 27, 1977	13	--	141	40	9	--	344	207	15	. 8	6.3	--	601	520	880	7.8	4	.1	. 0
801	Regr 1	600	July 29, 1965	12	--	173	198	45	--	328	726	43	4.0	--	. 2	1,302	999	1,800	6.8	9	. 6	. 0
803	kegris	14.5	Tam, 10, 1940	--	\cdots	196	93	2	--	348	538	14	2.4	--	\cdots	1,016	872	-	\cdots	. 5	. 0	. 0
806	kctor	1,098.	July 23, 1965	13.	--	90	26.	193	13	322	128	154	1.6	, 2	1,6	71.8	1.82	1,2\%	7.5	68	6.2	1.6
902	Kehe, Kegrl, Kcec	589	Tạn, 24, 1966	11	1.6	88	88	61	--	384	322.	41	1.8	. 2	\because	903	589	2,260	7.4	19	1.1	. 0
904	Kcgru	40	Jan. 9, 1940	--	--	124.	32	17	\because	317	128	36	. 1	41	\cdots	533	440	-	\because	8	. 3	. 0
905	Kcgru	100	do	--	--	82	34	32	--	311	95	13	.1	\cdots	-	389	346	--	--	7.	.2.	. 0
906	Xcgru	30	do	\cdots	--	71	20	3	--	287	10	12	*	--	-	257	257	--	--	2	. 0	. 0
11-103	Kıgr ${ }^{1}$	200	Apk. 18, 1974.	10	--	105	7	6	--	314	9	$1 / 4$. 6	22	--	327	292	554	7.2	4	.?	. 0
103	Kegrl.	200	Juty 21, 1976	11	--	103	9	6	1.0	317	9	14	.3	19	--	328	295	554	7.6	4.	.1	. 0^{\prime}
205	Kegrl	15	Feb. 28,1940	--	--	117	8	2	--	343	13	25	. 2	--	--	333	325	--	--	1.	. 0	. 0
207	Kcgr ${ }^{\text {. }}$	200	${ }^{10} 0$	--	$\stackrel{*}{*}$	117	9	14	\because	354	22	14	--	--	--	350	931	--	--	8	. 3	. 0
209.	Kegru	95	Aug. 16, 1.965	11	--	152.	35	13	\cdots	346	234	16	. 8	. 9	--	631	523	962	7.3	5	. 2	. 0
209	Kegr 1	55	July 22, 1975	1.2	--	115	9	9	\cdots	351	26	15	. 5	2.2	--	361	325	595	7.7	6	. 2	. 0
401	Kegru	46	Ju19 30, 1965	14	-*	110	17	13	1.4	360°	37	24	. 3	2.8	.1	336	344	703	6.7	8	.3	. 0
${ }^{403}$	Kogril	98	Fell. 7, 1962	--	\cdots	98	30	13	--	301	35	${ }^{23}$	3.1	19	--	407	370	764	7.1	7.	.2	. 0.
405	Kogru	38	Nov: 2, 1945	12	-*	104	${ }^{18}$	8	2.6	300	69	20	.4	10	--	391	334	607	6.8	5	.1	. 0
411	$\mathrm{Kegrl}^{\text {c }}$	247	Peb. 28, 1940	--	-	18.	43	98	--	354	310	20	--	--	--	463	2.21	--..	--	49	2.8	1.9
501.	Kcgr ${ }^{\text {l }}$	249	Feb. 7, 1962	--	--	94	36	11	--	320	87	18	1,2	17	-*	422.	385	764	7.2	$\dot{6}$.2	.0
507	Kche, Kegri, Keec	595	Nov. 25, 1974	14	--	86	29	8	--	334	59	17	. 9	. 4	--	378	395	605 $\because:$	8.3	5	. 1 $\therefore 0$
601	Kiger ${ }^{1}$	346	Nov. 1, 1951	12	--	86	19	4	--.	325	16	11	--	4.5	\cdots	312	292	. 554	7.4	3.	.1	. 0
602	Kegrl	- ${ }^{8}$	Nov. 2, 1951	11	\cdots	96	15	1	--	332	15.	10	\cdots	4.0	--	315	301	. 561	9.6.	. 7	'. 0	. 6
603	Kogr 1.	55	ases. 1, 1751	13	--	114	11	5	--	366	13	11	\cdots	13	\cdots	359	330	626	7.3	3	. 1	. 0

Table 6. --Chemical Analyats of water treon Selecterl Wells and Springs--Continued

Kel1	Water bearing unft	Depth of well or eampled interval (ft)	Date of collection	$\begin{array}{\|l\|l} 8 s 1 \mathrm{ica} \\ \left(\mathrm{~S} 10_{2}\right) \end{array}$	$\begin{aligned} & \text { Trotz } \\ & (\mathrm{Fe}) \end{aligned}$	$\begin{aligned} & \text { Cal- } \begin{array}{c} \text { cal } \\ \text { (Ca) } \end{array} \end{aligned}$	$\begin{gathered} \text { Magne- } \\ \substack{\text { EIumu } \\ \text { (Mg }} \end{gathered}$	$\begin{aligned} & \text { Sod- } \\ & \text { ioum } \\ & (\mathrm{Na}) \end{aligned}$	$\left.\begin{gathered} \text { Foctas } \\ \mathbf{s i u m} \\ (\mathbf{k}) \end{gathered} \right\rvert\,$	Bicarbonate $\left(\mathrm{HCO}_{3}\right)$	$\begin{aligned} & \text { Sul- } \\ & \mathrm{fatex}_{4 \mathrm{ta}}\left(\mathrm{SO}_{4}\right) \end{aligned}$	$\begin{aligned} & \text { Ch10- } \\ & \text { ride } \\ & \text { (Cl) } \end{aligned}$	$\begin{gathered} \text { Fluo- } \\ \text { ride } \\ \text { (F) } \end{gathered}$	$\begin{aligned} & \mathrm{N} 1- \\ & \mathrm{trate} \\ & \mathrm{tan}_{3} \mathrm{Na} \end{aligned}$	Boron (B)		$\begin{aligned} & \text { Totrd } \\ & \text { hatr } \\ & \text { ness } \\ & \text { as } \\ & \mathrm{CaCO}_{3} \end{aligned}$	Specific conduckance (micromhos at $\left.25^{\circ} \mathrm{C}\right)$ $\text { at } \left.25^{\circ} \mathrm{c}\right)$	p\#	Percent sod: iप피	Sodium adsorp tion ratio (SAR)	$\begin{array}{\|c} \text { Ree } i \text { dual } \\ \text { sod } 1 \text { um } \\ \text { coarbon- } \\ \text { ate } \\ (\text { RSC }) \end{array}$
	kcgrl	--	Nev. L, 1951	12	--	110	12	12	-	362	33	11	--	4.0	--	371	324	608	7.6	7	0.2	0.0
605	Kogr ${ }^{1}$	15	do	9	--	44	13	14	\cdots	160	19	30	--	. 0	--	207	163	400	7.8	16	. 4	. 0
606	Kcgr 1	362	do	12	--	75	25	6	--	319	15	16	--	6.3	\cdots	312	290	557	7.5	4	. 1	. 0
607	Kcgr 1	60	do	11	--	92	18	8	--	334	16	15	-.	6.1	\cdots	330	304	586	7.3	5	.1	. 0
610	Kcgrl	240	Apr. 8, 1940	--	--	119	35	16	--	458	77	1.5	--	--	--	487	441	--	--	7	$\cdot 3$. 0
703	Kcgru	180	Jan. 9, 1940	--	--	599	136	49	--	293	1,810	25	--	--	\cdots	2,763	2,060	-	--	5	. 4	- 0
704	Kc:gru	100	do	--	--	202	49	19	\cdots	305	434	27	1.4	--	--	882.	705	--	--	${ }^{6}$. 3	. 0
707	Kche, Krerl, Rece	425	Jan. 24, 1966	13	--	92	39	16	3.2	354	89	25	1.5	5.7	0.1	458	388	773	9.3	B	. 3	. 0
710	Regrl	70	Apr. 8, 1940	-	--	122	20	--	--	397	15	25	--	29	\cdots	396	387	-	--	--	--	-0
710	$\mathrm{k}_{\mathrm{cgr} \times 1}$	70	Ай. 3, 1965	${ }^{11}$	--	99	14	19	-	284	59	23	.3	23	--	386	304	659	7.0	12	. 4	. 0
711	$\mathrm{KcgrI}^{\text {c }}$	330	do	13	\cdots	134	110	21	--	388	456	15	3.4	. 2	\ldots	953	797	1,390	7.0	5	. 3	. 0
714	Kcgr^{1}	91	Appr, 9, 1940	--	\cdots	55	8	54	--	329	--	8	--	--	-*	286	170	\cdots	--	41	1.8	1.9
715	Xche, $\mathrm{K}_{\mathrm{CgK}} \mathrm{l}$, Kece	373	Juty 27, 1977	8	-"	73	44	14	--	332	83	22	1,6	< 4	\cdots	409	365	670	8. 3	B.	. 3	. 0
719	Scee	475	Junc 20, 1.977	12	--	74	57	104	17.	362	239	85	2.7	2.3	\cdots	770	419	1,263	7.8	34	2.2	. 0
719	Xoce	475	July 27, 1.977	12	--	75	58	109	--	336	238	82	2.7	. 8	--	742	427	1,162	8.6	36	2.2	- 0
721	Kcee	500	Nov. 7, 1974	11	--	73	60	98	--	361	229	1	2.8	2.1	--	734	427	1,1ss	7.9	${ }^{33}$	2.0	. 0
722	Kegru	80	do	9	--	112	47	14	\because	372	147	24	2.3	6.4	--	538	471	840	7.8	6	. 2	. 0
723	Kcgru	104	Nov. 6, 1974	11	--	159	27	13	--	328	220	24	1.2	1.1	\cdots	617	510	895	7.5	5	$\cdot 2$. 0
724	Kegry	105	do	10	--	272	79	14	\cdots	326	690	24	2.3	$\leqslant .4$	--	1.,251.	1,000	1,550	7.6	3	${ }^{1}$. 0
725	Kcgru	80	do	9	--	133	24	10	--	361	120	17	1.4	7.0	--	498	429.	76.5	7.8	5	$\rightarrow 2$. 0
726	Kcgr ${ }^{\text {L }}$	--	Nov. 7, 1974	12	"	124	19	10	--	405	43	16	. 3	7.0	--	490	389.	705	7.5	5	2	. 0
901	Kche, Kcgrl, Rece	32.0	Nov. 24, 1974	21	--	72	24°	9	\cdots	314	19	15	.4	4.0	--	318	282	530	7.8	7	. 2	. 0
12-101	$\mathrm{Kcgri}^{\text {I }}$	--	Apr. 8, 1940	-	\cdots	45	8	1.2	--	201	--	4	\cdots	\cdots	--	167	145	-	--	15	.4	. 3
203	Kche, Kegri, Kece	410	Aug. 3, 1965	12	\cdots	114	12	6	1.1	392	7	12	. 0	8,3	"-	365	334	648	6.8	4	. 1	. 0
- 208	Kcise, Kegrl, Xece	352	Apt. 15, 1974	10	--	107.	15	. 8	-*	349	21	15	. 6	17	--	. 365	329	604	7.4	5.	1	. 0
208	kche, Kcgr 1 , Kecc	352	9uly 22, 1976	9	-	104	13	6	\cdots	348	12	11	. 3	5.7	--	332	311	559	7.7	4	. 1	. 0

