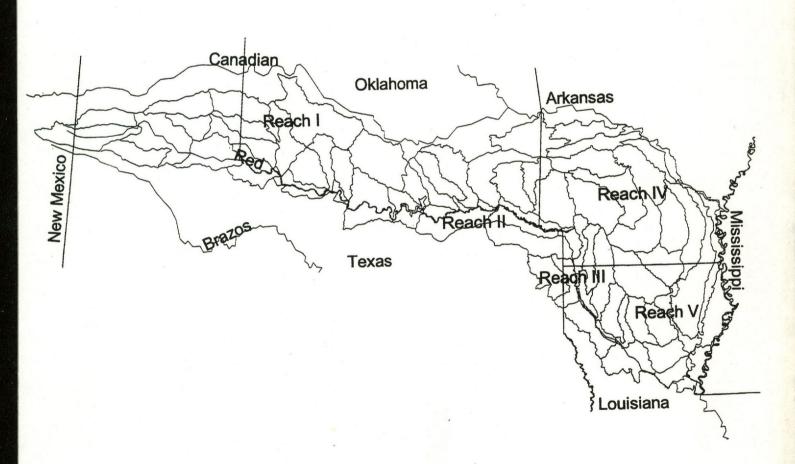


REFERENCE

REPORT


OF THE

Government Publications Texas State Documents

SEP 1 2001

Depository Dallas Public Library

RED RIVER COMPACT COMMISSION 2001

Published April, 2002

X92133792

REPORT

010601

Dallas Public Library

Government Publications

OF THE

RED RIVER COMPACT COMMISSION 2001

Arkansas

Oklahoma

Louisiana

Texas

Published April, 2002

			•		
			÷		
		•			

TABLE OF CONTENTS

	<u>ra</u>	<u>GE</u>
Letter to the Pre	sident and Governors	1
Red River Com	pact Commission Members	2
Red River Com	pact Commission Officers & Committee Members	4
Approved Budg	et, Fiscal Year 2001	8
*	and the control of th	9
Minutes of the A	April 24, 2001 Annual Meeting	12
Streamflow Gag	ge Data	19
Letter to the President and Governors		
A. F	Red River at Index, Arkansas 07337000	20
B. I	ittle River Near Horatio, Arkansas 07340000	22
C. C	Duachita River at Camden, Arkansas 07362000	24
D. S	Smackover Creek Near Smackover, Arkansas 07362100	. 26
E. S	Saline River Near Rye, Arkansas 07363500	28
F. E	Bayou Bartholomew Near McGehee, Arkansas 07364150	30
G. E	Bayou Macon at Eudora, Arkansas 07369680	.32
LOUISL	<u>ANA</u>	
H. F	Red River at Spring Bank, Arkansas 07344370	34
I. C	Duachita River Near Arkansas-Louisiana State Line 07364100	36
т (Coddo I ake at Coddo I ake Dom. Daily Stage for 2001	38

<u>OKLAHOMA</u>

	K.	Sait Fork Red River at Mangum, Okianoma 0/300500	39
-	L.	Sweetwater Creek Near Sweetwater, Oklahoma 07301420	41
	M.	North Fork Red River Near Carter, Oklahoma 07301500	43
	N.	Red River Near Terral, Oklahoma 07315500	45
	Ο.	Washita River Near Cheyenne, Oklahoma 07316500	47
	P.	Washita River Near Dickson, Oklahoma 07331000	49
	TEXA	<u>S</u>	
	Q.	Salt Fork Red River Near Wellington, Texas 07300000	51
	R.	Sweetwater Creek Near Kelton, Texas 07301410	53
	S.	Red River Near Burkburnett, Texas 07308500	55
	T.	Red River Near Gainesville, Texas 07316000	57
	U.	Red River at Arthur City, Texas 07335500	59
	V.	Red River at Denison Dam Near Denison, Texas 07336820	61
Water	Quality	7 Data	63
	<u>ARK</u>	ANSAS	
	A.	Red River at Index, Arkansas 07337000	64
	B.	Ouachita River at Camden, Arkansas 07362000	65
	C.	Bayou Bartholomew Near McGehee, Arkansas 07364150	66
	LOUI	SIANA	
	D	Red River at Coushatta, Louisiana 07350500	67
	E.	Red River at Alexandria, Louisiana 07355500	69
	OKL.	AHOMA	
	F.	Washita River Near Dickson, Oklahoma 07331000	72
	G.	Red River Near Terral, Oklahoma 07315500.	79

TEXAS

	H. Red River Near Burkburnett, Texas 07308500 I. Salt Fork Red River Near Wellington, Texas 07300000. Compact				80
-	I.	Salt Fork Red River Near Wellington,	Texas 07	300000	88
Red River (Compact			• • • • • • • • • • • • • • • • • • • •	89
Rules for In	ternal O	rganization		•••••••	122
Rules and R	egulatio	ns to Compute and Enforce Compact Co	mpliance		
Α.	Reac	h II, Subbasin 5		•••••	128
B.	Reac	h I, Subbasin 1	••••••	•••••	134
C.	Reac	h II, Subbasin 3 (as amended 4/25/89)			139

	•		

RED RIVER COMPACT COMMISSION

April 15, 2002

The President United States of America

The Honorable Mike Huckabee, Governor State of Arkansas

The Honorable M. J. "Mike" Foster, Jr., Governor State of Louisiana

The Honorable Frank Keating, Governor State of Oklahoma

The Honorable Rick Perry, Governor State of Texas

Dear Mr. President and Governors:

The Red River Compact is an interstate agreement entered into by the States of Arkansas, Louisiana, Oklahoma, and Texas with the consent of Congress providing for an equitable apportionment of the water of the Red River Basin. The Red River Compact Commission (RRCC) is the interstate body charged with overseeing the Compact.

Pursuant to Section 10.02 paragraphs (d) and (e) of the Compact, the RRCC at its twenty-second annual meeting prepared and submitted the annual report, with an accounting of all funds received and expended in the conduct of its work for FY 2001 as well as a budget covering the anticipated expenses of the Commission for Fiscal Year 2002 and 2003.

The twenty-first annual meeting was hosted by the State of Louisiana on April 24, 2001, in New Orleans.

Pursuant to the previous agreement to rotate the office of Vice-Chairman and Secretary in connection with the rotation of the annual meeting host state, the State of Arkansas accepted the responsibility for both offices for FY 2002. The Office of Treasurer remained with the State of Arkansas.

Sincerely,

Kam K. Movassaghi, Ph.D., P.E.

Vice Chairman/Louisiana Commissioner

RED RIVER COMPACT COMMISSION MEMBERS

Federal Commissioner

Vacant

Arkansas Commissioners

Don Mitchell

8004 Stateline Plaza

Texarkana, Arkansas 71854

(870) 773-1061

(870).774-0409 (FAX)

J. Randy Young, P.E., Executive Director

Arkansas Soil and Water Conservation Commission

101 East Capitol, Suite 350

Little Rock, Arkansas 72201-3823

(501) 682-3986

(501) 682-3991 (FAX)

e-mail: randy.young@mail.state.ar.us

Louisiana Commissioners

Arthur R. Theis, P.E.

GEC & Associates, Inc.

9357 Interline Avenue

Baton Rouge, Louisiana 70809-1910

(225) 612-3000

(225) 612-3016 (FAX)

e-mail: atheis@gecinc.com

Kam K. Movassaghi, Ph.D., P.E., Secretary

Department of Transportation and Development

P. O. Box 94245, Capitol Station

Baton Rouge, Louisiana 70804-9245

(225) 379-1200

(225) 379-1851 (FAX)

e-mail: kmovassa@dotd.state.la.us

Edmond J. Preau, Jr. (representative for Dr. Movassaghi)

(225) 274-4320

(225) 274-4322 (FAX)

e-mail: epreau@dotd.state.la.us

Oklahoma Commissioners

Ken Fergeson

Box 598

Altus, Oklahoma 73522

(580) 482-1610 x 154

(580) 482-4567 (FAX)

e-mail: lexstrom@nbcok.com

Duane Smith, Executive Director

Oklahoma Water Resources Board

3800 N. Classen Blvd.

Oklahoma City, Oklahoma 73118

(405) 530-8800

(405) 530-8900 (FAX)

e-mail: dasmith@owrb.state.ok.us

Texas Commissioners

William A. Abney

P.O. Box 1386

Marshall, Texas 75671

(903) 938-6611

(903) 938-4572 (FAX)

e-mail: waabney@internetwork.net

Jeffrey Saitas, Executive Director

Texas Natural Resource Conservation Commission

P. O. Box 13087, Capitol Station

Austin, Texas 78711-3087

(512) 239-3900

(512) 239-3939 (FAX)

e-mail:jsaitas@tnrec.state.tx.us

RED RIVER COMPACT COMMISSION OFFICERS AND COMMITTEE MEMBERS 2001

CHAIRMAN/FEDERAL COMMISSIONER

Vacant

VICE CHAIRMAN/LOUISIANA COMMISSIONER

Arthur R. Theis, P.E.

GEC & Associates, Inc.

9357 Interline Avenue

Baton Rouge, Louisiana 70809-1910

(225) 612-3000

(225) 612-3016 (FAX)

e-mail: atheis@gecinc.com

SECRETARY

Edmond J. Preau, Jr. / Amber Croissant

Department of Transportation and Development

P. O. Box 94245, Capitol Station

Baton Rouge, LA 70804-9245

(225) 274-4320

(225) 274-4322 (FAX)

e-mail: epreau@dotd.state.la.us

TREASURER

Earl T. Smith, Jr., Executive Assistant

Arkansas Soil and Water Conservation Commission

101 East Capitol, Suite 350

Little Rock, Arkansas 72201-3823

(501) 682-3979

(501) 682-3991 (FAX)

e-mail: earl.smith@mail.state.ar.us

BUDGET COMMITTEE

Kam K. Movassaghi, Ph.D., P.E., Secretary, CHAIRMAN

Department of Transportation and Development

P. O. Box 94245, Capitol Station

Baton Rouge, Louisiana 70804-9245

e-mail: kmovassa@dotd.state.la.us

Edmond J. Preau, Jr. (representative for Mr. Denton)

(225) 274-4320

(225) 274-4322 (FAX)

e-mail: epreau@dotd.state.la.us

Earl T. Smith, Jr., Executive Assistant

Arkansas Soil and Water Conservation Commission

101 East Capitol, Suite 350

Little Rock, Arkansas 72201-3823

(501) 682-3979

(501) 682-3991 (FAX)

e-mail: earl.smith@mail.state.ar.us

Michael E. Mathis, Chief

Planning & Management Divisoin

Oklahoma Water Resources Board

3800 N. Classen Blvd.

Oklahoma City, OK 73188

(405) 530-8800 (405) 530-8900 (FAX)

e-mail: memathis@owrb.state.ok.us

William A. Abney

P.O. Box 1386

Marshall, Texas 75671

(903) 938-6611

(903) 938-4572 (FAX)

e-mail: waabney@internetwork.net

ENGINEERING COMMITTEE

Zahir "Bo" Bolourchi, P.E., Chief, CHAIRMAN

Water Resources Programs

Department of Transportation and Development

P. O. Box 94245, Capitol Station

Baton Rouge, Louisiana 70804-9245

(225) 379-1434

(225) 379-1523 (FAX)

e-mail: bbolourc@dotd.state.la.us

Earl T. Smith, Jr., Executive Assistant

Arkansas Soil and Water Conservation Commission

101 East Capitol, Suite 350

Little Rock, Arkansas 72201-3823

(501) 682-3979

(501) 682-3991 (FAX)

e-mail: earl.smith@mail.state.ar.us

Michael E. Mathis, Chief

Planning & Management Divisoin

Oklahoma Water Resources Board

3800 N. Classen Blvd.

Oklahoma City, OK 73188

(405) 530-8800 (405) 530-8900 (FAX)

e-mail: memathis@owrb.state.ok.us

Herman Settemeyer

Texas Natural Resource Conservation Commission P.O. Box 13087, Capital Station, MC 157 Austin, Texas 78711-3087 (512) 239-4707 (FAX)

e-mail: hsetteme@tnrec.state.tx.us

e-mail: ken.brazil@mail.state.ar.us

ENVIRONMENTAL AND NATURAL RESOURCES COMMITTEE

Ken Brazil, P.E., Engineer Supervisor, CHAIRMAN Arkansas Soil and Water Conservation Commission 101 East Capitol, Suite 350 Little Rock, Arkansas 72201-3823 (501) 682-3980 (501) 682-3991 (FAX)

Max Forbes

Department of Environmental Quality P.O. Box 82135 Baton Rouge, Louisiana 70884-2135 (225) 765-0558 (225) 765-0635 (FAX) e-mail: max f@deq.state.la.us

Derrick Smith, Chief

Water Quality Programs Division
Oklahoma Water Resources Board
3800 N. Classen Boulevard
Oklahoma City, Oklahoma 73118
(405) 530-8800 (405) 530-8900 (FAX)
e-mail: drsmithee@owrb.state.ok.us

Herman Settemeyer

Texas Natural Resource Conservation Commission P.O. Box 13087, Capital Station, MC 157 Austin, Texas 78711-3087 (512) 239-4707 (512) 239-4707 (FAX) e-mail: hsetteme@tnrec.state.tx.us

LEGAL COMMITTEE

A. Mark Bennett, III, General Counsel, CHAIRMAN Arkansas Soil and Water Conservation Commission 101 East Capitol, Suite 350 Little Rock, Arkansas 72201-3823 (501) 682-3965 (501) 682-3991 (FAX) e-mail: mark.bennett@mail.state.ar.us

Gary Ethridge, General Counsel
Department of Transportation and Development
P. O. Box 94245, Capitol Station
Baton Rouge, Louisiana 70804-9245
(225) 237-1332 (225) 237-1333 (FAX)
e-mail: gethridg@dotd.state.la.us

Dean Couch, General Counsel
Oklahoma Water Resources Board
3800 N. Classen Blvd.
Oklahoma City, Oklahoma 73118
(405) 530-8800 (405) 530-8900 (FAX)
e-mail: dacouch@owrb.state.ok.us

Jane Atwood, Legal Assistant
Legal Division
Texas Natural Resource Conservation Commission
P. O. Box 13087, Capitol Station
Austin, Texas 78711-3087
(512) 475-4006
e-mail: jane.atwood@oag.state.tx.us

RED RIVER COMPACT COMMISSION

Budget

(July 1, 1999 through June 30, 2001)

Approved: 5/4/99

	<u>FY-00</u>	<u>FY-01</u>
Personnel Services, Office Expenses, Rent, & Travel	\$ 500.00	\$ 500.00
Audit	250.00	250.00
Treasurer's Bond	125.00	125.00
Postage, Stationery, & Office Supplies	100.00	100.00
Printing & Reports	1,225.00	1,225.00
Contingency	0.00	0.00
TOTAL	\$2,200.00	\$2,200.00

STATE ASSESSMENTS

In accordance with Article IX, Section 9.04.C, of the Compact, the amount of such budget shall be borne equally by the signatory states in an equal amount. Therefore, the FY-00 assessment is \$550.00 per state and the FY-01 assessment is \$550 per state.

P. O. Box 6848 Springdale, AR 72766

Phone (501) 750-9529

Fax (501) 750-3079

Red River Compact Commission Little Rock, Arkansas

I have audited the accompanying statement of cash receipts and disbursements of the Red River Compact Commission for the period July 1, 2000 through June 30, 2001. The financial statement is the responsibility of the commission's management. My responsibility is to express an opinion on this financial statement based on my audit.

I conducted my audit in accordance with generally accepted auditing standards for cash basis statements. Those standards require that I plan and perform the audit to obtain reasonable assurance about whether the financial statements are free of material misstatement. An audit includes examining, on a test basis, evidence supporting the amounts and disclosures in the financial statements. An audit also includes assessing the accounting principles used and significant estimates made by management, as well as evaluating the overall financial statement presentation. I believe that my audit provides a reasonable basis for our opinion.

The commission's policy is to prepare its financial statements on the basis of cash receipts and disbursements; consequently, certain revenue and related assets are recognized when received rather than when earned, and certain expenses are recognized when paid rather than when the obligation is incurred. Accordingly, the accompanying financial statement is not intended to present results of operations in conformity with generally accepted accounting principles.

In my opinion, the financial statement referred to above presents fairly, in all material respects, the recorded cash transactions of the Red River Compact Commission for the period ended June 30, 2001 on the basis of accounting described in the preceding paragraph.

Timothy A. Bunch, CPA PA

Turnely A Buch CAA PA

July 18, 2001

Red River Compact Commission Statements of Cash Receipts and Disbursements For the Period July 1, 2000 through June 30, 2001

Cash Balance, Regions Bank, July 1, 2000	\$_	12,359
-Coch Passints		
Cash Receipts Member Assessments		2,750
Interest Income	_	289
Total Cash Receipts	\$_	3,039
Cash Disbursements		
Accounting		275
Conference	- · · · -	947
Total Cash Disbursements	\$_	1,222
Cash Balance, Regions Bank, June 30, 2001	\$ _	14,176

Red River Compact Commission FY 99 – 2002 Budget (July 1, 2000 through June 30, 2003)

Proposed: 4/10/02

	Actua	1	Budge	t
	FY00	<u>FY01</u>	<u>FY02</u>	FY 03
Personnel Services, Office Expenses, Rent, Travel (Mtg. Expenses)	\$946.88	\$0.00	\$1,000.00	\$1,000.00
Audit	\$275.00	\$275.00	\$275.00	\$275.00
Postage, Stationery, & Office Supplies	\$0.00	\$0.00	\$250.00	\$250.00
Printing & Reports	\$0.00	\$2,123.20	\$2,250.00	\$2,250.00
Contingency	\$0.00	\$0.00	\$0.00	\$0.00
TOTAL	\$1,221.88	\$2,398.20	\$3,775.00	\$3,775.00

State Assessments

In accordance with Article IX, Section 9.04.C, of the Compact, the amount of such budget shall be borne equally by the signatory states in an equal amount. Therefore, the FY 00 assessment is \$550.00 per state and the FY 2001 assessment is \$550.00 per state.

RED RIVER COMPACT COMMISSION

21st ANNUAL MEETING MINUTES

CHATEAU LEMOYNE FRENCH QUARTER HOTEL NEW ORLEANS, LOUISIANA TUESDAY, APRIL 24, 2001

I. - II. CALL TO ORDER AND WELCOME

The twenty-first Annual Meeting of the Red River Compact Commission was called to order at 8:30 a.m. by Mr. Arthur Theis, Vice Chairman, on April 24, 2001, at the Chateau LeMoyne French Quarter Hotel in New Orleans, Louisiana.

Mr. Theis introduced Colonel Rick Clapp from the Mississippi Valley Division of the U.S. Army Corps of Engineers who was representing Brigadier General Edwin Arnold.

Those present at the meeting were:

Red River Compact Commissioners

Mr. Randy Young, Arkansas

Mr. Don Mitchell, Arkansas

Mr. Edmond J. Preau, Louisiana, representing Secretary Kam Moyassaghi (Proxy presented; see Attachment 1)

Mr. Arthur Theis, Louisiana

Colonel Rick Clapp, Mississippi Valley Division, U.S. Army Corps of Engineers, representing the Federal Chairman

Mr. Duane Smith, Oklahoma

Mr. Ken Fergeson, Oklahoma

Ms. Leigh Ing, Texas

Mr. William Abney, Texas

Representatives, Federal Agencies and Guests from Arkansas

Shane Barks, U.S. Geological Survey

Mark Bennett, Arkansas Soil & Water Conservation Commission

Ken Brazil, Arkansas Soil & Water Conservation Commission

Earl Smith, Arkansas Soil & Water Conservation Commission

Representatives, Federal Agencies and Guests from Colorado

Russ Livingston, U.S. Geological Survey, Central Region

Representatives, Federal Agencies and Guests from Louisiana

George Arcement, Jr., U.S. Geological Survey
Zahir "Bo" Bolourchi, Louisiana Department of Transportation & Development
Gary Ethridge, Louisiana Department of Transportation & Development
Max Forbes, Jr., Louisiana Department of Environmental Quality
Clyde Martin, Louisiana Department of Transportation & Development

Representatives, Federal Agencies and Guests from Oklahoma

James R. Barnett, Lugert-Altus Irrigation District Bob Blazs, U.S. Geological Survey Dean Couch, Oklahoma Water Resources Board Donna Kirby, Lugert-Altus Irrigation District Mike Mathis, Oklahoma Water Resources Board Donald Moomaw, U.S. Bureau of Reclamation Robert Robbins, Lugert-Altus Irrigation District

Representatives, Federal Agencies and Guests from Texas

Charles Armstrong, U.S. Army Corps of Engineers, Dallas District Jane Atwood, Office of the Attorney General of Texas Herman Settemeyer, Texas Natural Resources Conservation Commission

III. APPROVAL OF THE AGENDA

Motion by Commissioner Smith, seconded by Commissioner Abney to add the Sweetwater Creek controversy and Attorney Jim Barnett to the agenda. Motion passed without opposition.

Motion by Commissioner Young, seconded by Commissioner Smith to approve the agenda for the Red River Compact Commission 21st Annual meeting. Motion passed without opposition. (Attachment 2)

IV. APPROVAL OF THE MINUTES OF APRIL 25, 2000

Commissioner Ing stated that the draft minutes of the April 25, 2000, meeting were previously distributed. She asked if there were any additions or deletions to the minutes. The following amendments to the minutes were discussed:

- on page 4 under the Report of Commissioners for Louisiana, it should read Mr. Curtis Patterson in lieu of Mr. Art Theis;
- 2. in several places it reads Mr. Frank Denton was the representing Commissioner for Louisiana and it should read Dr. Kam K. Movassaghi
- 3. changes to the legal minutes were also discussed by Mr. Gary Ethridge and previously noted in the legal committee meeting

Ms. Jane Atwood amended the minutes and redistributed them during the course of the meeting. (Attachment 3)

Motion by Commissioner Smith, seconded by Commissioner Young to accept the minutes of the Red River Compact Commission 20th Annual Meeting with the approved amendments. Motion passed without opposition.

V. REPORT OF THE CHAIRMAN

Commissioner Theis, Vice-Chairman, stated that there was no report.

Colonel Clapp announced the change in the Division Engineer, Mississippi Valley Division, U.S. Army Corps of Engineers, from Major General Phillip Anderson to Brigadier General Edwin Arnold.

VI. REPORT OF THE TREASURER

Mr. Earl Smith presented the Treasurer's Report. (Attachment 4)

Motion by Commissioner Fergeson, seconded by Commissioner Mitchell to approve the Treasurer's Report. Motion passed without opposition.

VII. REPORT OF THE COMMISSIONERS

A. ARKANSAS

Commissioner Randy Young presented the State of Arkansas Commissioner's report. (Attachment 5)

B. LOUISIANA

Acting Commissioner Edmond J. Preau presented the State of Louisiana Commissioner's report. (Attachment 6)

C. TEXAS

Commissioner Leigh Ing presented the State of Texas Commissioner's report. (Attachment 7)

D. OKLAHOMA

Commissioner Duane Smith presented the State of Oklahoma Commissioner's report. (Attachment 8)

VIII. REPORT OF THE COMMITTEES

A. BUDGET COMMITTEE

Mr. Bolourchi reviewed the proposed budget with the Commissioners. There were no changes in the proposed budget from the one offered last year. It was recommended that each state pay an assessment of \$550 for FY 2002.

Upon motion duly made and seconded, the FY 2002-2003 Budget was unanimously accepted. (Attachment 9)

B. LEGAL COMMITTEE

Mr. Ethridge presented the Legal Committee report. He stated that the assignment of last year was to try and facilitate an agreement on the Sweetwater Controversy with Oklahoma and Texas. No agreement has been reached and the assignment will continue for the coming year. Mr. Ethridge informed the Commission that the Wheeler County Water Supply District Board has scheduled a tax election to obtain funds for a feasibility study.

Upon motion duly made and seconded, the Legal Committee report was unanimously accepted.

C. ENGINEERING COMMITTEE

Mr. Bolourchi presented the Engineering Committee report and stated that the assignment of last year was to monitor the gauging station network by the U.S. Geological Survey. He also stated the federal cutback of 20% on the water division should have no affect on the agreement with the state.

Mr. Bolourchi also said that the Arkansas state line gauging station on the Ouachita River is of some concern to groundwater and surface water interests. The Compact rule needs to go into effect. The City of Monroe is the financer and they would like to move the station to the actual city of Monroe although, then it would not directly gauge the water coming into the state of Louisiana. There is no funding available and the Commission may be asked to fund this particular gauging station.

Mr. Bolourchi also stated that another assignment was the development of a web site. The site is being worked on and should be on-line for use shortly. He also said that he had no comment on the Sweetwater Creek controversy and that he would like the Legal Committee to continue working on it.

It was also stated that the annual report has been completed by the state of Texas and should be printed and distributed shortly.

Upon motion duly made and seconded, the Engineering Committee report was unanimously accepted.

D. ENVIRONMENTAL COMMITTEE

The recommendation for members of next years committee were established. The assignments for next year were also discussed.

Motion by Commissioner Young, seconded by Commissioner Abney to accept all of the committee reports. Motion passed without opposition.

IX. FEDERAL AGENCY REPORTS

A. U.S. BUREAU OF RECLAMATION

Mr. Donald Moomaw presented the U.S. Bureau of Reclamation Federal Agency report. (Attachment 10)

B. U.S. ARMY CORPS OF ENGINEERS

Colonel Rick Clapp addressed the Mississippi Valley Division Corps of Engineers' portion of the Red River Issue. He spoke of the J. Bennett Johnston Waterway, Red River below Dennison Dam, Red River Emergency Bank Protection and the Red River Navigation Study.

Colonel Clapp then turned the floor over to Mr. Chuck Armstrong who presented a report on the Southwestern Division Corps of Engineers. (Attachment 11)

C. NATURAL RESOURCES CONSERVATION SERVICE

No report was given.

D. U.S. GEOLOGICAL SURVEY

Mr. Bob Blazs presented the U.S. Geological Survey Federal Agency report. (Attachment 12)

Motion by Commissioner Abney, seconded by Acting Commissioner Preau to accept all of the federal agency reports. Motion passed without opposition.

X. UNFINISHED BUSINESS

A. ANNUAL REPORT

The 2000 Annual Report was prepared by Texas and should be printed and distributed shortly. Louisiana will do the annual report for the year 2001.

B. ASSIGNMENTS TO COMMITTEES

The Engineering Committee assignments are as follows:

- 1. Continue monitoring proposed cutbacks in gauging a station network
- 2. Continue development of the web site
- 3. Draft rules and regulations for allocation of Ouachita River Reach 4, Subbasin 2
- 4. Draft rules and regulations for allocation of Red River Reach 2, Subbasin 3
- 5. Draft the annual report for distribution
- 6. Monitor the changes, stages and impact of the Southeast Oklahoma Water Plan development to the Red River Compact Commission

Motion by Commissioner Young, seconded by Acting Commissioner Preau to accept the Engineering Committee assignments. Motion passed without opposition.

The Environmental Committee assignments are as follows:

- 1. Provide current status of uses of waste water for the Ouachita River
- 2. Keep up with the activity in the Red and Ouachita River
- 3. Keep up with the new or long term information on environmental matters
- 4. Keep up with the recommendations of the Committee on preservation and desired water quality

Motion by Commissioner Young, seconded by Commissioner Ing to accept the Environmental Committee assignments. Motion passed without opposition.

The Legal Committee assignments are as follows:

- 1. Continue facilitation and follow the development of the conflict in the Sweetwater Basin Reach 1 and what additional structures are made and also to follow the impact it has on Texas and Oklahoma
- 2. Follow the Oklahoma legislature to find out the status of funding
- 3. Follow legislation in the various states and how it affects the Red River Compact Commission

Motion by Commissioner Fergeson, seconded by Commissioner Abney to accept the legal assignments. Motion passed without opposition.

The Budget Committee is to propose a biannual budget for consideration at the next meeting.

Motion by Commissioner Young, seconded by Commissioner Smith to select a member from each state to be represented on the Budget Committee.

C. ELECTION OF OFFICERS

Motion by Commissioner Young, seconded by Commissioner Fergerson to elect Mr. Don

Mitchell from Arkansas as Vice Chairman; Ms. Laura Brown as Secretary and Mr. Earl Smith as Treasurer of the 2002 meeting. Motion passed without opposition.

D. APPOINTMENT TO COMMITTEES

The recommended Environmental Committee is as follows:

Ken Brazil, Arkansas Max Forbes, Louisiana Herman Settemeyer, Texas Derrick Smith, Oklahoma

E. 22ND ANNUAL MEETING

Motion by Commissioner Abney, seconded by Commissioners Fergeson to have the 2002 meeting on the 4th Tuesday in April in Hot Springs, Arkansas. Motion passed without opposition.

XI. OTHER BUSINESS

Ms. Donna Kirby advised that she gathered all of the information and documentation on Sweetwater that is available to her. She also provided a newspaper article from Wheeler County to be included in the minutes. (Attachment 13)

The Sweetwater Controversy was discussed at length with varying opinions. Commissioner Young advised to continue encouraging the 2 states to work together and resolve this problem.

XII. PUBLIC COMMENT

There was no public comment.

XIII. ADJOURNMENT

Motion by Mr. Young to adjourn, second by Ms. Ing. Motion passed without opposition.

Amber Croissant

Executive Services Assistant

Amber Crossant

Louisiana Department of Transportation

and Development

STREAMFLOW GAGE DATA WATER YEAR OCTOBER 2000 through SEPTEMBER 2001

(as recommended for inclusion in the annual report by the Engineering Committee)

07337000 RED RIVER AT INDEX

LOCATION.--Lat 33°33'07", long 94°02'28", in NW1/4SW1/4 sec.7, T.14 S., R.28 W., Miller County, Hydrologic Unit 11140106, near right bank on downstream side of southbound bridge on U.S. Highway 71 at Index, 2.2 mi south of Ogden, 20.6 mi upstream from Little River, and at mile 485.3.

DRAINAGE AREA. --48,030 mi², of which 5,936 mi² is probably noncontributing.

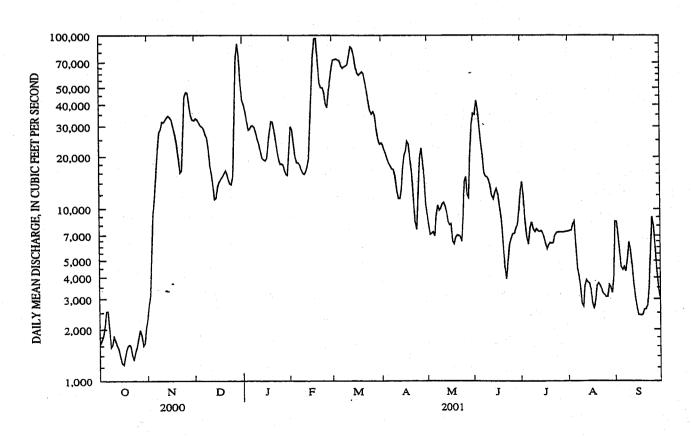
WATER-DISCHARGE RECORDS

PERIOD OF RECORD. --July 1936 to current year. Gage-height records collected at same site since 1917 are contained in reports of National Weather Service.

REVISED RECORDS. -- WSP 1211: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 246.87 ft above sea level. Prior to Dec. 12, 1939, nonrecording gage, and Dec. 12, 1939, to July 19, 1979, water-stage recorder, at site 500 ft downstream at present datum.

REMARKS.--No estimted daily discharges. Water-discharge records good. Some regulation since Oct. 31, 1943, by Lake Texoma (Texas), 241 mi upstream, capacity, 5,392,900 acre-ft, since Sept. 28, 1967, by Pat Mayse Lake (Texas), capacity, 352,700 acre-ft, and since Jan. 18, 1974, by Hugo Lake (Oklahoma) capacity, 966,700 acre-ft. Satellite telemeter at station.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL .	AUG	SEP
1	1640	2290	32400	42400	22800	64800	24100	9350	35600	12600	7400	8480
2	1730	2780	33300	39700	29900	72200	23500	8160	35200	14300	7460	8410
3	1850	3130	32700	36300	28500	72900	22100	7120	42200	11800	7520	7150
4	2090	5560	31300	31800	23500	73700	21000	7220	37700	8500	8160	5640
5	2550	9290	30300	28600	20100	72200	19700	7360	29500	6860	8470	4600
6	2540	11300	29800	29000	18500	71800	18500	6940	24400	6220	6350	4420
7	1990	16100	28800	30200	18400	66900	17800	9130	20600	7750	4540	4610
8	1580	21700	26700	30200	17800	64900	17100	10500	16300	8360	4050	4350
9	1630	27700	25500	29500	16900	66200	16900	9850	15400	7600	3520	5130
10	1810	28900	22100	27500	16100	67100	15500	10100	15300	7330	2800	6410
11	1720	31700	17700	25200	15800	68200	12700	10700	14700	7620	2700	5830
12	1620	31600	16000	23500	16400	76600	11500	10900	13600	7430	3540	4720
13	1530	32700	13800	21500	17400	86300	11500	10400	11900	7370	3860	3700
14	1390	33800	11300	19600	19600	84500	13000	9500	11400	7440	3740	3040
15	1270	34400	11500	19200	31500	76500	17500	8400	12400	7190	3690	2690
16	1240	33700	13400	19000	49500	66400	20600	8040	13000	6800	3400	2430
17	1360	32600	14300	19600	76000	60800	21600	8190	12000	6230	2850	2420
18	1520	30000	14900	23300	96200	59300	24600	6460	10200	5820	2620	2410
19	1600	27100	15400	27600	96400	60600	23600	6250	8630	6150	2910	2450
. 20	1630	24000	16000	31900	69400	61800	19600	6870	6500	6330	3580	2610
21	1590	19500	16600	31800	53300	60300	16200	7040	4700	6270	3710	2620
22	1410	16200	15900	28400	50100	54600	11900	7000	3920	6340	3590	2760
23	1320	16600	14600	24800	50200	47900	8450	6910	4820	7000	3420	3470
24	1460	27900	13900	21600	47000	41900	7630	6470	6170	7260	3220	6200
25	1590	44200	13800	19200	40600	37000	11000	8720	6660	7300	3160	9010
26	1780	47000	15500	18100	38500	35400	19700	14300	7120	7300	3070	7790
27	1980	46700	37400	18200	46600	36300	22500	15300	7170	7300	3080	5770
28	1830	40500	72200	17900	54600	34500	19100	12000	7720	7310	3,620	4340
29	1610	35100	* 89700	16600		29000	15200	11600	8060	7300	3500	3430
30	1670	32600		15800		25300	10800	21100	9930	7370	3250	3040
31	2040		51700	15600		23800	***	31100		7380	4140	
TOTAL	52570	766650	855200	783600	1081600	1819700	514880	312980	452800	237830	130920	139930
MEAN	1696	25560	27590	25280	38630	58700	17160	10100	15090	7672	4223	4664
MAX	2550	47000	89700	42400	96400	86300	24600	31100	42200	14300	8470	9010
MIN	1240	2290	11300	15600	15800	23800	7630	6250	3920	5820	2620	2410
AC-FT	104300	1521000	1696000	1554000	2145000	3609000	1021000	620800	898100	471700	259700	277600

07337000 RED RIVER AT INDEX--CONTINUED

		STATIST	ICS OF M	ONTHLY MEA	N DATA FO	R WATER	YEARS 194	4 - 2001,	BY WATER	YEAR (WY)		
MEAN	8070	10910	12170	11350	14260	17500	17240	23740	21990	9782	5781	5925
MAX	41690	47140	47910	60160	38960	67730	61460	121000	94400	33990	39230	30340
(WY)	1946	1975	1992	1998	1946	1945	1990	1990	1957	1989	1950	1950
MIN	716	642	1206	1360	2127	2233	2096	4199	3098	1162	1025	909
(WY)	1957	1957	1957	1964	1964	1967	1956	1972	1988	1944	1944	1944
SUMMARY STATISTICS			FOR	2000 CALE	NDAR YEAR		FOR 2001 W	NATER YEAR	ŧ	WATER YE	EARS 1944	- 2001
ANNUAL	TOTAL	•		3245570			7148660					
ANNUAL MEAN				8868			19590			^a 13210		
HIGHEST ANNUAL MEAN										30420		1990
LOWEST	ANNUAL N	IEAN .								4383		1964
HIGHES	T DAILY N	1EAN		89700	Dec 29		96400	Feb 19)	268000	May	10 1990
LOWEST DAILY MEAN				1240	Oct 16		1240	Oct 16	5	384	Nov	28 1956
ANNUAL SEVEN-DAY MINIMUM				1420	Oct 13		1420	Oct 13	3	397	Oct.	19 1956
MAXIMU	JM PEAK FI	COM					102000	Feb 1	•	¹⁵ 270000	May	10 1990
MAXIMU	JM PEAK ST	PAGE					18.5	55 Feb 1)	^C 32.30) May	10 1990
INSTAN	TANEOUS I	LOW FLOW					1240	Oct 19	5-16	378	Nov	28 1956
ANNUAL	RUNOFF	(AC-FT)		6438000			14180000			9570000		
10 PEF	RCENT EXC	EEDS		19800			47400			35300		
50 PEF	RCENT EXC	EEDS		4500			13000			6010		
90 PEF	RCENT EXC	EEDS		2000			2590	•		2290		

^CMaximum gage height for period of record, 34.25 ft Feb. 23, 1938, from graph based on gage readings

aPrior to regulation, water years 1937-43, 11,970 ft3/s

^bMaximum discharge for period of record 297,000 ft³/s Feb. 23, 1938

07340000 LITTLE RIVER NEAR HORATIO

LOCATION.--Lat 33°55'10", long 94°23'15", in NE1/4 sec.10, T.10 S., R.32 W., Sevier County, Hydrologic Unit 11140109, near left bank on downstream side of bridge on State Highway 41, 0.9 mi downstream from Rolling Fork, 2.0 mi southwest of Horatio, 28.5 mi upstream from Cossatot River, and at mile 72.0.

DRAINAGE AREA. -- 2.662 mi2.

PERIOD OF RECORD. -- October 1930 to current year. Monthly discharge only for some periods, published in WSP 1311.

REVISED RECORDS.--WSP 858: 1932, 1935-36. WSP 1211: 1931, drainage area. WSP 1561: 1932. WRD Ark. 1978: drainage area.

GAGE.--Water-stage recorder. Datum of gage is 272.89 ft above sea level. Prior to Feb. 5, 1935, nonrecording gage, and Feb. 5, 1934, to Sept. 13, 1961, water-stage recorder, at site 50 ft upstream at present datum.

REMARKS.--Records good except estimated daily discharges, which are fair. Some regulation since Oct. 3, 1968, by Broken Bow Lake (Oklahoma), 31.4 mi upstream, capacity, 1,368,000 acre-ft, and since June 1, 1969, by Pine Creek Lake (Oklahoma), 73.3 mi upstream, capacity, 465,800 acre-ft. Satellite telemeter at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in August 1915, reached a stage of 38.0 ft, discharge, 124,000 ft³/s.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001
DAILY MEAN VALUES

								2				
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	ஶட	AUG	SEP
1	636	609	10800	9140	10300	17100	2350	1640	8630	3100	1670	718
2	940	685	12000	8830	9520	16200	1830	844	9820	1680	2130	662
. 3	1100	2500	11700	9660	8380	17200	3580	1020	8340	1130	1260	618
4	827	2030	11800	10900	4020	18300	4450	1030	7960	927	942	644
5	852	2090	11300	11600	2780	16500	4740	1320	7530	820	784	641
6	1030	9340	9330	11900	3570	12800	4470	702	4290	1160	700	718
7	610	15800	8980	8910	3520	11600	3360	761	1880	1600	2000	691
8	472	14700	9500	8670	3510	14400	1440	1650	1200	1570	2290	1640
9	475	14500	8700	11900	3260	15800	954	2520	1020	1550	2450	1360
10	463	9050	5240	12800	3040	16100	1100	1990	965	1440	2520	904
11	450	6000	3850	12500	3470	16400	1740	2180	809	2210	1880	1340
12	451	5400	5010	12500	3260	18500	2010	2710	898	2490	907	1130
13	451	9470	4640	10300	6180	17900	1910	2810	1250	1210	637	2430
14	445	10100	2640	6270	17500	15900	1770	2270	1100	901	656	2850
15	386	8450	2920	4950	20100	17200	3980	2220	1120	776	658	1820
16	370	8170	3080	5640	22200	16500	6070	2760	971	777	710	853
17	e360	7880	3700	6240	31400	15300	7710	2210	. 880	1240	738	645
18	e350	5270	3470	8890	28600	15600	7740	1700	1170	2340	732	1810
19	e340	3290	5630	10500	25200	15400	7950	1550	1300	2790	1130	1920
20	364	2810	7260	10100	21700	15100	7120	734	1550	3250	857	2720
21	411	2960	7350	8090	13800	15000	5030	624	1310	3250	678	2740
22	376	3290	4770	7270	7400	15400	2110	3340	859	2060	667	2890
23	360	4040	3440	7480	11400	15900	1670	5320	1470	2980	645	1780
24	e350	17800	2160	6790	12200	16100	3270	5340	814	3490	645	1430
25	e340	25200	1680	5750	7840	16100	2630	5820	882	1460	638	1430
26	e330	22300	7330	5620	10600	15900	3130	3460	1010	958	613	1300
27	e320	17100	23100	3100	13100	15600	3000	1480	1500	887	612	1470
28	e315	12100	27900	2160	16700	12600	2400	2600	922	955	896	1260
29	e310	9010	26200	2340		9840	1140	5890	1320	744	1180	798
30	e310	10300	22100	5880		8370	660	4740	3510	689	818	621
31	382		15000	9700	7***	4700		4360	~~~	731	859	
TOTAL	15176	262244	282580	256380	324550	465310	101314	77595	76280	51165	33902	41833
MEAN	490	8741	9115	8270	11590	15010	3377	2503	2543	1650	1094	1394
MAX	1100	25200	27900	12800	31400	18500	7950	5890	9820	3490	2520	2890
MIN	310	609	1680	2160	2780	4700	660	624	809	689	612	618
AC-FT	30100	520200	560500	508500	643700	922900	201000	153900	151300	101500	67240	82980

07340000 LITTLE RIVER NEAR HORATIO--CONTINUED

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1969 ~ 2001 MEAN MAX (WY)

MIN	242	232	244	493	669	665	1449	530	346	281	411	30	3
(WY)	2000	2000	1990	1981	1996	1996	1981	1988	1988	1972	1977	197	7
SUMMARY STATISTICS			FOR	2000 CALE	NDAR YEAR	1	FOR 2001	WATER YE	AR	WATER Y	EARS 1969	- 200	1
ANNUAL	TOTAL			1335329			1988329			•			
ANNUAL	MEAN			3648			5447			^a 4225			
HIGHES'	T ANNUAL I	MEAN								7523		197	'3
LOWEST	ANNUAL M	EAN								1547		197	6
HIGHES	T DAILY M	EAN		27900	Dec 28		31400	Feb	17	57700	Dec	12 197	1
LOWEST	DAILY ME	AN		264	Jan 26		310	Oct	29	^b 121	Oct	5 197	2
ANNUAL	SEVEN-DA	MINIMUM Y		325	Oct 24		325	Oct	24	152	Oct	4 197	2
MAXIMU	M PEAK FL	OW					32400	Feb	17	^C 65100		10 197	11
UMIXAM	M PEAK ST	AGE					29.	.14 Feb	17	d _{32.8}	4 Dec	10 197	11
ANNUAL	RUNOFF (AC-FT)		2649000			3944000			3061000			
10 PER	CENT EXCE	EDS		9540			15500			12500			
50 PER	CENT EXCE	EDS		1910			2720			1850			
90 PER	CENT EXCE	EDS		442			645			361			

aPrior to regulation, water years 1931-68, 3,742 ft³/s

e_{Estimated}

bMinimum discharge for period of record, 1.0 ft3/s Aug. 18 to Sept. 1, 1934

CMaximum discharge for period of record, 120,000 ft³/s Mar. 30, 1945, from rating curve extended above 93,000 ft³/s

d_{Maximum} gage height for period of record, 37.70 ft Mar. 30, 1945

07362000 OUACHITA RIVER AT CAMDEN

LOCATION.--Lat 33°35'47", long 92°49'05", in SE1/4 sec.14, T.13 S., R.17 W., Ouachita County, Hydrologic Unit 08040102, at bridge on U.S. Highway 79B at Camden, 3.4 mi downstream from Ecore Fabre Bayou, 6.2 mi upstream from Two Bayou Creek, and at mile 354.1.

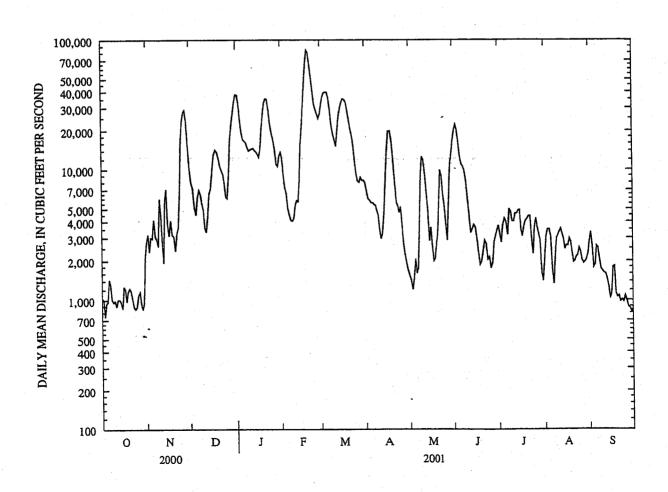
DRAINAGE AREA. -- 5,357 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--September 1928 to September 1960 and October 1965 to current year in reports of Geological Survey. October 1929 to date in reports of U.S. Army Corps of Engineers. Monthly discharge only, October 1929 to September 1960 published in WSP 1311 and WSP 1731. Gage heights collected since 1885 in this vicinity are contained in reports of National Weather Service.

GAGE.--Water-stage recorder. Datum of gage is 71.69 ft above sea level. Aug. 8, 1928, to July 10, 1935, and July 11, 1935, to Jan. 4, 1945, nonrecording gage at present site and datum. Jan. 5, 1945, to Oct. 27, 1947, nonrecording gage at site 0.4 mi downstream at present datum. Aug. 10, 1938, to May 31, 1949, supplementary nonrecording gage, 4.5 mi upstream. Since Jan. 1, 1957, auxiliary water-stage recorder, 3.2 mi downstream.

REMARKS.--No estimated daily discharges. Water-discharge records good. Flow regulated since 1925 by Lake Catherine, 102 mi upstream, capacity, 35,250 acre-ft, since 1932 by Lake Hamilton, capacity, 190,100 acre-ft, since 1949 by Lake Greeson, capacity, 407,900 acre-ft, since 1952 by Lake Ouachita, capacity, 2,768,400 acre-ft, and since August 1969 by DeGray Lake, capacity, 881,900 acre-ft. Satellite telemeter at station.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	ıπ	AUG	SEP
1	1030	2780	10300	38000	13600	27200	7880	1550	17000	3720	2130	2840
2	1000	3180	7930	37700	12300	32700	6850	1420	20300	3210	3130	3330
3	742	2350	7180	31600	9230	37000	5980	1210	22200	2760	3500	2620
4	943	3000	5170	23600	7350	39400	5810	1520	20100	3760	3490	1800
5	970	2970	4520	19200	6570	39600	5550	2060	16200	4200	3070	1890
6	1440	4130	6160	17100	5060	39600	5550	1610	12600	3960	1720	2610
7	1300	3080	6960	16700	4500	35600	5370	1760	11000	3160	1330	2530
8	1010	2900	6470	16200	4080	28800	5320	4000	10500	4990	2150	2120
9	957	2590	5510	14900	4040	21900	4810	9090	9730	4720	3010	1750
10	984	5990	4850	14000	4280	18900	4440	12600	8180	4000	3150	1670
11	895	4400	3590	14300	5380	17000	3410	11700	6030	4000	3370	1620
12	1010	2710	3330	14500	5800	15200	2960	9170	4540	4610	3550	1600
13	1010	1930	4290	14600	5700	19600	3270	6860	3260	4600	3230	1460
14	966	5690	6520	14100	8380	25800	4470	4850 -	3510	4830	2950	1280
15	863	7100	7170	13800	15700	29800	8020	2840	3750	4880	2470	1030
16	1270	3880	9740	13200	20900	33200	13900	3620	3610	3490	2640	1140
17	1200	3120	13000	12500	31100	35200	19800	2560	2970	3080	2630	1800
18	977	4070	14200	14400	47100	34800	19900	2000	2260	3640	2970	1830
19	1170	3160	13700	20800	66300	33100	16500	2090	1860	4040	2790	1130
20	1230	3080	12300	27200	83800	28800	11700	2670	1960	4190	2310	1060
21	1180	2400	10600	32700	80100	24500	7670	3260	2360	4420	1960	1080
22	1030	3260	9850	35300	65300	20600	5600	6300	2830	4390	2010	979
23	886	3590	9250	35000	50400	18400	5280	9900	2680	2960	2150	1010
24	856	6360	7930	29200	39500	15300	4690	8930	2050	2260	2220	975
25	890	16500	6190	22700	32000	11500	5180	6540	2130	3670	2520	1080
26	1100	23800	6020	19000	29100	9290	4010	5330	1750	4240	2360	983
27	1160	27800	- 9150	17000	26800	8200	2830	4030	1930	3630	2030	888
28	939	28800		14400	24900	8000	2290	. 2870	2790	3200	1920	874
29	850	24000	22300	11000		8700	1990	5280	3080	2860	1970	817
30	953	15900	27600	10600		8280	1710	10900	3410	1630	2070	851
31	2190		33700	12700		8270	,	13300	,	1400	2270	
TOTAL	33001	224520	312380	628000	709270	734240	202740	161820	206570	114500	79070	46647
MEAN	1065	7484	10080	20260	25330	23690	6758	5220	6886	3694	2551	1555
MAX	2190	28800	33700	38000	83800	39600	19900	13300	22200	4990	3550	3330
MIN	742	1930	3330	10600	4040	8000	1710	1210	1750	1400	1330	817
AC-FT	65460	445300	619600	1246000	1407000	1456000	402100	321000	409700	227100	156800	92520

07362000 OUACHITA RIVER AT CAMDEN--CONTINUED

		CONTRACTOR	TOC OR	MONITURE W	MEAN DATA	בטם מוא שבים	VENDC 10	20 2001	227 F.72 @220		• •	
		STATIST	ICS OF	MONTHLI	MEAN DATA	FOR WAIEF	L IEMMS 13	23 - 2001,	BI WATER	YEAR (WI	,	
MEAN	2455	5260	9331	12270	12430	12940	12920	12420	5263	2878	1997	2232
MAX	18200	25370	41930	46610	40110	45110	48110	52200	31090	13640	7469	19410
(WY)	1985	_ 1973	1983	1937	1950	1945	1945	1968	1974	1989	1966	1974
MIN	291	381	740	686	1542	1742	1578	1674	411	260	176	154
(WY)	1933	1933	1940	1940	1936	1954	1930	1932	1936	1930	1930	1943
SUMMAR	Y STATIST	rics	FOR	2000 C	ALENDAR YE	AR	FOR 2001	WATER YEAR	₹.	WATER Y	TEARS 1929	9 - 2001
ANNUAL	TOTAL			1770288	3		3452758		•			
ANNUAL	MEAN			483	7.		9460			7678		
HIGHES	T ANNUAL	MEAN								16120		1973
LOWEST	ANNUAL 1	EAN								2292		1936
HIGHES	T DAILY N	IEAN		3370) Dec	31	83800	Feb 2		238000	Apr	3 1945
LOWEST	DAILY ME	EAN		743	2 Oct	3	742	Oct :	3	125	Sep	16 1943
ANNUAL	SEVEN-DA	MUMINIM YA		95	4 Oct	23	924	Sep 2	4	132	Sep	11 1943
MAXIMU	im peak fi	LOW					87700	Feb 2	0	243000	Apr	3 1945
MAXIMU	M PEAK ST	PAGE					37.	55 Feb 2	0	44.8	32 Apr	3 1945
INSTAN	TANEOUS I	LOW FLOW					623	Oct :	3 .	125	^a Sep	16 1943
ANNUAL	RUNOFF	(AC-FT)		351100	0		6849000			5562000		
10 PER	CENT EXC	EEDS		1130	0		27000			19300		
50 PEF	CENT EXC	EEDS		300	0 -		4290			3440		
90 PER	CENT EXC	EEDS		104	0.1		1150			788		

^aAlso September 24-26, 1943

07362100 SMACKOVER CREEK NEAR SMACKOVER

LOCATION.--Lat 33°22'33", long 92°46'37", in NW1/4SE1/4 sec.32, T.15 S., R.16 W., Union County, Hydrologic Unit 08040201, near right bank on downstream side of bridge on State Highway 7, 0.1 mi downstream from Camp Creek, 3.3 mi northwest of Smackover, and at mile 22.0.

DRAINAGE AREA. -- 385 mi².

PERIOD OF RECORD. --October 1961 to current year. Gage-height records collected and occasional discharge measurements made by U.S. Army Corps of Engineers at this site since September 1938. Daily stages 1940 to date and results of discharge measurements 1947 to 1960 are published in reports of U.S. Army Corps of Engineers.

REVISED RECORDS.--WRD Ark. 1967: 1965. WRD Ark. 1979: Drainage area.

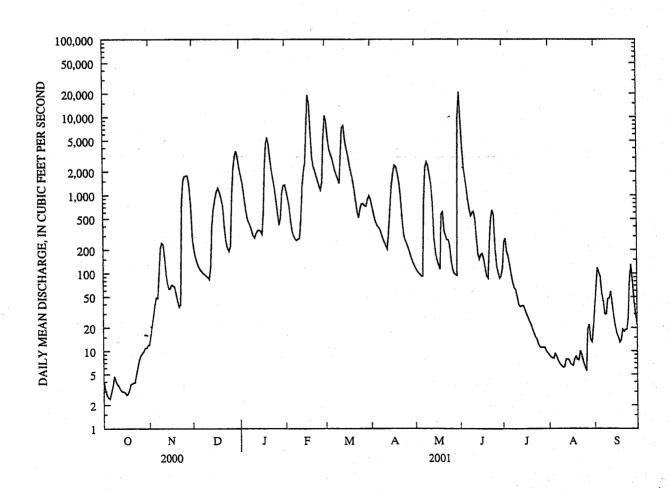
GAGE.--Water-stage recorder. Datum of gage is 97.56 ft above sea level (levels by U.S. Army Corps of Engineers). Prior to Mar. 1, 1989, water-stage recorder at site 100 ft downstream at same datum. Mar. 1, 1989 to Sept. 4, 1991, non-recording gage at same site and datum.

REMARKS. -- Records good.

EXTREMES OUTSIDE PERIOD OF RECORD. -- Maximum stage since at least 1938, that of June 8, 1974.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DAILY MEAN VALUES


DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	4.1	12	288	2170	1360	10500	878	119	21000	115	8.8	38
2	3.1	16	205	e1750	1120	8810	709	110	10100	249	8.4	70
3	2.7	21	164	e1380	900	5420	560	103	4170	278	8.1	118
4	2.5	28	- 139	984	697	3870	464	98	2280	189	7.9	103
5	2.4	39	122	676	467	3330	413	92	1660	164	9.1	91
6	2.9	49	111	509	349	2960	389	92	1250	128	8.4	55
7	3.5	48	105	447	302	2450	362	846	874	96	7.3	43
8	4.7	100	100	405	275	2060	316	2250	657	76	6.7	30
9	4.1	209	96	354	265	1810	276	2660	547	65	6.4	30
10	3.7	245	92	303	275	1620	247	2400	589	61	6.1	47
11	3.5	235	89	283	285	1420	224	1820	615	50	6.2	48
12	3.2	158	84	322	518	2870	205	1360	494	39	7.8	59
13	3.0	97	122	354	1280	7380	330	791	293	37	7.8	41
14	3.0	73	423	359	2040	7730	663	277	176	38	7.6	28
15	2.9	63	675	345	2630	5150	1320	181	152	38	6.8	21
16	2.7	64	887	316	6740	3930	1880	148	173	34	6.6	17
17	2.8	71	1100	637	19300	3220	2420	128	179	30	6.4	15
18	3.1	69	1230	2320	15200	2390	2330	113	151	27	7.9	13
19	3.7	67	1090	4590	6520	1930	1920	577	116	24	8.5	14
20	3.8	55	912	5500	3130	1570	1470	609	92	22	7.7	19
21	3.9	44	725	4350	2340	1190	945	351	86	19	7.6	18
22	3.9	37	409	2810	2080	841	489	306	247	17	10	19
23	5.0	40	261	2030	1790	618	312	269	499	15	8.7	19
24	6.3	767	212	1590	1530	519	264	269	640	14	7.1	27
25	7.7	1520	192	1220	1320	658	242	225	550	12	6.1	79
26	8.8	1750	221	866	1170	775	217	147	207	11	5.5	130
27	9.4	1770	1020	581	1470	786	189	113	122	11	19	82
28	10	1770	2170	418	5160	736	164	100	100	11	22	45
29	11	1420	3180	525		720	146	96	86	11	14	30
30	11	771	3650	1070		879	131	94	93	9.9	13	22
31	12		2920	1340		986		10300		9.3	20	
TOTAL	154.4	11608	22994	40804	80513	89128	20475	27044	48198	1900.2	283.5	1371
MEAN	4.98	387	742	1316	2875	2875	682	872	1607	61.3	9.15	45.7
MAX	12	1770	3650	5500	19300	10500	2420	10300	21000	278	22	130
MIN	2.4	12	84	283	265	519	131	92	86	9.3	5.5	13
AC-FT	306	23020	45610	80930	159700	176800	40610	53640	95600	3770	562	2720
CFSM	.01	1.01	1.93	3.42	7.47	7.47	1.77	2.27	4.17	.16	.02	.12
IN.	.01	1.12	2.22	3.94	7.78	8.61	1.98	2.61	4.66	.18	.03	.13
												·. —

07362100 SMACKOVER CREEK NEAR SMACKOVER--CONTINUED

		STATISTICS	OF	MONTHLY MEAN	DATA	FOR	WATER	YEARS 196	52 -	- 2001, B	Y WATER	YEAR (WY)			
MEAN	113	247	56	1 666	852	2	862	750		508	437	126	50.1	92.5	;
MAX	1784	1143	199	1980	2832	2	2802	4078		1701	2864	1949	346	2174	
(WY)	1985	_ 1975	198	3 1962	2001	ì	2001	1991		1966	1974	1989	1971	1974	,
MIN	1.51	3.66	33.	38.8	44.6	5	112	90.6		33.6	8.91	1.81	.22	1.29)
(WY)	1996	1996	198	2 2000	1996	5	1967	1971		1996	1972	1964	2000	2000	ŀ
SUMMAR	Y STATIST	ICS	F	OR 2000 CALEN	DAR Y	EAR		FOR 2001	WA	TER YEAR		WATER YE	ARS 1962	2001	
ANNUAL	TOTAL			95365.01				344473.	. 1						
ANNUAL	MEAN			261 .				944				436			
HIGHES	T ANNUAL	MEAN										1074		1974	
LOWEST	ANNUAL M	EAN										94.4		1963	,
HIGHES	T DAILY M	EAN		3650	Dec	30		21000		Jun 1		35300	Apr	6 1997	,
LOWEST	DAILY ME	AN		.00	Aug	8		2	. 4	Oct 5		.00	Aug	24 1978	l
ANNUAL	SEVEN-DA	Y MINIMUM		.00	Aug	8		. 3	. 0	Oct 12		.00	Aug	8 2000	١.
MAXIMU	m peak fl	OW						23600		Jun 1		^a 52700	Jun	8 1974	
MAXIMU	m peak st	AGE						21	. 27	Jun 1		24.97	Jun	8 1974	į.
INSTAN	TANEOUS L	OW FLOW						2	. 3	Oct 4-6		.00	at	times	
ANNUAL	RUNOFF (AC-FT)		189200				683300				316000			
ANNUAL	RUNOFF (CFSM)		.68				2	. 45			1.13			
ANNUAL	RUNOFF (INCHES)		9.21				33	.28			15.39			
10 PER	CENT EXCE	EDS		755				2330				1230			
50 PER	CENT EXCE	EDS		56				189				94			
90 PER	CENT EXCE	EDS		.00				7	. 6			5.9			

^aFrom rating curve extended above 31,000 ft³/s

e_{Estimated}

07363500 SALINE RIVER NEAR RYE

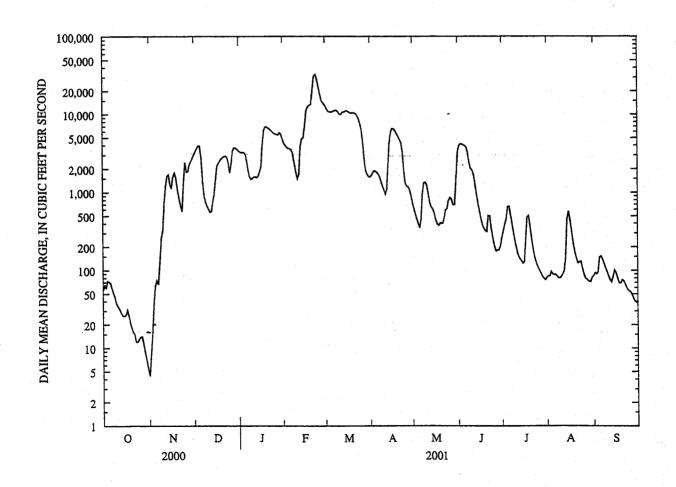
LOCATION.--Lat 33°42'03", long 92°01'33", in SW1/4NW1/4 sec.3, T.12 S., R.9 W., Bradley County, Hydrologic Unit 08040204, near left bank on downstream side of bridge on State Highway 15, 3.6 mi southwest of Rye, 5.8 mi upstream from Hudgin Creek, and at mile 71.0.

DRAINAGE AREA. -- 2,102 mi2.

PERIOD OF RECORD. -- August 1937 to current year.

REVISED RECORDS. -- WRD Ark. 1979: Drainage area.

GAGE. -- No estimated daily discharges. Water-stage recorder. Datum of gage is 97.06 ft above sea level. Prior to May 30, 1939, nonrecording gage at present site and datum.


REMARKS. -- Records good. Satellite telemeter at station.

EXTREMES OUTSIDE PERIOD OF RECORD. -- Flood of April 1927 reached a stage of 30.5 ft, discharge, about 73,000 ft³/s.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES DAY NOV DEC JAN FEB OCT MAR APR MAY .TIN JUL AUG SEP 4.4 8.6 .3080 8.5 ---6.8 5.4 ---TOTAL 980.7 31659.0 MEAN 31.6 82.5 MAX MIN 5.4 4.4 ~ AC-FT CFSM .02 .50 1.10 1.88 4.98 4.38 1.30 .33 .74 .12 .07 .04 IN. .02 .56 1.27 2.16 5.19 5.05 1.45 .38 . 83 .14 .08 .04 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1938 - 2001, BY WATER YEAR (WY) MEAN MAX (WY) MIN 15.4 50.7 10.6 32.5 80.5 4.95 (WY)

07363500 SALINE RIVER NEAR RYE--CONTINUED

SUMMARY STATISTICS	FOR 2000 CALENDAR YEAR	FOR 2001 WATER YEAR	WATER YEARS 1938 - 2001
ANNUAL TOTAL	336913.0	970466.7	
ANNUAL MEAN	921	2659	2600
HIGHEST ANNUAL MEAN			5436 1973
LOWEST ANNUAL MEAN			704 1972
HIGHEST DAILY MEAN	4510 May 10	32900 Feb 23	72500 May 18 1968
LOWEST DAILY MEAN	4.4 Nov 1	4.4 Nov 1	3.8 Sep 16 1954
ANNUAL SEVEN-DAY MINIMUM	8.4 Oct 27	8.4 Oct 27	4.0 Sep 15 1954
MAXIMUM PEAK FLOW		33800 Feb 22-23	74500 May 18 1968
MAXIMUM PEAK STAGE		26.47 Feb 22	31.40 May 18 1968
INSTANTANEOUS LOW FLOW		3.6 Nov 1	3.5 Sep 27 1954
ANNUAL RUNOFF (AC-FT)	668300	1925000	1883000
ANNUAL RUNOFF (CFSM)	. 44	1.26	1.24
ANNUAL RUNOFF (INCHES)	5.96	17.17	16.80
10 PERCENT EXCEEDS	2800	8240	7430
50 PERCENT EXCEEDS	398	833	676
90 PERCENT EXCEEDS	21	58	64

07364150 BAYOU BARTHOLOMEW NEAR MCGEHEE

LOCATION.--Lat 33°37'40", long 91°26'45", in NE1/4SW1/4 sec.30, T.12 S., R.3 W., Desha County, Hydrologic Unit 08050001, near center of stream on downstream side of bridge on State Highway 4, 2.7 mi west of McGehee, 17.5 mi downstream from Ables Creek, at mile 200.5.

DRAINAGE AREA .-- 576 mi².

WATER-DISCHARGE RECORDS

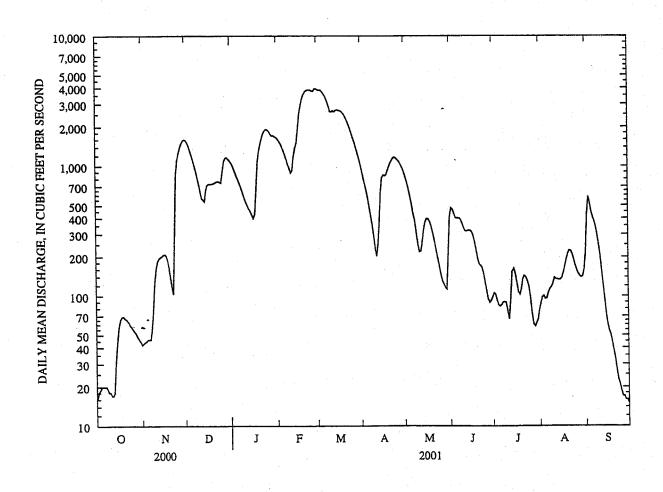
PERIOD OF RECORD.--October 1938 to September 1942, October 1945 to current year. Gage-height
records collected and occasional discharge measurements made by U.S. Army Corps of
Engineers at this site since August 1938. Daily stages 1940 to date and results of discharge
measurements 1938, 1947 to date are published in reports of U.S. Army Corps of Engineers.

REVISED RECORDS. -- WRD Ark. 1979: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 120.48 ft above sea level. Prior to Sept. 7, 1949, nonrecording gage at same site. October 1938 to June 6, 1972, at datum 1.00 ft higher. Since Jan. 20, 1971, auxiliary water-stage recorder 14 mi upstream.