Table 6.--Chemical Analyaca of kater from Selected Kella and Springs--Continued

Gell	Water- bearing unit	Depth of well or sampled interval (ft)	Date of collection	$\begin{aligned} & \text { silics } \\ & \left(S 10_{2}\right) \end{aligned}$	$\begin{gathered} { }_{(\mathrm{Fr})}^{\mathrm{Fen})} \end{gathered}$	$\begin{aligned} & \text { Ca1u } \\ & \text { cium } \\ & \text { (Ca) } \end{aligned}$		$\begin{aligned} & \text { Sod- } \\ & \text { inum } \\ & \text { (Ma) } \end{aligned}$	Potag siurn (K)	Bicarbonate (HCO_{3})	$\begin{aligned} & \text { Sui- } \\ & \text { fate } \\ & \text { fate } \end{aligned}$	$\begin{aligned} & \text { Ch10- } \\ & \text { ride } \\ & \text { (c1) } \end{aligned}$	$\begin{gathered} \text { Fluo- } \\ \text { ride } \\ (\mathrm{F}) \end{gathered}$	$\begin{gathered} \text { WI } \\ \text { trate } \\ \text { (NO } \end{gathered}$	Boron (B)	$\begin{gathered} \text { D1s- } \\ \text { solved } \\ \text { solids } \end{gathered}$	Total hard- nesa as CaCO_{3}	Specific conductance (mideromho at $25^{\circ} \mathrm{C}$)	pH	$\begin{aligned} & \text { Pex- } \\ & \text { cent } \\ & \text { sod- } \\ & \text { ium } \end{aligned}$	Sodium adtorp- tion ratio (SAR)	$\begin{gathered} \text { Residual } \\ \text { sodium } \\ \text { carbon } \\ \text { ate } \\ \text { (RSC) } \end{gathered}$
RE-68-12-208	Kche, Kcer Kcgr1,	352	.July 22, 1977	11	--	103	15	7	--	365	14	11	0.3	5.7	--	349	321	584	7.8	5	0.1	0.0
209	Kigr ${ }^{\text {P }}$	365	Mar. 8, 1940	--	--	83	55	72	--	378	197	49	2.2	--	--	644	434	.-	--	27.	1.5	- 0
301	Kcho	555	Dex. 3, 1976	14	-	57	37	252	--	328	219	265	1.1	$<.4$	\cdots	1,006	299	1,620	8.1	65	6.3	. 0
489	Kcgrgr^{1}	. 351	$\Lambda_{\mathrm{lpr}} .15,1974$	8	--	90	25	20	--	329	62	21	1.0	$<.4$	--	389	330	640	7.5	12	. 4	. 0
409	kcepr 1	351	July 22, 1976	11	--	82	61	79	--	360	240	56	2.6	$<.4$	--	709	459	1,100	7.6	27	1.6	- 0
410	Kogr 1 .	290	Aug. 3, 1965	--	--	97	17	16	--	354	12	14	--	27	--	357	310	--	"-	10	. 9	. 0
411	Kogr 1	260	do	11	--	88	13	4	. 9	322	7	73.	. 0	2.8	--	358	273	532	7.1	3	.1	\bigcirc
501	Kcgr ${ }^{1}$	425	M80. ${ }^{\text {7, }} 1940$	"-	-	83	54	44	--	311	189	48	2.0	\cdots	--	572	428	--	\cdots	18	$\because 9$. 0
502	K<grl	410	Mer. s, 1940	--	--	84	23	12	--	${ }^{268}$	20	22	. 2	71	--	363	304	--	-*	8	. 2	- 0
503	Kegrl	310	do	--	--	74	18	13	\cdots	317	12	12	--	--	--	284	261	--	\cdots	10	. 3	.0
18-201	Kegru	490	July 9, 1974.	9	--	310	29	5	--	224	680	9	. 7	$\checkmark .4$	--	1,153	890	1,340	7.6	1	. 0	. 0
301	Kuthe, Kegr 1 , Kece	440	Nov. 25,1974	15	--	107	103	37	--	354	433	25	5.1	2.1	--	901	990	1,250	7.8	10	-6.	.0
19-101	Kcgru	90	Jan. 9, 1940	--	--	111	20	24	--	366	26	43	--	2.6	--	406	357	\cdots	--	13	. 5	\bigcirc
102	Kcgrv	135	do.	--	--	89	45	5	--	384	80	15	--	--	--	422	408	--	\cdots	3	. 1	. 0
103	Kcgr 1	390	Apr. 9, 1940	--	--	104	43	13	--	354	146	13	1.4	--	--	494	436	*	-.	6	.2	. 0
106	Kenc, Kcgr1, Kece	440	Aug. 20, 1976	11	0.2	110	95	22	--	382	354	14	4.2	$<.4$	--	798	670	1,136	8.1	7	$\cdot 9$. 0
204	Kcihe, Kcgr 1 , Kece	425	Aug. 2, 1965	13	--	83	66	41	--	400	197	33	2.9	. 8	\cdots	613	478	1,010	6.8	16	. 8	. 0

EXPLANATION

Public supply well Industrial well Irrigation well Domestic or livestock well
Oil or gas well

Test hole
est hole Unused or abandoned well
Solid circle indicates flowing well
Spring
Spring
Line above well number indicates
ine aboly

Location of Selected Wells, Springs, and Oil and Gas Tests in Kendall County
xERR Colnty
abie 5,--Rroorda of Sciceted water Wella, Spriage, and orl and bas Teete
All wolls arc drilled unleas ochervibe noted in reulsrka columu.

Unt of water
Whator-berring

able 3.--Recorde of selected Water Kella, Springs, and di. 1 and Gas Test--Centinued

Well	comer	driller	$\left\|\begin{array}{c} \text { Dare } \\ \text { completed } \end{array}\right\|$	$\begin{gathered} \text { Depeh } \\ \text { off } \\ \text { velt } \\ (f \mathrm{fL}) \end{gathered}$	Cartag.		$\begin{array}{\|c\|} \hline \text { water } \\ \text { bear1ngs } \\ \text { unit } \end{array}$	$\begin{gathered} \text { Altitume } \\ \text { of land } \\ \text { sarfece } \\ (f i c) \end{gathered}$	Kater Level.		$\begin{gathered} \text { Method } \\ \text { of } \\ \text { of } \end{gathered}$	$\begin{gathered} \text { Use } \\ \text { of } \\ \text { ofter } \end{gathered}$	2emark:
					$\begin{aligned} & \text { Ditam- } \\ & \begin{array}{l} \text { deer } \\ (\mathrm{In},) \end{array} \end{aligned}$	Depth (ft)				Date of meas eve ement			
R.J-56-62-604	Csmp Rio V1ata	Hill Cquntry hater Ioc.	1976	$4 \mathrm{4a}$	6	461	Rche	1,320	250	Apr, 21, 1976	${ }_{5}^{\text {Sub, e }}$	P	Open thale from 461 ta 480 fere, Cemented from 461 feet to surface, Reported yield 40 galfmen.
* 901	Hta, a, C, Hanszen	--	1956	864	8	864		1,955	378.8 265.5	$\begin{array}{ll} \text { May } \\ \text { Mor. } . & 12, \\ 12, & 1966 \\ \hline \end{array}$	$\underbrace{\substack{\text { Sub }}}_{\text {Sub, e }}$	D, s	Drilled to 1,060 feet and plugged back to 864 . feet. Perforated from 729 to 795 feat and 805 to 820 feet. Reported yield $150 \mathrm{gai} / \mathrm{min}$. Observation well, 113
904	د. Hoore	British-American Oil Co.	1964	1,232	-	\because	\cdots	2,097	-	--	--	--	oil test, y 3 3
63-204	S. L. Ealtard	4. Wetustyer	1961	234	6	-	Rceprl	1,720	$\begin{aligned} & 158.3 \\ & 172.1 \end{aligned}$	$\begin{array}{ll} \text { Noov } & 23, \\ \text { May } & 1966 \\ \hline 1977 \end{array}$	${ }_{\substack{\text { sub, } \\ 3 / 4}}^{\text {s }}$	0	Obaervation welt. 3
401	Ingram Weter Supply, we11 1	『dmonds Drillink c_{0}.	1965	600	$\begin{aligned} & 8 \\ & 7 \\ & 7 \end{aligned}$	$\begin{array}{r} 67 \\ 400 \\ 400 \end{array}$	Rche	1,780	215	Apt. 1966	${ }_{15}^{\text {T, }}$	${ }^{\text {P }}$	Perforated from 400 to 600 fect. Cctmented from 400 feet to surface. Reported yield 140 gal/min. 3
402	Ingram Water Supply, well 2	Ho	1962	6.25	9	${ }_{625}^{435}$	Kche	1,840	276 298	$\begin{array}{cc} \text { Apr. } & 25, \\ \text { Masy } & 1966 \\ \hline 1973 \end{array}$		P	Perforsted From 435 to 625 fert. Cemented from 435 fect to surface. Reported yield 120 gal/mio whth 13 feet drawdow.
* 403	J. \%. Hill	do	1956	536	7	536	kche	1,905	335	July 1958	Suth, ${ }_{2}$	D	Slptted from 4i6 ta 536 feet, Pump set at 420 fert.
407	Iogram Water Supply, well 3	Willian E, Page	1973	610	9	442	R.he	1,870	--	--	${ }_{\text {Sub, ex }}^{\text {15 }}$	${ }^{\text {P }}$	Open hole from 442 to 610 feet. Cemented from 442 fent to rutface. Reported yield 20 gal $/ \mathrm{min}$ with 0 fect drawdown.
408	L. M. Yotk	H111 Country Wster Ine.	1975	320	6	252	${ }_{\text {Kegrt }}$	1,695	174.1	act. 6, 1977	$\underbrace{\text { sub, }}_{1} \mathrm{i}$	p	Open bole from 251 to 32 D feet, Cemented from 251 feet to surface. Reported yield 50 gol/min.
501	city of Kerrvtlle	\%. Skunders	1957	620	16 12	513 620	Kcho	1,674	${ }_{252}^{214.9}$		$\underbrace{\text { Sus, }}_{100}$ E	${ }^{p}$	Slotted from 513 ta 620 feet. Cemented from 513 fegt to surface. Evolp set at 400 feet. Reported yield $900 \mathrm{gal} / \mathrm{min}$ with 94 fét draw down. Acidized. 3f
* 502	W. F. Stelzer	Edmonds ${ }_{\text {ctilling }} \mathrm{c}_{0}$.	2965	657	9	657	Ketp, Kcho	1,702	400	Apr. 26, 1966		D	Slotted from 470 to 540 feet and 550 to 630 feot. Pump set at 550 feet. $1 / 3 /$
507	R. ramsen		1956	614	8	450	Resec, Rcho	1,665	200	Dec. 2, 1966	$\mathrm{Sab}_{1 / 2}^{\mathrm{e}}$	D	Open hole Erom 450 to 614 feet. Yield dnezrased to $300 \mathrm{ga} / \mathrm{min}$ wten acidized. y 3
601	City of Kervifile, ue11 1	-	--	610	7	--	Kctp Kcho	1,650	157.1	Ape. 14, 1966	*	N	Plugged. 31
* 602	City of Kerrvitic, well 2	--	--	630	7	252	Kctep	1,650	253.6	do	N	*	Open hale from 252 to 650 feet. Hepaxted yifid 500 gal/min. Plugged. $3 /$
* 603	clty of kerville, wel1 3	J. R. Johneon Drilling Co.	1949	725	$\begin{aligned} & 12 \\ & 10 \end{aligned}$	$\begin{aligned} & 219 \\ & 495 \end{aligned}$	Kcho	1,652	$\begin{aligned} & 275.3 \\ & 242 \\ & 220 \\ & 243 \end{aligned}$	$\begin{array}{lll} \text { June } & 14, & 1967 \\ \text { Sepp. } & 1967 \\ \text { Mav. } & 24, & 1969 \\ \text { May } & 24 ; & 1968 \end{array}$	$\mathrm{T}_{75}{ }^{\text {B }}$	${ }^{\text {P }}$	Drilled to 725 feet and caved back to 667 feet. Open hole frow $49 B$ to 667 feet. Cerontted from 219 fett to surfice. Pump set at 40 k forst, Reported yiold 610 gal/毎in with 39 feet dramdom. 13
* 604	City of Kerrvi.11e, well 4	J. H. Crowder	1945	606	$\begin{aligned} & 14 \\ & 10 \end{aligned}$	${ }_{470}^{292}$	Kcho	1,653	${ }_{124.8}^{192.5}$	$\begin{aligned} & \text { Freb } \\ & \text { Sept. } \end{aligned}$	${ }_{\text {T, }}{ }_{75}{ }^{\text {E }}$	${ }^{\text {P }}$	Open hole from 470 to 606 feet. Cemented from 292 feet to aurface. Pump set at 450 feet. Reported yield 670 gal/fin with 30 Reet drawdown. Acidized. 3
* 605	City of Kerrville, wacl1 5	J. R. Jehnson Dxilling Co.	1947	600	$\begin{aligned} & 14 \\ & 10 \end{aligned}$	$\begin{aligned} & 394 \\ & 490 \end{aligned}$	Kcho	1,656	$\begin{aligned} & 232.7 \\ & 24.7 \\ & 245 . \end{aligned}$	$\begin{array}{ll} \text { Apr. } & 13, \\ \text { Mas } & 1967 \\ \text { Mas. } & 17,1972 \\ \text { Oct. } & 24, \\ \hline 1973 \end{array}$		P	Open hole from 463 to 600 fret. Cemented from 470 feet to aurface. Pump aet at 410 feet. Reported $y=141,000 \mathrm{gal} / \mathrm{min}$. Acidized. $3 /$

Seef footnotes at end of table.

see foothotes at end of table
rable 5.--Records of selected water hells, sprivge, and onl and gas Teata--Continurd