REMARKS.—No estimated daily discharges. Water-discharge records good except discharges below $50 \text{ ft}^3/\text{s}$, which are poor.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1930, that of May 11, 1958. Flood in 1932 reached a stage of 23.4 ft, present datum, from floodmarks.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001
DAILY MEAN VALUES

DAY	OCT	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	16	42	1600	1090	1660	3920	1040	899	409	98	79	220
2	18	43	1580	1050	1610	3860	933	833	479	105	88	429
3	19	44	1520	989	1550	3820	836	759	466	103	98	587
4	20	45	1440	917	1480	3850	743	682	431	93	100	525
5	20	46	1340	846	1390	3750	658	600	402	85	95	453
6	20	46	1230	789	1300	3610	571	517	400	83	96	409
7	20	46	1130	736	1220	3470	487	433	400	85	106	. 381
8 .	. 19	55	1020	681	1130	3290	413	384	398	89	114	346
9	18	. 77	919	628	1040	3090	350	313	384	90	117	300
10	18	123	821	576	966	2860	284	253	361	89	124	254
11	17	164	728	536	891	2630	231	220	337	77	138	208
12	17	186	636	503	927	2610	204	223	320	66	135	164
13	18	195	568	476	1200	2670	252	264	316	94	134	127
14	30	199	551	451	1380	2620	359	323	319	154	133	97
15	45	203	535	425	1520	2690	627	370	322	163	134	74
16	58	208	651	398	2010	2700	822	396	319	148	139	61
17	66	209	716	428	2550	2690	853	395	. 307	125	152	54
18	69	202	731	705	2940	2660	847	377	286	106	170	50
19	69	188	729	1090	3280	2620	862	349	255	102	191	44
20	67	166	728	1330	3540	2550	928	314	222	113	212	38
21	66	141	738	1490	3710	2460	1000	277	192	134	225	33
22	64	118	751	1650	3810	2340	1070	241	176	143	224	27
23	62	103	762	1790	3840	2210	1130	209	171	140	211	23
24	59	404	765	1890	3820	2070	1170	184	165	130	191	21
25	57	863	757	1920	3850	1920	1160	161	152	118	172	19
26	55	1110	749	1900	3770	1780	1130	142	133	98	158	17
27	53	1260	927	1850	3760	1640	1100	129	111	73	149	17
28	51	1390	1100	1770	3940	1510	1060	122	95	60	143	16
29	48	1500	1160	1710	·	1370	1010	116	89	58	140	16
30	46	1580	1160	1720		1250	958	113	92	62	143	15
31	44		1130	1690		1140		244		66	163	
TOTAL	1249	10956	29172	34024	64084	81650	23088	10842	8509	3150	4474	5025
MEAN	40.3	365	941	1098	2289	2634	770	350	284	102	144	168
MAX	. 69	1580	1600	1920	3940	3920	1170	899	479	163	225	587
MIN	16	42	535	398	891	1140	204	113	89	58	79	15
AC-FT	2480	21730	57860	67490	127100	162000	45800	21510	16880	6250	8870	9970
CFSM	. 07	. 63	1.63	1.91	3.97	4.57	1.34	. 61	. 49	.18	.25	.29
IN.	.08	.71	1.88	2.20	4.14	5.27	1.49	.70	. 55	.20	. 29	.32

07364150 BAYOU BARTHOLOMEW NEAR MCGEHEE

		STATIST	CS OF	MONTHLY	MEAN	DATA E	FOR WATER	YEARS 19	39 -	2001,	BY WATER	YEAR (WY))		
MEAN	165	341	720	102	6	1417	1405	1207		1046	455	213	151		150
XAM	1491	2240	2835	390	0	5085	4006	3127		5972	2575	3688	1032		1792
(WY)	1985	- 1958	1973	194	6	1990	1997	1991		1958	1974	1989	1989		1974
MIN	8.45	6.88	31.9	39.	3	98.3	189	82.8		73.0	22.1	6.03	.44		14.4
(WY)	1996	1996	1982	196	6	2000	1954	1966		1965	1972	1954	1956		2000
SUMMARY	Y STATIST	ics	FO	R 2000 C	ALEND	AR YEA	R .	FOR 2001	WAT	ER YEAF		WATER Y	EARS 193	9 -	2001
ANNUAL	TOTAL			11061	5			276223			•				
ANNUAL	MEAN			30	2 ·			757				687			
HIGHES:	T ANNUAL	MEAN										1488			1973
LOWEST	ANNUAL M	EAN										149			1972
HIGHES!	T DAILY M	EAN		196	0	Apr	6	3940		Feb 28		6870	May	.11	1958
LOWEST	DAILY ME	AN		. 1	2	Sep 1	.5	15		Sep 30)	.2	0 Aug	15	1956
ANNUAL	SEVEN-DA	MUMINIM Y		. 1	3	Sep 1	.2	17		Sep 24	ļ	.2	0 Aug	15	1956
MAXIMU	M PEAK FL	OW						3950		Feb 28	3	6870	May	11	1958
. MAXIMUI	M PEAK ST	AGE						20	. 58	Feb 28	3	a _{25.4}	9 May	11	1958
INSTAN'	TANEOUS L	OW FLOW						15		Sep 30		.2	0 Aug	15	1956
ANNUAL	RUNOFF (AC-FT)		21940	0			547900				498000			
ANNUAL	RUNOFF (CFSM)			. 52			_	.31			1.1			
ANNUAL	RUNOFF (INCHES)			7.14				. 84			16.2	22		
10 PER	CENT EXCE	EDS		78			•	2030			7	2000			
50 PER	CENT EXCE	EDS		10				349				243			
90 PER	CENT EXCE	EDS		. 1	9			47				31			

^aAt present datum

07369680 BAYOU MACON AT EUDORA

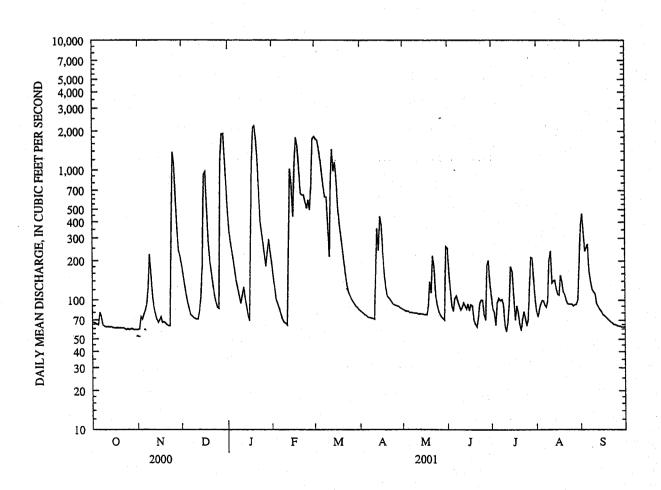
LOCATION.--Lat 33°06'09", long 91°15'08", in SE1/4SE1/4 sec.25, T.18 S., R.2 W., Chicot County, Hydrologic Unit 08030100, near left bank on downstream side of bridge on U.S. Highway 65, 0.6 mi south of Eudora.

DRAINAGE AREA -- 500 mi2.

PERIOD OF RECORD. --October 1988 to current year. Gage-height record and results of discharge measurements since January 1938, are contained in reports of the U.S. Army Corps of Engineers.

GAGE.--Water-stage recorder. Datum of gage is 80.92 ft above sea level. Satellite telemeter
at station.

REMARKS. -- Records good. Satellite telemeter at station.


EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1938, 27.43 ft May 10, 22, 1958.

		DISCHARGE,	CUBIC	FEET PER				BER 2000	TO SEPT	EMBER 2001		
					DAIL	Y MEAN	VALUES					
DAY	OCT	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	67	59	187	480	189	1820	e83	e85	251	106	82	381
2	67	60	158	339	149	1740	e81	e84	162	85	74	465
3	66	74	132	279	124	e1700	e79	e82	122	80	84	345
4	65	71	111	236	100	e1450	e77	e82	e90	64	94	239
5	64	. 77	96	202	93	e1200	e76	e82	e82	95 . ,	99	255
. 6	80	83	86	169	86	e950	e74	e80	103	103	98	271
7	74	92	77	140	78	741	e73	e80	108	99	91	168
8	64	123	75	123	71	626	e73	e80	e98	101	88	141
9	63	224	73	107	67	620	e72	e79	e90	93	98	e122
10	62	160	72	94	66	394	e72	e79	e84	64	202	e116
11	62	111	71	109	64	216	e71	e79	e88	e57	239	e112
12	62	88	71	126	424	852	e160	e78	e95	67	136	e94
13	62	78	82	104	1020	1450	358	e78	90	91	141	e89
14	62	71	105	88	751	985	241	e78	85	180	142	e85
15	61	67	183	75	440	1150	441	e78	93	164	122	e82
16	61	70	929	69	1110	852	377	e77	83	109	111	e78
17	61	74	974	219	1790	521	229	e77	92	70	109	e76
18	61	67	535	1130	1520	385	158	e77	90	90	155	e74
19	61	68	280	2140	1060	308	125	e90	e70	80	138	e72
20	61	66	199	2190	662	248	107	138	e65	65	116	e70
21	61	64	163	1770	645	198	e104	114	e62	e58	110	e68
22	61	63	132	e1220	646	153	e101	219	e72	71	100	67
23	60	63	109	e700	573	128	e97	178	94	81	94	65
24	59	483	96	. 408	512	115	e93	111	100	72	93	65
25	60	1380	88	324	592	108	e92	e92	99	e63	93	64
26	59	1120	86	263	496	e102	e91	e82	77	70	93	63
27	60	656	1230	219	772	e98	e90	e77	e70	112	90	63
28	60	364	1900	182	1760	e94	e89	e74	184	213	92	62
29	59	242	1920	227		e90	e87	e72	201	210	: 93	62
30	59	217	1360	294		e88	e86	e70	137	146	101	62
31	59	·	882	236		e85		258		102	211	
TOTAL	1943	6435	12462	14262	15860	19467	3957	3010	3137	3061	3589	3976
MEAN	62.7	214	402	460	566	628	132	97.1	105	98.7	116	133
MAX	80	1380 •	1920	2190	1790	1820	441	258	251	213	239	465
MIN	59	59 ~	71	69	64	85	71	70	62	57	74	62
AC-FT	3850	12760	24720	28290	31460	38610	7850	5970	6220	6070	7120	7890
STATIST	rics of	MONTHLY MEAN	DATA E	FOR WATER	YEARS 198	8 - 2001	, BY WATER	YEAR (WY)				
MEAN	89.3	123	286	475	512	401	401	293	183	259	162	97.6
MAX	297	218	651	924	1174	858	1053	1510	330	847	425	150
(WY)	1995	1992	1991	1999	1991	1995	1991	1991	1989	1994	1994	1994
MIN	41.8	51.5	58.5	51.0	51.1	98.1	63.0	72.0	105	90.5	83.7	61.8
(WY)	1994	1996	2000	2000	2000	1993	1998	1992	2001	1997	1997	1997

07369680 BAYOU MACON AT EUDORA--CONTINUED

SUMMARY STATISTICS	FOR 2000 CALEN	DAR YEAR	FOR 2001 WAS	TER YEAR	WATER YEAR	3 1988 - 2001
ANNUAL TOTAL	66494		91159			
ANNUAL MEAN	182		250		272	•
HIGHEST ANNUAL MEAÑ					493	1991
LOWEST ANNUAL MEAN					130	1996
HIGHEST DAILY MEAN	2670	Apr 4	2190	Jan 20	4170	Apr 23 1995
LOWEST DAILY MEAN	35	Feb 22	57	Jul 11	1.7	Sep 23 1988
ANNUAL SEVEN-DAY MINIMUM	37	Feb 18	59	Oct 26	34	Sep 28 1988
MAXIMUM PEAK FLOW			. 2290	Jan 19	4280	Apr 23 1995
MAXIMUM PEAK STAGE			18.70	Jan 19	24.41	Apr 29 1991
INSTANTANEOUS LOW FLOW			58	Nov 1	32	May 21 1995
ANNUAL RUNOFF (AC-FT)	131900		180800		197400	
10 PERCENT EXCEEDS	308		658		605	
50 PERCENT EXCEEDS	88		94		108	
90 PERCENT EXCEEDS	43		64		. 56	

e Estimated

07344370 RED RIVER AT SPRING BANK, AR

LOCATION.--Lat. 33°04'50", Long. 93°51'42", in SW $\frac{1}{4}$ NW $\frac{1}{4}$ sec.24, T.19 S., R.27 W., Lafayette County, near right bank on downstream side of bridge on State highway 160, 0.1 mi downstream from Sulphur River, 4.5 mi upstream from Arkansas-Louisiana State line, and 2.5 mi east of intersection of U.S. Highway 71 and State Highway 160 at Doddridge, AR.

PERIOD OF RECORD. --October 1, 1995 to July 10, 1996 daily observer record. July 11, 1998 to current year.

GAGE .-- Water-stage recorder. Prior to July 11, 1996, observer record of daily readings only.

REMARKS.--Records good except for days with gage heights above 24.00 feet and erratic bubbler gage readings, April 5 to May 16, which are fair. Datum of gage not determined. Satellite telemetry at station.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 140,000 ft³/s, Mar. 14, gage height, 33.37 ft; minimum discharge, 2,020 ft³/s, Oct. 25, 26, gage height, 11.98 ft.

		DISCH	IARGE, CUI	BIC FEET P		, WATER LY MEAN	YEAR OCTOBE VALUES	R 2000 T	O SEPTEMBI	ER 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
. 1	3410	2190	56600	e79000	30300	108000	57600	28600	e51200	20200	8500	7330
2	2990	2570	57400	e73000	39200	124000	55200	25500	55300	23000	8470	10100
3	2790	2990	57700	e66000	47200	131000		23100	55300	26200	8550	12700
4	2770	3600	56700	62500	47100	133000		21300	59300	27100	8670	12100
5	2840	4860	56400	59500	42700	131000	41500	20100	59100	23700	8790	e10800
6	3270	6940	56400	56700	36000	127000	43100	20400	55300	21100	9290	e9900
. 7	3920	10300	55700	56500	31400	125000		20500	49600	19100	9000	8990
8	4400	18900	53200	56700	29800	118000	41000	24300	44300	18100	7320	8520
9 .	3930	32900	48100	56000	29000	113000	39800	28600	38200	18600	6530	8490
10	3290	40900	44600	54400	28000	112000	36400	29100	32600	17800	6730	9360
11	3040	42400	41700-	53000	27100	112000		28500	30800	16200	6310	10600
12	3010	44000	e37000	51500	27600	121000		28100	29700	14700	5930	10900
13	2900	44600	e32000	49800	29800	132000		27000	28700	12900	5990	9850
14	2640	45900	28800	47900	31700	138000		26400	26900	11000	6450	8770
15	2410	46400	25800	46000	36300	133000	37600	26100	25900	9610	6350	8090
16	2320	44000	25200	44700	57100	127000	43100	e25000	25900	9020	5500	7950
17	2180	42000	26600	41600	79800	120000		e24000	26600	8630	5310	7660
18	2100	40800	26200	45500	97400	112000		e22000	26100	8200	5170	7310
19	2080	39100	25100	53900	102000	106000		20900	24600	7840	4810	6170
20	2160	36700	23900	59600	97800	105000		19200	23300	7870	4630	5900
21	2220	34300	23900	61200	85400	103000	44000	19400	21100	8260	4820	6140
22	2260	30900	23200	58800	79800	99900		19700	18900	8910	5200	6900
23	2230	27400	19700	53500	81200	91100		21100	16900	8910	5260	6990
24	2130	32300	18100	49000	82300	82200	29600	25300	16300	9090	5170	7370
25	2030	48000	17700	42400	79900	76200	28800	25900	17300	9830	4970	8120
26	2040	61300	18800	37900	74100	71300		25800	18000	9960	4710	11600
27	2130	64400	27600	35100	74600	69200		28000	18300	10000	4680	13500
28	2240	66900	53700	33800	90400	70600		31400	18100	9820	4580	11900
29	2410	66300	74400	33900		71700		29800	18600	8750	4600	10200
30	2370	63600	85900	32100		68000		e29000	19200	8550	4940	8910
31	2220		83800	30100		62300		e42500		8520	5320	
TOTAL	82730	1047450	1281900	1581600	1595000	3293500		786600	951400	421470	192550	273120
MEAN	2669	34920	41350	51020	56960	106200		25370	31710	13600	6211	9104
MAX	4400	66900	85900	79000	102000	138000		42500	59300	27100	9290	13500
MIN	2030	2190	17700	30100	27100	62300		19200	16300	7840	4580	5900
AC-FT	164100	2078000	2543000	3137000	3164000	6533000	2365000	1560000	1887000	836000	381900	541700
STATIS	TICS OF	MONTHLY M	EAN DATA	FOR WATER	YEARS 19	98 - 200	1, BY WATER	YEAR (W	Y)			
MEAN	7057	12930	23370	40150	32370	48790		20600	20920	12420	5853	6528
MAX	18140	34920	41350	87290	56960	106200		25680	31770	16960	6470	9104
(WY)	1999	2001	2001	1998	2001	2001	2001	1999	2000	2000	1999	2001
MIN	2518	2183	6406	4203	5312	11020		10300	6655	4176	4614	4154
(WY)	2000	2000	2000	2000	2000	2000	2000	1998	1998	1998	1998	1999

07344370 RED RIVER AT SPRING BANK, AR--Continued

SUMMARY STATISTICS	FOR 2000 CALEN	idar year	FOR 2001 WAT	TER YEAR	WATER YEARS	1998 - 2001
ANNUAL TOTAL	5997070		12699520			
ANNUAL MEAN	16390		34790		21600	
HIGHEST ANNUAL MEAN					34790	2001
LOWEST ANNUAL MEAN					10730	2000
HIGHEST DAILY MEAN	85900	Dec 30	138000	Mar 14	138000	Mar 14 2001
LOWEST DAILY MEAN	2030	Oct 25	2030	Oct 25	1910	Nov 24 1999
ANNUAL SEVEN-DAY MINIMUM	2150	Oct 21	2150	Oct 21	2070	Nov 21 1999
MAXIMUM PEAK FLOW			140000	Mar 14	140000	Mar 14 2001
MAXIMUM PEAK STAGE			33.37	Mar 14	34.05	Jan 12 1998
INSTANTANEOUS LOW FLOW			b2020	Oct 25	a1890	Nov 24 1999
INSTANTANEOUS LOW STAGE			b11.98	Oct 25	b11.98	Oct 25 2000
ANNUAL RUNOFF (AC-FT)	11900000		25190000		15650000	
10 PERCENT EXCEEDS	42500		79300		51800	
50 PERCENT EXCEEDS	9760		27400		12200	
90 PERCENT EXCEEDS	3620		4590		3740	

Also occurred on Nov. 25, 1999. Also occurred on Oct. 26, 2000. Estimated

			GAGE HEI	GHT, FEET,		EAR OCTOB		O SEPTEMB	ER 2001			
DAY	OCT	NOV	DEC	Jan	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	13.35 13.00 12.81 12.80 12.87	12.19 12.59 13.01 13.54 14.47	27.37 27.48 27.52 27.39 27.36	28.12 27.74	23.24 24.81 26.08 26.06 25.39	31.87 32.63 32.93 33.02 32.93	26.90 26.47 25.16 24.02 23.92	21.27 20.60 20.04 19.62 19.35	26.48 26.47 27.18 27.15	19.11 19.79 20.56 20.76 19.96	15.45 15.44 15.47 15.52 15.57	14.95 16.06 16.95 16.76
6 7 8 9 10	13.26 13.80 14.16 13.81 13.28	15.71 17.30 20.39 23.71 25.12	27.36 27.26 26.92 26.21 25.70	27.39 27.37 27.40 27.30 27.09	24.28 23.44 23.13 22.97 22.77	32.74 32.67 32.39 32.14 32.09	24.24 23.98 23.83 23.59 22.90	19.41 19.45 20.32 21.28 21.39	26.47 25.45 24.46 23.19 21.99	19.32 18.82 18.55 18.69 18.46	15.76 15.65 14.96 14.60 14.69	15.64 15.46 15.45 15.79
11 12 13 14 15	13.06 13.03 12.93 12.67 12.43	25.36 25.60 25.70 25.89 25.97	25.24 22.93 22.29	26.90 26.69 26.46 26.18 25.91	22.58 22.68 23.12 23.50 24.31	32.09 32.50 32.99 33.26 33.04	22.16 21.50 21.38 21.95 23.14	21.27 21.17 20.93 20.80 20.73	21.60 21.37 21.13 20.71 20.48	18.02 17.57 17.02 16.39 15.88	14.50 14.32 14.35 14.57 14.52	16.25 16.36 15.97 15.56 15.29
16 17 18 19 20	12.33 12.17 12.08 12.06 12.14	25.60 25.28 25.09 24.83 24.41	22.17 22.48 22.39 22.15 21.86	25.71 25.23 25.83 27.02 27.75	27.40 30.03 31.73 32.18 31.77	32.77 32.45 32.08 31.76 31.71	24.24 24.94 25.52 25.74 25.48	19.53 19.13	20.48 20.64 20.54 20.17 19.86	15.66 15.51 15.33 15.19 15.20	14.10 14.01 13.93 13.73 13.62	15.23 15.11 14.95 14.43 14.30
21 22 23 24 25	12.22 12.26 12.23 12.11 12.00	23.98 23.35 22.63 23.60 26.17	21.87 21.69 20.84 20.39 20.30	27.96 27.66 26.97 26.35 25.35	30.60 30.04 30.19 30.30 30.05	31.64 31.44 30.88 30.22 29.62	24.42 23.14 22.21 21.51 21.32	19.17 19.25 19.57 20.56 20.70	19.34 18.76 18.23 18.05 18.34	15.36 15.62 15.61 15.68 15.96	13.74 13.94 13.98 13.93 13.82	14.41 14.77 14.81 14.98 15.29
26 27 28 29 30 31	12.01 12.11 12.24 12.43 12.39 12.22	27.96 28.35 28.63 28.56 28.25	20.59 22.62 26.94 29.46 30.65 30.44	24.62 24.13 23.90 23.91 23.58 23.20	29.45 29.49 30.82	29.01 28.69 28.91 29.06 28.51 27.63	21.56 22.65 23.18 22.79 22.11	20.68 21.15 21.88 21.55	18.53 18.60 18.56 18.68 18.85	16.01 16.04 15.96 15.55 15.47 15.46	13.68 13.66 13.60 13.61 13.81 14.01	16.58 17.21 16.68 16.09 15.61
MAX MIN	14.16 12.00	28.63 12.19	30.65 20.30	23.20	32.18 22.58	33.26 27.63	26.90 21.32	21.88 19.13	27.18 18.05	20.76 15.19	15.76 13.60	17.21 14.30

07364100 GUACHITA RIVER NEAR ARKANSAS-LOUISIANA STATE TIME

LCCATION. --Lat 33°01'55", long 92°05'16", in SE 1/, NE 1/, sec.25, T.19 S., R.10 W., Union County, Hydrologic Unit 06040202, on right bank 500 ft below lock and dam No. 6, 1.5 mi north of Arkansas-Louisiana State line, 3.5 mi downstream from Missouri Pacific Railroad Co. bridge, and 4.5 mi southeast of Felsenthal, Ark.

DRAINAGE AREA. -- 10,787 mi2.

PERIOD OF RECORD. --April 1958 to current year (daily gage heights and daily discharges below 19.0 it stage only). Gage-height record for some periods collected at same site since 1912 are contained in reports of Corps of Engineers, Vicksburg District.

REVISED RECORDS. --WDR LA-75-1: 1974.

GAGE. --Water-stage recorder. Datum of gage is 44.09 ft above sea level (levels by Corps of Engineers). Prior to Aug. 16, 1953, nonrecording gage at same site and datum. Water-stage recorder with telemetry for Quachita River at Sterlington (station 07364535) used as auxiliary gage for this station. Prior to Oct. 1, 1980, water-stage recorder for Quachita River at Alabama Landing near Haile (station 07364103) was used as auxiliary gage for this station.

REMARKS.—Records poor. Discharge computed for stages below bankfull, about 19 ft. Considerable regulation by 5 reservoirs in Arkansas, combined capacity, 3,107,880 acre-ft and a series of navigation locks and dams. Several measurements of water temperature were made during the year. Satellite telemetry at station.

EXTREMES FOR PERIOD OF RECORD. --Maximum gage height, 43.04 ft, May 14, 15, 1958 (discharge not determined); minimum daily discharge, 190 ft³/s, Sept. 13, 1971.

EXTREMES OUTSIDE PERIOD OF RECORD. -- Maximum gage height since 1913, 44.2 ft, Apr. 11, 12, 1945; minimum, -0.3 ft, Nov. 11, 1916; minimum since 1928, 5.8 ft, Aug. 25, 1951.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

EXTREMES FOR CURRENT YEAR. -- Maximum gage height, 37.62 ft, Mar. 19; minimum discharge, 770 ft³/s, Oct. 18.

DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 2560 3310 **_9300** 13 945 2950 e13400 2850 2910 e12600 e14400 e13200 e11200 e12500 e12600 e10800 6130 e9800-3190 3700 2500 29 1200 TOTAL ------------------------MAX MIN ---

e Estimated

RED RIVER BASIN

07354100 OUACHITA RIVER NEAR ARKANSAS-LOUISIANA STATE LINE--Continued

GAGE HEIGHT, FEET, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES

							بيدان					
DAY	cci	NOA	DEC	Jan	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	2.CF	8.07	21.21	23.00	27.94	34.07	35.38	24.39	13.05			
2	7.97	8.03	21.29	23.30	27.92	34.75	35.02		17.05	12.43	3.15	9.58
3	7.93	8.09	21.33		27.85	35.32		23.37	18.59	12.94	3.68	9.92
3	7.38	8.20	21.14		27.75		34.67	22.41	19.74	12.43	9.08	10.37
5	7.85	8.19	20.74			35.82	34.31	21.30	20.59	11.34	9.22	9.56
_			20.74		27.58	36.20	33.93	20.26	20.95	11.45	9.27	9.31
5	3.20	8.45	20.07	24.48	27.34	36.50	33.55	19.26	21.29	11:40	9.16	9.04
7	8.22	9.58	19.08	24.69	27.02	36.71	33.15	18.73	21.58	10.69	8.29	
8	8.12	10.14	18.56	24.20	26.55	36.37	32.75	19.63	21.79	10.47		9.08
9	8.03	9.45	17.59	24.83	26.25	37.02	32.36	20.79	21.93	11.25	8.07	9.52
10	7.98	9.15		24.79	25.82	37.09	31.94	21.00			8.57	9.40
	-				43.92	37.09	31.54	21.00	21.96	10.89	8.90	8.98
11	-7.91	11.35	15.16	24.70	25.35	37.11	31.51	21.22	21.92	10.31	8.98	8:40
12	7.85	10.78	13.54	24.51	24.91	37.21	31.15	21.23	21.78	9.66	9.29	8.51
13	7.83	9.67	11.35	24.27	24.63	37.32	30.79	20.97	21.53	10.21		
14	7.80	8.99	12.85	24.04	24.46	37.38	30.38	20.73	21.10		9.30	3.59
15	7.76	10.93	13.73	23.76	24.40	37.51	30.02	20.73		10.47	9.06	3.54
					24.40	37,34	30.02	20.14	20.51	10.14	8.52	9.34
16	7.74	12.69	15.90	23.55	24.59	37.57	29.73	19.01	19.40	10.51	8.56	3.13
17	7.67	11.60	17.45	23.55	25.08	37.61	29.51	18.15	18.14		8.78	8.46
18	7.69	10.11	18.65	23.91	25.69	37.63	29.32	17.49	16.72	9.23	9.36	
19	7.69	9.40	19.37	24.44	26.36	37.52	29.15	17.68	14.95		9.33	8.87
20	7.82	8.94		24.90	27.01	37.60	29.00	17.40	13.34			8.86
							23.00	17.40	13.34	10.01	9.26	8.34
21	7.98	10.23		25.32	27.68	37.56	28.86	17.34	12.24	9.89	8.58	8.25
22	8.01	8.62	19.76	25.75	28.37	37.51	28.69	16.83	12.41	9.95	8.34	8.47
23	8.13	8.18	19.85	26.15	29.07	37.43	28.49	16.52	11.55	10.08	8.96	3.22
24	8.23	9.58	19.55	26.51	29.79	37.35	28.27	16.93	11.52	8.95	8.57	8.22
25	8.21	14.61	19.07	26.82	30.59	37.23	27.94	17.06	10.96	8.50	8.38	
							41.54	17.00	. 10.90	8.30	0.20	8.08
26	7.99	17.56	18.90	27.08	31.37	37.07	27.54	16.79	10.07	9.28	8.91	8.37
27	7.99	19.81	19.68	27.30	32.18	36.86	27.10	15.98	9.67	9.80	8.82	8.31
28	8.10	20.80	20.92	27.47	33.23	36.62	26.59	15.10	9.58	9.85	8.98	8.14
29	8.23	20.89	21.96	27.66		36.35	26.02	13.84	10.56	8.97	8.35	8.09
30	8.30	21.04	22.40	27.82		36.06	25.38	13.66	11.49	8.77	8.68	8.11
31	8.24		22.73	27.91		35.72		15.31		8.07	9.11	
								10.31		0.07	3.11	
MAX	8.30	21.04	22.73	27.91	33.23	37.63	35.38	24.39	21.96	12.94	9.36	10.37
MIN	7.67	8.03	11.35		24.40	34.07	25.38	13.66	9.58	8.07	8.07	8.08
												0.00

35180

CADDO LAKE AT CADDO LAKE DAM (LA.)

STATION NO. R-95

LOCATION. LAT. 32-42-14, LONG 93-55-12. UPSTREAM SIDE AT SOUTH END OF DAM, THREE MILES NORTHEAST OF MOORINGSPORT, LA., AND 23 MILES UPSTREAM OF TWELVEMILE BAYOU. TWELVEMILE BAYOU ENTERS RED RIVER AT MILE 303.1.

GAGE. SATELLITE, BUBBLE GAGE

GENERAL INFORMATION. DRAINAGE AREA, 2,744 SQUARE MILES. THE ORIGINAL DAM WAS COMPLETED IN 1914. WORK ON A REPLACEMENT DAM WAS BEGUN IN AUG. 1968, AND COMPLETED IN JUNE 1971. THE CREST OF THE SPILLWAY IS AT ELEVATION 168.5 FEET, NGVD. THE CAPACITY OF THE LAKE AT THIS ELEVATION IS 129,000 ACRE-FEET.

RECORDS AVAILABLE. STAGE, JAN. 1921 TO DATE.

EXTREMES. HIGHEST, 182.59 FEET ON MAY 5, 1958. LOWEST, 166.0 FEET ON NOV. 2, 1934.

DAILY EIGHT A.M. STAGE IN FEET

GAGE ZERO IS AT NVGD

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	170.3		172.9	170.8	169.9	166.0	169.2	168,5	168.7	168.9	169.4	169.4
2	170.3	170.6	173.4	170.8	169.9	166.0	169.2	168.5	168.8	168.9	169.4	169.6
3	170.3	170.5	173.8	170.8	169.9	166.0	169.1		168.8	168.9	169.4	169.7
4	170.3	170.5	174.3	170.7	169.8	166.0	169.1		168.8	168.9	169.4	169.8
5	170.0	170.4	174.8	170.7	169.9		169.1		168.9	168.9	169.5	169.9
6	170.9	170.4	175.1	170.7	169.9	169.7	169.1	****		168.9	169.4	169.9
7	170.7	170.4	175.2	170.6	170.0	169.9	169.0		169.0	168.9	169.4	169.9
8		170.3	175.1	170.6	169.9	170.0	169.0	168.4	168.9	168.8	169.4	170.0
9	170.4	170.3	174.9	170.5	170.1	170.4	169.0	168.4	169.0	168.8	169.4	170.0
10	170.3	170.2	174.5	170.5	170.1	170.6	169,0	168.4	169.1	168.8	169.4	169.9
11	170.3	170.2	174.1	170.4	170.1	166.0	168.9	168.4	169.2	169.0	169.4	169.9
12	170.3	170.4	173.9	170.4	170.2	166.0	168.9	168.4	169.2	169.2		170.1
13	170.2	170.5	173.9	170.3	170.3	166.0	168.9	168.4	169.2	169.8	169.4	170.3
14	170.3	170.5	173.8	170.3	170.3	166.0	168.8	168.5	169.2	170.0		170.6
15	170.2	170.5	174.1	170.3	170.3		168.8	168.4		170.3		170.6
16	170.2	170.9	174.3	170.2	170.2	170.4	168.8	168.5	169.1	170.4		170.8
17	170.3	171.7	174.2	170.2	.170.2	170.2	168.8	168.6	169.1	170.3		171.8
.18	170.8	172.1	174.1	170.2		170.1	168.8	168.6		170.2		171.0
19	171.3	172.8	173.9	170.2	170.1	169.9	168.7	168.6	169.1	170.1		
20	171.6	173.5	173.7	170.1	170.1	169.8	168.7	168.6	168.9	170.0	169.2	172.9
21	171.7	174.1	173.3	170.1	170.0	169.7	168.7	168.6	168.9	169.9	169.1	
22	171.8	174.4	172.9	170.1	170.0	169.7	168.7	168.6	168.9	169.8	169.1	173.2
23		174.3	172,4	170.1	170.0		168.3	168.6	168.9	169.7	169.0	173.0
24	171.6	173.9	172.0	170.1	169.8	*****	169.4	168.6	168.9	169.6	169.1	172.7
25	171.4	173.5	171.8		169.9	169.4	169.1	168.6	168.9	169.5	168.9	172.3
26	171.2	173.0	171.5	170.0	169.8	169.3		168.5		169.5	168.9	171.9
27	171.0	172.5	171.2	170.0	169.8	169.3	168.6	168.6	168.9	169.4	168.9	171.5
28	170.8	172.7	171.1	170.0	169.9	169.3	168.6	168.6	169.0	169.4	168.9	171.1
29	170.9		170.9	169.9	169.9	169.2	168.6	168.5	168.9	169.4	169.1	170.9
30			170.9	169.9	166.0	169.2	168.5	168.5	168.9	169.4	169.2	170.7
31	170.7		170.9		166.0		168.5	168.5		169.4		170.5
MEAN	170.9	171.7	173.3	170.3	169.7	168.6	168.9		169.0	169.4		170.8
MAX	171.8	174.4	175.2	170.8	170.3	170.6	169.4		169.2	170.4		173.2
MIN	170.2	170.2	170.9	169.9	166.0	166.0	168.3		168.7	168.8		169.4

THE MEAN STAGE FOR THE YEAR 170.1 HIGHEST STAGE WAS 175.20 7 MAR 2001 LOWEST STAGE WAS 166.01 30 MAY 2001

07300500 SALT FORK RED RIVER AT MANGUM, OK

LOCATION.—Lat 34°51'30", long 99°30'30", in SW $\frac{1}{4}$ SE $\frac{1}{4}$ sec.34. T.5 N, R.22 W., Greer County, Hydrologic Unit 11120202, near left bank on downstream side of pier of bridge on State Highway 34, 0.5 mi south of Mangum, 13.0 mi downstream from Fish Creek, and at mile 35.5.

DRAINAGE AREA. -- 1,566 mi², of which 209 mi² is probably noncontributing.

PERIOD OF RECORD.--April 1905 to June 1906, October 1937 to current year. Monthly discharge only for some periods, published in WSP 1311.

REVISED RECORDS. -- WSP 1211: Drainage area. WSP 1241: 1938.

Time

Date

GAGE.--Water-stage recorder. Datum of gage is 1,490.87 ft above sea level (levels by U.S. Bureau of Reclamation). Apr. 11, 1905 to June 30, 1906, nonrecording gage at site 0.2 mi upstream at different datum. Oct. 1, 1937 to Nov. 8, 1938, nonrecording gage at present site and datum.

Date

Time

Discharge (ft³/s) Gage height (ft)

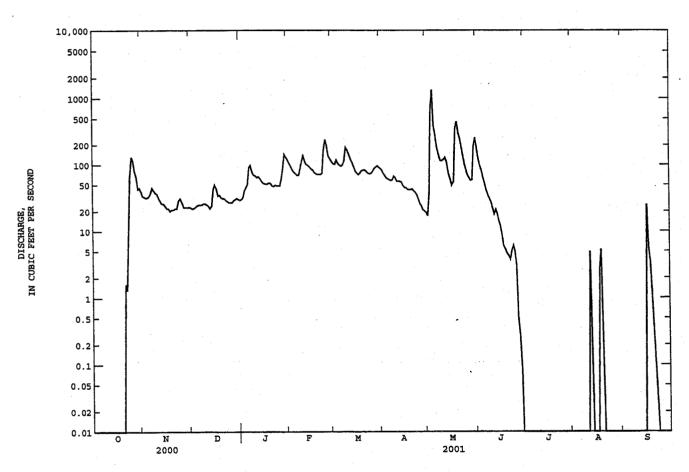
REMARKS. -- Records fair. U.S. Geological Survey satellite telemeter at station.