Well	Onder	Drifler	$\left\|\begin{array}{c} \text { Date } \\ \text { completed } \end{array}\right\|$	$\begin{gathered} \text { Depeh } \\ \text { of } \\ \text { vell } \\ (\mathrm{ft}) \end{gathered}$	Castng		$\begin{gathered} \text { Water } \\ \text { bearing } \\ \text { wnit } \end{gathered}$	$\begin{gathered} \text { Altitude } \\ \text { of 1 and } \\ \text { surface } \\ (\mathrm{ft}) \end{gathered}$	Mater level		$\begin{gathered} \text { Nethod } \\ \text { of } \\ 11 \mathrm{ft} \end{gathered}$	$\begin{gathered} \text { Use } \\ \text { of } \\ \text { water } \end{gathered}$	Remarks
					$\begin{aligned} & \text { Digmv } \\ & \text { ater } \\ & \left(\mathrm{m}_{\mathrm{n},}\right) \end{aligned}$	$\underset{\substack{\text { Depth } \\(\mathrm{ft})}}{ }$				Date of mes Barceurnt			
RJ-56-63-9r0	Rivethill Himicipai UtLlify Dlat.	Edmonds Drilling ca.	1969	630	8	630	kcgre Kehe	1,810	331	1975	$\mathrm{Sc}_{25}^{\text {sub, e }}$	P	Elotted frow 430 to 630 fect. Cemented from 450 feek to surface. Pump set at $4 \% 1$ feek. Repotited yheld 125 givi/min.
912	Osk Grove Trailer Park	do	1969	540	7	436	$\mathrm{Kcgegr}^{\text {, }}$ Keha	1,725	--	\cdots	${\mathrm{Sub}, \underset{1 / 2}{\mathrm{E}}}_{\substack{1 / 2}}$	P	Slotted from 360 to 436 foet. Open hole from 436 to 540 feat. Cemanted from 380 feet to surtace, Reported yield 100 gal/nin ofth 50 feet diandown.
913	Kerriville South vtilities, weli 1	do	1967	740	8	340	$\begin{aligned} & \text { Kcyr1, } \\ & \text { Rehe, } \\ & \text { Kece } \end{aligned}$	1,8\%	--	--	$\underset{\substack{\text { sub, } \\ 30}}{ }$	P	Slatted from 500 ta 642 feect and 695 to 720 foet. Cembited from 500 feet to surface.
914	Kerrville 5outh 3tilities, well 3	do	1967	490	5	390	${ }_{\text {KgEr }}$	2,750	--	\cdots	$\mathrm{Sub}_{3} \mathrm{~B}^{\text {E }}$	P	Open thole from 390 to 480 feet. Cemented froc 390 foet to surface.
915	Kercillle South Utilitiee, well 4	Gua brsende1	--	500	8	--		1,685	279,3	Oct. 19, 1977	$\underset{\substack{\text { Sub, } \\ 1 / 2}}{B}$	P	--
916	Kencyitle South Utilities, weIl 5	Edmonds Drilling co.	1973	440	7	395	Kegr1	1,742	297.6	Oet, 6, 197\%		F	Open hole from 385 to 440 Eeet. Cegannted from 385 feet to surface.
64-205	Wideernexs rate	do	1971	750	7 6 5	$\begin{aligned} & 600 \\ & 694 \\ & 750 \end{aligned}$	Xegr 1	2,061	${ }_{495.8}^{470}$	$\begin{array}{ll} \text { July } & 7, \\ \text { Dec. } & 1971 \\ \text { 6, } & 1977 \end{array}$	Sub, B	P	Slotted. Cemented from 600 feet to murface.
" 402	Unj.ted States Department of Agrieslture	w. F. Welmeyer	1960	465	5 4	$\begin{aligned} & 376 \\ & 465 \end{aligned}$	Kehe	1,840	307	1960	$\mathrm{Sub}_{3} \mathrm{E}$	P	Slotted from 376 to 465 fret. 3
403	City of Ketrville	Edmoude Deilliug co.	1965	604	--	--	Kcho	1,654	-.	\cdots	${ }^{\text {H }}$	N	13
406	United Ststee Peģatment of Agriculture	do	1966	430	5	430	Kche	1,820	225	2966	$\underset{5}{\text { Suh, }}$ E	p, s	Perforated from 370 to 430 Eeet. Cemented from 370 feet to qurface. Pump set at 430 feet.
407		do	1972	620	12	541	Ksloo	1,720	219 440	$\begin{array}{lll} \text { May } \\ \text { Oct, } & 26, & 1992 \\ \text { Ock } \end{array}$	${ }_{40}^{\text {Sub, E }} 4$	F	Open hole from 541 to 600 feet. Cemented from 541 feat to surface. Purlp set at 550 feet. 1
* 501	Sam Kadeley	--	--	$s_{\text {pring }}$	\cdots	\cdots	Kogru	1,830	-.	.-	Flows	s	Reported $\ddagger 100 \mathrm{~cm} 15 \mathrm{gaz} / \mathrm{min}$ on Jwhe 15, 1966. 3
* 601	B. R. Schatiz	J. R, Johnson Drilling © 0.	1952	634	$12 *$	600	Kchlo	1,756	$\begin{aligned} & 150 \\ & 167.5 \end{aligned}$	Aug. $21,{ }^{1952}$	${ }_{75}^{5,5}$	${ }_{\text {Ifx }}$	Open hole from 600 to 634 feet, Pump set at 330 feet. Reported yicld 1,000 gal/roin. 3
* 605	Texas Depstrment of Highwayis and Transportation	$\underset{\substack{\text { Hill } \\ \text { Inc. }}}{ }$	1975	690	10	580	keho	1,900	359	July v7, 1975	--	F	Open hole from 580 to 690 feet. Reported yield 249 gal/uft with 271 fect drapdom. I
301	City of Keriville, wall 11	J. R. Jofneon Drilling Co.	1963	638	12	528	Kcho	1,600	$\begin{aligned} & 171.5 \\ & 194,7 \\ & 207 \\ & 244 \\ & 250 \\ & 269,9 \end{aligned}$		rer $\begin{array}{r}\text { T, } \\ 150\end{array}$	p	Open hole from 528 to 636 feet. Cemented from 528 feet to surface. Pump set at 450 feet. dom. Acldized. Observation well, y 3
* 702	United States Veterans Aduinistration Hospital	do	1962	665	${ }^{12}$	643	Kcho	1,630	135 303	$\begin{aligned} & \text { Ksy } \\ & \text { gept. } \\ & \text { ge, } \\ & 1975 \\ & 1966 \\ & \hline \end{aligned}$	$\mathrm{Sub}_{\text {Ss, }} \mathrm{E}$	${ }^{\text {P }}$	Pciforated from 598 to 643 feet. Open hole from 643 to 665 feet. Pump aet re 398 Eexe. Reported yield 325 gal/min with 13 feet drawdomn. meldized. 3
* 703	City ot Kerroille, FATm well	K1ag Stokes	1953	457	7	427	Kclie	1,639	13.9	Mar. 16, 1967°	${ }_{1}^{c}{ }_{1}$	D, s	Drilled to 600 feet and caved back to 457 feet. Open hole from 427 to 457 feet, Permp set st 245 feet. 113

See footnotes at and of table.

Table 5.--Records of selected water wells, Springs, and oil and cas reate--Continued

see footnotes at end of table

Table 5.--Records of Selected Cater Kelle, Springs, and pil and Gas Tests--Continuch

Wel 1	Onner	drinler	$\left\|\begin{array}{c} \text { Date } \\ \text { completed } \end{array}\right\|$	$\begin{gathered} \text { Depeth } \\ \text { of } \\ \text { vell } \\ (f t) \end{gathered}$	$\mathrm{CaEsing}^{\text {a }}$		$\begin{aligned} & \text { Nater } \\ & \text { bear1ng } \\ & \text { vnit } \end{aligned}$	$\begin{gathered} \text { Alentund } \\ \text { of land } \\ \text { surface } \\ \text { (ftr) } \end{gathered}$	Water Level.		$\begin{aligned} & \text { Method } \\ & \text { of } \\ & 1 . \mathrm{fft} \end{aligned}$	$\begin{gathered} \text { Use } \\ \text { of } \\ \text { water } \end{gathered}$	Remarka
					$\begin{aligned} & \text { Diamv } \\ & \text { eterv } \\ & \text { (inr) } \end{aligned}$	$\underset{(f t)}{\text { Dapth }}$			Belown landsurface datua \qquad	Date of massurcment			
* RJ-68-01-506	Pot of cold Ranch	Lauis Berigmadin and Sous	1966	320	6	260	Kche	1,480	170.0	Jurly 20, 2974	Sub, e	p	Open hote frow 260 to 320 feet.
69-03-201	G. F. Schreiver no. 1	continental otl ca.	1942	6,010	-	\cdots	--	2, 34,	--	--	--	--	ozitest. y y
501	Hilde fuld no. 1	Auld and Tucker	145\%	5,972	--	--	\cdots	2,355	--	-	--	--	Do.
502	Mritisa Auld no. 1	Edroiniaton sad Forulef	1949	3,504	\cdots	\cdots	--	2,350	--	--	--	--	Do.
503	do	Woodward and co.	1951	5,932	\cdots	\cdots	-»	2,363	--	--	--	--	Dos
04-601	c. O. Whitworth no. 1	Phillips Petroleum co.	1945	6,620	--	--	--	2,193	\cdots	*	--	-	Do.
301	Adam hilson, Jx.		t961	7,031	--	--	-.	2,361	--	--	--	--	Do.
06-301	Hugo Rest ${ }^{\text {do. }} 1$	Elmer Schmidt, et al	1952	2,519	--	--	--	2,070	--	*-	-.	..	Do.
302	Afme Rent nis, 1	Union Oil of Californif	1973	3,077	--	--	**	2,133	--	. --	--	--	Dil test. 1
601	W. J. Goldetan	--	\cdots	Spring	\cdots	--	Regru	1,300	--	--	Flowe	E	Reported flow 20 gal/min on Det. 11, 1958. 3
* . 801	T. Frictman	A. Smith	1954	450	,	237	$\begin{aligned} & \text { Kccerl, } \\ & \mathbf{K}_{\mathrm{cctue}} \end{aligned}$	1,671	83	May 1954	т, e	ロ	Open bole fram 237 to 450 feet, 3
- 901	๗. s. goldetan	do	1954	455	6	455	Rche	1,693	120	July 1954	$\begin{gathered} \text { Sub, } \\ \mathrm{h} / 1 / 2 \\ \hline \end{gathered}$	จ	Perforated from 300 to 400 feet. 3]
* 07-101	F. Loger	-.	1955	460	8	375	$\begin{aligned} & \text { Rcgrar }, \\ & \text { Keher } \end{aligned}$	1,760	100	1966	$\mathrm{sub}_{1} \mathrm{c}$, B	D	Open hiole from 275 to 460 feer. ? 3
202	F. Rea 1	N, Es, Page	1936	400	6	400	$\begin{aligned} & \text { Kegri, } \\ & \text { Kefer } \end{aligned}$	1,650	$\begin{array}{r} 58.4 \\ \text { noi.8 } \end{array}$	$\begin{aligned} & \text { Des. 17, } 1952 \\ & \text { Sept. 15, } 1960 \end{aligned}$	c, w	s	Perforated. Mistorica1 Dbservation well, 31
204	L. and $\chi_{\text {, }}$, Enterpriseb	Edmonda Desiling co.	1973	570	8	460	Kcgrl	1,781	260	Dec. 1973		$\stackrel{ }{ }$	Oper kole ferm 460 to 570 feet. Cemanted from 460 feet to furtiace.
* 301	G. E. Rosa	..	-	600	6	600	Kche	2,780	274.4	May 26, 1966	$\underset{2}{\text { Sub, e }}$	\pm	Reworked is 1961. Slotted from 480 to 600 fagt. Pump set at 330 feet. Reported yfeld 50 fal/ain with $91 / 2$ fect dxatedown. 3
* 902	T. S. ciement*	Willisan E. Page	1952	1,000	8	796	Rcho	1,769	334	H6v. 1952	$\underbrace{80 \mathrm{cb}, \mathrm{s}}_{30}$	Irr	Opeu hole frow 796 to 1,000 feet. Pump set at 400 fetet. Reported yield yo gal/minn, $1 / 3$
90.3	R. A. Mowlin	G. L. Rowsey	1954	7,903	--	\cdots	\cdots	1,670	--	--	"-	--	011 teet. $1 / 3$
* 08-101	City of Kerrvilie, Airport well	Edmonde Detiling co.	1957	665	10	551	Reho	1,580	149 146 111 117 234 232.2 249.0		$\underset{15}{\text { Sunf, }_{\text {E }}}$	P	open hole frott 551 to 665 feet. Cempntad from 551 faet: to surface, Purap set at 480 feet. Reported yield 90 gal/rin. Observation well. If 3
103	Guadelupe He1ghta Betidity Cotp., well 2	do ${ }^{\circ}$	1962	660	6	660	Kcho	1,620	200	spr. 1965	$\underset{10}{\mathrm{Sub}_{10}} \text { E }$	P	Perforated fror 605 to 660 feet. Pump tet at 440 Eeet, Reported yield 115 gat $f(\mathrm{~min}$. 乌
104	Guadalupe haighta betifty Cotpe, vell 3	William b. Page	1967	690	$\stackrel{8}{7}$	$\begin{aligned} & 590 \\ & 699 \end{aligned}$	Reho	1,620	240.5	Apr. 29, 1966	$\mathrm{Sub}_{10}, \mathrm{~B}$	P	Perforated from 630 to 680 feet. Heported yield $150 \mathrm{gaj} / \mathrm{min}$, with 31 feet drawdown. y^{\prime}
- 106	c. Meek	6. L. Rowsey	1954	900	${ }^{15}$	600	кеня ${ }^{\text {a }}$	$1,580$	è	1954	$\begin{gathered} T_{i 50}^{G} \\ i \end{gathered}$	Irr	Slotted from 200 to 600 feet. Open hole from 600 to 900 feet. Reported yield $1,100 \mathrm{gat} 1 / \mathrm{min}, ~$ If

See footnotes at end of table
xerr county
rable 5,--Records of Selected Weter wella, springs, and Oil and Gat Tests--Contimued