Discharge (ft³/s)

PEAK DISCHARGES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 6,000 ft³/s and maximum (*):

Gage height

(ft)


No pe	ak great	er than ba	se dischar	ge.								
		DISCHA	RGE, CUBIC	FEET PE	R SECOND, W	VATER YI MEAN V	EAR OCTOBER ALUES	2000 TO	SEPTEMBER	2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.00	40 34 33 32 32	23 22 22 23 24	e29 e30 e32 e40 e45	120 107 96 86 78	112 103 102 118 105	88 83 74 69 63	19 17 38 676 1320	182 126 97 82 63	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00
6 7 8 9	.00 .00 .00 e.00 e.00	33 37 45 41 38	25 25 25 26 26	e50 e90 97 79 70	74 69 69 86 112	99 95 98 112 182	61 59 58 59 67	394 284 184 142 115	51 41 35 31 27	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00
11 12 13 14 15	.00	36 32 28 26 26	25 e24 e22 e24 43	68 64 66 62 57	136 113 101 97 92	166 141 123 109 93	63 56 56 56 54	114 119 128 108 77	22 18 21 18	.00 .00 .00 .00	.00 4.9 .13 .00	.00 .00 .00 .00
16 17 18 19 20	.00	24 22 22 20 21	50 44 34 35 32	53 52 51 51 53	86 83 77 73 71	80 75 71 75 81	. 48 45 45 42 42	61 49 55 358 446	12 8.9 6.1 5.4 4.6	.00 .00 .00 .00	.00 .00 2.8 5.3 .12	25 5.7 3.5 1.9 .82
21 22 23 24 25	.00 e1.6 1.3 9.7 65	21 22 22 29 31	31 31 29 28 27	52 48 47 49 48	72 71 75 170 242	83 84 80 75 73	42 43 40 38 35	301 240 167 122 92	4.3 3.8 5.1 6.0 4.9	.00 .00 .00 .00	.00 .00 .00 .00	.28 .06 .00 .00
26 27 28 29 30 31	131 115 80 66 43 45	27 23 23 23 23	e27 e27 e29 e30 e31 e30	48 48 61 86 144 131	189 136 123	74 78 87 92 96 92	30 26 24 21 20	73 65 58 59 192 259	3.1 .50 .27 .09 .01	.00 .00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00
TOTAL MEAN MAX MIN AC-FT	557.60 18.0 131 .00 1110	866 28.9 45 20 1720	894 28.8 50 22 1770	1901 61.3 144 29 3770	2904 104 242 69 5760	3054 98.5 182 71 6060	1507 50.2 88 20 2990	6332 204 1320 17 12560	893.07 29.8 182 .01 1770	0.00 .000 .00 .00	13.25 .43 5.3 .00 26	37.26 1.24 25 .00 74
STATIS	TICS OF	MONTHLY ME	AN DATA FO	R WATER	ÆARS 1938	- 2001	, BY WATER S	ZEAR (WY)			
MEAN MAX (WY) MIN (WY)	76.7 919 1961 .000 1941	32.0 196 1987 .000 1940	38.5 148 1992 .000 1940	47.6 199 1960 .000 1940	57.4 263 1998 .000 1953	56.5 344 1998 .12 1971	105 1292 1997 .000 1955	260 1389 1957 .000 1953	236 1602 1941 .000 1952	64.2 575 1953 .000 1963	39.6 539 1995 .000 1943	50.1 424 1995 .000 1939

e Estimated

07300500 SALT FORK RED RIVER AT MANGUM, OK--Continued

SUMMARY STATISTICS	FOR 2000 CALENDAR YEAR	FOR 2001 WATER YEAR	WATER YEARS 1938 - 2001
ANNUAL TOTAL	21249.68 58.1	18959.18 51.9	88.7
ANNUAL MEAN - HIGHEST ANNUAL MEAN	.30.1	31.3	277 1941 12.3 1940
LOWEST ANNUAL MEAN HIGHEST DAILY MEAN	835 Mar 24	1320 May 5	22600 May 28 1978 a.00 Oct 2 1937
LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM	.00 at times .00 Aug 11	.00 Oct 1	.00 Aug 14 1938
MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE		2790 May 5 8.43 May 5	72000 May 16 1957 14.70 Jun 16 1938
ANNUAL RUNOFF (AC-FT) 10 PERCENT EXCEEDS	42150 134	37610 ·	64260 130
50 PERCENT EXCEEDS 90 PERCENT EXCEEDS	.00	30 .00	19 .00

^aNo flow at times in most years.

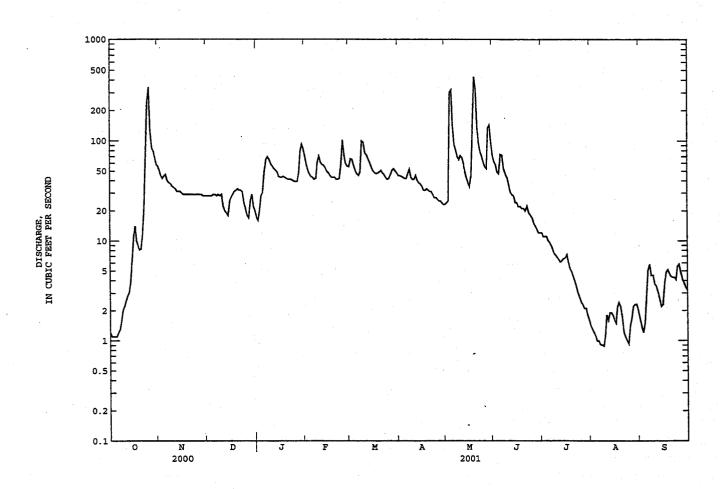
07301420 SWEETWATER CREEK NEAR SWEETWATER, OK

LOCATION.--Lat 35°25'20", long 99°58'08", in NW \(\frac{1}{4} \) NE \(\frac{1}{4} \) sec.20, T.11 N, R.26 W., Roger Mills-Beckham County line, Hydrologic Unit 11120302, on right bank downstream bridge piling of State Highway 152, 0.4 mi downstream from Freezeout Creek, 3.3 mi west of Sweetwater, and at mile 16.0.

DRAINAGE AREA. --424 mi², of which 20 mi² is probably noncontributing.

PERIOD OF RECORD. -- April 1986 to current year.

GAGE. -- Water-stage recorder. Datum of gage is 2,087.76 ft above sea level.


REMARKS. -- Records good. U.S. Bureau of Reclamations' satellite telemeter at station.

		DISCHARG	E, CUBIC	FEET PER	SECOND, DAIL	Water ye Mean V	EAR OCTOBER ALUES	2000 TO	SEPTEMBE	R 2001		
DAY	oct	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	1.2 1.1 1.1 1.1 1.1	56 51 45 42 44	28 28 28 28 29	e17 e16 e20 e28 30	71 58 51 47 44	55 66 65 57 51	45 45 44 43 42	23 24 25 301 317	72 63 58 49 47	12 11 11 11 10	1.4 1.3 1.2 1.1	1.7 1.4 1.2 1.5 2.6
6 7 8 9 10	1.2 1.3 1.6 2.0 2.2	46 40 38 37 35	29 28 29 28 29	49 65 69 65 59	43 41 42 61 70	47 45 49 100 97	42 47 52 44 41	142 92 81 70 65	73 72 53 47 43	9.6 8.9 8.0 7.4 7.1	.99 .91 .90 .88 1.1	5.0 5.8 4.5 4.5 3.7
11 12 13 14 15	2.5 2.8 3.0 3.8 6.8	34 33 31 31 31	e22 e20 e19 e18 e25	56 53 51 49 44	61 58 57 54 50	76 72 66 60 54	41 45 40 38 37	71 68 60 49 43	37 31 29 28 24	6.7 6.4 6.1 6.3 6.6	1.8 1.6 1.9 1.9	3.5 3.1 2.6 2.2 2.3
16 17 18 19 20	11 14 10 8.9 8.1	30 29 29 29 29	e27 e29 31 32 33	43 43 44 43 42	48 45 43 43	50 48 47 48 49	35 32 32 33 32	38 35 45 121 427	24 e22 e22 e21 e21	6.7 7.2 6.1 5.3 4.9	1.6 1.5 2.2 2.4 2.2	3.8 4.8 5.1 4.7 4.4
21 22 23 24 25	8.3 12 21 81 241	29 29 29 29 29	32 32 31 e24 e21	41 41 41 40 39	41 41 42 58 102	51 48 46 43 41	31 31 29 27 27	325 134 92 78 70	20 22 19 18 17	4.4 4.0 3.5 3.0 2.7	1.7 1.2 1.1 1.0	4.3 4.1 5.5 5.8
26 27 28 29 30 31	339 126 86 79 67 58	29 29 29 28 28	e18 e17 e25 e29 e22 e20	39 39 48 79 92 84	72 60 56 	42 46 51 53 50 48	26 25 25 24 23	61 55 53 133 142 96	15 14 13 12 12	2.4 2.3 2.1 2.1 1.8 1.6	1.4 1.7 2.2 2.3 2.3 2.0	4.8 4.1 3.7 3.4 3.2
TOTAL MEAN MAX MIN AC-FT	1203.1 38.8 339 1.1 2390	1028 34.3 56 28 2040	811 26.2 33 17 1610	1469 47.4 92 16 2910	1502 53.6 102 41 2980	1721 55.5 100 41 3410	1078 35.9 52 23 2140	3336 108 427 23 6620	998 33.3 73 12 1980	188.2 6.07 12 1.6 373	47.50 1.53 2.4 .88 94	111.6 3.72 5.8 1.2 221
	TICS OF MC			OR WATER Y	EARS 1986	5 - 2001,	BY WATER Y	CEAR (WY)				
MEAN MAX (WY) MIN (WY)	17.9 72.2 1987 .20 1995	22.3 61.1 1987 5.23 1995	25.4 51.5 1998 6.73 1995	29.2 53.7 1998 11.2 1995	31.6 53.6 2001 15.2 1995	40.1 85.6 1998 17.9 1991	39.4 126 1997 16.2 1991	45.1 150 1997 18.1 1991	40.3 115 1995 7.08 1994	12.8 31.6 1997 .97 1994	7.32 38.7 1995 .080 1994	11.2 51.6 1988 .084 1994

e Estimated

07301420 SWEETWATER CREEK NEAR SWEETWATER, OK--Continued

SUMMARY STATISTICS	FOR 2000 CALENDAR YEAR	FOR 2001 WATER YEAR	WATER YEARS 1986 - 2001
ANNUAL TOTAL	10940.64	13493.40	
ANNUAL MEAN	29.9	37.0	27.1
HIGHEST ANNUAL MEAN			53.0 1997
LOWEST ANNUAL MEAN			10.9 1994
HIGHEST DAILY MEAN	339 Oct 26	427 May 20	755 May 25 1997
LOWEST DAILY MEAN	.62 Sep 12,15	.88 Aug 9	.00 at times
ANNUAL SEVEN-DAY MINIMUM	.63 Sep 14	.98 Aug 4	.00 Sep 28 1994
MAXIMUM PEAK FLOW	-	515 May 20	1940 Jun 3 1995
MAXIMUM PEAK STAGE		12.17 May 20	15.89 Jun 3 1995
INSTANTANEOUS LOW FLOW			.00 Aug 27 1994
ANNUAL RUNOFF (AC-FT)	21700	26760	19630
10 PERCENT EXCEEDS	57	70	50
50 PERCENT EXCEEDS	23	29	21
90 PERCENT EXCEEDS	1.2	1.9	2.0

07301500 NORTH FORK RED RIVER NEAR CARTER, OK

LOCATION. -- Lat 35°10'05", long 99°30'25", in NW $\frac{1}{4}$ SE $\frac{1}{4}$ sec.15, T.8 N., R.22 W., Beckham County, Hydrologic Unit 11120302, on left bank on downstream side of roadway on State Highway 34, 3.0 mi south of Carter, 10.8 mi downstream from Timber Creek, and at mile 110.5.

DRAINAGE AREA. -- 2,337 mi², of which 399 mi² is probably noncontributing.

WATER-DISCHARGE RECORDS

Discharge

Gage height

PERIOD OF RECORD.--October 1944 to September 1962. Annual maximum and occasional low-flow measurements, water years 1963-64. August 1964 to current year.

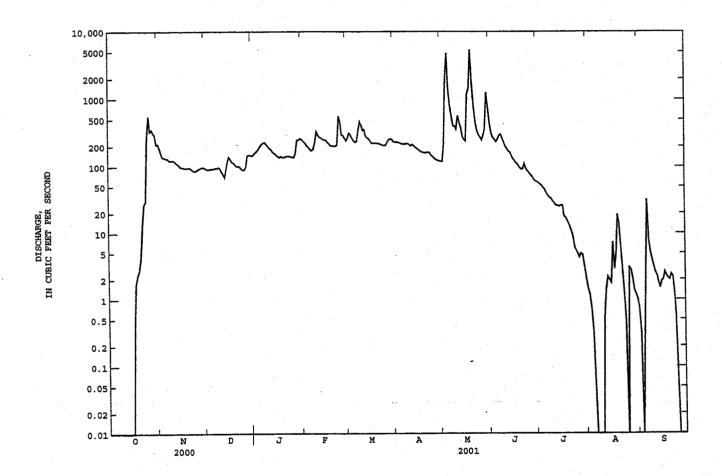
REVISED RECORDS. -- WSP 1211: Drainage area.

GAGE. -- Water-stage recorder. Datum of gage is 1,673.71 ft above sea level.

Discharge

REMARKS.--Records fair. U.S. Army Corps of Engineers' satellite telemeter at station.

PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 3,200 ft³/s:


Gage height

Date Time	(ft ³ /s)	(ft)	Date	Time	(ft ³ /s)	(ft)
May 5 0100	5,790	9.12	May 20	0500	5,830		.15
	DISCHARGE, CUBIC	FEET PER SECOND, V	VATER YEAR OCTOBER MEAN VALUES	2000 TO SEPTEMB	ER 2001		
DAY OCT	NOV DEC	JAN FEB	MAR APR	MAY JUN	JOL	AUG	SEP
1 .00 2 .00 3 .00 4 .00 5 .00	218 96 187 92 157 90 139 92 138 92	e145 254 e150 237 e160 227 e170 208 e180 197	242 234 268 233 316 235 299 230 266 225	119 433 119 316 214 272 1810 254 4750 234	59 57 54 52 48	1.5 1.2 .73 .32	.74 .32 .00 .20
6 .00 7 .00 8 .00 9 .00 10 .00	133 93 132 94 125 96 123 96 124 98	e200 184 218 173 228 181 231 226 217 334	244 219 231 219 240 216 347 222 467 220	1480 256 807 293 551 301 400 262 398 227	45 40 36 34 33	.01 .00 .00 .00	32 8.3 5.3 4.0 3.2
11 .00 12 .00 13 .00 14 .00 15 .00	123 e95 117 e85 112 e78 108 e70 101 e95	202 292 190 272 182 266 168 257 159 252	415 215 347 205 356 215 286 206 269 195	363 202 566 184 e450 169 385 162 283 142	30 28 26 26 25	.53 1.4 2.2 2.0 1.8	2.6 2.3 1.8 1.5
16 .00 17 .43 18 1.7 19 2.3 20 2.7	99 e120 97 e140 96 130 96 118 97 115	151 248 143 230 138 219 143 206 e139 204	259 188 243 178 223 171 226 166 225 163	254 129 242 119 1160 112 1470 104 5380 96	26 26 18 e17 e15	7.3 2.9 5.2 19	2.0 2.6 2.3 2.1 2.0
21 4.1 22 13 23 27 24 30 25 257	97 109 94 102 90 103 87 e100 86 e95	e138 204 144 203 144 211 144 557 142 457	223 159 223 163 218 165 213 162 209 148	1710 91 780 92 461 109 346 93 296 86	e13 e11 e9.0 6.2 5.5	5.4 2.5 1.3 .49	2.4 2.2 1.3 .58 .13
26 554 27 335 28 356 29 321 30 296 31 215	90 e90 93 e90 96 e100 98 e145 98 e150	140 298 137 292 159 265 249 252 265	207 140 210 133 232 128 253 124 260 122 254	276 81 250 75 291 71 360 64 1250 61 769	4.9 4.3 4.9 4.7 3.1 2.2	3.1 2.8 2.1 1.4 1.2	.00 .00 .00 .00
TOTAL 2415.23 MEAN 77.9 MAX 554 MIN .00 AC-FT 4790	3451 3219 115 104 218 150 86 70 6850 6380	5428 7154 175 256 265 557 137 173 10770 14190	8271 5599 267 187 467 235 207 122 16410 11110	27990 5090 903 170 5380 433 119 61 55520 10100	763.8 24.6 59 2.2 1510	81.43 2.63 19 .00 162	84.87 2.83 32 .00 168
STATISTICS OF MON	THLY MEAN DATA FO	OR WATER YEARS 1945	- 2001, BY WATER	YEAR (WY)			
MEAN 92.5 MAX 1195 (WY) 1987 MIN .000 (WY) 1946	60.8 67.8 360 333 1987 1998 .000 .000 1946 1953	80.9 105 362 365 1998 1960 .000 .000 1953 1953	117 152 466 1253 1998 1997 .000 .079 1955 1971	414 288 2713 1560 1977 1995 .000 .60 1971 1966	74.0 828 1950 .000 1954	47.4 560 1995 .000 1952	55.1 432 1996 .000 1945

e Estimated

07301500 NORTH FORK RED RIVER NEAR CARTER, OK--Continued

SUMMARY STATISTICS	FOR 2000 CALENDAR YEAR	FOR 2001 WATER YEAR	WATER YEARS 1945 - 2001
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE	49312.95 135 2590 Jun 29 .00 at times .00 Sep 4	69547.33 191 5380 May 20 .00 at times .00 Oct 1 5830 May 20 9.15 May 20	130 356 12.9 20700 May 26 1959 .00 May 24 1945 53400 May 26 1959 15.08 Jun 4 1995
ANNUAL RUNOFF (AC-FT) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS	97810 269 88 .00	137900 307 125 .56	. 94040 231 38 .00

. 07315500 Red River near Terral, OK

LOCATION.--Lat 33°52'43", long 97°56'03", Jefferson County, Hydrologic Unit 11130201, on left bank at downstream side of bridge abutment on U.S. Highway 81, 0.5 mi downstream from Chicago, and Rock Island Railroad Co. bridge, 1.2 mi south of Terral, 3.6 mi downstream from Little Wichita River, and at mile 872.

DRAINAGE AREA. -- 28,723 mi² of which 5,936 mi² probably is noncontributing.

WATER-DISCHARGE RECORDS

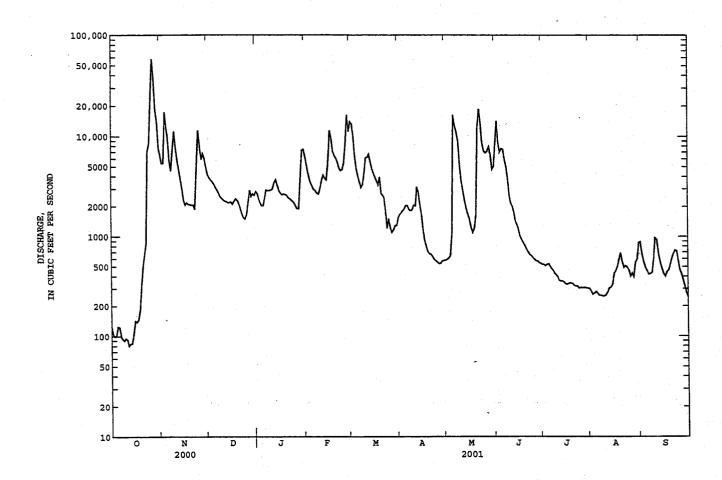
PERIOD OF RECORD. --Apr. 1938 to current year. Monthly discharge only for some periods, published in WSP 1311.

REVISED RECORDS .-- WSP 1211: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 770.31 ft above sea level. Prior to Jan. 12, 1939, nonrecording gage at same site and datum. Satellite telemeter at station.

REMARKS.--Records fair, except those daily discharges from Oct 26 to May 10, which are poor. Since installation of gage in Apr. 1938, at least 10% of contributing drainage area has been regulated by upstream reservoirs. There are many small diversions upstream from station for irrigation, oil field operations, and for municipal uses.

EXTREMES OUTSIDE PERIOD OF RECORD. --Flood of May 19, 1935, reached a stage of 27.2 ft, although floods in 1891 and on May 1, 1908, are reported to have reached about the same stage.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

		DISC	ARGE, CUI	BIC PEET P	DAI	, WATER Y LY MEAN V	ALUES	SR 2000 TO) SEPTEMBE	R 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	122	6520	4210	2820	6270	13900	1550	578	8680	528	301	884
2	103	5420	3910	2680	5080	13200	1660	587	14100	526	282	672
รั	99	5430	3720	2380	4180	10100	1740	603	8710	510	263	560
. <u>4</u>	101	17300	3550	2180	3600	6240	1820	640	6980	528	263 271	493
5	124	12600	3380	2040	3280	4700	1890	1080	7520	534	281	454
,	124	12000		2040	3200	4700	1090	1080	7520	224	201	454
6	122	9820	3120	2040	2990	3970	2050	16200	7390	503	270	421
. 7	98	5810	2950	2480	2880	3470	2050	12800	5940	473	257	425
8	93	4540	2740	2930	2710	3100	1870	11100	5020	452	257	437
9	90		2500	2870	2660	3300	1820	8930	3820	427	252	605
10	95	11200	2410	2910	3060	4260	1860	5080	2550	410	252	964
11	92	7780	2320	2930	3710	6170	2060	3670	2170	392	258	934
12	80	5750	2270	2990	4130	6190	2030	2950	2010	363	275	675
13	84	4610	2250	3460	3860	6630	3120	2340	1740	359	305	556
14	85	3750	2180	3720	3710	5610	2760	1920	1430	358	309	475
15	104	3010	2210	3250	5430	4780	2090	1700	1310	351	327	426
											*	
16	142	2300	2220	2920	11400	e4320	1650	1520	1190	336	427	400
17	138	2070	2110	2740	9570	e3980	1160	1240	1020	332	451	442
18	146	2170	2270	2620	7130	e3640	916	1100	940	337	495	465
19	187	2110	2390	2670	6460	e3300	791	1200	880	344	583	530
20	333	2090	2310	2630	6090	e3960	706	1630	821	341	684	607
21	516	2060	2120	2590	5520	e2700	672	12300	759	334	558	674
22	671	2070	1880	2460	4880	e2600	664	18500	704	322	491	727
23	856	1870	1670	2390	4580	e2460	627	13300	661	317	510	720
24	7090	5080	1550	2290	4690	1800	589	8540	642	317	494	583
25	8480	11400	1500	2210	5450	1210	571	7190	617	304	463	469
26	e25700	7780	1650	2070	8920	1510	555	6860	594	307	401	424
27	e57800	5920	2180	1910	16200	1230	538	7130	573	307	430	370
28	37800	6730	2910	1910	11200	1100	537	7820	568	306	399	315
29	18400	6040	2520	3720		1170	565	6610	548	309	549	273
30	13900	4970	2680	7290		1290	575		541	304	594	246
31	7610		2600	7440		1290	3/3	5030	747	304	869	240
											,	
TOTAL	181261	175460	78280	91540	159640	133180	41486	174868	90428	11835	12558	16226
MEAN	5847	5849	2525	2953	5701	4296	1383	5641	3014	382	405	541
MAX	57800	17300	4210	7440	16200	13900	3120	18500	14100	534	869	964
MIN	80	1870	1500	1910	2660	1100	537	578	541	304	252	246
AC-FT	359500	348000	155300	181600	316600	264200	82290	346900	179400	23470	24910	32180
STATIS	TICS OF	MONTHLY !	MEAN DATA	FOR WATER	YEARS 19	38 ~ 2001	1, BY WATE	R YEAR (W	Y)			
MEAN	3003	1558	1152	971	1422	2076	2607	6526	6200	1650	1320	1988
MAX	23900	9713	11810	5306	9320	14710	18080	43580	37460	8077	14730	9653
(WY)	1987	1987	1992		1987	1998	1990	1957	1941	1950	1995	1986
MIN	108	102		76.5	136	66.1	142	134	517	158	155	100
(WY)	1953	1940		1940	1953	1940	1971	1971	1966	1964	1970	2000
(44.7)		1,40		1740	1773	7340	1211	2711	1300	2004	1370	2000

e Estimated

07315500 Red River near Terral, OK--Continued

SUMMARY STATISTICS	FOR 2000 CALEN	DAR YEAR	FOR 2001 WAT	ER YEAR	WATER YEAR	5 1938 - 3	2001
ANNUAL TOTAL ANNUAL MEAN	726028 1984		1166762 3197		2538		
HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN			•		8925 523		1987 1953
HIGHEST DAILY MEAN LOWEST DAILY MEAN	57800 54	Oct 27 Sep 25	57800 80	Oct 27 Oct 12	215000 46	Jun 7 Mar 20	1995 1940
ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW	59	Sep 22	88 69800	Oct 8 Oct 27	47 236000	Mar 18 Jun 7	
MAXIMUM PEAK STAGE ANNUAL RUNOFF (AC-FT)	1440000		19.81 2314000	Oct 27	33.60 - 1839000	Oct 22	1983
10 PERCENT EXCEEDS 50 PERCENT EXCEEDS	5000 535		7410 1910		5640 608	•	
90 PERCENT EXCEEDS	124		305		178		

07316500 WASHITA RIVER NEAR CHEYENNE, OK

LOCATION.—Lat $35^{\circ}37^{\circ}35^{\circ}$, long $99^{\circ}40^{\circ}05^{\circ}$, in SE $\frac{1}{4}$ sec.5, T.13 N., R.23 W., Roger Mills County, Hydrologic Unit 11130301, on left bank on downstream side of bridge on U.S. Highway 283, 0.5 mi downstream from Sergeant Major Creek, 1.0 mi north of Cheyenne, 5.2 mi upstream from Dead Indian Creek, and at mile 543.9.

DRAINAGE AREA. -- 794 mi².

PERIOD OF RECORD. --October 1937 to current year. Monthly discharge only for some periods, published in WSP 1311.

REVISED RECORDS .-- WSP 1211: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 1,900.98 ft above sea level. May 1, 1938, to Nov. 16, 1946, and Oct. 1, 1947, to Jan. 11, 1948, nonrecording gage at site 50 ft upstream and datum 5.00 ft higher. Jan. 12, 1948 to Dec. 31, 1976, at site 50 ft upstream and datum 5.00 ft higher. Jan. 1, 1977, to Dec. 20, 1979, at site 50 ft upstream at present datum.

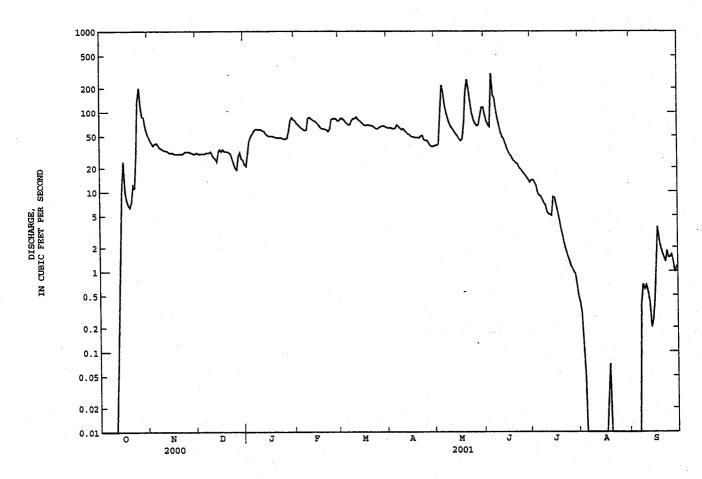
REMARKS.--Records good. Flow regulated since 1961 by numerous flood-retarding structures. U.S. Army Corps of Engineers' satellite telemeter at site.

EXTREMES OUTSIDE PERIOD OF RECORD. --Flood of Apr. 3, 1934, reached a stage of 1.7 ft lower than that in 1954, at site on upstream side of highway fill (at old bridge site).

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP .00 e22 . 00 70 .00 e21 .30 .00 . 00 e30 .13 e43 .00 . 05 . 00 .00 .00 .00 39 .00 9.0 .00 .00 .00 8.7 .00 .39 .00 7.9 .00 . 68 იი 60 7.2 .00 .00 . 00 . 66 .00 e29 5.6 .00 . 55 57 5.2 .41 . 22 e27 .00 .81 e26 .00 5.0 . 00 3.5 e24 8.6 .00 .42 8.4 .00 1.2 18 7.8 30 50 46 28 6.6 .00 3.6 5.4 .07 6.4 3.4 . 00 1.7 7.5 2.8 .00 1.5 11 2.3 .00 1.3 1.8 e30 1.9 വറ e26 1.6 .00 e23 1.5 e20 .00 1.2 1.6 e19 .00 1.3 e28 1.0 .00 .97 1.1 e31 .92 . 00 e26 .66 .00 e25 .49 .00 TOTAL 888.03 175.37 0.99 28.93 MEAN 28.6 34.0 29.0 52.3 71.0 72.5 53.1 94.6 57.5 5.66 .032 . 41 3.6 MAX 19 37 .00 MIN .00 2.0 AC-FT STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1962 - 2001, BY WATER YEAR (WY) 12.1 67.7 8.66 61.7 MEAN 8.92 10.0 20.2 27.7 33.6 51.2 41.4 4.60 5.69 80.7 71.0 72.9 64.3 1987 1977 44.7 MAX 32.8 (WY) MIN .000 .000 1.50 . 22 1.08 .000 . 005 .000 .000 (WV)

e Estimated

RED RIVER BASIN


07316500 WASHITA RIVER NEAR CHEYENNE, OK--Continued

SUMMARY STATISTICS	FOR 2000 CALENDAR YEAR	FOR 2001 WATER YEAR	WATER YEARS 1962 - 2001
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE ANNUAL RUNOFF (AC-FT) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS	10583.14 28.9 286 Mar 23 .00 Aug 28-Oct .00 Aug 28	15119.32 41.4 301 Jun 5 11 .00 several days .00 Oct 1 504 Jun 5 11.64 Jun 5 29990 82 33 .00	**20.0

^aPrior to regulation, water years 1938-60, 41.7 ft³/s.

^bMaximum discharge for period of record 69,800 ft³/s, Apr. 29, 1954, from rating curve extended above 27,000 ft³/s on basis of contracted opening.

^cMaximum gage-height for period of record, 20.24 ft, Apr. 29, 1954, present datum.

07331000 WASHITA RIVER NEAR DICKSON, OK

LOCATION.--Lat $34^{\circ}14^{\circ}00^{\circ}$, long $96^{\circ}58^{\circ}32^{\circ}$, in SW $\frac{1}{4}$ SE $\frac{1}{4}$ sec.3, T.4 S., R.3 E., Carter County, Hydrologic Unit 11130303, on right bank on downstream side of bridge on U.S. Highway 177, 1.3 mi downstream from Caddo Creek, 3.2 mi north of Dickson, 12.0 mi northeast of Ardmore, and at mile 63.4.

DRAINAGE AREA. -- 7,202 mi².

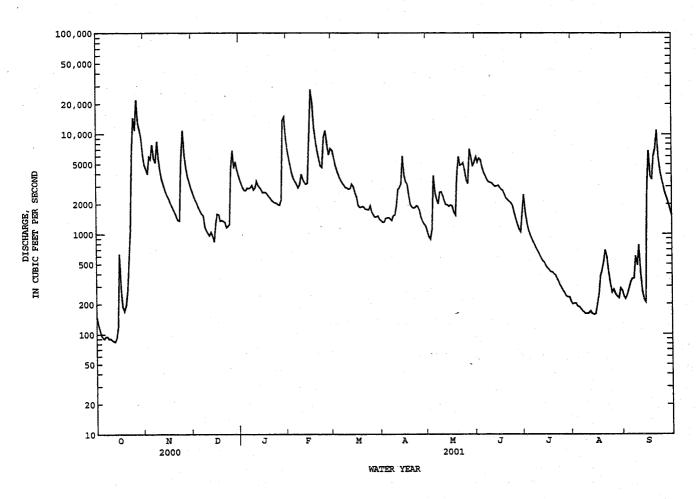
WATER-DISCHARGE RECORDS

PERIOD OF RECORD. --August 1928 to current year. Monthly discharge only for some periods, published in WSP 1311. Prior to Oct. 1, 1979, published as Washita River near Durwood.

REVISED RECORDS. -- WSP 1211: Drainage area. WSP 1281: 1935 (M).

GAGE.--Water-stage recorder. Datum of gage is 650.57 ft above sea level (levels by U.S. Army Corps of Engineers). Prior to Feb. 16, 1939, nonrecording gage, at same site and datum. Dec. 15, 1950, to Feb. 19, 1952, nonrecording gage, at site 500 ft upstream, at same datum. Apr. 24, 1975, to May 8, 1986, water-stage recorder, at site 500 ft upstream, at same datum.

REMARKS.--Records fair. Some diversions for irrigation upstream from station. Flow regulated by Fort Cobb Reservoir (station 07325900) since March 1959; by Foss Reservoir (station 07324300) since February 1961; and by numerous flood-retarding structures. U.S. Army Corps of Engineers satellite telemeter at station.