Wel1	Onner	Driller	$\begin{gathered} \text { Date } \\ \text { completed } \end{gathered}$	$\begin{gathered} \text { Depth } \\ \text { of } \\ \text { ofll } \\ \text { (ft } \\ \text { (f) } \end{gathered}$	Casing		$\begin{gathered} \text { Mater } \\ \text { DearIng } \\ \text { wnIt } \end{gathered}$	$\left\|\begin{array}{c} \text { Altitude } \\ \text { of land } \\ \text { gurfsce } \\ \text { (ft) } \end{array}\right\|$	Watar Level		$\begin{gathered} \text { Hethoot } \\ \text { Of } \\ \text { Iift } \end{gathered}$	$\begin{gathered} \mathrm{u}_{\text {se }} \\ \text { of } \\ \text { waler } \end{gathered}$	Remarks
					$\begin{aligned} & \text { Dianal } \\ & \text { eter } \\ & \text { (10.) } \end{aligned}$	$\left\{\begin{array}{c} \text { Depth } \\ \text { (ft) } \end{array}\right\}$			landsurface (ft)	Date of ofeasurement			
* 8, ${ }^{\text {d }}$-69-08-107	c. Meek	G. 1. Rowsey	1954	900	15	600	Rcho	2,615	130	1954	Sub, z	ס, в	S1ptted from ziol to 600 feet. Open hole from
* 201	J. ı. Rappoles	--	1964	530	5	445	Rche, Kcce,	1,655	$\begin{aligned} & 162,7 \\ & 156.7 \\ & 171.1 \end{aligned}$		$\substack{\text { Sub, } \\ z}^{\text {c }}$	\square	Cbservation weli. 3
401	A. B, Prais	-.	--	480	6	20		1,575	32	1966	T, ${ }_{3}{ }^{\text {E }}$	s	Open hole from 20 to 400 feet. Pymp sit at 120 feet. 3
402	do	Bdmonds Drilling co.	1966	580	5	580		2,575	81.5	Mar, 17, 1967	Sub, E	D	Slotted from 560 to 580 feet. Pump set at 7.20 foct. y_{y}
* $\begin{aligned} & 5 \\ & 502 \\ & 502\end{aligned}$	Harcld L. Thompxion	B. F. Laskey	1956	78	8	75	Kcgru	1,530	54	1956	$\mathrm{T}_{20}{ }_{20}{ }^{\text {a }}$	Irr	Open lole from 75 to 78 fret. ?ump set at 76 feet, Reported yirid $1,000 \mathrm{ga1/min}$. 3
	verde rille, well 1	William E. Page	1972	155	6	--	Fcgru	1,560	--	-.	Sul, E	${ }^{\text {P }}$	--
	Verde H4.1.s, wril 2	do	1972	360	6	320	x+gru	1,560	\cdots	--	$\mathrm{Sub}, \mathrm{E}_{3}$	P	Open topte from 320 to 380 feet. Cemented from 320 fect to aurfsce.
601	Mnsty Arothere	Edmands Drilling co.	1954	312	10	60	$\mathrm{K}_{\mathrm{cgr}}$, Rche	1,525	$\begin{aligned} & 128,4 \\ & 41.4 \\ & 45.4 \end{aligned}$	$\begin{aligned} & \text { Kar. } 15,1967 \\ & \text { May } \\ & \text { Mas, } \\ & \text { Has, } \\ & 19,1977 \\ & \hline 1978 \end{aligned}$	$\underbrace{}_{\substack{\text { Sub, } \\ 10}}$	Irs	Drdiler to 495 feet and caved back to 312 feet. open hole from 60 to 312 tent. Reported yield $100 \mathrm{gal} 1 / \mathrm{min}$ with 112 feet dramdown. observation well. E3
603	Joe Burket	--	-*	320	6	320	Kche	1,51.5	$\begin{aligned} & 30 \\ & 35.4 \end{aligned}$	$\begin{array}{\|lll} \text { Apr. } & 1966 \\ \text { Aus. } & 11, & 1975 \end{array}$	$\underset{\substack{\text { Sub, } \\ 5}}{\text { c }}$	\%	Pump bet at 250 feet. Reported yield $65 \mathrm{gal} / \mathrm{mfu}$ with 108 foet drandom. 24
604	do	Edmonda Drtiling co.	1965	314	8	251	Kche	1,530	143	1965	$\begin{gathered} \text { Sub, } \mathrm{B} \\ 7 \mathrm{i} / 2 \end{gathered}$	${ }^{\text {F }}$	Open hole from 251 to 314 Feet. Reported Fleld $100 \mathrm{gal} / \mathrm{m} 1 \mathrm{n}$ with 60 feet drawdgwn. ?
605	do	--	--	314	s	230	Kche	1,530	71.5	K4y ${ }^{\text {2 }}$ 27, 1966	$\mathrm{Sub}_{15} \mathrm{~S}^{\text {E }}$	P	Open thote from 230 to 314 feet. Reported yield 150 gal/min vith 212 feet drewlown. 3
606	Moaty Brothere	uilliem r. Page	1922,	317	15	60	$\begin{aligned} & \text { Kcegr, } \\ & \text { Kcbee } \end{aligned}$	1,525	120	Jan. 27, 1967	${ }_{10}^{\text {Sab, }} \mathrm{E}$	Itr, D	Perforated frow 40 to 60 fect. Open hole froul 60 to 317 feet. rimp sett at 275 feet. Reported yle1d $95 \mathrm{ga} 1 / \mathrm{min}$ orlth 150 feet droacoown. 3
* 613	6. Malker	F. Pox	1966	225	6	147	$\begin{aligned} & \text { Kcgr } 1, \\ & \text { Kche } \end{aligned}$	1,510	54.8	May 9, 1966	c, w	2, 3	Oper halo from 147 to 225 feet,
614	Mosty Exothers	A. Week	1956	427	${ }^{3}$	180	Kche, Kcer	1.570	$\begin{aligned} & 104,8 \\ & 108 \end{aligned}$	$\begin{aligned} & \text { Apy. } \\ & \text { 29, } \\ & \text { June } \\ & 27, \\ & 19666 \\ & 1966 \end{aligned}$	T	*	Dxalited to 600 feet and caved back to 427 fece . Open hole from 180 to 427 Ceet. Reported yleld 110 galfain with 87 feet dramiont. Unused itrigation welf. y y
616	Joe Wi1san	Loufa bergmann and	1973	401	6	305	Kche, ${ }^{\mathrm{s} \mathrm{cec}}$	1,470	\%	400. - I, 1973	Sub, E	1	Dpen hole from 305 to 401 feet.\Cemented from 305 feet to eurface. Meported yfeld 28 gal/min with 60 feet drawdown,
* 617	J. B. crutchefeld	B111 Wetner And Son	1974	340	6	340	$\begin{aligned} & \text { Kegri, } \\ & \mathrm{Keghehe}^{2}, \end{aligned}$	1,460	45	Hove 12, 1974	${ }_{3 / 4}^{\text {Sub, }}$ e	-	Slotted from 240 to 340 feet. Cemented from 10 feet to zurface. Reported ydeld 30 galimin with 60 feer drswdown.
${ }^{616}$	Mrs. George Rhodes	a. C. Maxpby Def111ing	1974	100	5	100	Kcgru	1,519	35	Dec. 25, 1974	Sul, E	D	Slotted. Reported y 1 eld 60 gel/min.
619	Starifte Villege Hospital Ent.		1975	480	6	432	Kche	1,625	155	Scpt. 30, 1975.	$\mathrm{Sub}_{3} \mathrm{ser}^{\text {e }}$	p	Open hole frou 432 to 480 feet. Cemented from 432 feet to surfice. Reported yiflo $20 \mathrm{gal} / \mathrm{m} 1 \mathrm{n}$ with 20 fett drawdpom. .
620	Elvin R. Irving	\cdots	--	499	${ }^{6}$	--	$\mathrm{K}_{\text {cg }} \mathrm{x} 1$, Kche, Kace	1,602	\cdots	-	Sub, ${ }_{5}$	r	--

ter at at eable.

Table 5 ...Aecords of Selected Wacer Nells, Springe, and onl and Gas Testg--continued

vel1	C*ner	Drinler	$\begin{gathered} \text { Date } \\ \text { completed } \end{gathered}$	$\begin{gathered} \text { Depth } \\ \text { of } \\ \text { wel1 } \\ (f \mathrm{EL}\rangle \end{gathered}$	Cassing		$\begin{gathered} \text { Mater } \\ \text { besring } \\ \text { unitit } \end{gathered}$	$\begin{gathered} \text { Altitude } \\ \text { of 1and } \\ \text { aurface } \\ (\mathrm{ft}) \end{gathered}$	mater level		$\begin{gathered} \text { Method } \\ \text { oh } \\ \mathbf{I}_{i} \mathrm{ft} \end{gathered}$	$\begin{gathered} \text { Vse } \\ \text { of } \\ \text { wator } \end{gathered}$	Remarks
					$\begin{aligned} & \text { Diana- } \\ & \text { eter } \\ & \text { (1n.) } \end{aligned}$	$\underset{(\mathrm{ft})}{\text { Depth }}$			1andeurface (ft)	$\begin{gathered} \text { Date of } \\ \text { masarurement } \end{gathered}$			
RJ -69-08-621	George Crowley, Kerver1le South vetiltiee	."	--	--	-	--	--	1,522	40.4	Oct. 7, 1977	sub_{3}	${ }^{\text {p }}$	*
* 16-102	Dickey Brotherb Dnixy	Killiam E. Pagn	1956	680	5	650	$\begin{aligned} & \text { Kche, } \\ & \text { Krece } \end{aligned}$	1,755	100	Jan. 1956	$\operatorname{sub}_{z}^{2} \mathrm{E}$	D	Slotted frem 600 to 680 fest. ${ }^{3}$
201	c. E, Morgan	dı	195\%	520	5	492	$\begin{aligned} & \text { Kohe, } \\ & \text { Rece } \end{aligned}$	1,552	$\begin{aligned} & 144.8 \\ & 154.2 \\ & 155.4 \end{aligned}$	$\begin{array}{lll} \text { Feb. } & 25, & 1959 \\ \text { Ksy } & 19, & 1977 \\ \text { Hor. } & 19, & 1978 \end{array}$	$\mathrm{c,}_{2} \mathrm{E}^{\text {b }}$	d, s	Open forle Erom 492 to 320 Feet. Obeevvatiou we11. y

* For chentcal analysea of warex, see table 6 .
$\frac{3}{3}$ well also appests in Texas Wsere Development Board Report 102, "Cround thatet Reaurces of Rerr County, Texas".

Analyses are in oflligrans per liter except percent soffiun, specifle conductance, pH, sedium adsorption ratio (sak), and rasidual aodium carberate (RSC).

 Kcho, Hossloo stand Menbere of the Trav/s Peak lootmalion. figure in used in the computation of this sum,
Analyare by Texas Department of 1 lealth.