		DISCH	ARGE, CUE	IC FEET PE		, WATER :	YEAR OCTOBEI VALUES	R 2000 TO	SEPTEMBEF	2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	ஶ	AUG	SEP
1	150	4970	2590	3460	7150	6880	1360	1060	5920	2480	199	241
2	125	4510	2330	3130	5910	5720	1310	945	5240	1670	202	223
. 3	110	3990	2170	2890	4820	4780	1320	889	5720	1290	202	243
4	98	5910	2010	2720	4090	4200	1440	1100	5540	1090	189	279
5	93	5640	1830	2740	3630	3770	1450	3830	4610	984	187	327
6	90	7820	1690	2880	3370	3470	1460	2640	4110	896	180	356
7	95	5690	1590	2860	3160	3240	1410	2220	3840	824	171	359
8	95	5170	1530	2900	2910	3080		2010	3520	762	165	598
9	90	8420	1180	3070	3120	2930	e1520	2630	3330	704	. 160	486
10	91	5630	1080	2770	. 3970	2890	e1550	2640	3280	660	160	774
11	87	4260	1010	2890	3570	2810		2440	3250	609	161	408
12	85	3500	967	3370	3280	2870	2810	2160	3100	568	169	267
13	84	3050	1040	3060	3150	3160	e2900	1970	3000	534	159	221
14	92	2740	948	2920	3220	2980	e3150	1960	3030	516	156	208
15	118	2490	842	2790	8590	2580	e6020	1890	3080	480	159	2500
16	e630	2300	1240	2600	27800	2340	e3900	1950	2910	454	201	6790
17	e280	2080	1580	2630	20300	1950	e3320	1910	2790	434	249	3820
18	189	1930	1570	2610	11800	1850		1660	2720	417	379	3520
19	171	1780	1350	2500	8720	1860		1560	2510	413	429	5990
20	194	1640	1370	2370	6900	1890		3780	2290	397	520	7170
21	282	1490	1340	2290	5610	1830	1870	5950	2210	385	689	e11000
22	611	1370	1310	2180	4800	1760	1820	4880	2120	357	586	5970
23	1090	1360	1160	2100	4640	1760		4970	2050	332	427	4310
24	5940	5390	1200	2050	9300	1750		5150	1930	305	322	3580
25	14600	10900	1250	2030	10900	1910		4380	1650	287	259	3080
26	11000	6140	4360	1970	7780	1680	1720	3500	1420	269	275	2600
27	22000	4580	6850	1950	6240	1570	1470	3200	1250	257	248	2300
28	13100	3770	4560	2190	7160	1480		7.080	1120	239	236	2020
29	11000	3270	5300	13800		1490	1260	5930	1050	233	228	1760
30	8980	2880	4450	14800		1520		4760	1640	233	285	1530
31	6260		3890	9690		1410		5290		213	270	
TOTAL	97830	124670	65587	112210	195890	83410	62110	96334	90230	19292	8222	72930
MEAN	3156	4156	2116	3620	6996	2691		3108	3008	622	265	2431
MAX	22000	10900	6850	14800	27800	6880		7080	5920	2480	689	11000
MIN	84	1360	842	1950	2910	1410		889	1050	213	156	208
AC-FT	194000	247300	130100	222600	388500	165400		191100	179000	38270	16310	144700
										30270	10310	T##100
STATIS	TICS OF	MONTHLY I	MEAN DATA	FOR WATER	YEARS 19	62 - 200	1, BY WATER	YEAR (W	Y)			
MEAN	1528	1650	1414	1250	1592	2449		4113	3550	1023	601	1162
MAX	8274	5879	9324	6061	6996	10890		18720	14090	4042	3048	5236
(WY)	1987	1987	1992	1998	2001	1990	1990	1993	1995	1987	1995	1991
MIN	30.4	73.5	103	103	93.6	78.4	210	249	158	31.4	12.8	42.1
(WY)	1964	1964	1967	1967	1967	1967	1971	1971	1966	1964	1972	1972

e Estimated

07331000 WASHITA RIVER NEAR DICKSON, OK--Continued

SUMMARY STATISTICS	FOR 2000 CALEN	DAR YEAR	FOR 2001 WAT	TER YEAR	WATER YEARS	1962 - 2001
Annual Total Annual Mean Highest Annual Mean Lowest Annual Mean	659620 1802		1028715 2818		^a 1898 5644 340	1987 1964
HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM	22000 60 67	Oct 27 Sep 22	27800 84 89	Feb 16 Oct 13 Oct 8	9440p .10	May 3 1990 Aug 11 1964 Aug 8 1964
MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE	67	Sep 17	30700 25.53	Feb 16 Feb 16	.30 ^C 118000 45.24	Aug 8 1964 May 3 1990 May 30 1987
ANNUAL RUNOFF (AC-FT) 10 PERCENT EXCEEDS	1308000 4710		2040000 5940		1375000 4310	
50 PERCENT EXCEEDS 90 PERCENT EXCEEDS	839 93		1970 218		730 142	

 $^{\rm a}$ Prior to regulation, water years 1929-58, 1,573 ft $^{\rm 3}/\rm s$. $^{\rm b}No$ flow Aug. 28, Sept. 14 to Oct. 1, 7-12, 1956. $^{\rm C}Gage$ height 44.26 ft.

07300000 Salt Fork Red River near Wellington, TX

LOCATION.--Lat 34°57'27", long 100°13'14", Collingsworth County, Hydrologic Unit 11120202, near center of stream at downstream side of bridge on U.S. Highway 83, 4 mi downstream from Fort Worth and Denver (Burlington) Railway Co. bridge, 4.5 mi south of Lutie, and 7.2 mi north of Wellington.

DRAINAGE AREA.--1,222 mi², of which 209 mi² probably is noncontributing.

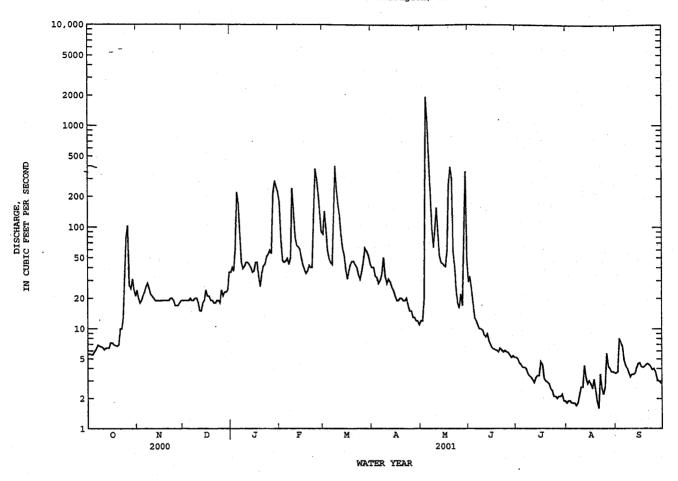
WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- June 1952 to current year.

GAGE.--Water-stage recorder. Datum of gage is 1,941.41 ft above sea level. Satellite telemeter at station.

REMARKS. -- Records fair. Since water year 1967, at least 10% of contributing drainage area has been regulated. There are several small diversions upstream from gage for irrigation.

AVERAGE DISCHARGE FOR PERIOD PRIOR TO REGULATION. --14 years (water years 1953-66) prior to completion of Greenbelt Lake, 72.6 ft3/s (52,600_acre-ft/yr).


EXTREMES FOR PERIOD PRIOR TO REGULATION (WATER YEARS 1953-66).--Maximum discharge, 146,000 ft³/s May 16, 1957 (gage height, 19,00 ft), from rating curve extended above 11,000 ft³/s on basis of slope-area measurement of 63,400 ft³/s; minimum, 0.1 ft³/s June 19, 1952.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

					DAILY	MEAN VAI	UES					
DAY	OCT	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	5.5 5.6 5.5 5.5 5.9	24 20 18 19 21	19 19 19 19	36 40 37 59 219	176 76 47 45 46	85 143 99 59 49	40 40 33 32 28	12 12 20 1920 1080	29 33 25 18 13	5.2 5.0 4.6 4.4 4.1	1.8 1.9 1.9 1.8 1.8	3.6 3.7 8.0 7.3 6.7
6 7 8 9 10	6.3 6.9 6.7 e6.6 e6.5	23 26 28 25 22	20 19 19 20 20	169 81 45 39 41	49 43 50 240 130	45 43 114 399 235	30 34 50 33 28	498 231 98 63 96	12 11 10 10 9.7	4.1 4.0 3.6 3.4 3.3	1.8 1.7 1.8 2.2 2.6	4.9 4.3 4.0 3.6 3.3
11 12 13 14 15	e6.2 6.4 6.4 6.4 7.2	21 20 19 19 19	18 15 15 18 19	45 e45 e43 e40 36	80 66 64 61 50	170 131 86 62 53	31 29 26 24 21	155 91 52 45 44	8.7 8.3 8.9 7.6 7.0	3.1 2.9 3.2 3.4 3.4	2.6 4.3 3.2 2.8 3.0	3.5 3.5 3.6 4.1 4.5
16 17 18 19 20	7.2 6.9 6.8 6.7 6.9	19 19 19 19 19	24 21 21 19 19	37 45 45 33 26	42 38 35 37 42	38 31 37 43 46	19 19 20 20 19	42 41 59 274 392	6.5 6.3 6.2 6.1 5.9	4.7 4.4 3.2 3.0 2.9	2.8 2.5 3.1 2.5 1.9	4.6 4.2 4.1 4.2 4.4
21 22 23 24 25	10 10 13 35 80	19 19 20 20 19	18 18 19 19	35 41 43 51 54	40 40 138 375 294	46 43 40 34 31	19 20 17 15 15	301 56 41 24 18	6.4 6.2 5.9 6.1 5.9	2.8 2.5 2.4 2.1 2.1	1.6 3.5 2.5 2.2 2.6	4.5 4.4 4.2 3.9 4.0
26 27 28 29 30 31	103 27 25 31 24 21	17 17 17 18 19	24 21 23 23 24 36	59 55 208 285 247 221	208 141 89 	36 46 62 58 52 44	13 13 12 12 11	16 22 17 91 354 48	5.8 5.5 5.2 5.4 5.2	2.0 2.1 2.1 2.2 1.9	5.7 4.2 4.0 3.7 3.7 3.6	3.7 3.1 3.0 2.9 2.8
TOTAL MEAN MAX MIN AC-FT	507.1 16.4 103 5.5 1010	604 20.1 28 17 1200	625 20.2 36 15 1240	2460 79.4 285 26 4880	2742 97.9 375 35 5440	2460 79.4 399 31 4880	723 24.1 50 11 1430	6213 200 1920 12 12320	299.8 9.99 33 5.2 595	100.0 3.23 5.2 1.9 198	85.3 2.75 5.7 1.6 169	126.6 4.22 8.0 2.8 251
STATIS	TICS OF MO	ONTHLY MEA	N DATA FO	OR WATER Y	EARS 1967	- 2001z	, BY WATER	YEAR (WY	7)			
MEAN MAX (WY) MIN (WY)	30.7 279 1987 4.28 1981	28.3 213 1987 8.03 1981	28.0 92.4 1992 3.59 1984	32.6 86.0 1993 10.5 1971	39.8 117 1998 10.9 1967	48.3 165 1998 8.15 1972	92.2 1218 1997 6.10 1971	112 468 1977 2.61 1971	145 1006 1995 8.17 1970	29.0 155 1993 2.65 1970	27.3 301 1968 1.68 1970	30.0 113 1981 2.22 1984
SUMMAR	Y STATIST	rcs ·	FOR 2	2000 CALEN	DAR YEAR	F	OR 2001 WAS	TER YEAR		WATER YEA	RS 1967	- 2001z
ANNUAL HIGHES LOWEST HIGHES LOWEST ANNUAL MAXIMU MAXIMU MANUAL 10 PER 50 PER	TOTAL MEAN T ANNUAL M T ANNUAL M T ANNUAL M T DAILY ME DAILY ME DELLY ME DE	EAN EAN AN Y MINIMUM OW AGE AC-FT) EDS EDS		15879.4 43.4 1530 1.8 1.9 31500 66 20 3.9	Mar 23 Aug 29 Sep 1		16945.8 46.4 1920 1.6 1.8 5360 6.28 33610 87 19 3.0	May 4 Aug 21 Aug 1 May 4 May 4		53.4 165 10.5 17500 .40 .73 81100 17.10 38710 73 17 4.2	Apr Jum May Apr Apr	1997 1971 3 1997 2 1985 27 1985 3 1997 3 1997
_												1.0

e Estimated z Period of regulated streamflow.

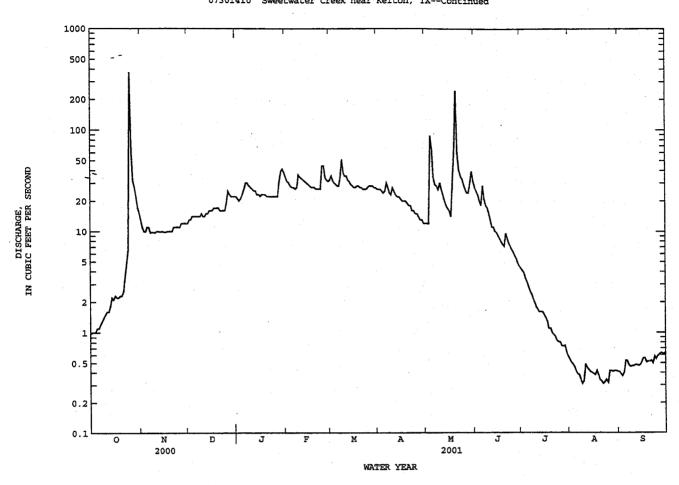
07300000 Salt Fork Red River near Wellington, TX--Continued

07301410 Sweetwater Creek near Kelton, TX

LOCATION.--Lat 35°28'23", long 100°07'14", Wheeler County, Hydrologic Unit 11120302, near center of stream at downstream side of bridge on Farm Road 592, 5 mi north of Kelton; 8 mi upstream from Texas-Oklahoma State line, and 8.5 mi northeast of Wheeler.

DRAINAGE AREA.--287 mi², of which 20 mi² probably is noncontributing.

PERIOD OF RECORD.--Nov. 1961 to current year.
Water-quality records.--Chemical data: Oct. 1969 to June 1985.


GAGE. -- Water-stage recorder. Datum of gage is 2,230 ft above sea level. Satellite telemeter at station.

REMARKS.--No estimated daily discharges. Records good. No known regulation. There are many small diversions upstream from the station for ranch use. No flow at times.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1882, about 20 ft May 16, 1957, from information by local residents.

	-	DISCHAR	GE, CUBIC	FEET PER		VATER YE MEAN VAI	AR OCTOBER LUES	2000 TO	SEPTEMBE	R 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.98 1.0 1.0 1.0	13 11 10 9.9	12 13 13 14 14	22 21 20 21 23	34 31 30 28 27	32 35 32 30 29	26 26 26 25 24	12 12 12 88 64	27 25 23 20 18	4.3 4.1 3.9 3.5 3.2	.55 .51 .49 .46	.41 .39 .37 .40
6 7 8 9 10	1.1 1.2 1.3 1.4 1.5	9.7 9.8 9.8 9.7	14 14 14 14 15	26 30 30 28 27	27 26 27 36 34	28 28 34 51 38	25 30 27 24 23	34 29 28 26 30	28 21 18 17 15	2.9 2.6 2.4 2.2 2.0	.39 .38 .34 .31	.53 .48 .46 .47
11 12 13 14 15	1.6 1.6 1.8 2.2 2.1	10 10 9.9 9.9	14 14 15 15	26 25 25 23 23	33 32 31 30 29	35 35 32 31 29	27 25 23 22 22	26 23 20 18 17	13 11 11 10 9.7	1.8 1.7 1.6 1.6	.49 .45 .43 .41	.48 .48 .47 .48
16 17 18 19 20	2.3 2.2 2.2 2.3 2.3	9.8 9.8 10 10	16 16 17 17	22 23 23 23 22	28 27 27 27 26	28 27 27 28 28	21 20 20 20 19	16 14 28 66 244	9.1 8.5 7.9 7.4 7.1	1.5 1.4 1.3 1.1	.39 .38 .42 .38	.56 .56 .51 .52 .52
21 22 23 24 25	2.5 3.5 4.6 6.5 371	10 11 11 11 11	17 16 16 16 16	22 22 22 22 22 22	26 26 26 44 44	27 27 26 26 26	18 18 16 16	60 40 35 33 29	9.5 8.5 7.6 7.1 6.6	.99 .95 .91 .83 .81	.33 .31 .32 .34	.53 .50 .58 .55
26 27 28 29 30 31	65 32 27 22 17 15	11 12 12 12 12 12	19 25 23 22 22	22 22 31 39 41 38	34 32 31 	27 28 28 28 27 27	15 14 13 13 12	26 24 24 30 39 31	6.2 5.7 5.3 4.8 4.5	.80 .74 .73 .74 .64	.42 .42 .41 .42 .42	.61 .63 .62 .62 .64
TOTAL MEAN MAX MIN AC-FT	598.28 19.3 371 .98 1190	317.3 10.6 13 9.7 629	508 16.4 25 12 1010	786 25.4 41 20 1560	853 30.5 44 26 1690	934 30.1 51 26 1850	625 20.8 30 12 1240	1178 38.0 244 12 2340	372.5 12.4 28 4.5 739	54.53 1.76 4.3 .59 108	12.39 .40 .55 .31 25	15.47 .52 .64 .37
MEAN MAX (WY) MIN (WY)	8.50 42.1 1987 .30 1985	10.5 34.5 1975 1.05 1985	12.2 27.1 1998 3.11 1984	13.5 27.6 1998 5.78 1995	16.3 30.5 2001 6.82 1995	18.9 42.2 1998 9.09 1977	22.3 100 1997 8.72 1971	26.4 196 1977 3.38 1971	23.1 86.3 1965 2.80 1966	6.08 32.3 1967 .44 1974	5.22 42.7 1963 .000 1964	7.23 40.9 1988 .027 1984
ANNUAI ANNUAI HIGHES LOWEST ANNUAI MAXIM MAXIM INSTAI ANNUAI 10 PEI 50 PEI	TOTAL TOTAL MEAN TANNUAL TANNUAL TANNUAL TANNUAL TANNUAL TANNUAL TANNUAL TANNUAL MET SEVEN-DA MET	MEAN EAN AN Y MINIMUM OW AGE CW FLOW AC-FT) EDS EDS	FOR 2	371 .34 .37 .37 .38 .37 .38 .37	Oct 25 Sep 12 Sep 7	F 1	0R 2001 WA9 6254.47 17.1 371 .31 .33 828 13.50 12410 31 14 .48	Oct 25 Aug 9 Aug 19 Oct 25 Oct 25		14.0 33.5 4.89 1820 .00 2890 15.73 .00 10140 23	May Jul Jul May May Jul	1997 1984 21 1977 29 1964 20 1977 20 1977 29 1964

07301410 Sweetwater Creek near Kelton, TX--Continued

07308500 Red River near Burkburnett, TX

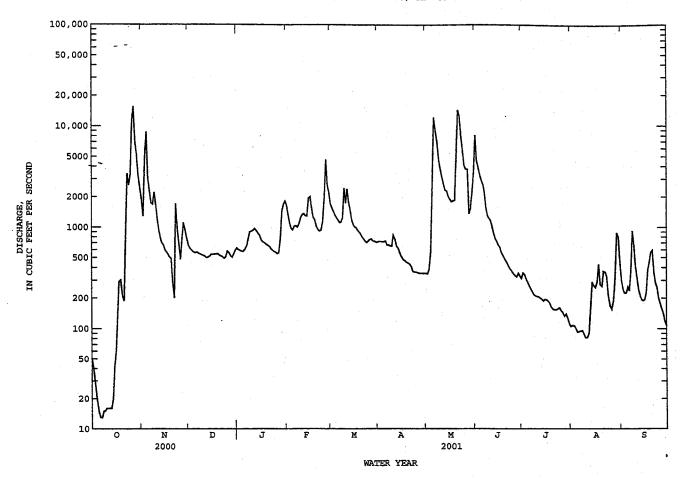
LOCATION.--Lat 34°06'36", long 98°31'53", Cotton County, Okla., Hydrologic Unit 11130102, on downstream guardrail of downstream bridge on U.S. Highways 277 and 281, 2.5 mi northeast of Burkburnett, and at mile 933.

DRAINAGE AREA. -- 20,570 mi², of which 5,936 mi² probably is noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--July 1924 to Aug. 1925 (monthly discharge only), Dec. 1959 to current year.

GAGE.--Water-stage recorder. Datum of gage is 952.57 ft above sea level. July 11, 1924, to Aug. 31, 1925, nonrecording gage at site 1,000 ft downstream at same datum. Dec. 16, 1959, to Jan. 11, 1960, nonrecording gage at present site and datum. Satellite telemeter at station.


REMARKS.--Records fair except those for estimated daily discharges, which are poor. No known regulation. There are many small diversions upstream from station for irrigation, but total amounts are unknown. No flow at times.

EXTREMES OUTSIDE PERIOD OF RECORD. --Flood of June 3, 1957, reached a stage of 13.54 ft, from floodmarks. According to local residents, higher stages occurred in 1891 and June 1941.

	DISCHARG	GE, CUBIC	FEET PER	SECOND, DAILY	WATER YE MEAN VA	EAR OCTOBER	2000 то	SEPTEMBE	R 2001		
DAY OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 51 2 40 3 28 4 20 5 15	1900 1280 4860 8760 3100	673 619 596 574 561	619 597 586 575 576	1620 1300 1080 964 932	1700 1530 1430 1310 1230	710 723 719 715 713	350 346 383 578 3590	8180 4600 3960 3340 2930	313 354 341 312 290	105 108 107 100 93	301 245 225 225 257
6 13 7 13 8 15 9 15 10 16	2310 1730 1680 2220 1740	561 564 548 539 529	604 648 758 897 911	1020 1030 996 1070 1220	1170 1110 1120 1230 2430	726 662 665 649 645	12100 9040 7010 4690 3750	2680 2260 1590 1330 1230	268 247 231 216 210	94 95 96 89 82	236 373 916 664 420
11 16 12 16 13 16 14 20 15 41	1250 959 794 702 667	521 513 498 506 517	928 967 923 871 824	1320 1350 1290 1280 1930	1730 2380 1780 1480 1180	832 762 648 618 552	3150 2690 2340 2280 2050	1180 1040 875 775 726	207 206 200 195 187	82 90 e172 288 266	313 240 210 193 188
16 60 17 123 18 292 19 302 20 207	597 567 537 506 492	539 540 540 544 546	745 711 698 e675 e660	2000 1530 1260 1180 1030	1070 1010 985 930 894	506 476 465 450 439	1900 1800 1820 1860 5230	672 635 567 534 495	e194 192 186 178 162	255 285 428 273 261	193 228 383 445 560
21 188 22 609 23 3390 24 2600 25 3320	e280 e200 e1700 e1000 e700	528 516 506 492 508	e640 e610 e590 572 562	951 913 931 1140 1910	843 794 762 724 704	428 409 365 362 360	14300 12500 7950 5880 4130	467 438 408 381 366	155 154 153 157 161	365 359 325 212 169	589 363 282 255 202
26 11300 27 15600 28 7100 29 5170 30 3200 31 2430	e480 e740 1110 943 784	577 556 518 503 539 587	544 557 763 1430 1690 1800	4640 2640 2210 	725 753 762 727 724 708	356 352 349 351 349	3790 3760 1360 1530 2180 3480	347 334 324 351 332	149 144 133 139 126 112	156 190 313 881 793 434	177 156 140 119 106
TOTAL 56226 MEAN 1814 MAX 15600 MIN 13 AC-FT 111500	44588 1486 8760 200 88440	16858 544 673 492 33440	24531 791 1800 544 48660	40737 1455 4640 913 80800	35925 1159 2430 704 71260	545 832 349 32440	127817 4123 14300 346 253500	43347 1445 8180 324 85980	6272 202 354 112 12440	7566 244 881 82 15010	9204 307 916 106 18260
STATISTICS OF M MEAN 1516 MAX 14900 (WY) 1987 MIN 21.9 (WY) 1971	700 4960 1987 .96 1971	580 4435 1992 2.98 1971	510 2293 1998 5.53 1971	736 4986 1998 8.37 1971	- 2001, 990 10050 1998 7.97 1971	1115 13040 1997 .15 1971	YEAR (WY) 2413 12470 1977 11.4 1971	3406 24780 1995 148 1970	872 5947 1975 .058 1970	870 10540 1995 1.29 1964	1336 6381 1996 32.2 1983
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL M HIGHEST ANNUAL M HIGHEST DAILY M LOWEST DAILY M LOWEST DAILY M ANNUAL SEVEN-DA MAXIMUM FEAK FL	Meān Ean Ean An Y Minimum Ow		000 CALEN 333495 911 18500 13 15	Mar 25 Oct 6 Oct 5	F	429427 1177 15600 13 15 18200	Oct 27 Oct 6 Oct 5 Oct 27		1258 4424 178 144000 .00 .00	Jul 1 Jul 1 Jun	1987 1964 6 1995 19 1964 19 1964 6 1995
MAXIMUM FEAK ST. INSTANTANEOUS I ANNUAL RUNOFF (10 PERCENT EXCE 50 PERCENT EXCE 90 PERCENT EXCE	OW FLOW AC-FT) EDS EDS	•	661500 2150 321 86			8.04 851800 2500 587 142	Oct 27		16.90 .00 911200 2500 315 55		21 1983 19 1964

e Estimated

07308500 Red River near Burkburnett, TX--Continued

07316000 RED RIVER NEAR GAINESVILLE, TX

LOCATION.--Lat 33°43'40", long 97°09'35", in SW 1/4 sec.36, T.9 S., R.1 E., Love County, OK, Hydrologic Unit 11130201, on downstream right bank at end of bridge on Interstate 35, 0.2 mi downstream from Gulf, Colorado, and Santa Fe Railway Co. bridge, 5.0 mi downstream from Fish Creek, 4.5 mi southwest of Thackerville, OK, 7.0 mi north of Gainesville, and at mile 791 5

WATER-DISCHARGE RECORDS

DRAINAGE AREA. --30,782 mi² of which 5,936 mi² probably is noncontributing.

Discharge

PERIOD OF RECORD. -- May 1936 to current year. Monthly discharge only for some periods, published in WSP 1311.

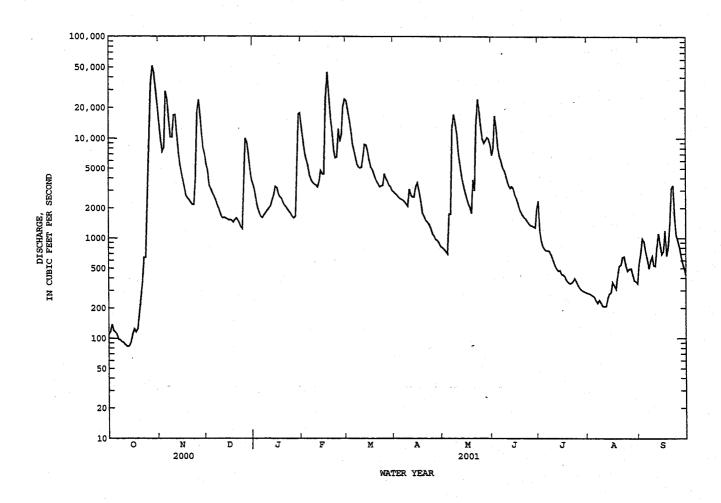
REVISED RECORDS. -- WSP 1211: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 627.91 ft above sea level. Prior to Jan. 17, 1939, and Feb. 13, 1965 to Nov. 14, 1966, nonrecording gage at same site and datum.

REMARKS.--Records poor. Flow slightly regulated by Lake Kemp (station 07312000 in Texas), since 1943 by Lake Altus (station 07302500 in-Oklahoma), since 1946 by Lake Kickapoo (station 07314000 in Texas), since 1967 by Lake Arrowhead (station 07314800 in Texas) and Moss Lake (station 07315950 in Texas). U.S. Army Corps of Engineers' satellite telemeter at station.

Gage height

Discharge


PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 24,000 ft³/s:

Gage height

Date	Ti	me	(ft ³ /s)	(ft)		Date	Tim	e	(ft ³ /s)		(ft)
Oct 28	24	100	56,30	0	23.74		Feb 17	110	0	48,300 26,100 25,800	2	2.15
Nov 5		00	31,70		19.08		Mar 1	010		26 100		7.87
Nov 26	0.1	.00	26,50	Ŏ	17.97		May 23	030		20,100	-	7.81
MOV 26	. 01	.00	20,50	.0	17.97		may 23	030	U	25,800	. 1	7.81
		DICCUI	ADCE CITE	ת מספט או	EB CECOMO	tera micro	man comenna	2000 00	annama.	m 2001		
		DISCHA	ARGE, CUE	IC FEET P		Y MEAN V	TEAR OCTOBER TALUES	. 2000 10	SEPTEMBE	R 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	108	e13700	5530	e3400	13300	23300	e2900	e800	-6000	2350	-202	550
2	116	e9770	e4700	e2900	9900				e6820		e282	550
3	137	e7450	2420	e2400	7710	e18600	e2800	e780	e8010	1190	e277 e271	695
		e/450	3420 3130	e2400 e2000	7310	e15300	e2700	740	16700	931	e271	989
4	e120	8140	3130		6240	e12300	e2600	700	12600	e825	e264	920
5	115	29100	2840	e1800	5360	e8840	e2500	e1750	e8190	e779	e257	722
6	110	24400	2650	e1650	4270	e7480	e2450	e1750	6650	e751	e237	623
7	98	16300	2450	e1600	3830	e6370	e2400	e13000	e6010	e751	224	497
8	97	10400	2190	e1700	3610	e5570		e17200	e5220	e741	239	595
وَ	93	10400 10300	2020	e1800	3500	e5220		e14000	e4830	e697	225	657
10	92	16900	1830	e1900	3400	e5060		e10900	e4340	e632	210	534
11	88	17100 10900	1660	e2000	3250 3700	e5160	e3100	e7140	e3800	e567	207	526
12	85	10900	1590	e2100	3700	e6670	2710	e5390 e4090	e3380	e523	209	814
13	83	7420	1610 1590	e2400	4760	e8710	e2590	e4090	e3380 e3170	e490	253	. 1110
14	84	5620	1590	e2700	4430	e8600	e2600	e3410	e3300	e469	277	857
15	91	4550	1550	e3300	4370	e7480	e3260	e2940	e3130	e476	286	692
16	111	3790	1520	e3200	24300	e6110	e3560	e2540	e2740	e435	362	737
17	124	3200	1530	e2800	44700	e5250	e2950	e2220	e2530	431	336	1190
18	116	2660	1500	e2600	e29200	e4890	e2390	e2070	e2280	e412	312	668
19	124	2530	1440	e2500	e16500	e4400	e1800	e1780	e1980	e378	416	836
20	187	2430	1540	e2300	e11800	e3970	e1660	e3840	e1830	e363	524	1420
21	270	2290	1590	2140	e7670	e3690	e1510	e2970	e1710	e351	543	3130
22	373	2290 2170	1590 1510	2050	e6430	3500	e1440	e13900	e1610	e358	644	3380
23	638	2180	1410	1950	e6540	e3280	-1300	e24200	61010	e336		
		4060	1290	1930						e371	653	1580
24	644	10500	1290	1840	e12400	e3330		e19400	1470	e396	532	1080
25	3690	18500	1240	1750	e9300	e3380	e1100	e13400	1400	e371	469	952
26	13900	23900	4220	1650	e10900	e4410	e1050	e9970	1340	e341	493	824
27	34200	17000	10000	1590	e20400	e4000	e970	e8990	1320	e319	497	668
28	51800	e11200	9050	1660	24300	e3730	e950	e9590	1300	e305	433	562
29	44100	e8000	6940	6640		e3390	e900	e10200	1270	e297	377	493
30	27800	e7000	e4900	17300		e3260	e830	e9810	1920	e291	369	424
31	18900		e3800	17700		e3000		e8560		e285	353	
TOTAL	198494	302960	92240	103320	305670	208250	62950	228030	122410	17876	11031	28725
MEAN	6403	10100	2975	3333	10920	6718	2098	7356	4080	577	356	958
MAX	51800	29100	2975 10000	17700	44700	23300	3560	24200	16700	2350	653	3380
MIN	83	2170	1240	3333 17700 1590	3250	3000	830	700	1270	285	207	424
AC-FT	393700	600900	183000	204900	606300	413100	124900	452300	242800	35460	21880	56980
										22200	22000	20200
STATIS	TICS OF	M YIHTMON	EAN DATA	FOR WATER	YEARS 19	37 - 2001	I, BY WATER	YEAR (W	7)		1	
MEAN	3763	2071	1628 14990	1300	1980	2944	3523	8000	8220	2161	1587	2458
XAM	31080	14020	14990	7258	10920	19590	27400	47780	43510	9857	20730	12880
(WY)	1942	1942	1992	1998	2001	1998	1990	1957	1941	1950	1995	1986
MIN	119	137	125	82.4	151	90.5	153	204	640	166	163	108
(WY)	1953	1955	1940	1940	1953	1940	1971	1971	1966	1964		1956

e Estimated

SUMMARY STATISTICS	FOR 2000 CALEN	DAR YEAR	FOR 2001 WAS	TER YEAR	WATER YEAR	s 1937 -	2001
ANNUAL TOTAL ANNUAL MEAN-	947806 2590		1681956 4608		3304		
HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN	51800	Oct 28	51800	Oct 28	11890 651 232000	** 7*	1987 1953
LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM	83 88	Oct 13 Oct 9	83 88	Oct 13 Oct 9	48 48	May 31 Jan 18 Jan 18	1940
MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE			56300 23.74	Oct 28 Oct 28	265000 40.08	May 31 May 31	1987
INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (AC-FT) 10 PERCENT EXCEEDS	1880000 6100		3336000		100 2394000	Sep 17	2000
50 PERCENT EXCEEDS 90 PERCENT EXCEEDS	641 116		12500 2190 286		7340 866 217		

07335500 RED RIVER AT ARTHUR CITY, TX

LOCATION.--Lat 33°52'30", long 95°30'06", in NW $\frac{1}{4}$ sec.11, T.8 S., R.17 E., Choctaw County, OK, Hydrologic Unit 11140101, on right downstream bank of bridge on U.S. Highway 271 at Arthur City, 10.6 mi downstream from Muddy Boggy River, 26.0 mi upstream from Kiamichi River, and at mile 633.1.

DRAINAGE AREA. --44,531 mi², of which 5,936 mi² probably is noncontributing.

PERIOD OF RECORD. -- January to September 1905 (gage heights and discharge measurements only), October 1905 to December 1911, July

July
1936 to current year. Monthly discharge only for some periods, published in WSP 1311. Gage- height records collected at same site since 1891 are contained in reports of the National Weather Service.

REVISED RECORDS. -- WSP 1241: Drainage area. WSP 1311: 1906-11.

GAGE.--Water-stage recorder. Datum of gage is 380.07 ft above sea level. From 1905-11 nonrecording gage at St. Louis-San Francisco Railway Co. bridge 200 ft upstream at same datum. July 1, 1936, to Mar. 24, 1940, nonrecording gage at present site and datum.

REMARKS.--Records fair. Flow regulated since October 1943 by Lake Texoma (station 07331500), 92.8 mi upstream from station. U.S.

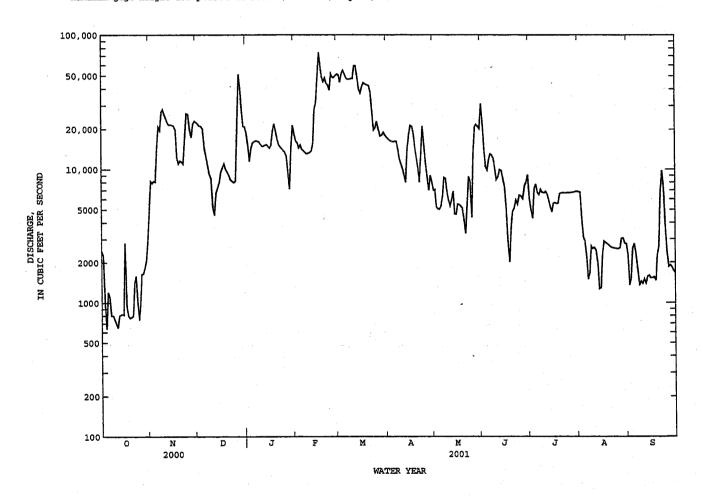
DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

Army Corps of Engineers' satellite telemeter at station.

		DISCH	MRGE, CUE	SIC PEET PE		, WATER II LY MEAN VI	LUES	R 2000 TC) SEPTEMBE	R 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
. 1	2440	4760	22600	18700	18300	51500	17300	e7000	31100	6030	6830	2290
2	2250	8130	21900	15100	16300	50500	16800	7050	23000	4960	6770	1350
3	e1000	7880	21100	11500	15800	44700	16400	5240	14500	4320	4280	1510
4	638	8170	21000	14400	14500	51600	16200	5080	10500	7120	3100	2540
5	e1200	8070	20100	15900	15200	54800	16100	5040	9940	7770	2890	2770
	e1200	. 6070	20100	13300	13200	34000	10100	2040	2240	77.70	2050	2,,,0
6	e1100	14200	14600-	16200	14100	51600	16300	5300	11900	6720	2220	2380
7	e800	20800	12600	16400	13800	48200	16200	6270	13100	6480	1490	1790
8	e800	19700	10700	16300	13400	47000	14100	8690	12800	7070	1670	1340
٠ ۅ	e750	26900	9240	16100	13100	47000	e12000	8540	12100	6730	2650	1440
10	e700	28200	8510	15400	13200	47700	e11000	6730	10100	6660	2540	1390
				,=====								
11	e650	25900	5170	14900	13400	47700	10100	5870	8370	6840	2590	1500
12	e800	24100	4550	14900	13800	59100	e9000	5360	8790	6530	2470	1400
13	e810	22400	6670	15200	15600	59100	e8000	5930	9990	5910	1970	1570
14	e820	21600	7310	15300	28100	49300	14200	6870	9830	5300	1270	1590
15	e810	21600	8010	14800	31700	39800	18200	4650	8530	4820	1290	1520
16	e2800	21400	9540	14400	48000	37400	21500	4630	7450	5570	2360	1520
17	e940	21100	10300	15100	74100	41600	21000	5510	5170	5650	2890	1550
18	e800	19700	11000	19200	e60000	44400	18300	5460	2870	5560	2820	1460
19	e770	12200	10000	22000	e49000	43400	14200	5330	2020	5600	2770	2260
20	e780	11000	9580	19500	e45000	42700	e12000	5150	3650	6590		2620
					-							
21	e800	11600	9050	16900	e48000	42300	e10000	4250	4800	6670	2630	6780
22	1400	11400	8400	15400	e44000	38200	e8000	3320	5120	6700	2590	9780
23	1580	11000	8130	14800	e42700	26900	13900	5880	5910	6690	2570	7220
24	999	17700	7990	14300	e39200	19700	21100	8820	5540	6680	2550	3880
25	746	26300	8200	13800	e51800	20500	15300	8080	6400	6710	2540	2400
26	1010	25900	25600	13500	e48700	23000	e11000	4370	6330	6690	2520	1860
27	1630	19800	51300	12600	e48600	20000	e9000	13500	6060	6720	2570	1900
28	1650	17400	40600	9640	50300	17800	e7000	20900	7480	6750	3040	1830
29	1810	21900	27200	7130		18000	e9000	21800	8100	6770	3050	1730
30	2070	23100	20900	14600		18900	e8000	21100	9100	6850	2790	1660
31	3020		20800	21400		18000		20200		6860	2770	
		****	1000-	405053			******			406000	05000	T4000
TOTAL	38373	533910	472650	475370	899700	1222400	411200	251920	280550	196320	87200	74830
MEAN	1238	17800	15250	15330	32130	39430	13710	8126	9352	6333	2813	2494
MAX	3020	28200	51300	22000	74100	59100	21500	21800	31100	7770	6830	9780
MIN	638	4760	4550	7130	13100	17800	7000	3320	2020	4320	1270	1340
AC-FT	76110	1059000	937500	942900	1785000	2425000	815600	499700	556500	389400	173000	148400
STATIST	rics of	MONTHLY I	MEAN DATA	FOR WATER	YEARS 19	45 - 2001	, BY WATER	YEAR (W	Y)			
MEAN	6782	7522	7471	7072	8757	11190	11680	16860	17880	7784	4874	4767
MAX	40240	37170	32340	39930	32130	39430	55500	103900	83820	27700	34840	19010
(WY)	1982	1975	1992	1992	2001	2001	1990	1990	1957	1989	1950	1950
MIN	263	242	894	1126	1138	1118	1344	2837	2074	1586	1108	859
(WY)	1957	1957	1957		1959	1967	1956	1980	1956	1956	1972	1988
••												

e Estimated

07335500 RED RIVER AT ARTHUR CITY, TX--Continued


SUMMARY STATISTICS	FOR 2000 CALEN	DAR YEAR	FOR 2001 WAT	ER YEAR	WATER YEAR	RS 1945 - 2001
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE ANNUAL RUNOFF (AC-FT) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS	2022015 5525 51300 638 759 4011000 12200 3260 1200	Dec 27 Oct 4 Oct 7	4944423 13550 74100 638 759 80400 18.35 9807000 37700 8690 1560	Feb 17 Oct 4 Oct 7 Feb 17 Feb 17	^a 9379 23290 2754 269000 134 134 ^c 275000 34.21 6795000 24200 4320 1370	1990 1964 May 4 1996 Dec 11 1956 Dec 11 1956 May 4 1990 May 4 1990

^aPrior to regulation, water years 1906-11, 1937-43, 9,266 ft³/s.

^bAlso occurred Dec. 12, 1956.

^CMaximum discharge for period of record, 400,000 ft³/s, May 28, 1908.

^dMaximum gage height for period of record, 43.2 ft, May 28, 1908.

07331600 RED RIVER AT DENISON DAM NEAR DENISON, TX

LOCATION.--Lat 33°49'08", long 96°33'47", Grayson County, Hydrologic Unit 11140101, on right bank 1,800 ft downstream from Denison Dam powerhouse, 0.4 mi upstream from Shawnee Creek (spillway flow return), 4.5 mi north of Denison, and at mile 725 5

WATER-DISCHARGE RECORDS

DRAINAGE AREA. --39,720 mi^2 , of which 5,936 mi^2 is probably noncontributing. At site used prior to October 1961 drainage area was 39,777 mi^2 , of which 5,936 mi^2 probably was noncontributing.

PERIOD OF RECORD.--October 1923 to September 1989; December 1996 to current year. Monthly discharge only for some periods, published in WSF 1311. Prior to October 1934, published as "near Denison, TX", and October 1934 to September 1961, published as "near Colbert, OK". Gage-height records collected at various sites in this vicinity 1892-93, 1906-28, 1931-49 are contained in reports of the National Weather Service.

REVISED RECORDS. -- WSP 807: 1935 (M). WSP 1211: Drainage area. WSP 1241: 1924-29, 1932-33, 1934 (M), 1935.

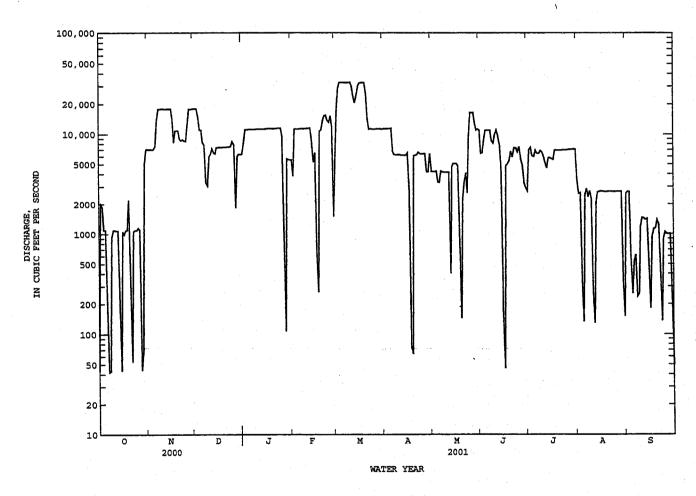
GAGE.--Water-stage recorder. Datum of gage is 495.00 ft above National Geodetic Vertical Datum of 1929. Oct. 9, 1923, to Sept. 24, 1934, nonrecording gage, and July 29, 1942, to Sept. 30, 1961, water-stage recorder, at county road bridge 2.5 mi downstream. Prior to Oct. 1, 1931, at datum 11.85 ft higher; Oct. 1, 1931, to Sept 24, 1934, at datum 12.07 ft higher; and July 29, 1942, to Sept. 30, 1961, at datum 2.36 ft higher; Sept. 25, 1934, to July 28, 1942, water-stage recorder at railway bridge 1.9 mi downstream at datum 12.36 ft higher. July 29, 1942 to Sept. 30, 1989, at same site and datum 5.00 ft higher.

REMARKS.--No estimated daily discharge. Records fair except for discharges less than 100 ft³/s which are poor. Flow regulated since October 1943 by Lake Texoma (station 07331500). U.S. Army Corps of Engineers satellite telemeter at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of May 26, 1908, reached a stage of 45.5 ft (at site and datum used July 29, 1942, to Sept. 30, 1961); from record of National Weather Service.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

			,		DAI	LY MEAN VA	LUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	43	7040	17900	6300	5510	4830	11400	4240	11000	2730	3560	2550
2	2050	7020	17900	8280	3820	17300	11400	4240	6410	6970	2560	2670
3 .	1870	7040	17900	11100	11300	28500	11400	4230	6500	7320	2600	2680
4	1090	7020	14800	11100	11300	32700	11400	4260	8670	6080	316	562
Š	1090	7070	11000	11200	11300	32600	11400	3340	11000	5960	133	255
٠,	1090	. 7070	11000	11200	11300	32000	11400	3340	11000	3300	123	255
6	199	7510	11000	11200	11300	32600	11500	3300	11000	6870	2500	526
7	42	13900	8270	11200	11400	32600	6730	4290	11000	6410	2860	617
8	43	17800	7770	11200	11400	32500	6230	4190	11000	6400	2370	238
9	919	17800	3290	11200	11400	32400	6210	4180	8610	6850	2710	254
10	1090	17900	3090	11300	11400	32500	6230	4150	8160	6590	2270	1180
11	1090	18000	6010	11300	11500	32800	6260	4170	9920	5880	267	1460
12	1080	17800	6260	11300	11500	29600	6180	4150	11000	5060	130	1440
13	1080	17800	7150	11300	11600	23900	6190	404	9520	4580	2130	1390
14	196	17900	6530	11300	8640	20600	6180	4720	7740	5810	2640	1420
15	43	17900	6360	11300	5230	24100	6160	5080	4350	5810	2690	424
	43	17900	0300	11300	3230	24100	0100	2000	4220	3010	2090	444
16	1060	17900	7340	11400	6510	29900	6460	5080	165	5680	2710	181
17	991	14100	7390	11400	614	32300	2750	5080	46	5590	2700	928
18	1090	8250	7400	11400	264	32400	75	4820	4840	6930	2690	1130
19	1100	10800	7380	11400	10700	32400	64	408	5030	6930	2650	1140
20	2200	10800	7420	11400	11100	32400	6080	144	5410	6940	2690	1380
				22.00		32400			24.0	0,10		1300
21	227	10800	7400	11400	13600	25200	6170	2250	6740	6950	2680	1250
22	53	8960	7450	11400	15300	14600	6230	3320	5920	6930	2710	397
23	1060	8630	7480	11500	15500	11300	6590	4100	7300	7000	2690	135
24	1100	8780	7470	11500	13800	11400	6390	2590	7310	6980	2690	903
25	1090	8580	7560	11500	13200	11300	6360	9220	6670	6990	2680	1050
26	1150	8490	8430	9550	15200	11300	6370	16500	7500	7040	2700	1010
27	1100	12200	7830	712	11900	11300	6390	16400	5630	7040	2690	999
28	44	17800	1830	107	1500	11400	4220	16500	4850	7090	2700	1010
29	71	17800	5980	5660	1300	11400	4220	12900	3220	7090	2690	261
30	4940	17900	6320	5550		11400	6390	11000	2920	7120	332	49
31	7030	1/900	6240	5540		11300	0330	11300	2320	7090	150	
31	7030		0240	3340		11300		11300		7090	130	
TOTAL	36231	381290	256150	301999	277788	710830	199629	180556	209431	198710	67888	29489
MEAN	1169	12710	8263	9742	9921	22930	6654	5824	6981	6410	2190	983
MAX	7030	18000	17900	11500	15500	32800	11500	16500	11000	7320	3560	2680
MIN	42	7020	1830	107	264	4830	64	144	46	2730	130	49
AC-FT	71860	756300	508100	599000	551000	1410000	396000	358100	415400	394100	134700	58490
STATIS	rics of	WOMINI'A W	EAN DATA	FOR WATER	YEARS 19	45 - 2001,	BY WATER	R YEAR (W	<u>(</u>			
MEAN	4843	-3748	3425	3667	3571	4767	4838	7555	11350	5470	3488	2613
MAX	27860	18880	13320	20630	13800	24760	20400	34710	66960	21820	25570	10330
(WY)	1987	1975	1997	1998	1987	1987	1945	1957	1957	1982	1950	1950
MIN	66.7	79.6	569	271	678	614	789	712	1449	1580	953	325
(MX)	1957	1957	1981	1945	1945	1976	1978	1959	1956	1956	1972	1984
(AA T)	727/	1551	707	77.43	7343	7310	1310	1333	7330	7270	1312	1704


07331600 RED RIVER AT DENISON DAM NEAR DENISON, TX--Continued

SUMMARY STATISTICS	FOR 2000 CALEN	IDAR YEAR	FOR 2001 WA	TER YEAR	WATER YEAR	S 1945 - 2001
ANNUAL TOTAL	1360927		2849991		8	
ANNUAL MEAN - HIGHEST ANNUAL MEAN	3718		7808		^a 4891 16030	1987
LOWEST ANNUAL MEAN	10000		****		1510	1964
HIGHEST DAILY MEAN LOWEST DAILY MEAN	18000 18	Nov 11 Feb 27	32800 42	Mar 11 Oct 7	96200 18	Jun 5 1957 Feb 27 2000
ANNUAL SEVEN-DAY MINIMUM	25	Mar 8	519 24100	Sep 4	25	Mar 8 2000
MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE			34100 17.57	Mar 11 Mar 11	b ₁₀₂₀₀₀	Jun 5 1957 Jun 5 1957
ANNUAL RUNOFF (AC-FT)	2699000		5653000		3543000	
10 PERCENT EXCEEDS 50 PERCENT EXCEEDS	8450 2640		16500 6460		10700 2810	
90 PERCENT EXCEEDS	42		593		194	

^aPrior to regulation, water years 1924-43, 5,684 ft³/s.

bMaximum discharge for period of record, 201,000 ft³/s May 21, 1935.

CMaximum gage height for period of record, 32.00 ft Apr. 25, 1942, site and datum then in use.

QUALITY DATA WATER YEAR OCTOBER 2000 through SEPTEMBER 2001

(as recommended for inclusion in the annual report by the Engineering Committee)

•	
	*

07337000 RED RIVER AT INDEX--CONTINUED

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1947-1956, April 1980 to current year.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

	-			DIS-	BARO-		OVVCDN	מע			
DATE	LY SA TIME (CO	AMPLE DDE	AGENCY COL- LECTING SAMPLE (CODE	CHARGE INST. CUBIC FEET PER	PRES- SURE (MM OF	OXYGEN, DIS- SOLVED	CENT SATUR-	PH WATER WHOLE FIELD (STAND- ARD	DUCT- ANCE	WATER	(MG/L AS
			NUMBER) (00027)	SECOND (00061)		(MG/L) (00300)	ATION) (00301)	UNITS) (00400)		(DEG C) (00010)	
OCT 18 JAN	1130 81	1213	80513	1450	764	6.2	69.8	7.8	1670	21.0	382
17	1115~ 81	1213	80513	19500	781	8.7	65.3	8.3	1050	4.2	240
FEB 28	1330 81	1213	80513	53400	775	9.7	86.3	7.7	516	11.0	129
MAY 09	1400 81	1213	80513	6840	764	7.6	90.6	8.2	737	24.2	206
JUN 20	1200 81	L213	80513	6900	763	7.9	105	8.3	1130	29.9	280
AUG 29	1315 81	L213	80513	3490	772	7.6	97.3	8.4	1270	28.6	313
	CALCIUM DIS-		SIUM,	SODIUM AD-	SODIUM,		CHLO- RIDE,		SOLIDS, RESIDUE	GEN, AMMONI	GEN, AM A MONIA
DATE	SOLVED (MG/L AS CA) (00915)	DIS- SOLVED (MG/L AS MG) (00925	DIS- SOLVED (MG/L AS K) (00935)		DIS- SOLVED (MG/L AS NA)) (00930)	SODIUM PERCENT (00932)	DIS- SOLVED (MG/L AS CL) (00940)		DIS- SOLVED		(MG/L AS N)
OCT 18 JAN	100	32.0	6.50	4.23	190	51.5	130	130	1020	.070	1.2
17 FEB	63.0	20.0	4.30	2.05	73.0	39.3	160	170	643	<.010	.60
28 MAY	37.0	9.0	3.00	1.80	47.0	43.4	63.0	69.0	310	.021	1.4
09 JUN	56.0	16.0	3.60	2.15	71.0	42.4	92.0	97.0	432	.032	1.1
20 AUG	74.0	23.0	3.80	3.12	120	47.9	170	160	675	<.010	.79
29	81.0	27.0	5.00	3.69	150	50.5	190	190	784	<.010	1.1.
DATE	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L) AS NH4) (71846)	NITRO GEN, NITRAT DIS- SOLVED (MG/L) AS N) (00618)	GE NITR DI SOL (MG AS	n, Ate n S- Ved (/L) NO3)	O2+NO3 NIT DIS- SOLVED S (MG/L) (AS N) A	GEN, TRITE NI DIS- SOLVED (MG/L AS NO2)	GEN, TRITE DIS- C SOLVED (MG/L AS N)	GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N) (00600)	PHOS- PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) (00660)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)
OCT 18	GEN, AMMONIA DIS- SOLVED (MG/L) AS NH4)	GEN, NITRAT DIS- SOLVED (MG/L) AS N)	GE NITR DI SOL (MG AS (718	N, ATE N S- VED (/L) NO3)	GEN, 102+N03 NIT DIS- SOLVED S (MG/L) (AS N) A	GEN, TRITE NI DIS- SOLVED (MG/L AS NO2)	GEN, TRITE DIS- C SOLVED (MG/L AS N)	GEN, ORGANIC TOTAL (MG/L AS N)	MITRO- GEN, TOTAL (MG/L AS N)	DIS- SOLVED (MG/L AS PO4)	PHORUS DIS- SOLVED (MG/L AS P)
OCT 18 JAN 17	GEN, AMMONIA DIS- SOLVED (MG/L) AS NH4) (71846)	GEN, NITRAT DIS- SOLVED (MG/L) AS N) (00618)	GE NITR DI SOL (MG AS (718	N, ATE N S- VED (/L) NO3) (51) (GEN, 102+N03 NIT DIS- SOLVED S (MG/L) (AS N) F 100631) (7	GEN, FRITE NI DIS- SOLVED (MG/L AS NO2) 71856) (GEN, TRITE DIS- C SOLVED (MG/L AS N) 00613)	GEN, DRGANIC TOTAL (MG/L AS N) (00605)	GEN, TOTAL (MG/L AS N) (00600)	ORTHO, DIS- SOLVED (MG/L AS PO4) (00660)	PHORUS DIS- SOLVED (MG/L AS P) (00666)
OCT 18 JAN 17 FEB 28	GEN, AMMONIA DIS- SOLVED (MG/L) AS NH4) (71846)	GEN, NITRAT DIS- SOLVED (MG/L) AS N) (00618)	GE NITR DI SOL (MG AS (718	N, ATE N S- VED //L) NO3) 51) (GEN, 102±N03 NIT DIS- SOLVED S (MG/L) (AS N) F 00631) (7	GEN, CRITE NI DIS- SOLVED (MG/L AS NO2) 71856) (GEN, TRITE DIS- C SOLVED (MG/L AS N) 00613) (GEN, DRGANIC TOTAL (MG/L AS N) (00605)	MITRO- GEN, TOTAL (MG/L AS N) (00600)	ORTHO, DIS- SOLVED (MG/L AS PO4) (00660)	PHORUS DIS- SOLVED (MG/L AS P) (00666)
OCT 18 JAN 17 FEB 28 MAY 09	GEN, AMMONIA DIS- SOLVED (MG/L) AS NH4) (71846)	GEN, NITRAT DIS- SOLVED (MG/L) AS N) (00618)	GE NITR DI SOL (MG AS (718	N, ATE N S- VED //L) NO3) 51) (GEN, 102+N03 NIT DIS- SOLVED S (MG/L) AS N)	GEN. FRITE NI DIS- DIS- SOLVED (MG/L AS NO2) 71856) (.066	GEN, TRITE DIS- SOLVED (MG/L AS N) 00613) (GEN, DRGANIC TOTAL (MG/L AS N) (00605)	MITRO- GEN, TOTAL (MG/L AS N) (00600)	ORTHO, DIS- SOLVED (MG/L AS PO4) (00660)	PHORUS DIS- SOLVED (MG/L AS P) (00666)
OCT 18 JAN 17 FEB 28 MAY 09 JUN 20	GEN, AMMONIA DIS- SOLVED (MG/L) AS NH4) (71846) .090	GEN, NITRAT DIS- SOLVED (MG/L) AS N) (00618)	GE NITR DI SOL (MG AS (718	N, ATE N S- NED NO3) 51) (GEN, 102+NO3 NIT 102+NO3 NIT 1015-SOLVED S (MG/L) & S (MG/L) & S (MG/L) & C (GEN, FRITE NI DIS- SOLVED (MG/L AS NO2) 71856) (.066	GEN, TRITE DIS- SOLVED (MG/L AS N) 00613) (.20 <.010	GEN, REGANIC TOTAL (MG/L AS N) (00605)	GEN, TOTAL (MG/L AS N) (00600) 1.23 1.06	ORTHO, DIS- SOLVED (MG/L AS PO4) (00660) .031 .061	PHORUS DIS- SOLVED (MG/L AS P) (00666) <.020 .030
OCT 18 JAN 17 FEB 28 MAY 09 JUN	GEN, AMMONIA DIS- SOLVED (MG/L) AS NH4) (71846) .090027	GEN, NITRAT DIS- SOLVED (MG/L) AS N) (00618)	GE NITR DI SOL (MG AS (718	N, ATE N S- VED (VED (VL) (VL) (VL) (VL) (VL) (VL) (VL) (VL)	GEN, 102+NO3 NIT DIS-SOLVED S (MG/L) (MG/L) (70 00631)	GEN, FRITE NI DIS- DIS- SOLVED MG/L AS NO2) 71856) (.066	GEN, TRITE DIS- SOLVED (MG/L AS N) 00613) (.20 <.010 <.010	GEN, RGANIC TOTAL (MG/L AS N) (00605) 1.13 1.38	GEN, TOTAL (MG/L AS N) (00600) 1.23 1.06	ORTHO, DIS- SOLVED (MG/L AS PO4) (00660) .031 .061	PHORUS DIS- SOLVED (MG/L AS P) (00666) <.020 .030 .030
OCT 18 JAN 17 FEB 28 MAY 09 JUN 20 AUG	GEN, AMMONIA DIS- SOLVED (MG/L) AS NH4) (71846) .090027 .041	GEN, NITRAT DIS- SOLVED (MG/L) AS N) (00618)	GE NITR DI SOL (MG AS (718	N, ATE N S- VED (VED (VL) (VL) (VL) (VL) (VL) (VL) (VL) (VL)	GEN, 102+NO3 NIT DIS- DIS- SOLVED S (MG/L) (7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	GEN, FRITE NI DIS- DIS- SOLVED MG/L AS NO2) 71856) (.066	GEN, TRITE DIS- DIS- SOLVED (MG/L AS N) 00613) .20 <.010 <.010 <.010 <.010	GEN, RGANIC TOTAL (MG/L AS N) (00605) 1.13 1.38	GEN, TOTAL (MG/L AS N) (00600) 1.23 1.06	ORTHO, DIS- SOLVED (MG/L AS PO4) (00660) .031 .061 .092	PHORUS DIS- SOLVED (MG/L AS P) (00666) <.020 .030 .030 <.020
OCT 18 JAN 17 FEB 28 MAY 09 JUN 20 AUG 29	GEN, AMMONIA DIS- SOLVED (MG/L) AS NH4) (71846) .090027 .041	GEN, NITRAT DIS- SOLVED (MG/L) AS N) (00618) .010	GE NITR DI SOL (MG AS (718	N, ATE N S- VED (VED (VL) (VL) (VL) (VL) (VL) (VL) (VL) (VL)	GEN, 102+NO3 NIT DIS- DIS- SOLVED S (MG/L) (7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	GEN, FRITE NI DIS- SOLVED (MG/L AS NO2) 71856) (.066	GEN, TRITE DIS- SOLVED (MG/L AS N) 00613) .20 <.010 <.010 <.010 <.010 <.010 <.010 .010 <.010	GEN, GEN, GRGANIC TOTAL (MG/L AS N) (00605) 1.13 1.38 1.07 SED. SUSP. SUSP	MITCO GEN, TOTAL (MG/L AS N) (00600) - 1.23 1.06 1.79 1.30 MENT, SUS- ENDED P MG/L) (ORTHO, DIS- SOLVED (MG/L AS PO4) (00660) .031 .061 .092	PHORUS DIS- SOLVED (MG/L AS P) (00666) <.020 .030 .030 <.020
OCT 18 JAN 17 FEB 28 MAY 09 JUN 20 AUG 29	GEN, AMMONIA DIS- SOLVED (MG/L) AS NH4) (71846) .090027 .041 PHOS- PHORUS ORTHO DIS SOLVED (MG/L) AS P (00671)	GEN, NITRAT DIS- SOLVED (MG/L) AS N) (00618) .010 PHO PHOR TOT TOT (MG/AS) (006	GE NITR DI SOL (MG AS (718	N, ATE NS- N-ATE NS-	GEN, 1002+N03 NIT DIS-SOLVED S (MG/L) S (MG/L) (70 AS N) 7 (00 AS	GEN, FRITE NI DIS- DIS- SOLVED (MG/L AS NO2) 71856) (066 FECA STRE KF ST MR, WATE (COLL 100 M	GEN, TRITE DIS- SOLVED (MG/L AS N) 00613) .20 <.010 <.010 <.010 <.010 <.010 <.010 .010 <.010	GEN, RGANIC TOTAL (MG/L AS N) (00605) 1.13 1.38 1.07 SED. SUSP. SEVE DIAM. TINER FHAN P 62 MM (0331) (8	MITCO GEN, TOTAL (MG/L AS N) (00600) - 1.23 1.06 1.79 1.30 MENT, SUS- ENDED P MG/L) (ORTHO, DIS- SOLVED (MG/L AS PO4) (00660) .031 .061 .092 .061 SEDI- MENT, DIS- HARGE, SUS- ENDED T/DAY)	PHORUS DIS- SOLVED (MG/L AS P) (00666) <.020 .030 .030 <.020
OCT	GEN, AMMONIA DIS- SOLVED (MG/L) AS NH4) (71846) .090027 .041 PHOS- PHORUS ORTHO DIS SOLVED (MG/L AS P (00671)	GEN, NITRAT DIS- SOLVED (MG/L) AS N) (00618) .010 PHO PHOR TOT (MG/ AS (006	S- E US MAL L (P) 165) (65)	N, ATE N S- N S	GEN, 102+NO3 NIT 102+NO3 NIT 1015-SOLVED S (MG/L) S (MG/L) S (MG/L) S (MG/L) (M	GEN, FRITE NI DIS- DIS- SOLVED (MG/L AS NO2) 71856) (.066	GEN, TRITE DIS- SOLVED (MG/L AS N) 00613) .20 <.010 <.010 <.010 <.010 <.010 <.010 .010 <.010	GEN, RGANIC TOTAL (MG/L AS N) (00605) 1.13 1.38 1.07 SED. SUSP. IEVE DIAM. FINER FHAN P 12 MM (13331) (8	NITCO GEN, TOTAL (MG/L AS N) (00600) 1.23 1.06 1.79 1.30	ORTHO, DIS- SOLVED (MG/L AS PO4) (00660) .031 .061 .092 .061 SEDI- MENT, DIS- HARGE, SUS- ENDED T/DAY) 80155)	PHORUS DIS- SOLVED (MG/L AS P) (00666) <.020 .030 .030 <.020
OCT 18 JAN 17 FEB 28 MAY 09 JUN 20 AUG 29 DATE OCT 18 JAN 17 FEB 28	GEN, AMMONIA DIS- SOLVED (MG/L) AS NH4) (71846) .090027 .041 PHOS- PHORUS ORTHO DIS SOLVED (MG/L) AS P (00671) .010	GEN, NITRAT DIS- SOLVED (MG/L) AS N) (00618) .010	GE NITE DI O O O O O O O O O O O O O O O O O O	N, ATE N S- N S	GEN, 1002+NO3 NIT DIS-SOLVED S (MG/L) S	GEN, FEITE NI DIS- SOLVED (MG/L AS NO2) /1856) (.066	GEN, TRITE DIS- SOLVED (MG/L AS N) 00613) .20 <.010 <.010 <.010 <.010 <.010 <.010 .010 <.010	GEN, RGANIC TOTAL (MG/L AS N) (00605) 1.13 1.38 1.07 SED. SUSP. EVE EVE FINAM PROBLEM TINER FINAM PROBLEM 10331) (8	NITRO- GEN, GEN, TOTAL (MG/L AS N) (00600) 1.23 1.06 1.79 1.30 SEDI- MENT, SUS- ENDED F MG/L) (0154) (225 564	ORTHO, DIS- SOLVED (MG/L AS PO4) (00660) .031 .061 .092 .061 SEDI MENT, DIS- SUS- ENDED T/DAY) 80155) 881	PHORUS DIS- SOLVED (MG/L AS P) (00666) <.020 .030 .030 <.020
OCT	GEN, AMMONIA DIS- SOLVED (MG/L) AS NH4) (71846) .090027 .041 PHOS- PHORUS ORTHO DIS SOLVED (MG/L) AS P (00671) .010 .020	GEN, NITRAT DIS- SOLVED (MG/L) AS N) (00618) .010	GE NITE DI DI SOL (MG AS (718	N, ATE N S- N S	GEN, 1002+NO3 NIT DIS- SOLVED S (MG/L)	GEN, FRITE NI DIS- DIS- SOLVED (MG/L S NO2) /1856) { .066	GEN, TRITE DIS- SOLVED (MG/L AS N) 00613) .20 <.010 <.010 <.010 <.010 <.010 <.010 .010 <.010	GEN, RGANIC TOTAL (MG/L AS N) (00605) 1.13 1.38 1.07 SED. SUSP. SEVE DIAM. TIMER THAN PELAN (03331) (8 95 61 59 1	NITRO- GEN, GEN, TOTAL (MG/L AS N) (00600) 1.23 1.06 1.79 1.30 SEDI- MENT, SUS- ENDED F MG/L) (0154) (225 564	ORTHO, DIS- SOLVED (MG/L AS PO4) (00660) .031 .061 .092 .061 SEDI- MENT, DIS- HARGE, SUS- ENDED T/DAY) 80155) 881 29700	PHORUS DIS- SOLVED (MG/L AS P) (00666) <.020 .030 .030 <.020
OCT	GEN, AMMONIA DIS- SOLVED (MG/L) AS NH4) (71846) .090027 .041 PHOS- PHORUS ORTHO DIS SOLVED (MG/L AS P (00671) .010 .020 .030	GEN, NITRAT DIS- SOLVED (MG/L) AS N) (00618) .010 PHO PHOR TOT (MG/AS (006	S- E MUS M MAL L P) 165) (20 50 30	N, ATE N S- N S	GEN, 1002+NO3 NIT 1015-SOLVED S (MG/L)	GEN, FRITE NI DIS- SOLVED (MG/L AS NO2) /1856) { .066	GEN, TRITE DIS- SOLVED (MG/L AS N) 00613) .20 <.010 <.010 <.010 <.010 <.010 <.010 .010 <.010	GEN, RGANIC TOTAL (MG/L AS N) (00605) 1.13 1.38 1.07 SED. SUSP. EVE DIAM. FINER	NITCO GEN, TOTAL (MG/L AS N) (00600) 1.23 1.06 1.79 1.30	ORTHO, DIS- SOLVED (MG/L AS PO4) (00660) .031 .061 .092 .061 SEDI MENT, DIS- HARGE, SUS- ENDED T/DAY) 80155) 881 29700 91000	PHORUS DIS- SOLVED (MG/L AS P) (00666) <.020 .030 .030 <.020
OCT	GEN, AMMONIA DIS- SOLVED (MG/L) AS NH4) (71846) .090027 .041 PHOS- PHORUS ORTHO DIS SOLVED (MG/L AS P (00671) .010 .020 .030 .020 .<010	GEN, NITRAT DIS- SOLVED (MG/L) AS N) (00618) .010	S- E US M (718 (718 (718 (718 (718 (718 (718 (718	N, ATE N S- N S	GEN, 1002+NO3 NIT DIS-SOLVED S (MG/L) S	GEN, FITTE NI DIS- DIS- SOLVED (MG/L AS NO2) 71856) (.066	GEN, TRITE DIS- SOLVED (MG/L AS N) 00613) .20 <.010 <.010 <.010 <.010 <.010 <.010 .010 .010 .010 .010 .010 .010 .010 .010 .010	GEN, RGANIC TOTAL (MG/L AS N) (00605) 1.13 1.38 1.07 SED. SUSP. LEVE ILAM. TIMER PRAN PRAN PRAN PRAN PRAN PRAN PRAN PRA	NITCO GEN, TOTAL (MG/L AS N) (00600) 1.23 1.06 1.79 1.30	ORTHO, DIS- SOLVED (MG/L AS PO4) (00660) .031 .061 .092 .061 SEDI- MENT, DIS- HARGE, SENDED T/DAY) 80155) 881 29700 91000 5730	PHORUS DIS- SOLVED (MG/L AS P) (00666) <.020 .030 .030 <.020