Wel1	Waterbearing unit	Depth of sampled interva	Date of collection	$\begin{aligned} & \text { silica }^{\left(S i 0_{2}\right)}, \end{aligned}$	$\begin{aligned} & \text { Tron } \\ & \hline\left(\mathrm{Fe}^{2}\right) \end{aligned}$	$\begin{aligned} & \mathrm{Ca1} 1- \\ & \mathrm{c} 1 \mathrm{um} \\ & (\mathrm{Ca}) \end{aligned}$	$\begin{gathered} \text { Magne- } \\ \begin{array}{c} \text { sium } \\ \left(M_{8}\right) \end{array} \end{gathered}$	$\begin{aligned} & \text { sod } \\ & \text { Hum } \\ & \text { (Na) } \end{aligned}$	$\begin{gathered} \text { Polas } \\ \left.\begin{array}{c} \text { stum } \\ (\mathrm{K}) \end{array} \right\rvert\, \end{gathered}$	Bicar- bonate $\left(\mathrm{HCO}_{3}\right)$	$\begin{aligned} & \text { Sul- } \\ & \text { fate } \\ & \left(\mathrm{SO}_{4}\right) \end{aligned}$	$\begin{aligned} & \text { Chlo- } \\ & \text { ride } \\ & \text { (cl) } \end{aligned}$	$\begin{gathered} \text { Fluo- } \\ \text { ride } \\ \text { (F) } \end{gathered}$		Boron. (B)	$\begin{gathered} \text { Dis- } \\ \text { solved } \\ \text { solide } \end{gathered}$	$\begin{aligned} & \text { Total } \\ & \text { hard- } \\ & \text { ne6s } \\ & \text { as } \\ & \mathrm{CaCO}_{3} \\ & \hline \end{aligned}$	$\begin{gathered} \text { Specifice } \\ \text { conduct- } \\ \text { smee } \\ \text { (wicremhos } \\ \text { st } 25^{\circ} \mathrm{C} \text {) } \end{gathered}$	pH	$\begin{aligned} & \text { Per- } \\ & \text { cent } \\ & \text { godd } \\ & \text { iumi } \end{aligned}$	$\begin{aligned} & \text { Sodium } \\ & \text { adsorp- } \\ & \text { tion } \\ & \text { ratio } \\ & \text { (SAR) } \end{aligned}$	Residus sodium sarton: ate ate (RSC)$\|$
RJ-56-52* 301	Kche, Kcgr	742	Aus. ${ }^{\text {P }}$ 17, 1966	\because	5.6	--	--	--	-.	240	876	18	--	--	--	\cdots	1,080	1,790	7.2	--	--	--
53-208	Kche	730	Sept. -9, 1975	18	--	37	36	19	--	293	27	12	0.9	0.9	--	294	242	488	9.5	15	0.5	0.0
61-502	Rche	756	Sept, 22, 1975	14	-	75	47	27	--	342	130	24	1.9	$<\quad .4$	--	487	383	770	8.2	13	. 6	. 0
62-106	Kcgru	--	Apr. 4, 1975	20	--	63	19	7	-.	262	6	14	. 2	2.2	--	260	236	443	8.5	6	.1	. 0
401	Xegru	305	Sept. 19, 1951	9	--	346	212	29	--	258	1,490	26	-	--	--	2,238	1,740	2,590	8.0	3	. 3	. 0
404	Kche	618	May 5, 1966	11	--	45	33	90	10	394	36	70	1.1	--	--	489	248	--	7.4	43	2.4	1.4
405	Kche	71.2	June 13, 1966	9	--	${ }^{98}$	34	101	10	396	39	69	1.4	--	--	496	235	--	7.0	47	2.8	1.7
501	Xche	921	June 20, 1966	11	--	46	30	72	7.5	360	30	50	1,3	1.0	0.3	426	240	--	7.4	39	2.0	1.1
504	Kche	460	sept. 4, 1975	19	--	161	91	26	--	278	550	24	2.0	$\times \quad .4$	--	1,009	780	1,300	8.1	7	. 4	. 0
601	Kche	400	Apr. 26, 1966	13	--	60	48	24	8.7	382	60	17	1.3	. 2	--	420	347	-	7.3	13	. 5	. 0
801	Kche, Kece	864	May 4; 1966	12	-*	64	38	124	9.9	384	155	99	1.5	\cdots	\cdots	681	916	-	7.3	45	3.0	. 0
63-401	Kche	600	Apr. 26, 1966	14	--	60	42	24	7.0	382	42	13	. 9	. 2	--	390	922	--	7.3	14	. 5	. 0
403	Kche	536	do	13	--	69	55	21	8.7	372	115	17	2.0	\cdots	--	483	398	*-	7.1	10	.4	. 0
502	$\begin{aligned} & \text { Kctp, } \\ & \text { Kchho } \end{aligned}$	657	do	1.1	--	29	31	24	20	2㫜	24	12	. 9	. 2	--	293	200	--	7.8	19	. 7	.7
602	$\begin{gathered} \text { Kctp, } \\ \text { Kcho } \end{gathered}$	650	Nov. 16, 1945	14	--	79	45	11	6.6	368	79	20	1.0	. 5	\cdots	437	382	--	7.9	6	,2	. 0
603	Kとho	725	June 9, 1966	12	--	74	46	16	3.7	376	105	17	1.2	\cdots	--	459	374	-.	7.2	8	. 3	. 0
604	Kcho	606	Nov. 16, 1945	14	\cdots	62	43	9	6.3	370	26	19	. 8	. 2	--	362	332	--	7.9	5	. 2	. 0
604	Kcho	606	Hov. 21, 1945	12	--	66	43	9	--	373	26	20	1.0	--	--	360	342	--	7.4	5	. 2	. 0
605	xcho	600	may 9, 1966	12	--	61	43	17	7.0	379	44	20	1.1	--	--	391	329	--	7.0	10	. 4	. 0
64-401	Kche	46.5	Jone 17, 1966	12	--	64	46	16	6.3	388	56	13	1.5	. 5	--	406	350	--	7.4	9	.3	. 0
. 501	Kcgru	\cdots	Junle 15, 1966	12	--	${ }^{83}$	22	6	. 8	366	6	2	. 6	1.8	--	319	310	--	7.2	4	$\cdot 1$. 0
601	Kcho	634	do	9	--	76	45	95	8.2	. 374	43	268	1.5	\cdots	، 3	629	375	\cdots	7.2	35	2.1	. 0
605	Kcho	$\therefore 690$	July 24, 1974	10	--	${ }^{83}$	41	73	--	${ }^{368}$	72	125	1.4	< , 4	--	576	375	985	7.9	30	1.6	. 0
702	Kcho"	665:	Sept, ' 4, 1963	11	-	62	43	20	6.7	383	30	25	1.1.	--	--	387	392	--	--	11	.4	. 0

Tablo 6.--Chumical Aralyses of Water trom Selected Wells and Springs--Ciontinued

Well	Waterbearing onit	Depth of well $\%$ saripled interval (ft)	Diste of sollection	$\begin{aligned} & \text { Silfes } \\ & \left(\mathrm{S} 1 \mathrm{O}_{2}\right) \end{aligned}$	$\begin{gathered} \text { Ifron } \\ \left(\mathbf{F}^{\prime}\right) \end{gathered}$	$\begin{aligned} & \text { Ca1- } \\ & \text { ctuw } \\ & \text { (Ca) } \end{aligned}$	Magner givm (Mg)	$\begin{aligned} & \text { Sod- } \\ & \text { ivm } \\ & \text { (Na) } \end{aligned}$	$\begin{gathered} \text { Potast } \\ \left.\begin{array}{c} \text { sium } \\ (K) \end{array} \right\rvert\, \end{gathered}$	Bicart bonate $\left(\mathrm{HCO}_{3}\right)$	$\begin{aligned} & \text { sul- } \\ & \text { fate } \\ & \left(\mathrm{SO}_{4}\right) \end{aligned}$	$\begin{aligned} & \text { Chlo- } \\ & \text { ride } \\ & \text { (C1) } \end{aligned}$	$\begin{gathered} \text { Fiuo- } \\ \text { ride } \\ \text { (F) } \end{gathered}$	$\begin{gathered} \begin{array}{c} \mathrm{yi} \\ \text { trate } \\ \left(\mathrm{raO}_{3}\right) \end{array} \end{gathered}$	Boron (B)	$\begin{aligned} & \text { Ois- } \\ & \text { molved } \\ & \text { solfde } \end{aligned}$	Total hardness as CaCO_{3}	$\begin{gathered} \text { Specific } \\ \text { conduct- } \\ \text { ance } \\ \text { (micromhos } \\ \text { at } 25^{\circ} \mathrm{C} \text {) } \end{gathered}$	PH	$\begin{aligned} & \text { Per- } \\ & \text { cent } \\ & \text { sod- } \\ & \text { fum } \end{aligned}$	$\begin{array}{\|c} \hline \text { Sodium } \\ \text { adsorp } \\ \text { tion } \\ \text { ratio } \\ \text { (SAR }) \\ \hline \end{array}$	Residual sodium carbon- ate (RSC)
RJ-56-64-903	Kсfı	457	Sept. 12, 1975	18	-.	72	41	19	--	368	69	12	1.4	< 0.4	\cdots	413	349	659	8.4	11	0.4	0.0
704	Kogru	302	May 6, 1966	6	--	426	286	4.3	21	206	2,040	37	--	. 2	\cdots	2,960	2,240.	-	6.7	4	. 3	. 0
705	Kche	336	Aug. 8, 1966	12	--	114	62	16	7.5	358	258	12	1.5	-	\cdots	659	540	**	7.5	6	. 2	. 9
705	Kche	336	Sept. 12, 1975	18	--	92	6 t	17	--	281	256	14	1.4	$<.4$	--	597	481	880	8.1	7	+ 3	.0
57-57-701	xche, Kegrl^{1}	263	Oct. 19, 1961	--	--	108	57	100	13	358	224	144	1,8	--	--	823	504	1,370	7.0	29	1.9	. 0
703	Kehe	360	Aug. 8, 1975	15	--	88	55	93	--	278	223	126	1.7	. 4	--	798	446	1,160	8.0	31	1.9	. 0
708	Kche	350	Feb. 21, 1967	11	--	90	46	92	24	360	138	140	1.8	--	--	918	414	\cdots	7.3	${ }^{31}$	1.9	. 0
708	Kche	390	Faxg. 12, 1976	13	2.5	101	46	94	--	364	140	145	1.6	$\bigcirc \quad .4$	--	722	442	1,168	s, 2	32	1.9	. 0
804	Kche	141	do	12	-*	109	53	103	--	361	196	152	1.7	$\leqslant .4$	--	804	491	1,300	8.0	31	2.0	. 0
$68.01-201$	Kche, Kegr 1	210	oct. 18, 1961	12	**	100	57	126	14	362	202	19\%	1,8	--	--	886	484	1,480	7.0	35	2.4	. 0
205	Kcgri ${ }^{\text {i }}$	268	Aug. 12, 2976	24	--	92	11	22	--	260	42	23	. 6	38	0.2	380	275	602	7.7	15	. 5	. 0
207	KCgrr^{1}	210	so	13	. 4	114	56	98	14	357	209	152	1.8	$<.4$	--	834	520	1,320	7.9	29	1.3	. 0
407	Kche	485	Aug. 16, 1976	13	--	84	50	25	19	381	120	24	1.8	$<.4$	--	518	415	808	9.0	11	. 5	. 0
506	Kche	320	Joly 10, 1974	13	--	106	61	33	--	354	222	45	2.3	. 2	--	656	510	992	7.5	12	.6	. 0
69-06-801	Kobe, Kegr 1	450	July 1, 1954	14.	--	86	62	39	\cdots	34%	222	30	--	. 0	--	621	470	988	8.0	15	. 7	. 0
901	Kche	455	Aug. 29, 1995	14	--	100	55	33.	--	350	212	28	\sim	. 2	--	614	475	96.5	7.4	13	. 6	. 0
07-101	Kehe, Kost	460	Aug. 6, 1955	14	-	141	90	28	-*	34 I.	461	16.	-	--	--	917	722.	1,300	7.4	8	.4	. 0
301	Kche	600	May 26, 3966	12	\sim	${ }^{88}$	52	22	9.8	366	195.	${ }^{16}$	1.8	. 2	--	576	442°	--	7.2	10	. 4	-0
902	Kcho	1,000	Mar. 17, 1967	23	-	71	47	30	11	376	108	19	1.5	. 2	--	485	370	--	7.3	14	* 6	. 0
902.	Kchiod	1,000	Aug. 15, 1975	15.	\cdots	72	47	29	**	350	116	20	1.5	$<.4$	--	472	971	146	8.4	14	. 6	. 0
08-101	Kche	665	May -6, 1966	11	--	57	37	35	8.1	388	31	15	1.0	\cdots	. 2	386	294	--	7.7	20	. 8	.4
1.07	Kcho	900	Aug. 15, 1975	20	--	81	41	22	\cdots	370	99	17.	1.6	$<.4$	\cdots	463	371	730	8.2	11	. 4	. 0
: 201	Kithe, Kcec	5.30	May 19, 1966	12	--	65	44	21	9.1	374	85	14	1.5	. 2	\cdots	435	\% 350	--	7.4	11	: 4	. 0
401	Kche, Kegrl, Kcec	480	June 9, 1966	10	7.6	463	244	38.	3.2.	290.	2,010.	26	***	. 8	--	2,945	2,080	3,280	6.9	4	. 3	. 0
402	Kche, Ksces	580	Mar. 17, 1967	\cdots	\cdots	\because	\cdots	\because	\cdots	372	118	24	--	\cdots	--	--	390	825	7.3	--	\cdots	--
502	Kсgru	78	May 27, 1966	12	. 7	435	159	17	10	341	1,280	24	2.6	1,5	. 6	2,060	1,550	2,460	7.2	2	. 1	. 0
601	Kche, Kogr	312	July 25, 1962	12	-	180	99	20	6.2	302	592	26.	2.0	. 2	. 4	1,086	856	1,450	6.7	5	. 2	. 0

Well	Naterbearing und .	Depth of well or日ampled interval (ft)	Date of collection	$\begin{gathered} \text { SiNica } \\ \left(\mathrm{SiO}_{2}\right) \end{gathered}$	Iron (Fe)	$\begin{aligned} & \text { Cal- } \\ & \text { cium } \\ & \text { (Ca) } \end{aligned}$	$\underset{\substack{\text { Magne- } \\ \text { sium }}}{\substack{\text { and }}}$ (Mg)	$\begin{aligned} & \text { Sod- } \\ & \text { I(um } \\ & (\mathrm{Na}) \end{aligned}$	$\begin{gathered} \text { Potas- } \\ \text { aiver } \\ \text { (K) } \end{gathered}$	Bicarbonate $\left(\mathrm{HCO}_{3}\right)$	$\begin{aligned} & \text { Sul- } \\ & \text { fate } \\ & \text { fate } \\ & \text { (} \mathrm{SO}_{4} \text {) } \end{aligned}$	$\begin{aligned} & \text { Ch10- } \\ & \text { ride } \\ & \text { (C1) } \end{aligned}$	$\begin{gathered} \text { Fluo- } \\ \text { ride } \\ (F) \end{gathered}$	$\begin{gathered} \mathrm{N} 1- \\ \substack{\text { crate } \\ \left(\mathrm{CNO}_{3}\right)} \end{gathered}$	$\begin{gathered} \text { Boron } \\ (\mathrm{B}) \end{gathered}$	$\begin{array}{\|c} \text { D1s- } \\ s o l v e d ~ \\ \text { solidid } \end{array}$	Total hard- thess CaCO_{3}	$\begin{aligned} & \text { Specific } \\ & \text { conduct } \\ & \text { ance } \\ & \text { (micromho } \\ & \text { at } 25^{\circ} \mathrm{C} \text {) } \end{aligned}$	PH	$\begin{aligned} & \text { Per- } \\ & \text { cent } \\ & \text { god- } \\ & \text { ium } \end{aligned}$	$\begin{gathered} \text { Sodium } \\ \text { adsorp- } \\ \text { tion } \\ \text { ratio } \\ \text { (SAR) } \\ \hline \end{gathered}$	$\left.\begin{array}{\|c\|} \hline \text { Restdual } \\ \hline \text { sodium } \\ \text { carbon- } \\ \text { ate } \\ \text { (RSC) } \end{array} \right\rvert\,$
RJ-69-08-606	Xche, Kcgr	317	July 23, 1975	17	--	166	11	39	\cdots	370	108	53	0.2	85	--	661	459	975	9.1	16	0.7	0.0
613	Kche, Kcgr ${ }^{1}$	225	June 11, 1966	9	--	70	48	21	11	380	18	16	1.6	--	--	381	382	--	7.0	11	. 4	. 0
614	Sche, Kccc	427	Junc 27, 1966	12	--	76	49	26	9.3	368	110	16	1.4	--	\cdots	490	392	--	7.2	12	. 5	. 0
616	Kche, Kcoe	401	Au8. 16, 1976	13	1.7	73	48	23	11	348	108	19	1.7	6.4	--	469	379	796	8.5	11	. 5	. 0
fil	kehe Kcerl	340	Aug. 13, 1976	13	--	83	46	22	--	378	1.02	16	1.6	< . 4	\cdots	469	396	762	8, 1	11	.4	. 0
618	Kegris	100	Aug, 16, 1976	12	--	14 f	69	14	--	290	379	19	3.7	4.4	\cdots	795	650	1,058	8.5	4	. 2	. 0
16-102	Kche, Kcce	680	Reb. 13, 1957	12	--	72	50	41	--	375	120	26	1.8	. 6	--	507	385	. 825	7.6	19	. 9	. 0

Location of Selected Wells, Springs, and Oil and Gas Tests in Kerr County

Table 5，－－Records of Selected Mater Nelle aud Sorings
AR1 wells ate drilled unleas otherwibe noted in reararks colum．

Wel1	amer	Dri．17er	$\begin{gathered} \text { Date } \\ \text { completed } \end{gathered}$	$\begin{gathered} \text { Depet } \\ \text { of } \\ \text { well } \\ \langle\mathrm{fek}\rangle \end{gathered}$	${ }^{\text {casing }}$		Wakerbearing untt	$\begin{aligned} & \text { Altituce } \\ & \text { of land } \\ & \text { surface } \\ & \text { (fic) } \end{aligned}$	Water lével		$\begin{gathered} \text { Method } \\ \text { oo } \\ \text { lift } \end{gathered}$	$\begin{gathered} v_{\text {be }} \\ \text { of } \\ \text { water } \end{gathered}$	Remarke
					$\begin{aligned} & \text { DLax- } \\ & \text { eleer } \\ & \text { (in.) } \end{aligned}$	$\begin{gathered} \text { Depept } \\ (f t) \end{gathered}$				$\begin{gathered}\text { Date of } \\ \text { meas } \\ \text { murement }\end{gathered}$			
т0－6a－25－601	R．E．Haby	－－	－－	Spring	－－	－－	ксвғи	1．，300	\cdots	\cdots	E1owa	s	Spring D－7－9 in Texas Boaxd of Water Bngineere 8utireins 560 i and 5608 ．Betimated flow 1 gal／ min on Nov．5， 1975.
＊ 403	Mrs．Tony Plachy	Frank Mosenkranz and Sonti	1974	t．00	3	50	Kcgru	1，145	150	Sept．19， 1974	Sub，e	D	Open hole from 50 za 4 かO fieet．Cromented from 50 feet to surface．Reported yield $20 \mathrm{gal} / \mathrm{min}$ with 4 feet trawdown．
＊26－101	Iudialpia \＄ahott，Pecall Spring	－－	－－	spring	－．	－－	${ }_{\text {Kıgeu }}$	1， 300	－－	－－	FLows	N	Bullecins \＄pol and 560ß．Estimated flow $10 \mathrm{gal} /$ min on Now．5， 1975.
401	Schahart Brothers RAncll，B゙ear Spring	－－	－－	Spring	－－	－－	ксgru	1，160	＊	－－	Flows	s	Spring D－7－44 in Texas Doard of Water Engineers Bulletins 5601 and 560 ．Reported flow 32 ga1／ min on Mar．18， 1952 atd eetimated f10x 15 gav／ min pr Now．15，1975．
＊69－29－301	E1ton Miller，Ri，chter Spring	－－	－－	${ }^{\text {Spring }}$	－－	\cdots	Regru	1，380	－－	－－	Flows	n， 8	Spring G－7－9 in Taxae Board of hater Engineere Bulletine 5601 and 5608．Raportad flow $58 \mathrm{gal/}$ min on June 12， 1952 and oactronted flow 20 gel／ min on Oct．24， 1975.
303	－．Mazurek	${ }^{-}$－	－．	Spring	－－	－－	Kıgru	1，475	－．	－－	Flows	s	Spring C－9－1 in Texax Boaxd of Kater Bngineers Bultetins 56品 and 56u5．Estinated flow 3 1／2 ksal／min on oct．13， 1950.
303	Lants Rextar	－－	－－	Spr1碞	\cdots	－－	Kとgru	1，330	－－	\cdots	Flowe	$\stackrel{ }{*}$	Spring Ca7－B in Texas Board of Woter Engincars： Bulletins 560 tand 5605 ，Icportgh flow 10 gal／ min pn 0ct．13， 1950.
304		－＊	－－	$\mathrm{s}_{\text {prink }}$	\cdots	－．	Kcgru	1，385	－－	－－．	Floxs	v	Spring C－7－7 in Texas sosed of Wacter Engineers Bulletine 5601 and 5608 ，દ̌timated flow 5 gal／ otín on Oct． $24,197.5$.
＊31－201	－－roater	－－	\cdots	Spring	－－	－－	Kıgru	1，205	\cdots	＊	Flows	$\stackrel{n}{ }$	Sprins $\mathrm{C}-8-32$ in Taxas Boatd of Water Theineers Bulleting 5601 and 5608 ，Eatimated flow 10 gal／ain on 065．28， 1975.
＊ 301	J．S．Nutrif， Verde Sprina	\cdots	－－－	$3_{\text {pring }}$	－－	－．	Ycgru	1，300	－－	－－	Plowe	N	3 pringe c－9－64 дn Texas Board of Kater Engineers Bulletins 560 ，and 560 g．Retimated flow 12 ma1／min on July 21， 1975.
＊．32－101	3．s．Morxls．	J．R．Johtsen じゃもし1ing Ca．	1952	800	B	691	$\begin{aligned} & \text { Kegerl, } \\ & \text { Kchere, } \\ & \text { Recer } \end{aligned}$	1，330	－－	\cdots	$\mathrm{T},{ }_{5}^{\mathrm{E}}$	D，s	Ne11 $\mathrm{C}-9-63$ in Texat Batar of Water Ragineers Bulletins 56 ll and 560 B ，and $\mathrm{N}-4 \mathrm{~A}$ In Texas Water Comaission BuIfetin 6210．Open bole fram 691 to 800 feet．Reported yield 723 gal／min with 61 Feet drawdom．
301	R．A．lisby，Meddle Spring	－－	－＊	Spring	－－	－－	K＝gra	．1，285	－－	－－	Flows	s	Estitmited flow 35 gatifin on Mour 4，199s．
302	E．J．Leinweber， Tonliad Spriug	．－－	－－	spring	－－	－－	${ }_{\text {Kcgru }}$	1，1a0	－－	－	Flows	9	Spring c－9－8 in Texas Board of Waker Engineers Bulletans 5601 and 5608 ，Reported flon 80 gal／ ．vín on Oct．25， 1950 and eatimated flow 29 gsl／ain on Hov．4， 1975 ，
＊ 402	Mrs．Joe Short	－－	\cdots	spring	－－	－－	Kсżı	1，275	\cdots	－－	${ }^{\text {Flcwis }}$	s	Spring c－9－5 in Traxas Boaxd of Water Bngineere Bulletins 5601 and 3608 ．Estimated flow 30 ga1／mía on Oct，31， 1975.

 Peak Eormation；Kece，Conv Oreck Limeatone Member of the Travis Peak Formistion．
convertent by computation（multiplying by 0．4917）to an equivaluot and of analyser by Texas State Department of liealth

Well	Waler－ bearing Unit	Depth of well or sampled interval （ft）	Date of collection	$\begin{aligned} & 51168 \\ & \left(\mathrm{sin} \mathrm{O}_{2}\right) \end{aligned}$	$\underset{(\mathrm{Fe})}{\substack{\mathrm{Ir} a n \\ \hline}}$	$\begin{aligned} & \text { Ca1- } \\ & \text { clum } \\ & \text { (Ca) } \end{aligned}$	$\begin{gathered} \text { Magne- } \\ \begin{array}{c} \text { ai wid } \\ (\mathrm{Mg}) \end{array} \end{gathered}$	$\begin{aligned} & \text { Sod- } \\ & \text { Sum } \\ & \text { (Ns) } \end{aligned}$	$\left\|\begin{array}{c} \text { Potas- } \\ \text { sive } \\ (\mathrm{K}) \end{array}\right\|$	Bicar－ bonate $\left(\mathrm{HCO}_{3}\right)$	$\begin{aligned} & \text { Sul- } \\ & \text { fate } \\ & \left(\mathrm{SO}_{4}\right) \end{aligned}$	$\begin{aligned} & \text { Ch10- } \\ & \text { ride } \\ & \text { (C1) } \end{aligned}$	$\begin{aligned} & \text { Fluo- } \\ & \text { ride } \\ & \text { (F) } \end{aligned}$	$\begin{gathered} \mathrm{Ni}- \\ \text { trate } \\ \text { (note } \end{gathered}$	Boton (B)	$\begin{aligned} & \text { Dis- } \\ & \text { solved } \\ & \text { solids } \end{aligned}$	Total hatd－ ness CaCO_{3}	Specifio conduct ance （taicromhos at $25^{\circ} \mathrm{C}$ ）	PH	$\begin{aligned} & \text { Per- } \\ & \text { cent } \\ & \text { sod- } \\ & \text { fum } \end{aligned}$	Sodium adsorp－ tion ratio （SAR）	$-\begin{gathered} \text { Residusi } \\ \text { sodium } \\ \text { carbon } \\ \text { ate } \\ \text { (KSC) } \end{gathered}$
TD－68－25－303	Kcgru	400	Aug．17， 1976	11	．－	64	13	日	－－	2 Dr	45	15	0.2	<0.4	－－	255	215	434	－7．3	8	0.2	0.0
803	Kcgru	400	July 20， 1977	11	\cdots	64	16	9	－－	212	47	15	． 2	1.5	－－	267	226	443	7.7	8	． 2	． 0
26－101	－Kcgru	－．	Nov．5， 1975	11	－－	73	13	7	．－	231	． 6	13	． 1	6.0	＂＊	242	235	428	8.4	6.	\ldots	． 0
69－29－301	Kcgru	＂	Oct．12， 1950	10	－－	98	11	－＂	5.8	280	16	10	－－	${ }^{21}$	－－	314	264	520	7.6	\cdots	－－	． 0
301	－Kegru	－－	Oct．24， 1975	13	－－	96	9.	7	－－	295	20	15	． 2	12	\because	317	276	520°	7.6	5	． 1	：0
301	Kcgru	－－	July 19， 1977	1.5	－－	93	9	8	－－	292	12	15	． 1	8.4	－－	304	269	505	7.7	6	． 2	． 0
31.101	Kcgru	－－	．san，14， 1952	15	－－	102＊－	18	－－	7.4	353	23	20	－－	4.0	－－	384	328	625	7.7 \％	－－	－－	． 0
101	Kcgru	－－	Oct．28， 1975	13	－－	89	13	9	－－	289	28	16	． 2	1.2	－－	311	283	529	7.8	7	． 2	－0
101	Xegru	－－	July 19， 1977	15	－－	91	13	9	－－	296	27	15	． 2	2.6	－－	318	279	528	7.7	7	． 2	． 0
301	Kcgru	－－	Mar．27， 1958	1	0.0	－－	－－	27	－－	216	430	175	－	2.0	\because	－－	815	1，600	6． 0	－－	－－	\because
32－101	Kche， Kcgri， Kece	800	do	2	． 9	－－	－－	13	－－	143	622	65	－－	14	－－	－－	840	1，730	7.9	－－	－－	－－
101	Kche， Kegrl， Kcec	800	Jily 21， 1975	9	\because	127	77	22	－－	340	370	18	3.6	＜． 4	\cdots	794	640	1，100	7.1	†	． 3	． 0
101	Kahe， Kegrl， KCらと	800	Ju1y 15， 1977	10	－－	109	8 D	24	15	317	383	15	3.2	$\therefore .4$	－－	795	600.	1，100	7.8	8	： 4	$\because 0$
301	Kegru	－	Hov．4， 1975	12	－－	96	12	9	\cdots	3312	14	13	． 2	2.4	－－	321	292	535	7.6	${ }_{6}$	2	． 0
302	K6gril	－＊	Jen．22， 1952	12	－－	57	14	－．	4.8	221	11	11	－－	3.5	0.2	223	200	$\therefore 429$	7.7	－－	－－	． 0
302	Kcgru	－－	Nov．4， 1975	11.	－－	67	10	6	－＊	234	8	12	． 1	4.8	－－	233	207	402	8.1	6	＋1	． 0
401	－Kcgru	．．	Oce．18， 1950	10	－－	69	9	－－	3.7	238	4	9	－－	9.3	－－	238	211	416	8，0	－－＂	－－	． 0
401	Kıgru	－－．．	Oct．31， 1975	10	－－	72	6.	4	－－	234	5.	8	－1	7.0	\cdots	227	206	380	8.2	4.	.1	． 0