Remark Codes Used in This report: < -- Less than E -- Estimated value

07362000 OUACHITA RIVER AT CAMDEN--CONTINUED

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1947-52, October 1974 to current year. WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE I	PIME	AGENCY ANA- LYZING SAMPLE (CODE NUMBER) 00028)	AGENCY COL- LECTING SAMPLE (CODE NUMBER) (00027)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEI DIS- SOLVEI (PER- CENT SATUR- ATION) (00301)	WATER WHOLE FIELD (STAND- ARD	CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C) (00010)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)
OCT 18	0755	81213	80513	942	768	6.9	74.0	6.5	86	19.1	23.7	6.70	1.70
JAN 17	0745	81213	80513	13000	780	9.2	67.3	7.7	72	3.3	22.5	6.70	1.40
FEB 28	0930~	81213	80513	25500	783	10.2	89.3	7.1	56	10.9	17.3	5.10	1.10
MAY 09	0930	81213	80513	8260	767	6.5	74.3	7.0	55	22.4	16.1	4.80	1.00
JUN 20	0700	81213	80513	2110	768	6.8	87.7	6.7	83	28.6	22.7	6.80	1.40
AUG 29	0945	81213	80513	1820	778	6.8	84.1	7.6	70	27.3	20.4	5.70	1.50
DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	SODIUM AD- SORP- TION RATIO (00931)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM PERCENT (00932)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	SOLUENTE DIS- SOLVED (MG/L AS SO4)	DEG.	E GEN, AMMONIA DIS- SOLVE (MG/L AS N)	GEN, AM- A MONIA + ORGANIO D TOTAL (MG/L AS N)	AMMONIA DIS- SOLVED (MG/L AS NH4)	O- NITRO GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N) (00605)
OCT 18	1.20	.554	6.2	34.8	4.2	11.0	50	<.010	. 42		<.020	<.010	
JAN 17	1.20	.321	3.5	24.1	3.7	8.2	53	<.010	.21		.250	<.010	
FEB 28	1.10	.262	2.5	22.6	2.7	5.9	43	.012	.45	.015	.200	<.010	.438
MAY 09	1.30	.380	3.5	30.0	3.7	5.2	28	.010	.70	.013	.140	<.010	. 690
JUN 20	.90	.511	5.6	33.8	4.7	8.8	55	.010	.46	.013	.140	<.010	.450
AUG 29	1.10	. 433	4.5	31.0	3.2	7.8	45	.020	<.20	.026	.090	<.010	
DATE	NITRO GEN, TOTAL (MG/I) AS N)	DIS SOLV (MG/ AS PC	E, PHORES DISCOURS SOLUTION (MG)4) AS	US ORT S- DIS VED SOLV /L (MG/ P) AS P	US HO, PHO ED TO L (M	RUS MT TAL WA G/L (C	0 ML) 1	FORM, FECAL, 0.7 UM-MF COLS./ .00 ML)	(COL/ 100 ML)	SED. SUSP. SIEVE DIAM. FINER THAN .062 MM (70331)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	
OCT		•											
18 JAN						-,	120	100	E70	92	19	48	
17 FEB				20 <.0			E90	70	120	95	30	1050	
28 MA Y			-				380	160	110	96	29	2000	
09 JUN						070	880	1600	220	93	93	2070	
20 AUG	600)	- <.0			050	E17	E9	E21	99	23	131	
29			- <.0	20 <.0)10 <.	.020	<2	E24	E4	91	29	143	

Remark Codes Used in This report: < -- Less than E -- Estimated value

07364150 BAYOU BARTHOLOMEW NEAR MCGEHEE--CONTINUED

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1960-1972, October 1973, January 1975, December 1975 to August 1976, Water years 1977 through 1979, and Water years 1996 to current year.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

						,								
	DATE	TIME	AGENCY ANA- LYZING SAMPLE (CODE NUMBER) (00028)	AGENCY COL- LECTING SAMPLE (CODE NUMBER) (00027)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	TEMPER ATURE WATER (DEG C) (00010)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)
	TAN	1055 ~	81213	80513	77	754	7.4	78	7.5	474	17.5	160	40.0	15.0
	16 TEB	1345	81213	80513	388	781	7.8	59	7.7	86	4.9	24	6.10	2.20
	27 fay	1445	81213	80513	3840	780	7.2	64	7.0	51	10.9	16	3.90	1.40
	08	1400	81213	80513	328	770	4.5	52	7.2	77	22.3	26	6.60	2.20
	19	1100	81213	80513	253	767	5.2	64	7.3	202	26.5	63	16.0	5.60
•	28	1400	81213	80513	144	775	4.7	58	8.0	398	27.4	140	36.0	13.0
	DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	SODIUM AD- SORP- TION RATIO (00931)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	SODIUM PERCENT (00932)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS NH4) (71846)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N) (00605)
c	CT													
٠	17 JAN	4.70	1	30.0	28	44.0	12.0	266	<.010	.78		.030	<.010	
F	16 ÆB	3.20	. 4	4.8	27	4.7	10.0	67	<.010	.69		.310	<.010	
N	27 £AY	2.30	.3	2.4	22	1.7	3.8	41	.015	.81	. 02	.140	<.010	.80
٠	08 7UN	3.00	.3	3.7	22	3.0	4.8	61	.016	1.1	. 02	.240	<.010	1.1
Į	19	3.30	.7	12.0	28	15.0	8.6	126	.034	. 97	.04	.610	<.010	.94
	28	4.60	.8	23.0	25	36.0	6.3	235	.040	.70	. 05	.130	<.010	.66
	DATE	NITRO- GEN, TOTAL (MG/L AS N) (00600)	PHOS- PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) (00660)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	E COLI, MTEC MF WATER (COL/ 100 ML) (31633)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	FECAL STREP, KF STRP MF, WATER (COL/ 100 ML) (31673)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)		
c	СТ													
č	17 JAN	.81	. 153	.060	.050	.090	E590	590	370	95	69	14		
E	16 PEB	1.0	.153	.070	.050	.130	E35	110	E43	92	41	43		
1	27 (AY	.95	.245	.080	.080	.220	E180	130	220	97	88	912		
ć	08 7UN	1.3	.337	.120	.110	.340	E40	E53	200	98	69	61		
,	19	1.6	.215	.070	.070	.210	40	50	82	96	63	43		
	28	.83	.337	.080	.110	.160	200	110	200	98	70	27		

Remark codes used in this report:
<-- Less than
E -- Estimated value

07350500 RED RIVER AT COUSHATTA, LA

LOCATION.--Lat 32°00'45", long 93°21'10", in lot 23, T. 12 N., R. 10 W., Red River Parish, Hydrologic Unit 08040301 at bridge on U.S. Highway 84 at Coushatta, 11.0 mi downstream from Coushatta Bayou, and at mile 242.4.

DRAINAGE AREA.--63,362 mi².

PERIOD OF RECORD. -- Water years 1970-1976, 1987 to current year.

REMARKS.--Water-quality samples are non-integrated and collected from center span of bridge. All dissolved constituents are results from water that has be filtered through 0.45 micron filters.

DATE	TIME	COLOR (PLAT- INUM- COBALT UNITS) (00080)	TUR- BID- ITY (NTU) (00076)	OXYGEN, DIS- SOLVED (MG/L) (00300)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	TEMPER- ATURE WATER (DEG C) (00010)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)
NOV													
29 DEC	1030	50	140	8.2	7.9	468	14.7	110	31.0	8.70	3.40	48.0	52
21	1410	80	43	12.5	8.0	421	6.1	100	28.0	7.90	3.10	42.0	50
JAN 31 FEB	0945	60	9.5	10.9	8.1	380	9.0	90	25.0	6.60	2.80	37.0	47
28	1350	60	89	9.0	7.8	225	12.4	63	19.0	3.70	2.30	18.0	42
MAR 28 APR	1755	40	65	9.2	8.0	380	13.1	100	28.0	7.30	2.40	34.0	53
18	0920	60	53	12.6	7.9	360	19.8	98	28.0	6.70	2.70	31.0	66
MAY 30	1335	40	15	9.6	7.5	419	25.6	120	34.0	8.30	2.90	37.0	79
JUN 27	1440	10	6.5		7.8	440	28.5	120	34.0	8.40	3.10	35.0	127
AUG				4.0	8.2	920	31.0	240	65.0	20.0	4.10	110	127
01 29	0930 1305	5 10	.4 3.0	4.8 7.2	8.0	767	31.0	210	55.0	18.0	3.80	72.0	
SEP 26	0915	20	8.0	5.3	7.6	366	25.6	120	32.0	8.90	3.30	31.0	98
													•
DATE	ANC WATER UNFLIRD FET FIELD MG/L AS CACO3 (00410)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	RESIDE TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	RESIDU AT 180 DEG. C DIS- SOLVED		F GEN, MONIA ORGANIC TOTAL	AM- NITE - GEN,	O- NITE GEN, NO2+NO3 TOTAL (MG/L AS N) (00630)	GEN,	PHORUS	S- PHOS- PHORUS TOTAL (MG/L AS P) (00665)
	WATER UNFLIRD FET FIELD MG/L AS CACO3	RIDE, DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SO4)	TOTAL AT 105 DEG. C, SUS- PENDED (MG/L)	RESIDU AT 180 DEG. C DIS- SOLVED (MG/L)	CONSTI- TUENTS, DIS- SOLVED (MG/L)	F GEN, A MONIA ORGANIO TOTAL (MG/L AS N)	AM- NITF GEN, AMMONIA TOTAL (MG/L AS N)	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N) (00615)	PHORUS ORTHO TOTAL (MG/L AS P) (70507)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)
NOV 29	WATER UNFLIRD FET FIELD MG/L AS CACO3	RIDE, DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SO4)	TOTAL AT 105 DEG. C, SUS- PENDED (MG/L)	RESIDU AT 180 DEG. C DIS- SOLVED (MG/L)	CONSTI- TUENTS, DIS- SOLVED (MG/L)	F GEN, A MONIA ORGANIO TOTAL (MG/L AS N)	AM- NITF GEN, AMMONIA TOTAL (MG/L AS N)	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N)	PHORUS ORTHO TOTAL (MG/L AS P)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)
NOV 29 DEC 21	WATER UNFLITED FET FIELD MG/L AS CACO3 (00410)	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SO4) (00945)	TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	RESIDU AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	F GEN, I MONIA ORGANIC TOTAL (MG/L AS N) (00625)	AM- NITE GEN, AMMONIA TOTAL (MG/L AS N) (00610)	GEN, NO2+NO3 TOTAL (MG/L AS N) (00630)	GEN, NITRITE TOTAL (MG/L AS N) (00615)	PHORUS ORTHO TOTAL (MG/L AS P) (70507)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)
NOV 29 DEC 21 JAN 31	WATER UNFLIED FET FIELD MG/L AS CACO3 (00410)	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SO4) (00945)	TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	RESIDU AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	F GEN,I MONIA ORGANIC TOTAL (MG/L AS N) (00625)	AM- NITE GEN, AMMONIA TOTAL (MG/L AS N) (00610)	GEN, NO2+NO3 TOTAL (MG/L AS N) (00630)	GEN, NITRITE TOTAL (MG/L AS N) (00615)	PHORUS ORTHO TOTAL (MG/L AS P) (70507)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)
NOV 29 DEC 21 JAN	WATER UNFLITD FET FIELD MG/L AS CACO3 (00410) 59	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 67.0	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SO4) (00945) 70.0	TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	RESIDUAT 180 DEG. C DIS- SOLVED (MG/L) (70300) 276	DE SUM OF CONSTIL TUENTS, DIS-SOLVED (MG/L) (70301)	F GEN,I MONIA ORGANIC TOTAL (MG/L AS N) (00625)	AM- NITF GEN, AMMONIA TOTAL (MG/L AS N) (00610) .17	GEN, NO2+NO3 TOTAL (MG/L (MS/L) (00630)	GEN, NITRITE TOTAL (MG/L AS N) (00615) <.01	PHORUS ORTHO TOTAL (MG/L AS P) (70507) E.140	PHOS- PHORUS TOTAL (MG/L AS P) (00665) .160 .080
NOV 29 DEC 21 JAN 31 FEB 28	WATER UNFLITED FET FIELD MG/L AS CACO3 (00410) 59 50 46 43	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 67.0 59.0 49.0	RIDE, DIS- SOLVED (MG/L AS F) (00950) .1 .1 .1	DIS- SOLVED (MG/L AS SO4) (00945) 70.0 62.0 52.0 27.0	TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	RESIDUAT 180 DEG. C DIS- SOLVED (MG/L) (70300) 276 258 233	E SUM OF CONSTI-TUENTS, DIS-SOLVED (MG/L) (70301) 259 232 201	F GEN, I MONIA CORGANIC TOTAL (MG/L AS N) (00625)	AM- NITF GEN, AMMONIA TOTAL (MG/L AS N) (00610) .17 .08	GEN, NO2+NO3 TOTAL (MS/L AS N) (00630)	GEN, NITRITE TOTAL (MG/L AS N) (00615) <.01 <.01	PHORUS ORTHO TOTAL (MG/L AS P) (70507) E.140 .080	PHOS- PHORUS TOTAL (MG/L AS P) (00665) .160 .080 .090
NOV 29 DEC 21 JAN 31 FEB 28 MAR 28	WATER UNFLITED FET FIELD MG/L AS (00410) 59 50 46 43	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 67.0 59.0 49.0 23.0	RIDE, DIS- SOLVED (MG/L AS F) (00950) .1 .1 .1	DIS- SOLVED (MG/L AS SO4) (00945) 70.0 62.0 52.0 27.0 49.0	TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530) 198 47 52 109 78	RESIDE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 276 258 233 136 232	E SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 259 232 201 118 204	F GEN, MONIA	AM- NITE - GEN, - AMMONIA - TOTAL (MG/L) - AS N) (00610)1708080908	GEN, NO2+NO3 TOTAL (MG/L AS N) (00630)	GEN, NITRITE TOTAL (MG/L AS N) (00615) <.01 <.01 <.01 <.01 <.01	PHORUS ORTHO TOTAL (MG/L AS P) (70507) E.140 .080 E.080	PHOS- PHORUS TOTAL (MG/L AS P) (00665) .160 .080 .090 .110
NOV 29 DEC 21 JAN 31 FEB 28 MAR 28 APR 18 MAY	WATER UNFLITD FET FIELD MG/L AS CACO3 (00410) 59 50 46 43 57 78	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 67.0 59.0 49.0 23.0 51.0	RIDE, DIS- SOLVED (MG/L AS F) (00950) .1 .1 .1 .1	DIS- SOLVED (MG/L AS SO4) (00945) 70.0 62.0 52.0 27.0 49.0	TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530) 198 47 52 109 78	RESIDE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 276 258 233 136 232	E SUM OF CONSTI- TUENTS, DIS- SOLVED ((MG/L)) (70301) 259 232 201 118 204 191	F GEN, I MONIA - ORGANIC TOTAL (MG/L AS N) (00625) - 90 - 50 - 50 - 80 - 59 - < .20	AM- NITF GEN, AMMONIA TOTAL (MG/L AS N) (00610) .17 .08 .08 .09 .08	GEN, NO2+NO3 TOTAL (MG/L AS N) (00630)	GEN, NITRITE TOTAL (MG/L AS N) (00615) <.01 <.01 <.01 <.01 <.01 E.01	PHORUS ORTHO TOTAL (MG/L AS P) (70507) E.140 .080 E.080 E.090	PHOS- PHORUS TOTAL (MG/L AS P) (00665) .160 .080 .090 .110
NOV 29 DEC 21 JAN 31 FEB 28 MAR 28 APR 18	WATER UNFLITED FET FIELD MG/L AS (00410) 59 50 46 43	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 67.0 59.0 49.0 23.0	RIDE, DIS- SOLVED (MG/L AS F) (00950) .1 .1 .1	DIS- SOLVED (MG/L AS SO4) (00945) 70.0 62.0 52.0 27.0 49.0 41.0	TOTAL AT 105 DEG. C, SUS- PENDEID (MG/L) (00530) 198 47 52 109 78 51	RESIDE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 276 258 233 136 232	E SUM OF CONSTICTION	F GEN, MONIA .	AM- NITE - GEN, - AMMONIA TOTAL (MG/L AS N) (00610) .1708 .08 .09 .08 .06	GEN, NO2+NO3 TOTAL (MG/L AS N) (00630) .2 .3 .2 .3 .2 .2 .2 .3	GEN, NITRITE TOTAL (MG/L AS N) (00615) <.01 <.01 <.01 <.01 <.01 <.01 <.01	PHORUS ORTHO TOTAL (MG/L AS P) (70507) E.140 .080 E.090 .070	PHOS- PHORUS TOTAL (MG/L AS P) (00665) .160 .080 .090 .110 .090 .110
NOV 29 DEC 21 JAN 31 FEB 28 MAR 28 APR 18 MAY 30 JUN 27	WATER UNFLITD FET FIELD MG/L AS CACO3 (00410) 59 50 46 43 57 78	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 67.0 59.0 49.0 23.0 51.0	RIDE, DIS- SOLVED (MG/L AS F) (00950) .1 .1 .1 .1	DIS- SOLVED (MG/L AS SO4) (00945) 70.0 62.0 52.0 27.0 49.0	TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530) 198 47 52 109 78	RESIDE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 276 258 233 136 232	E SUM OF CONSTI- TUENTS, DIS- SOLVED ((MG/L)) (70301) 259 232 201 118 204 191	F GEN, I MONIA - ORGANIC TOTAL (MG/L AS N) (00625) - 90 - 50 - 50 - 80 - 59 - < .20	AM- NITF GEN, AMMONIA TOTAL (MG/L AS N) (00610) .17 .08 .08 .09 .08	GEN, NO2+NO3 TOTAL (MG/L AS N) (00630)	GEN, NITRITE TOTAL (MG/L AS N) (00615) <.01 <.01 <.01 <.01 <.01 E.01	PHORUS ORTHO TOTAL (MG/L AS P) (70507) E.140 .080 E.080 E.090	PHOS- PHORUS TOTAL (MG/L AS P) (00665) .160 .080 .090 .110 .090 .110
NOV 29 DEC 21 JAN 31 FEB 28 MAR 28 APR 18 MAY 30 JUN 27 AUG 01	WATER UNFLITED FET FIELD MG/L AS CACO3 (00410) 59 50 46 43 57 78 79	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 67.0 59.0 49.0 23.0 51.0 42.0 50.0	RIDE, DIS- SOLVED (MG/L AS F) (00950) .1 .1 .1 .1 .1 .1	DIS- SOLVED (MG/L AS SO4) (00945) 70.0 62.0 52.0 27.0 49.0 41.0 52.0	TOTAL AT 105 DEG. C, SUS- PENDEID (MG/L) (00530) 198 47 52 109 78 51 19	RESIDE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 276 258 233 136 232 214 248	E SUM OF CONSTICTION	F GEN, MONIA .	AM- NITE - GEN, - AMMONIA TOTAL (MG/L) AS N) (00610)170808090806210305	GEN, NO2+NO3 TOTAL (M5/L AS N) (00630) .2 .3 .2 .2 .2 .3 <.02 M M	GEN, NITRITE TOTAL (MG/L AS N) (00615) <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.0	PHORUS ORTHO TOTAL (MG/L AS P) (70507) E.140 .080 E.080 E.090 .070 E.080	PHOS- PHORUS TOTAL (MG/L AS P) (00665) .160 .080 .090 .110 .090 .110 .060 .080
NOV 29 DEC 21 JAN 31 FEB 28 MAR 28 APR 18 MAY 30 JUN 27 AUG	WATER UNFLITED FET FIELD MG/L AS (00410) 59 50 46 43 57 78 79	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 67.0 59.0 49.0 23.0 51.0 42.0 50.0	RIDE, DIS- SOLVED (MG/L AS F) (00950) .1 .1 .1 .1 .1	DIS- SOLVED (MG/L AS SO4) (00945) 70.0 62.0 27.0 49.0 41.0 52.0 45.0	TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530) 198 47 52 109 78 51 19	RESIDE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 276 258 233 136 232 214 248	E SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 259 232 201 118 204 191 232 249	F GEN, MONIA MONIA (MG/L AS N) (00625) 90 50 59 59 20 82 82	AM- NITE - GEN, - AMMONIA TOTAL (MG/L AS N) (00610)1708080908062103	GEN, NO2+NO3 TOTAL (MG/L AS N) (00630) .2 .3 .2 .2 .3 <.02 M	GEN, NITRITE TOTAL (MG/L AS N) (00615) <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.0	PHORUS ORTHO TOTAL (MG/L AS P) (70507) E.140 .080 E.080 .070 E.080	PHOS- PHORUS TOTAL (MG/L AS P) (00665) .160 .080 .090 .110 .090 .110 .060 .080

07350500 RED RIVER AT COUSHATTA, LA--Continued

DATE	CARBON, ORGANIC TOTAL (MG/L AS C) (00680)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) (00310)	CHEM- ICAL (HIGH LEVEL) (MG/L)	(COL/ 100 ML)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	FECAL STREP, KF STRP MF, WATER (COL/ 100 ML) (31673)
	(00000)	(00310)	(00340)	(31301)	(31023)	(27012)
NOV						•
29 DEC	9.4	3.1	. 18	610	230k	400
21 JAN	9.1		20	880	76	230
31 FEB	<.10	2.1	<5	1800	100	87
28 MAR	8.0	1.9	25	310	170	170
28 APR	7.2	1.4	<10	1600	45k	50k
18 MAY	8.1	2.0	23	470k	94k	E4k
30	9.0	4.3	22	48k	8k	590
27 AUG	8.2		19	<4	7k	46
01	6.6		15	60	80	140
29 SEP	8.7	3.3	15	100	<2	4
26	7.6	·	<10	130	24	26

DATE	ARSENIC TOTAL (UG/L AS AS) (01002)	BERYL LIUM, TOTAL RECOV- ERABLE (UG/L AS BE) (01012)	CADMIUM WATER UNFLTRD TOTAL (UG/L AS CD) (01027)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) (01034)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU) (01042)	CYANIDE TOTAL (MG/L AS CN) (00720)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE) (01045)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB) (01051)	MAN NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055)	GA- MERCURY TOTAL RECOV- ERABLE (UG/L AS HG) (71900)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI) (01067)	SELE- NIUM, TOTAL (UG/L AS SE) (01147)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN) (01092)
JAN 31 MAR 28 AUG		<1.00 <1.00	<1.00 <1.00	<1 2	3.0	<.01 <.01	1500 2200	1	58 91	<.10 <.10	2	<1.0 <1.0	15 8
01	2	<1.00	<1.00	<1	1.2	E.01	130	<1	96	<.10	<1	<1.0	4

DATE	OIL AND GREASE, TOTAL RECOV. GRAVI- METRIC (MG/L) (00556)	PHENOLS TOTAL (UG/L) (32730)
JAN 31 MAR	<1	<16
28	<1	<16
01	<1	E12

E Estimated value.
< Actual value is known to be less than the value shown.
k Counts outside acceptable range.
M Presence of material verified but not quantified.

07355500 RED RIVER AT ALEXANDRIA, LA

LOCATION.--Lat 31°18'46", long $92^{\circ}26'34$ ", in SE $\frac{1}{4}$ sec. 10, T. 4 N., R. 1 W., Rapides Parish, Hydrologic Unit 08040301, near center of span on downstream side of Murray Street bridge between Alexandria and Pineville, and 1.7 mi downstream from Bayou Rigolette. Water-quality sampling site at center of channel 0.3 mi downstream.

DRAINAGE AREA. -- 67,500 mi², of which 5,936 mi² above Denison Dam is noncontributing.

PERIOD OF RECORD. -- Water years 1947, 1952-62, 1969, 1973 to current year.

PERIOD OF DAILY RECORD. --

SPECIFIC CONDUCTANCE: October 1952 to September 1963, June 1973 to September 1981. WATER TEMPERATURES: October 1952 to September 1963, June 1973 to September 1984. CHLORIDE: October 1974 to September 1984. SUSPENDED-SEDIMENT DISCHARGE: October 1972 to September 1982.

REMARKS. -- All dissolved constituents are results from water that has been filtered through 0.45 micron filters. Sample is a dip sample from centrum of flow.

EXTREMES FOR PERIOD OF DAILY RECORD. --

TREMES FOR PERIOD OF DAILY RECORD.—
SPECIFIC CONDUCTANCE: Maximum daily, 2,020 micromhos Oct.8, 1956; minimum daily, 133 micromhos June 24, 1953.
WATER TEMPERATURES: Maximum daily, 34.0 oc Aug. 2, 8, 10, 1956; minimum daily, 0.0 oc Dec. 24, 25, 1983.
CHLORIDE: Maximum daily, 420 mg/L Oct. 12, 1978; minimum daily, 8.6 mg/L Apr. 7, 1977.
SUSPENDED-SEDIMENT DISCHARGE: Maximum daily, 1,495,000 tons Dec. 9, 1973; minimum daily, 1,000 tons Oct. 10-22, 1972, Oct. 1 to Nov. 7, 1978, Sept. 27-30, Oct. 1-4, 1980, Jan. 30-31, Apr. 24-25, Oct. 1-6, 1981.

				_									
DATE	TIME	COLOR (FLAT- INUM- COBALT UNITS) (00080)	TUR- BID- ITY (NTU) (00076)	OXYGEN, DIS- SOLVED (MG/L) (00300)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	TEMPER- ATURE WATER (DEG C) (00010)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA). (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	DIS- SOLVED (MG/L 1 AS NA)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)
NOV	1240	50	240	7.7	7.6	570	12.9	140	37.0	11.0	3.60	63.0	52
29 DEC	1340				7.8	390	13.4	93	25.0	7.40	3.10	38.0	46
21 JAN	1100	80	47	12.1			13.4					27.0	38
31 FEB	1720	60	9.6	13.3	7.6	295		74	21.0	5.20	2.50		
28 MAR	1100	80	110	8.5	7.9	196	13.1	59	18.0	3.40	2.30	14.0	41
28	1020	80	70	8.4	7.8	345	13.5	92	26.0	6.60	2.40	30.0	52
APR 18	1255	60	37	12.8	7.8	390	20.5	110	32.0	7.70	2.90	37.0	72
MAY 30	1015	30	8.0	10.7	7.7	520	24.0	110	31.0	7.00	2.90	27.0	78
JUN 27	1030	10	5.2	5.5	7.7	520	28.8	130	37.0	9.80	3.10	44.0	81
AUG 01	1300	10	.7	6.8	8.2	750	26.4	200	55.0	16.0	3.90	80.0	121
29	1045	5	2.7	6.3	8.0	1020	30.3	260	67.0	22.0	4.30	110	139
SEP 26	1215	10	3.8	6.0	7.8	431	26.3	130	34.0	10.0	3.50	40.0	88
DATE	ANC WATER UNFLTRD FET FIELD MG/L AS CACO3 (00410)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	DEG. C,	RESID AT 180 DEG. C DIS- SOLVED	JE SUM OF CONSTI- TUENTS, DIS-	F GEN. MONIA ORGANIO TOTAL	AM- NITE + GEN,	O- NITE GEN, NO2+NO3 TOTAL (MG/L AS N) (00630)	RO- NITI GEN, NITRITE TOTAL (MG/L AS N) (00615)	PHORUS	PHOS-PHORUS TOTAL (MG/L AS P) (00665)
	WATER UNFLTRD FET FIELD MG/L AS	RIDE, DIS- SOLVED (MG/L	RIDE, DIS- SOLVED (MG/L	DIS- SOLVED (MG/L AS SO4)	TOTAL AT 105 DEG. C, SUS- PENDED (MG/L)	RESIDO AT 180 DEG. C DIS- SOLVED (MG/L)	JE SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	F GEN, MONIA ORGANIO TOTAL (MG/L AS N)	AM- NITF + GEN, : AMMONIA TOTAL (MG/L AS N)	GEN, NO2+NO3 TOTAL (MG/L AS N) (00630)	GEN, NITRITE TOTAL (MG/L AS N)	PHORUS ORTHO TOTAL (MG/L AS P) (70507)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)
NOV 29	WATER UNFLTRD FET FIELD MG/L AS CACO3	RIDE, DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SO4)	TOTAL AT 105 DEG. C, SUS- PENDED (MG/L)	RESIDO AT 180 DEG. C DIS- SOLVED (MG/L)	JE SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	F GEN, MONIA ORGANIO TOTAL (MG/L AS N)	AM- NITF + GEN, : AMMONIA TOTAL (MG/L AS N)	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N)	PHORUS ORTHO TOTAL (MG/L AS P)	PHOS- PHORUS TOTAL (MG/L AS P)
NOV 29 DEC 21	WATER UNFLTRD FET FIELD MG/L AS CACO3 (00410)	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SO4) (00945)	TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	RESIDO AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	JE SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	F GEN, MONIA ORGANIC TOTAL (MG/L AS N) (00625)	AM- NITF + GEN, : AMMONIA TOTAL (MG/L AS N) (00610)	GEN, NO2+NO3 TOTAL (MG/L AS N) (00630)	GEN, NITRITE TOTAL (MG/L AS N) (00615)	PHORUS ORTHO TOTAL (MG/L AS P) (70507)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)
NOV 29 DEC	WATER UNFLIRD FET FIELD MG/L AS CACO3 (00410)	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SO4) (00945)	TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	RESIDI AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	F GEN, MONIA ORGANIC TOTAL (MG/L AS N) (00625)	AM- NITF GEN, AMMONIA TOTAL (MG/L AS N) (00610)	GEN, NO2+NO3 TOTAL (MG/L AS N) (00630)	GEN, NITRITE TOTAL (MG/L AS N) (00615)	PHORUS ORTHO TOTAL (MG/L AS P) (70507)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)
NOV 29 DEC 21 JAN 31	WATER UNFLITRD FET FIELD MG/L AS CACO3 (00410)	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 91.0	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SO4) (00945) 94.0	TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	RESIDIAT 180 DEG. C DIS- SOLVED (MG/L) (70300) 352 238	JE SUM OF CONSTI-TUENTS, DIS-SOLVED (MG/L) (70301)	F GEN, MONIA ORGANIC TOTAL (MG/L AS N) (00625)	AM- NITF GEN, AMMONIA TOTAL (MG/L AS N) (00610)	GEN, NO2+NO3 TOTAL (MG/L AS N) (00630)	GEN, NITRITE TOTAL (MG/L AS N) (00615) <.01	PHORUS ORTHO TOTAL (MG/L AS P) (70507) E.160	PHOS- PHORUS TOTAL (MG/L AS P) (00665)
NOV 29 DEC 21 JAN 31 FEB 28 MAR	WATER UNFLITD FEIT FIELD MG/L AS CACO3 (00410) 53 50 39	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 91.0 54.0 36.0	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SO4) (00945) 94.0 57.0 40.0	TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530) 213 52 56	RESIDIAT 180 DEG. C DIS- SOLVED (MG/L) (70300) 352 238	JE SUM OF CONSTI-TUENTS, DIS-SOLVED (MG/L) (70301)	F GEN, MONIA ORGANIC TOTAL (MG/L AS N) (00625) 1.0 .60	AM- NITF GEN, AMMONIA TOTAL (MG/L AS N) (00610) .20 .11	GEN, NO2+NO3 TOTAL (MG/L AS N) (00630)	GEN, NITRITE TOTAL (MG/L AS N) (00615) <.01 <.01	PHORUS ORTHO TOTAL (MG/L AS P) (70507) E.160 .080 E.090	PHOS- PHORUS TOTAL (MG/L AS P) (00665) .190 .080
NOV 29 DEC 21 JAN 31 FEB 28 MAR 28	WATER UNFLITED FET FIELD MG/L AS CACO3 (00410) 53 50 39 46	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 91.0 54.0 36.0 17.0	RIDE, DIS- SOLVED (MG/L AS F) (00950) .1 .1 <.1 <.1	DIS- SOLVED (MG/L AS SO4) (00945) 94.0 57.0 40.0 21.0	TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530) 213 52 56 153 86	RESIDIAT 180 DEG. C DIS- SOLVED (MG/L) (70300) 352 238 196 119 210	JE SUM OF CONSTI-TUENTS, DIS-SOLVED (MG/L) (70301) 331 214 154 100 184	GEN, MONITA ORGANIC TOTAL (MG/L AS N) (00625) 1.0 .60 .70 .90	AM- NITF GEN, AMMONIA TOTAL (MG/L AS N) (00610) .20 .11 .09 .12	GEN, NO2+NO3 TOTAL (MG/L AS N) (00630)	GEN, NITRITE TOTAL (MG/L AS N) (00615) <.01 <.01 <.01 <.01	PHORUS ORTHO TOTAL (MG/L AS P) (70507) E.160 .080 E.090 E.120	PHOS- PHORUS TOTAL (MG/L AS P) (00665) .190 .080 .090
NOV 29 DEC 21 JAN 31 FEB 28 MAR 28 APR 18	WATER UNFLITD FET FIELD MG/L AS CACO3 (00410) 53 50 39 46 53 73	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 91.0 54.0 36.0 17.0 44.0	RIDE, DIS- SOLVED (MG/L AS F) (00950) .1 .1 <.1 <.1	DIS- SOLVED (MS/L AS SO4) (00945) 94.0 57.0 40.0 21.0 44.0	TOTAL AT 105 DDG. C, SUS- PENDED (MG/L) (00530) 213 52 56 153 86 40	RESIDIAT 180 DEG. C DIS- SOLVEL (MG/L) (70300) 352 238 196 119 210 246	JE SUM OF CONSTI-TUENTS, DIS-SOLVED (MG/L) (70301) 331 214 154 100 184 223	GEN,, MONITA ORGANIC TOTAL (MG/L AS N) (00625) 1.0 .60 .70 .90 .71	AM- NITF GEN, GEN, AMMONIA TOTAL (MG/L AS N) (00610) .20 .11 .09 .12 .08 .10	GEN, NO2+NO3 TOTAL (MG/L AS N) (00630) .2 .3 .2 .2 .2 .2	GEN, NITRITE TOTAL (MG/L AS N) (00615) <.01 <.01 <.01 <.01 <.01 E.01	PHORUS ORTHO TOTAL (MG/L AS P) (70507) E.160 .080 E.090 E.120 .080	PHOS- PHORUS TOTAL (MG/L AS P) (00665) .190 .080 .090 .150
NOV 29 29 JAN 31 FEB 28 MAR 28 APR 18 MAY 30 JUN	WATER UNFLITD FET FIELD MG/L AS CACO3 (00410) 53 50 39 46 53 73 81	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 91.0 54.0 17.0 44.0 50.0	RIDE, DIS- SOLVED (MG/L AS F) (00950) .1 .1 <.1 <.1 <.1	DIS- SOLVED (MG/L AS SO4) (00945) 94.0 57.0 40.0 21.0 44.0 50.0	TOTAL AT 105 DDG. C, SUS- PENDED (MG/L) (00530) 213 52 56 153 86 40 15	RESIDIAT 180 AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 352 238 196 119 210 246 202	JE SUM OF CONSTI-TUENTS, DIS-SOLVED (MG/L) (70301) 331 214 154 100 184 223 185	F GEN, MONITA - ORGANIC TOTAL (MG/L AS N) (00625) 1.0 .60 .70 .90 .70 .71	AM- NITF - GEN AMMONIA - TOTAL - (MG/L - AS N) - (00610) .20 .11 .09 .12 .08 .10 .04	GEN, NO2+NO3 TOTAL (MG/L AS N) (00630) .2 .3 .2 .2 .2 .2 .2 .2 <.02	GEN, NITRITE TOTAL (MG/L AS N) (00615) <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.0	PHORUS ORTHO TOTAL (MG/L AS P) (70507) E.160 .080 E.090 E.120 .080 E.080	PHOS- PHORUS TOTAL (MG/L AS P) (00665) .190 .080 .090 .150 .110
NOV 29 DEC 21 JAN 31 FEB 28 MAR 28 APR 18 MAY 30 JUN 27	WATER UNFLITD FET FIELD MG/L AS CACO3 (00410) 53 50 39 46 53 73	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 91.0 54.0 36.0 17.0 44.0	RIDE, DIS- SOLVED (MG/L AS F) (00950) .1 .1 <.1 <.1 <.1	DIS- SOLVED (MG/L AS SO4) (00945) 94.0 57.0 40.0 21.0 44.0 50.0 37.0 61.0	TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530) 213 52 56 153 86 40 15	RESIDIAT 180 AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 352 238 196 119 210 246 202 282	JE SUM OF CONSTI-TUENTS, DIS-SOLVED (MG/L) (70301) 331 214 154 100 184 223 185	F GEN,, MONITA ORGANIC TOTAL (MG/L AS N) (00625) 1.0 .60 .70 .90 .71 .60 .60	AM- NITF GEN, GEN, AMMONIA TOTAL (MG/L AS N) (00610) .20 .11 .09 .12 .08 .10 .04	GEN, NO2+NO3 TOTAL (MG/L AS N) (00630) .2 .3 .2 .2 .2 .2 .2 .4	GEN, NITRITE TOTAL (MG/L AS N) (00615) <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.0	PHORUS ORTHO TOTAL (MG/L AS P) (70507) E.160 .080 E.090 E.120 .080 E.080040	PHOS- PHORUS TOTAL (MG/L AS P) (00665) .190 .080 .090 .150 .110 .090
NOV 29 29 JAN 31 FEB 28 MAR 28 AFR 18 MAY 30 JUN 27 AUG 01	WATER UNFLITED FET FIELD MG/L AS (00410) 53 50 39 46 53 73 81 84	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 91.0 54.0 36.0 17.0 44.0 50.0 63.0	RIDE, DIS- SOLVED (MG/L AS F) (00950) .1 .1 <.1 <.1 <.1 .1	DIS- SOLVED (MG/L AS SO4) (00945) 94.0 57.0 40.0 21.0 44.0 50.0	TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530) 213 52 56 153 86 40 15	RESIDIAT 180 AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 352 238 196 119 210 246 202	JE SUM OF CONSTI-TUENTS, DIS-SOLVED (MG/L) (70301) 331 214 154 100 184 223 185	F GEN, MONITA - ORGANIC TOTAL (MG/L AS N) (00625) 1.0 .60 .70 .90 .70 .71	AM- NITF - GEN AMMONIA - TOTAL - (MG/L - AS N) - (00610) .20 .11 .09 .12 .08 .10 .04	GEN, NO2+NO3 TOTAL (MG/L AS N) (00630) .2 .3 .2 .2 .2 .2 .2 .2 <.02	GEN, NITRITE TOTAL (MG/L AS N) (00615) <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.0	PHORUS ORTHO TOTAL (MG/L AS P) (70507) E.160 .080 E.090 E.120 .080 E.080	PHOS- PHORUS TOTAL (MG/L AS P) (00665) .190 .080 .090 .150 .110
NOV 29 DEC 21 JAN 31 FEB 28 MAR 28 APR 18 MAY 30 JUN 27 AUG	WATER UNFLITED FET FIELD MG/L AS CACO3 (00410) 53 50 39 46 53 73 81	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 91.0 54.0 36.0 17.0 44.0 50.0 33.0	RIDE, DIS- SOLVED (MG/L AS F) (00950) .1 .1 <.1 <.1 <.1	DIS- SOLVED (MG/L AS SO4) (00945) 94.0 57.0 40.0 21.0 44.0 50.0 37.0 61.0 98.0	TOTAL AT 105 DEG. C, SUS- PENDED ((00530)) 213 52 56 153 86 40 15 8	RESIDIAT 180 DEG. C DIS- SOLVED (MG/L) (70300) 352 238 196 119 210 246 202 282 437	DE SUM OF CONSTI-TUENTS, DIS-SOLVED (MG/L) (70301) 331 214 154 100 184 223 185 266 435	GEN,, MONITA ORGANIC TOTAL (MG/L AS N) (00625) 1.0 .60 .70 .90 .70 .71 .60 .60 .60	AM- NITF - GEN AMMONIA TOTAL (MG/L AS N) (00610) .20 .11 .09 .12 .08 .10 .04 .04	GEN, NO2+NO3 TOTAL (MG/L AS N) (00630) .2 .3 .2 .2 .2 .2 .2 .4 .02 M M	GEN, NITRITE TOTAL (MG/L AS N) (00615) <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.0	PHORUS ORTHO TOTAL (MG/L AS P) (70507) E.160 .080 E.090 E.120 .080 E.080040 E.020	PHOS- PHORUS TOTAL (MG/L AS P) (00665) .190 .080 .090 .150 .110 .090