Table 5．－－Records of Selected Water heils，Springs，and oil and Cas Tests
All wella are drilled unlese ochetwite noted in remarks coirmon．
Gater level

Well	Onmer	Driliter	$\left\|\begin{array}{c} \text { Date } \\ \text { completed } \end{array}\right\|$	$\begin{gathered} \text { Septh } \\ \text { of } \\ \text { well } \\ (\mathrm{ft}) \end{gathered}$	Catsing		Msterbearing unit	$\begin{aligned} & \text { Altytude } \\ & \text { of land } \\ & \text { surface } \\ & \text { (fft) } \end{aligned}$	Watiee level		$\begin{gathered} \text { Method } \\ \text { of } \\ 11 \mathrm{Et} \end{gathered}$	$\begin{gathered} \text { Uee } \\ \text { of } \\ \text { watar } \end{gathered}$	Remarks
					$\begin{gathered} \text { D1am- } \\ \substack{\text { eter } \\ \text { (in.) }} \end{gathered}$	$\left\|\begin{array}{c} \text { Depth } \\ (\mathrm{ft}) \end{array}\right\|$				Date of mes surement			
\％WA－69－10－502	H．W．Lewis	－	－－	Spring	－－	－－	$\mathrm{K}_{\text {cgru }}$	1，000	－．	－	${ }^{\text {Flowe }}$	s	Spring D－4 in Texas Wanter Conpodssion Mulletint 5803，Eselmited flow $25 \mathrm{gzL} / \mathrm{min}$ on Qct．14， 1979．
＊ 601	－${ }^{\text {＇Shea }}$	H $\& 0$ Wall orilling and Service，Inc．	1974	110	\checkmark	110	K＜gru	1，320	22	Sur．21， 1974	Sub，e	D	SIotted from 90 to 110 feet，Cemented from 20 feet to surface，Puip bet al 43 Feet．
＊602	do	－－	－－	Sprink	－－	\cdots		1，700	－」	－－	F1ame	n	Estimated flow $20 \mathrm{gal} / \mathrm{m} 1 \mathrm{n}$ on Occ． 7 ， 1975.
＊ 603	Donila McCure	K 6 © Well Drs11ing and Servjen，Inc．	1974	110	6	1.10	Kceru	1，730	25	Aug．22， 1974	Sub， 8	\square	Slotited frop 90 to 110 frat，Cemented from 15 feet to aurface．Pump set et \＄4 feet．Reported y yeld $100 \mathrm{gel} 1 / \mathrm{mln}$ ．
604	c．o． $\mathrm{K}_{\text {п1ppa }}$	Stanolind oil and Бむ゙ Cn．	1933	3，234	\cdots	－－	－－	1，730	－－	－－	－－	－－	Wcil D－7 in Koxas Kinter Commaaion Bulletin 5803． 011 test．
＊11－502	Decar pevaux	\cdots	－	$\mathrm{Spplug}^{\text {¢ }}$	－－	－－	Kçru	1，960	\cdots	\cdots	Flowe	N	Sprang Do13 in Tekns Kater Cormission Bulletin 5803．Estimated flow $40 \mathrm{gal} / \mathrm{min}$ on Oct． 10 ， 1975.
＊17－101	2．k．vernot	Durrows betiling co．	1965	124	5	124	$\mathrm{K}_{\text {criv }}$	1．，610	$\begin{aligned} & 55.3 \\ & 90.3 \end{aligned}$	$\begin{array}{lll} \begin{array}{lll} \text { July } & 30, & 1965 \\ \text { Apr. } & 21, & 1978 \end{array} \end{array}$	c，${ }^{\text {a }}$	0	Slotied from 100 tur 117 Eent，Reported yield I $1 / 2 \mathrm{pon} / \mathrm{min}$ ，Observatian well．
＊．18－201		Wilisam O．Comerius	1975	52	5	52	Kcgra	1，730	15	Apr．9， 1975	Suh，e	n, s	Perforated from 32 to 42 feet．Reported yield 25 gal／mio with 4 feet drandawn．
＊ 303	Texan Depprtanent of Hiphowye end Public ＇Transportaction	Sodith Dri11ing Service	1952	640	6	2 2au		1．630	$\begin{aligned} & 280 \\ & 283.2 \end{aligned}$	Mar．25，${ }^{1977}$	n	＾	Wet1 D－24 in rexse Weter Commixaion Bcifetin 5903．Open hole from 280 to 640 fect．Reported yleld to gal／min with 40 fact dxawdown．Unused industriol well．Obspryation well．If
19－4）7	Sam liatrison	Xike c．Huber	1967	820	12	443	${ }_{\text {uct }}$	1，595	$\begin{aligned} & 234 \\ & 286.4 \\ & 288.9 \end{aligned}$	$\begin{array}{ll} \text { May } & 1967 \\ \text { Mar. } & 25, \\ \text { Agry. } & 21, \\ \text { Spl7 } & 1978 \end{array}$	N	${ }^{1}$	Slothed frou 605 to 685 leet．Open bole from 343 to 820 Peed．Heported yield $500 \mathrm{gal} / \mathrm{min}$ with 175 Eeet drandonn：flivespd frrigation well． obeervation we 1．1．y

 Water-bearing unit: qal, alluviun; Kcgr, Glen Rose limsatone; Kcgrll, uppor member of the gien Rose Limestone; Kcgrl, lower member of the Gien rose limestone; Kche, Henaell Sand Menber of the Travis Peak Formation; Kcrc, Cow Creek Limestene Meember of the 'rravts Peak Pormstion. (multiplying by 0.4917) to an equivaleat imoumt of carbonate, atul the catbonate Analyses by Texas state Department of Health,

We11	Whaterbesring ル! (1)	Depth of well or sampled interval (ft)	Date of collection	$\begin{aligned} & \text { sinics } \\ & \left(\mathrm{sio} \mathrm{o}_{2}\right) \end{aligned}$	$\begin{gathered} \text { Iron } \\ (\mathrm{Fe}) \end{gathered}$		$\begin{gathered} \text { Magne- } \\ \substack{\text { sium } \\ \text { (loto })} \end{gathered}$	$\begin{aligned} & \text { Sod- } \\ & \text { furu } \\ & \text { (Mas) } \end{aligned}$	$\begin{gathered} \text { Potas } \\ 81 u m \\ (\mathrm{~K}) \end{gathered}$	Bicar- bonate $\left(\mathrm{HCO}_{3}\right)$	$\begin{aligned} & \left.\begin{array}{l} \text { Sul- } \\ \text { fato } \\ \text { (SOO } \end{array}\right) \end{aligned}$	$\begin{aligned} & \text { Chlo- } \\ & \text { ride } \\ & \text { (C1) } \end{aligned}$	$\begin{aligned} & \text { Fluo- } \\ & \text { ride } \\ & \text { (F) } \end{aligned}$	$\begin{aligned} & \mathrm{wi}_{1}- \\ & \text { trate } \\ & \text { (rate } \end{aligned}$	$\underset{(\text { B })}{\substack{\text { Bor }}}$	$\left\|\begin{array}{c} \text { Dis- } \\ \text { solved } \\ \text { solids } \end{array}\right\|$	Total hard- ness CaCO_{3}	$\begin{aligned} & \text { Specific } \\ & \text { conduct } \\ & \text { ance } \\ & \text { (microuhos } \\ & \text { at } 25^{\circ} \mathrm{C} \text {) } \end{aligned}$	pH	$\begin{aligned} & \text { Per- } \\ & \text { cent } \\ & \text { sod- } \\ & \text { ium } \end{aligned}$	$\begin{gathered} \text { Sodium } \\ \text { adsorp } \\ \text { tion } \\ \text { ratio } \\ \text { (SAR) } \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Residuas } \\ \text { sodium } \\ \text { carbuan- } \\ \text { ate } \\ \text { (RSC }) \\ \hline \end{array}$
WA-69-10-502	Kсgru	--	Max. 27, 1956	10	-.	70	19	6	0.6	304	7	11.	--	0.3	--	273	252	502	7.3	5	0.1	0.0
601	$\mathrm{K}_{\text {cgru }}$	110	(0cl. 7, 1975	13	\cdots	540	99	12	--	189	1,550	12	1.2	$<.4$	--	2,320	1,760	2,200	8.1	1	. 5	. 0
602	$\begin{aligned} & x_{\mathrm{cgr}} \\ & Q_{s} 1 \end{aligned}$	--	do	12	--	48	10	6	--	174	B	12	. 1	3.6	--	185	162	325	7.8	7	. 2	. 0
503	kigru	110	Aug. 18, 2976	11	--	630	31	6	1,0	181	1,470	11	-5	. 4	--	2,249	1,710	2,280	7.7	1	8	. 0
11-502	Kcgru	--	Oct. 15, 1975	10	--	63	11	4	--	234	5	9	$\cdot 1$	3.7	\cdots	220	205	380	7.7	4	1	\%
17-101	Kcgru	--	May 14, 1974.	9	--	57	11	5	--	205	8	11	. 1	7.0	-"	$20 \hat{6}$	187	- 361	7.6	5	A	.0
18-201	Kegru	52	Aug. 18, 1976	14	--	${ }^{80}$	16	7	--	2.94	12	11	. 2	11 .	--	295	269	497	7.9	5	${ }^{1}$	0
303	Kche, Kegr 1 , Kece	640	Mar. 28, 1956	11	0.0	204	144	151	--	311	1,050	47	5.2	. 0	\cdots	1,765	1,100	2,210	7.6	23	1.9	. 0

EXPLANATION

Public supply well

Industrial well
-
Irrigation well

-

Domestic or livestock well

Oil or gas well
\otimes
Test hole
$-\phi-\phi \quad \phi$

Unused or abandoned well

- -

Solid circle indicates flowing well

Spring

$\overline{201}$
Line above well number indicates chemical analysis given in Table 6