07355500 RED RIVER AT ALEXANDRIA, LA--Continued

	-			•			OXYGEN DEMAND,	TOTAL COLI-	COLI- FORM,	FECAL STREP,			
				C	ARBON, RGANIC TOTAL	BIO- CHEM- ICAL,	CHEM- ICAL (HIGH	FORM, M ENDO MF, WTR	FECAL, 0.7 UM-MF	KF STRP MF, WATER			
			DATE		(MG/L AS C) (00680)	5 DAY (MG/L) (00310)	LEVEL) (MG/L) (00340)	(COL/ 100 ML) (31501)	(COLS./ 100 ML) (31625)	(COL/ 100 ML) (31673)			
			NOV 29	• •	10	2.5	11	1000	260	540			
	. 👟		DEC 21 JAN		9.1		21	520	89	370			
	_		31 FEB	•	<.10	4.7	< 5	400	100	180			
			28 MAR	• ,	10	2.0	24	52	40	170k			
			28 APR		8.2	1.3	11	740	40k	26k			
			18 MAY		7.9	1.2	26	180k	17k	8k			
			30 JUN		8.7	4.3	23	11k	<4	17k			
			27 AUG	•	7.1	.5	17	<4	5k	11k			
			01 29		7.2 8.8	1.0	26 16	27k 1800	4k 200	<1 <13			
			SEP 26		7.9		17	96	32	3			
		BERYL-		CHRO-					MAN	GA-			
		LIUM, TOTAL	CADMIUM WATER	MIUM, TOTAL	COPPER,		IRON, TOTAL	LEAD, TOTAL	NESE, TOTAL	MERCURY TOTAL	TOTAL	SELE-	ZINC, TOTAL
	ARSENIC TOTAL	RECOV- ERABLE	UNFLIRD TOTAL	RECOV- ERABLE	RECOV- ERABLE	CYANIDE TOTAL	RECOV- ERABLE	RECOV- ERABLE	RECOV- ERABLE	RECOV- ERABLE	RECOV- ERABLE	NIUM, TOTAL	RECOV- ERABLE
DATE	(UG/L AS AS)	(UG/L AS BE)	(UG/L AS CD)	(UG/L AS CR)	(UG/L AS CU)	(MG/L AS CN)	(UG/L AS FE)	(UG/L AS PB)	(UG/L AS MN)	(UG/L AS HG)	(UG/L AS NI)	(UG/L AS SE)	(UG/L AS ZN)
JAN	(01002)	(01012)	(01027) ((01034)	(01042)	(00720)	(01045)	(01051)	(01055)	(71900)	(01067)	(01147)	(01092)
31 MAR	2	<1.00	<1.00	<1	2.3	<.01	1650	1	62	<.10	2	<1.0	8
28 AUG	2	<1.00	<1.00	2	2.8	<.01	2280	2	93	<.10	3	<1.0	. 8
01 SEP	2	<1.00	<1.00	<1	1.3	<.01	100	<1	40	<.10	<1	<1.0	,∴, 5
26			. 								A12 VIII		-
	OIL AND												
	GREASE, TOTAL					CARE PHENO-	O- CHL DANE,	OR- CHLOR-	-			DISUL-	ENDO-
	RECOV. GRAVI-	2,4-DP	2,4,5-T	2,4-D	, ALDRIN	THION WATER	TECH- NICA	PYRIFOS L TOTAL		DI- AZINON	DI-	FOTON IN UNFIL	SULFAN
DATE	METRIC (MG/L)	TOTAL (UG/L)	TOTAL (UG/L)	TOTAL (UG/L)	TOTAL (UG/L)	UNFLTRD (UG/L)	(UG/L)	RECOVER (UG/L)	TOTAL (UG/L)	TOTAL (UG/L)	TOTAL (UG/L)	RECOVER (UG/L)	TOTAL (UG/L)
	(00556)	(82183)	(39740) ((39730)	(39330)	(39786)	(39350)	(38932)	(39040)	(39570)	(39380)	(39011)	(39388)
JAN 31 MAR	<1		·					·	· . · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·
28	<1	<.04	<.01	.11	<.013	<.02	<.1	<.01	<.02	<.02	<.006	<.13	<.015
01 SEP	1	· ·				. 		<u>-</u>					
26		<.04	< .01	.02	<.010	<.02	<.1	<.01	<.02	<.02	<.006	•	<.020
			FONOFOS										
	ENDRIN		(DY- FONATE)	нерта-				METH-	METHYL		P, P'-		P, P'-
D3.000	WATER UNFLITED	ETHION,		CHLOR	CHLOR,	LINDANE		, CHLOR,	THION,	MIREX,	DDD UNFILT	DDE,	- DDT UNFILT
DATE	REC (UG/L) (39390)	TOTA± (UG/L) (39398)	TOT.REC (UG/L) (82614)	TOTAL (UG/L) (39420)	TOTAL (UG/L) (39410)	TOTAL (UG/L) (39340)	TOTAL (UG/L) (39530)		TOTAL (UG/L) (39600)	(UG/L)	RECOVER (UG/L) (39360)	TOTAL (UG/L) (39365)	RECOVER (UG/L) (39370)
JAN													
31 MAR 28	<.014	<.01		- 000	- 03.4	- 000							
AUG 01	~.014	<.01	<.01	<.009	<.014	<.006	<.03	<.01	<.01	<.01	<.007	<.006	<.009
SEP 26	<.010	<.01	<.01	<.009	<.010	<.006		 <.02	<.01	- 01	- 007	- nne	- 000
				003	010			1.02	~.01	<.01	<.007	<.006	<.009

07355500 RED RIVER AT ALEXANDRIA, LA--Continued

DATE	PARA- THION, TOTAL (UG/L) (39540)	PCB, TOTAL (UG/L) (39516)	PHENOLS TOTAL (UG/L) (32730)	PHORATE TOTAL (UG/L) (39023)	SILVEX, TOTAL (UG/L) (39760)	TOX- APHENE, TOTAL (UG/L) (39400)
JAN				•		
31			<16			·
MAR 28	<.01	<.1	<16	<.04	<.01	<1.
AUG		~.1	-710	V.04	7.01	~_
01			E14			
SEP						
26	<.01	<.1		<.04	<.01	<1

E Estimated value.
< Actual value is known to be less than the value shown.
k Counts outside acceptable range
M Presence of material verified but not quantified.

07331000 WASHITA RIVER NEAR DICKSON, OK--Continued

WATER-OUALITY RECORDS

PERIOD OF RECORD. -- May 1944 to September 1995; October 1996 to current year.

PERIOD OF DATLY RECORD.-SPECIFIC CONDUCTANCE: May 1944 to January 1982, February 1984 to April 1990; December 1996 to current year.
WATER TEMPERATURE: April 1947 to January 1982, February 1984 to April 1990; December 1996 to current year.

REMARKS. -- Samples were collected monthly and specific conductance, pH, water temperature, alkalinity, and dissolved oxygen

determined in the field.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum, 2,180 microsiemens, Sept. 29, 2000; minimum daily, 95 microsiemens, Nov. 2, 1951.
WATER TEMPERATURE: Maximum daily, 38.0°C, July 16, 1985; minimum daily, -0.5°C, Dec. 20, 1996, Jan. 12-18, 1997, Jan. 4, 5, 10, 1999.

EXTREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum, 2,020 microsiements, Oct. 15; minimum, 138 microsiemens, Sept. 15.
WATER TEMPERATURE: Maximum, 36.0°C, July 25; minimum, 0.2°C, Dec. 13, 14.

DATE			AGENCY COL- LECTING SAMPLE (CODE NUMBER) (00027)	GAGE HEIGHT (FEET) (00065)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	METRIC PRES- SURE (MM OF HG)	OXYGE DIS- SOLVET (PER- CENT SATUR ATION) (00301)	OXYGEN, DIS-	PH WATER WHOLE FIELD (STAND- D ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)
18	1530	80020	1028	10.42	189	753	128	11.1	8.4	1550	27.8	21.6	590
NOV 09	1530	80020	1028	17.00	8520	743	102	11.4	8.1	530	10.3	9.3	180
DEC 21	1530	80020	1028	11.67	1340	754	104	13.3	8.1	1230	6.4	4.4	600
JAN 30	1300	80020	1028	19.50	13700	739	93	11.1	8.3	521	15.4	6.5	220
FEB 26	1240	80020	1028	16.54	7680	752	95	10.4	8.2	970	19.3	10.4	300
MAR 22	1500	80020	1028	12.50	1740	748	.99	10.0	8.3	1300	23.7	13.7	610
APR 12	1730	80020	1028	13.19	3420	740	77 -	6.8	8.3	1370	21.8	19.8	620
MAY 25	0930	80020	1028	14.49	4520	747	87	7.6	8.0	932	19.5	21.1	400
JUN 06	1140	80020	1028	14.07	4110	747	100	7.8	8.2	802	32.3	26.5	360
JUL 17	1250	80020	1028	10.80	440	750	156	11.4	8.4	1560	35.0	30.4	650
AUG 24 SEP	1200	80020	1028	10.63	328	745	106	8.0	8.3	1140	35.6	28.7	410
12	1030	80020	1028	10.53	278	751	95	8.0	8.4	946		22.8	330
DATE	HARD- NESS NONCARB DISSOLV FLD. AS CACO3 (MG/L)	CALCIUM DIS- SOLVED (MG/L AS CA)	DIS- SOLVED (MG/L AS MG)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	SODIUM AD- SORP- TION RATIO	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIU PERCENT	CAC03	BONATE S WATER DIS IT FIELD AS MG/L A HCO3	BONATE WATER DIS IT FIELD AS MG/L 1 CO3	CHLO- RIDE, DIS- SOLVED AS (MG/I AS CL)	AS F)	SI02)
DATE	NESS NONCARB DISSOLV FLD. AS CACO3	DIS- SOLVED (MG/L	SIUM, DIS- SOLVED (MG/L	SIUM, DIS- SOLVED (MG/L	AD- SORP- TION	DIS- SOLVED (MG/L		LINITY WAT DIS TOT IT FIELD M MG/L A	BONATE S WATER DIS IT FIELD AS MG/L 1	BONATE WATER DIS IT FIELD AS MG/L 2	CHLO- RIDE, DIS- SOLVED AS (MG/I	RIDE, DIS- SOLVED . (MG/I	DIS- SOLVED (MG/L . AS
	NESS NONCARB DISSOLV FLD. AS CACO3 (MG/L)	DIS- SOLVED (MG/L AS CA)	SIUM, DIS- SOLVED (MG/L AS MG)	SIUM, DIS- SOLVED (MG/L AS K)	AD- SORP- TION RATIO	DIS- SOLVED (MG/L AS NA)	PERCENT	LINITY WAT DIS TOT IT FIELD M MG/L A CACO3	BONATE S WATER DIS IT FIELD AS MG/L A HCO3	BONATE WATER DIS IT FIELD AS MG/L 1 CO3	CHLO- RIDE, DIS- SOLVED AS (MG/I AS CL)	RIDE, DIS- SOLVED (MG/I AS F)	DIS- SOLVED (MG/L AS SIO2)
ост 18	NESS NONCARB DISSOLV FLD. AS CACO3 (MG/L) (00904)	DIS- SOLVED (MG/L AS CA) (00915)	SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SIUM, DIS- SOLVED (MG/L AS K) (00935)	AD- SORP- TION RATIO (00931)	DIS- SOLVED (MG/L AS NA) (00930)	PERCENT (00932)	LINITY WAT DI: TOT IT FIELD M MG/L A CACO3 (39086)	BONATE S WATER DIS IT FIELD AS MG/L A HCO3 (00453)	BONATE WATER DIS IT FIELD AS MG/L 1 CO3 (00452)	CHLO- RIDE, DIS- SOLVED AS (MG/I AS CL) (00940)	RIDE, DIS- SOLVED (MG/I AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955)
OCT 18 NOV 09	NESS NONCARB DISSOLV FLD. AS CACO3 (MG/L) (00904)	DIS- SOLVED (MG/L AS CA) (00915) 135 50.8	SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SIUM, DIS- SOLVED (MG/L AS K) (00935)	AD- SORP- TION RATIO (00931)	DIS- SOLVED (MG/L AS NA) (00930)	PERCENT (00932) 27	LINITY WAT DIS TOT IT FIELD M MG/L A CACO3 (39086)	BONATE S WATER DIS IT FIELD AS MG/L A HCO3 (00453)	BONATE WATER DIS IT FIELD S MG/L 1 CO3 (00452)	CHLO- RIDE, DIS- SOLVED AS (MG/I AS CL) (00940)	RIDE, DIS- SOLVED (MG/I AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955)
OCT 18 NOV 09 DEC 21 JAN 30 FEB	NESS NONCARB DISSOLD FILD. AS CACO3 (MG/L) (00904) 450	DIS- SOLVED (MG/L AS CA) (00915) 135	SIUM, DIS- SOLVED (MG/L (AS MG) (00925) 62.1 13.1	SIUM, DIS- SOLVED (MG/L AS K) (00935) 4.38 3.31	AD- SORP- TION RATIO (00931)	DIS- SOLVED (MG/L AS NA) (00930) 101 16.2	PERCENT (00932) 27 16	LINITY WAT DISTORT IT FIELD M MG/L F CACO3 (39086) 147 115	BONATE S WATER DIS IT FIELD AS MG/L A HCO3 (00453)	BONATE WATER DIS IT FIELD S MG/L i CO3 (00452)	CHLO- RIDE, DIS- SOLVED AS (MG/I AS CL) (00940)	RIDE, DIS- SOLVED (MG/I AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955)
OCT 18 NOV 09 DEC 21 JAN 30 FEB 26 MAR	NESS NONCARB DISSOLV FLD. AS CACO3 (MG/L) (00904) 450 66 350 92	DIS- SOLVED (MG/L AS CA) (00915) 135 50.8	SIUM, DIS- SOLVED (MG/L AS MG) (00925) 62.1 13.1 48.2 17.6 26.5	SIUM, DIS- SOLVED (MG/L AS K) (00935) 4.38 3.31 3.13 3.01	AD- SORP- TION RATIO (00931) 2 .5 .9 .5	DIS- SOLVED (MG/L AS NA) (00930) 101 16.2 51.7 18.5 27.3	PERCENT (00932) 27 16 16 15	LINITY WAT DIT TOT IT FIELD M MG/L 2 CACO3 (39086) 147 115 250 127 172	BONATE S WATER DIS IT FIELD AS MG/L 2 HCO3 (00453) 179 140 305 155 210	BONATE WATER DIS IT FIELD S MG/L 1 CO3 (00452) .0 .0 .0	CHLO- RIDE, DIS- SOLVED AS (MG/I AS CL) (00940) 111 17.5 59.9 18.1 24.2	RIDE, DIS- SOLVED (MG/I AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955) 4.5 10.0
OCT 18 NOV 09 DEC 21 JAN 30 FEB 26 MAR 22	NESS NONCARB DISSOLV FLD. AS CACO3 (MG/L) (00904) 450 66 350 92 120	DIS- SOLVED (MG/L AS CA) (00915) 135 50.8 160 58.9 75.1	SIUM, DIS- SOLVED (MG/L AS MG) (00925) 62.1 13.1 48.2 17.6 26.5 56.3	SIUM, DIS- SOLVED (MG/L AS K) (00935) 4.38 3.31 3.13 3.01 3.52 3.60	AD- SORP- TION RATIO (00931) 2 .5 .9 .5 .7	DIS- SOLVED (MG/L AS NA) (00930) 101 16.2 51.7 18.5 27.3	PERCENT (00932) 27 16 16 15 16 16	LINITY WAT DI TOT IT FIELD M MG/L P CACO3 (39086) 147 115 250 127 172 242	BONATE S WATER DIS IT FIELD S MG/L # HCO3 (00453) 179 140 305	BONATE WATER WATER DIS IT FIELD S MG/L; CO3 (00452) .0 .0 .0 .0	CHLO- RIDE, DIS- SOLVED AS (MG/I AS CL) (00940) 111 17.5 59.9 18.1 24.2 57.0	RIDE, DIS- SOLVED (MG/1 AS F) (00950) .5 .2	DIS- SOLVED (MG/L AS SIO2) (00955) 4.5 10.0 11.4 7.1
OCT 18 NOV 09 DEC 21 JAN 30 FEB 26 MAR 22 APR 12 MAY	NESS NONCARB DISSOLV FLD. AS CACO3 (MG/L) (00904) 450 66 350 92 120 370 420	DIS- SOLVED (MG/L AS CA) (00915) 135 50.8 160 58.9 75.1 151	SIUM, DIS- SOLVED (MG/L AS MG) (00925) 62.1 13.1 48.2 17.6 26.5 56.3	SIUM, DIS- SOLVED (MG/L AS K) (00935) 4.38 3.31 3.13 3.01 3.52 3.60 3.87	AD- SORP- TION RATIO (00931) 2 .5 .9 .5 .7	DIS- SOLVED (MG/L AS NA) (00930) 101 16.2 51.7 18.5 27.3	PERCENT (00932) 27 16 16 15 16 19	LINITY WAT DIT TOT IT FIELD M MG/L 2 CACO3 (39086) 147 115 250 127 172	BONATE S WATER DIS IT FIELD AS MG/L 2 HCO3 (00453) 179 140 305 155 210	BONATE WATER DIS IT FIELD S MG/L 1 CO3 (00452) .0 .0 .0	CHLO- RIDE, DIS- SOLVED AS (MG/I AS CL) (00940) 111 17.5 59.9 18.1 24.2	RIDE, DIS- SOLVED (MG/1 AS F) (00950) .5 .2 .4 .2	DIS- SOLVED (MG/L AS SIO2) (00955) 4.5 10.0 11.4 7.1
OCT 18 NOV 09 DEC 21 JAN 30 FEB 26 MAR 22 MAY 25 JUN	NESS NONCARB DISSOLV FLD. AS CACO3 (MG/L) (00904) 450 66 350 92 120 370 420 270	DIS- SOLVED (MG/L AS CA) (00915) 135 50.8 160 58.9 75.1 151 144 102	SIUM, DIS- SOLVED (MG/L AS MG) (00925) 62.1 13.1 48.2 17.6 26.5 56.3 63.8 36.5	SIUM, DIS- SOLVED (MG/L AS K) (00935) 4.38 3.31 3.13 3.01 3.52 3.60 3.87 5.73	AD- SORP- TION RATIO (00931) 2 .5 .9 .5 .7 .9	DIS- SOLVED (MG/L AS NA) (00930) 101 16.2 51.7 18.5 27.3 52.4 66.8 36.8	PERCENT (00932) 27 16 16 15 16 16 19 16	LINITY WAT DIT FIELD M MG/L F CACO3 (39086) 147 115 250 127 172 242 200 134	BONATE S WATER DIS IT FIELD S MG/L F HCO3 (00453) 179 140 305 155 210 285 232	BONATE WATER WATER DIS IT FIELD S MG/L; CO3 (00452) .0 .0 .0 .0 .0 .0	CHLO- RIDE, DIS- SOLVED AS (MG/I AS CL) (00940) 111 17.5 59.9 18.1 24.2 57.0 70.3	RIDE, DIS- SOLVED (MG/1 AS F) (00950) .5 .2 .4 .2 .3 .4	DIS- SOLVED (MG/L AS SIO2) (00955) 4.5 10.0 11.4 7.1 7.8 9.0
OCT 18 NOV 09 DEC 21 JAN 30 FEB 26 MAR 22 APR 12 MAY 25 JUN 06 JUL	NESS NONCARB DISSOLV FLD. AS CACO3 (MG/L) (00904) 450 66 350 92 120 370 420 270 220	DIS- SOLVED (MG/L AS CA) (00915) 135 50.8 160 58.9 75.1 151 144 102 91.1	SIUM, DIS- SOLVED (MG/L AS MG) (00925) 62.1 13.1 48.2 17.6 26.5 56.3 63.8 36.5 31.4	SIUM, DIS- SOLVED (MG/L AS K) (00935) 4.38 3.31 3.13 3.01 3.52 3.60 3.87 5.73 5.50	AD- SORP- TION RATIO (00931) 2 .5 .9 .5 .7 .9 1 .8	DIS- SOLVED (MG/L AS NA) (00930) 101 16.2 51.7 18.5 27.3 52.4 66.8 36.8 27.9	PERCENT (00932) 27 16 16 15 16 19 16 14	LINITY WAT DIS TOT IT FIELD M MG/L A (CACO3) (39086) 147 115 250 127 172 242 200 134 136	BONATE S WATER DIS IT FIELD S MG/L # HCO3 (00453) 179 140 305 155 210 285 232 163 166	BONATE WATER WATER DIS IT FIELD S MG/L (00452) .0 .0 .0 .0 .0 .0 .0 .0	CHLO-RIDE, DIS-SOLVED AS (MG/I AS CL) (00940) 111 17.5 59.9 18.1 24.2 57.0 70.3 32.4 24.4	RIDE, DIS- SOLVED (MG/I AS F) (00950) .5 .2 .4 .2 .3 .4 .4	DIS- SOLVED (MG/L AS SIO2) (00955) 4.5 10.0 11.4 7.1 7.8 9.0 6.9 10.7 11.0
OCT 18 NOV 09 DEC 21 JAN 30 FEB 26 MAR 22 APR 12 MAY 25 JUN 06 JUL 17 AUG	NESS NONCARB DISSOLV FLD. AS CACO3 (MG/L) (00904) 450 66 350 92 120 370 420 270 220 560	DIS- SOLVED (MG/L AS CA) (00915) 135 50.8 160 58.9 75.1 151 144 102 91.1	SIUM, DIS- SOLVED (MG/L AS MG) (00925) 62.1 13.1 48.2 17.6 26.5 56.3 63.8 36.5 31.4 79.1	SIUM, DIS- SOLVED (MG/L AS K) (00935) 4.38 3.31 3.13 3.01 3.52 3.60 3.87 5.73 5.50 4.65	AD- SORP- TION RATIO (00931) 2 .5 .9 .5 .7 .9 .1 .8 .6	DIS- SOLVED (MG/L AS NA) (00930) 101 16.2 51.7 18.5 27.3 52.4 66.8 36.8 27.9 89.0	PERCENT (00932) 27 16 16 15 16 16 19 16 14 23	LINITY WAT DISTORM TOT IT FIELD M MG/L 2 CACO3 (39086) 147 115 250 127 172 242 200 134 136 89	BONATE S WATER DIS IT FIELD S MG/L # HCO3 (00453) 179 140 305 155 210 285 232 163 166	BONATE WATER WATER DIS IT FIELD S MG/L 1 CO3 (00452) .0 .0 .0 .0 .0 .0 .0 .0 .0	CHLO- RIDE, DIS- SOLVED AS (MG/I AS CL) (00940) 111 17.5 59.9 18.1 24.2 57.0 70.3 32.4 24.4	RIDE, DIS- SOLVED (MG/I AS F) (00950) .5 .2 .4 .2 .3 .4 .4 .4 .3	DIS- SOLVED (MG/L AS SIO2) (00955) 4.5 10.0 11.4 7.1 7.8 9.0 6.9 10.7 11.0
OCT 18 NOV 09 DEC 21 JAN 30 FEB 26 MAR 22 MAY 25 JUN 06 JUN 17	NESS NONCARB DISSOLV FLD. AS CACO3 (MG/L) (00904) 450 66 350 92 120 370 420 270 220	DIS- SOLVED (MG/L AS CA) (00915) 135 50.8 160 58.9 75.1 151 144 102 91.1	SIUM, DIS- SOLVED (MG/L AS MG) (00925) 62.1 13.1 48.2 17.6 26.5 56.3 63.8 36.5 31.4	SIUM, DIS- SOLVED (MG/L AS K) (00935) 4.38 3.31 3.13 3.01 3.52 3.60 3.87 5.73 5.50	AD- SORP- TION RATIO (00931) 2 .5 .9 .5 .7 .9 1 .8	DIS- SOLVED (MG/L AS NA) (00930) 101 16.2 51.7 18.5 27.3 52.4 66.8 36.8 27.9	PERCENT (00932) 27 16 16 15 16 19 16 14	LINITY WAT DIS TOT IT FIELD M MG/L A (CACO3) (39086) 147 115 250 127 172 242 200 134 136	BONATE S WATER DIS IT FIELD S MG/L # HCO3 (00453) 179 140 305 155 210 285 232 163 166	BONATE WATER WATER DIS IT FIELD S MG/L (00452) .0 .0 .0 .0 .0 .0 .0 .0	CHLO-RIDE, DIS-SOLVED AS (MG/I AS CL) (00940) 111 17.5 59.9 18.1 24.2 57.0 70.3 32.4 24.4	RIDE, DIS- SOLVED (MG/I AS F) (00950) .5 .2 .4 .2 .3 .4 .4	DIS- SOLVED (MG/L AS SIO2) (00955) 4.5 10.0 11.4 7.1 7.8 9.0 6.9 10.7 11.0

07331000 WASHITA RIVER NEAR DICKSON, OK--Continued

	- SULFATE	NITRO- GEN, AM- MONIA +	NITRO- GEN, AMMONIA	- NITRO- GEN, NITRATE	NITRO-	NITRO GEN,	- NITRO GEN, NITRATE	GEN, NO2+NO3	GEN,	- NITR GEN, NITRITE	NITRO-	PHOS PHATE, ORTHO,	PHOS- PHORUS
	DIS-	ORGANIC	DIS-	DIS-	GEN,	DIS-	DIS-	DIS-	DIS-	DIS-	GEN, ORGANIC	DIS-	DIS-
DATE	SOLVED (MG/L	TOTAL (MG/L	SOLVED (MG/L	SOLVED (MG/L	TOTAL (MG/L	SOLVED (MG/L	SOLVED (MG/L	SOLVED (MG/L	SOLVED (MG/L	SOLVED (MG/L	TOTAL (MG/L	SOLVED (MG/L	SOLVED (MG/L
	AS SO4)	AS N)	AS N)	AS N)	AS N)	AS NH4)	AS NO3)	AS N)	AS NO2)	AS N)	AS N)	AS PO4)	AS P)
	(00945)	(00625)	(00608)	(00618)	(00600)	(71846)	(71851)	(00631)	(71856)	(00613)	(00605)	(00660)	(00666)
OCT 18	521	1.00	<.041					<.047		<.006			<.060
NOV 09	68.5	1.8	E.021	.403	2.2		1.78	.412	. 030	.009		.147	E.048
DEC 21	348	. 69	.047	.710	1.4	.06	3.14	.723	. 043	.013	. 64	,120	E.050
JAN 30	97.6	2.4	.057	. 483	2.8	.07	2.14	.492	.030	.009	2.3	.101	E.049
FEB 26	147	2.3	E.038	.479	2.8		2.12	.492	.043	.013		.120	E.051
MAR 22	397	. 84	<.041	.782	1.6		3.46	.794	. 038	.012		.126	<.060
APR 12	443	1.6	E.039					E.041		E.004			<.060
MAY 25	296	4.6	<.040		5.3			.706		E. 005		.123	E.053
JUN 06	238	3.2	<.040		3.7			. 484	·	E.003		.178	. 079
JUL 17	610	2.5	<.040				·	<.050		<.006	·		<.060
AUG 24	312	1.0	<.040	-	·			E1.30		E.017			E.031
SEP 12	246	.98	<.040					<.050		E.003			<.060
	PHOS-		RESIDU		201 TD 2	SOLIDS	i,					a	~~~
	PHOS- PHORUS ORTHO,	PHOS-	RESIDU TOTAL AT 105	E SOLIDS, DIS-	SOLIDS, DIS-	SUM OF CONSTI-	ARSENIC		BARIUM,	BARIUM, TOTAL	CADMIUM	CADMIUM WATER	CHRO- MIUM,
·	PHORUS ORTHO, DIS-	PHORUS	TOTAL AT 105 DEG. C,	SOLIDS, DIS- SOLVED	DIS- SOLVED	SUM OF CONSTI- TUENTS,	ARSENIC DIS-	ARSENIC	DIS-	TOTAL RECOV-	DIS-	WATER UNFLTRI	MIUM, D DIS-
DATE	PHORUS ORTHO,		TOTAL AT 105 DEG. C, SUS- PENDED	SOLIDS, DIS- SOLVED (TONS PER	DIS- SOLVED (TONS PER	SUM OF CONSTI- TUENTS, DIS- SOLVED	ARSENIC DIS- SOLVED (UG/L	TOTAL (UG/L	DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L	WATER UNFLTRI TOTAL (UG/L	MIUM, D DIS- SOLVED (UG/L
DATE	PHORUS ORTHO, DIS- SOLVED (MG/L AS P)	PHORUS TOTAL (MG/L AS P)	TOTAL AT 105 DEG. C, SUS- PENDED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	DIS- SOLVED (TONS PER DAY)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	ARSENIC DIS- SOLVED (UG/L AS AS)	TOTAL (UG/L AS AS)	DIS- SOLVED (UG/L AS BA)	TOTAL RECOV- ERABLE (UG/L AS BA)	DIS- SOLVED (UG/L AS CD)	WATER UNFLTRI TOTAL (UG/L AS CD)	MIUM, DIS- SOLVED (UG/L AS CR)
	PHORUS ORTHO, DIS- SOLVED (MG/L	PHORUS TOTAL (MG/L	TOTAL AT 105 DEG. C, SUS- PENDED	SOLIDS, DIS- SOLVED (TONS PER	DIS- SOLVED (TONS PER	SUM OF CONSTI- TUENTS, DIS- SOLVED	ARSENIC DIS- SOLVED (UG/L	TOTAL (UG/L	DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L	WATER UNFLTRI TOTAL (UG/L	MIUM, D DIS- SOLVED (UG/L
DATE OCT 18 NOV	PHORUS ORTHO, DIS- SOLVED (MG/L AS P)	PHORUS TOTAL (MG/L AS P)	TOTAL AT 105 DEG. C, SUS- PENDED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	DIS- SOLVED (TONS PER DAY)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	ARSENIC DIS- SOLVED (UG/L AS AS)	TOTAL (UG/L AS AS)	DIS- SOLVED (UG/L AS BA)	TOTAL RECOV- ERABLE (UG/L AS BA)	DIS- SOLVED (UG/L AS CD)	WATER UNFLTRI TOTAL (UG/L AS CD)	MIUM, DIS- SOLVED (UG/L AS CR) (01030)
OCT 18 NOV 09	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	PHORUS TOTAL (MG/L AS P) (00665)	TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)	DIS- SOLVED (TONS PER DAY) (70302)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	TOTAL (UG/L AS AS) (01002)	SOLVED (UG/L AS BA) (01005)	TOTAL RECOV- ERABLE (UG/L AS BA) (01007)	DIS- SOLVED (UG/L AS CD) (01025)	WATER UNFLTRI TOTAL (