$\begin{array}{lllll}0 & 1 & 2 & 3 & 4\end{array}$ Miles
 01234 Kilometers

Base map from Texas Department of Highways and Public Transportation

Location of Selected Wells, Springs, and Oil and Gas Tests in Real County

GYALDP COOnTY

Table 5.--Recurds of Selected Nater Nellis, syringi, and oil ond fas Tests

Use of witer
witar-briarfing units

WeIL	Ommer	Uriller	$\left\lvert\, \begin{gathered} \text { Date } \\ \text { completed } \end{gathered}\right.$	$\begin{gathered} \text { Deptfit } \\ \text { off } \\ \text { weli } \\ (\mathrm{ft}) \end{gathered}$	${ }_{\text {Casing }}$		$\begin{gathered} \text { hater } \\ \text { hearing } \\ \text { huit } \end{gathered}$	$\left\{\begin{array}{l} \text { Sititude } \\ \text { of Land } \\ \text { Eorfare } \\ \left\{\mathrm{fft}^{2}\right) \end{array}\right.$	Mater levei		$\begin{gathered} \text { Methood } \\ \text { of } \\ \text { of } \mathrm{ft} \end{gathered}$	$\begin{gathered} \text { Use } \\ \text { of } \\ \text { of } \end{gathered}$	Remarks
					$\begin{aligned} & \text { Disim. } \\ & \text { eter. } \\ & (\mathrm{in}, \mathrm{~m}, \end{aligned}$	$\underset{\substack{\text { Depth } \\(f t)}}{ }$			Betov 1 sind- sufface $\underset{\substack{\text { ditum } \\ \text { (ft) }}}{ }$ (ft)	$\begin{gathered} \text { Date of } \\ \text { measur ement } \end{gathered}$			
\#.YP-69-25-402	Mrs. -- Whitiey	--	--	Spriug	--	--	Kıgru	1,340	--	--	Flows	s	Four major spetinge. Estimated Livw $60 \mathrm{ga} 1 / \mathrm{min}$ तת Oct. 21, 1975.
* 26-801	a. J. He1zin	--	--	spring	--	--	Fagru	1,430	-	-	Flowe	8	Syring b-B-27 fil Texab Water Commiaciod Bulletin 6212. Ketimated flow $10 \mathrm{gal} / \mathrm{mio}$ on Oct. 15, 1975.
* 27-101	Gsrner state Park	--	--	60	6	60	KCETM	1,400	26.7 21.4	$\begin{aligned} & \begin{array}{l} \text { Oct: } \end{array} \\ & \text { Oct. } \\ & 175 \end{aligned}, 1970$		r	Sloteted.
102	do .	--	-	10	6	40	Rcgru	1,400	$\begin{aligned} & 20.5 \\ & 20.4 \end{aligned}$	$\begin{aligned} & \text { Aus. } 17,2956 . \\ & \text { Oct. } 15,1975 . \end{aligned}$	$\underset{5}{\text { S.b, e }}$	P	Well b-8-14 iu 'rexas Water Uvomisaion Bulfetio 6212. Slutted.
206	n. ceutelifield	Wirisam u. Comeit ins	3 376	52	${ }^{6}$	33	$\begin{aligned} & \text { nal, }, \end{aligned}$	1,425	32	Mer. 19, 1976	${ }_{\substack{\text { Sub, } \\ 1 / 2}}$	π	8lotted from 29 to 33 feet. Open hole from 33. to 52 feet. Reported yield 2 gal/min with 20 feet drawlown.
* 107	cold spriugs Reeort	--	--	Spring	--	--	${ }_{\text {Kcgru }}$	1,415	--	--	FJow:	n	Eutimated flow 60 gal/rio on Ang. 19, 1976.
* 401	B. J. Vim Pe1t	--	--	100	$\begin{aligned} & 8 \\ & 5 \end{aligned}$	+20	Kcgru	1,400	57	May 16, 1975	\checkmark 〕.	D	Deppened from 92 to 100 feet in 1975. Perforated fram 79 to 99 fect. Reported yicld 11 gal/min with 43 fect drawdovn.
601	c. c. M Mprider no. 1	Gulf ofl corp.	1962	3,611	--	--	--	1,547	--	--	--	--	Oil cest. y
* 701	$\begin{aligned} & \text { - diver and } \\ & -- \text { Cisny } \end{aligned}$	Carmom Ditline co.	1974	101	5	99	Kogru	1,265	19	Oct. 1974	$\operatorname{Sobl}_{1 / 2}$	D	Slotted from 39 to 42 feet, 62 to 68 feet, 82 to 85 feet, sad 96 to 98 feet. cemented. from 36 leet tn anrfiser. Pump wat at fi2 Eeet. Renortra pleld 100 gal/min. Acidizen.
28-201	c. c. Michenli. no. i	Ther Toxas $\mathrm{cos}^{\text {a }}$	19\%9	6,503	*	--	-	1,870	--	--	--	--	Nell B-9-16 Ln Texee Water Commiesius Hutletin 6212. Dil Leet. y
*. 202	ท. J. Jutpha	Willisimm D, Cornalius	1976	251	6	32	${ }_{\text {Kcgru }}$	1,420	107.	Jan. 23, 1976.	Sab, e	D, ε	Oped lole from 32 to 251 feet. Gementar from 32 feet to surface. Reported yfeld $10 \mathrm{gal} / \mathrm{min}$ wi.th 344 feet drawdows.
* 301	Utopis Commminity Patk	-	--	200	--	--		1.354	--	--		9	- .-- .
* 501	D. R. Tbreater	: --	--	${ }^{\text {Spring }}$	--	--	Kozru	1,495	-	-	Plows	5	Three major openings. Estimated flok 30 gald/min on Dot. 16, 1975.
* . 801 ,	Earl ınwis	willism D. Gornelius	1976	100	6	56		t,300	30	Apr. 1976		D, s	1extiarated Erun 44 Lo 56 Seet. Open hule from 56 co 100 feet. Hepurted yield $35 \mathrm{gal} / \mathrm{mi}$, with 10 feet drawdown.
* ${ }^{301}$	-- Burtor, E:tater	--	--	${ }^{\text {spriug }}$	\cdots	--	kcgru	1,350	**	\cdots	Flows	n, s	6212. Ratimated flow $10 \mathrm{gal} / \mathrm{min}$ on Oct. $27,1975$.
* 29-101	Meary Ruak, $\mathrm{J}_{\text {r }}$	willimm O. Cornelius	2975	19.5	${ }_{6}$	18.	$\mathrm{Kcharf}^{\text {l }}$	1,375	70	Dec. 10, 297.5	5u6, \%	0	Opert hole froul 18 to 195 feet.
701	H.: H. Pliillipes, Jt.	--	-	315	"	300	${ }^{\text {x } 5 \text { ¢ }} 1$	1,250	--	--	Suh, E	D	Opan holce frnm 300 to 315 feet.
33-302	-. zesch no. 1	Gulc onl corp.	196.3	3,82i	--	--	\cdots	1,700	-	--	--	--	Oil test. لf
* 35-20]	Tohn fr, prazier	--	--	40	--	--	$\mathrm{x}_{\text {cgr } 1}$	1,233	12.5	Hrw. 15, 1971	J,	p	--
* 202	${ }^{\text {dn }}$	-	\because	50	6	--	$\chi_{\text {cgr }}$	1,250	${ }^{3}$	so	${ }^{\text {N }}$	N	\cdots
* 203	- do.	--	--	${ }_{101}$	6	--	$\mathrm{K}_{\mathrm{grg} 2}$	1,240	28.6	Hov. 23, 1970	N	N	--
36-302	-- Pealey uo. 1	galt dit cors.	1963	2,033	--	- ${ }^{\prime}$	-	1,210	--	--	--	--	${ }^{0} 11$ teet. ${ }^{\text {S }}$

Soe footnoted at end of tasle.

Analyapa are in milligravis per litez except percent sodsum, specific conductance, ph, aodium adsorption ralio (sNe), and tesilual sodivm carbonate (RSC). Water-bearing unit: Qal, alluvivm; Kcgr, Glen kose Linastone; Rcgru, upper member of the Glem Roge Limestone; Kcgrl, lover member of the Glen Rose Limestone. Disaolved aolide : The bicatbonare "reported" is converted by computation (multiplying by 0.4917) to an cquivalent amount of carbbonate, and the csrbonate
Anslygea by Texas state Department of thealth.

Well	Water- bearing unit	Depth of vell or日atupled Interval (ft)	Date of collection	$\begin{aligned} & \text { Silics } \\ & \left(\mathrm{SiO}_{2}\right) \end{aligned}$	$\underset{(\mathrm{Fe})}{(\mathrm{Fe})}$	$\begin{aligned} & \text { Ca1- } \\ & \text { cium } \\ & \text { (Cas) } \end{aligned}$	$\begin{gathered} \text { Magne- } \\ \text { sium } \\ \text { (Mg }) \end{gathered}$	$\begin{aligned} & \text { sod- } \\ & \text { fum } \\ & \text { (Ma) } \end{aligned}$	$\left.\begin{gathered} \text { Potas } \\ \text { sium } \\ (\mathbb{1}) \\ (k) \end{gathered} \right\rvert\,$	Bicarbonate $\left(\mathrm{HCO}_{3}\right)$	$\begin{aligned} & \text { Sulv } \\ & \text { fate } \\ & \left(\mathrm{SO}_{4}\right) \end{aligned}$	$\begin{aligned} & \text { Ch10- } \\ & \text { ride } \\ & \text { (C1s } 1 \text {) } \end{aligned}$	$\begin{gathered} \text { Fluo- } \\ \text { ride } \\ \text { (P) } \end{gathered}$	$\begin{gathered} \mathrm{Mi-} \\ \substack{\mathrm{maza} e \\ \mathrm{trO}_{3} \\ \mathrm{NO}_{3}} \end{gathered}$	Boton (B)	$\begin{gathered} \text { Dis- } \\ \text { solved } \\ \text { solidis } \end{gathered}$	Total hard- ness CaCO_{3}	$\begin{gathered} \text { Specific } \\ \text { conduct } \\ \text { sice } \\ \text { (micicemhor } \\ \text { at } 25^{\circ} \mathrm{C} \text {) } \\ \hline \end{gathered}$	pH	$\begin{aligned} & \text { Per- } \\ & \text { cent } \\ & \text { sod- } \\ & \text { furut } \end{aligned}$	$\begin{array}{\|c\|} \hline \text { Sodium } \\ \text { adsorp- } \\ \text { tion } \\ \text { ratio } \\ \text { (SAR) } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Res Idual } \\ \text { sodium } \\ \text { carbon } \\ \text { ate } \\ \text { ate } \\ \hline \end{array}$
YP-69-25-402	Kcgru	--	Oct. 21, 1975	10	--	79	16	6	-*	292	10	12	0.1	10	--	286	265	488	7.8	5	0.1	0.0
26-801	Kegru	--	Oct. 15, 1975	10	-	86	11	5	\cdots	296	7	11	. 1.	9.0	\cdots	284	262	480	E. 1	4	, 1	. 0
27 -101	Kçru	58	Nov. 17, 1970	17	-	155	28	14	\cdots	419	139	30	. 5	10	-*	599	500	898	7.4	6	2	. 0
101	kogr 4	58	Aug. 18, 1977	21	--	135	21	24	--	417	43	42	. 2	30	--	521	425	842	7.8	11	. 5	. 0
106	$\mathrm{Kcgr},$ Qal	52	Alug. 19, 1976	17	--	108	18	12	--	354	21	24	. 2	27	--	396	343.	644	8. 2	7	.2.	. 0
107	Kcgru	*	do	13	--	86	16	9	"*	301	20	15	.2	7.0	--	314	280	526	7.7	7	. ${ }^{\text {i }}$. 0
401	R¢8Eu	100	do	11	--	88	6	6	--	265	10	11	. 1	13	--	275	246	458	9.1	5	.1	. 0
401	Rcgru	100	Ай. 18, 1977	13	\sim	77	9	5	-	248	14	10	. 1	12	--	262	230	443	7.8	5	. 1	. 0
701	Kegru	201	Aug. 19, 1976	12	--	476	85	7	3.0	157	1,340	9	1.3	$<.4$	\cdots	2,010	1,540.	2,070	8.0	1	. 0	. 0
701		101	Aug, 18, 1977	14	--	. 503	83	6	--	256	1,344	10	1.5	$<.4$	--	2,087	1,600	2,200	7.7	1	. 0	. 0
28-207	Rebru	251	Aug. 19, 1976	11	--	267	200	32	10	243	1,230	29	4.1	< . 4	--	1,902	1,490	2,150	8.2	4	$\cdot 3$. 0
201	Kcgrs	251	Aug. 18, 1977	15	--	302	213	35	--	349	1,294	29	4.3	< . 4	--	2,062	1,633	2,300	7.8	4	. 3	. 0
301	$\mathrm{K}_{\mathrm{C}, \mathrm{gr}},$ QaI	106	Hov. 17, 1970	13	-	92	15	9	--	305	33	17	. 2	< . 4	--	339	291	341	7.5	6	.2	. 0
501	Kcgri	--	Oet. 16, 2975	12	--	${ }_{6} 6$	25	5	\cdots	292	12	12	. 2	10	"*	285	266	486	7.8	4.	. 1	. 0
601	Kegr, Qal	100	Аนธ. 19, 1976	14	-*	116	3	13	1.0	328	17	20	. 2	10	-.	3.55	300	580	7.9	9	. 3	. 0
601	Kegr, gal	100	Aug. 18, 1977	18	\cdots	106	5	10	--	318	15.	18	. 2	9.7	--	338	285	560	7.7	7	. 2	. 0
801	kegru	--	Dea. 1, 1956	10	-*	67	10	5	. 7	228	6	11	. 2	11	--	233	207.	409	7.9	5	.1	. 0
\$01	$\mathrm{Kc}_{\mathrm{cgru}}$	--	Oct. 27, 1975	12	--	97	B	6	--	907	9	12	. 2	14	--	309	277	515	7.6	5	. 1	. 0
29-101	${ }_{\text {Kcgr }}$	195	A48. 18, 1977	27	--	114	22	17	\cdots	407	31	22	. 8	18	--	451	376	717	7.7	9	. 3	.0
701	${ }_{\text {cegri }}$	315	Aug. 16, 1977	15	14.3	208	178	27	--	273	976	22	2.4	9.6	--	1,580	1,593	1,860	8.2	4	.3	. 0
35-201	$\mathrm{K}_{\mathrm{cgrg}}{ }^{\text {m }}$	50	Nov. 18, 1970	11	\cdots	101	24	8	--	353	46	13	. 2	9.9	--	385	351	621	7.6	5	, 1	. 0
202	Regrl	50	Nov. 23, 1970	14	-*	98	14	7	10	451	4	18	. 1	$<.4$	--	387	303	703	7.1	5	.1	1.3
203	$\mathrm{K}_{\mathrm{cgre}} 1$	100	dn	10	--	486	165	12	--	232	1,590.	11	2.6	$<.4$	--	2,392	1,900	2,440	-7.5	1	1	. 0

EXPLANATION

Public supply well
๔ Industrial well

○
Irrigation well
-o-
Domestic or livestock well

$$
-\phi-
$$

Oil or gas well
\otimes
Test hole
-ф- ¢ ф
Unused or abandoned well

Solid circle indicates flowing well

a

$\overline{201}$
Line above well number indicates chemical analysis given in Table 6

[^0]: *Maximum fluoride concentration based on annual average of maximum daily air temperatures within the range of 70.7 to $90.5^{\circ} \mathrm{F}\left(21.5\right.$ to $\left.32.5^{\circ} \mathrm{C}\right)$ in the study region.

[^1]: ${ }^{\text {a }}$ Determined from specific capacity.

[^2]: * Impervious
 **Kcgrl - lower member of the Glen Rose Limestone
 Kche - Hensell Sand
 Kece - Cow Craek Limestone
 Kcho - Hosston Sand
 Oe - Ellenburger Limestone

[^3]:

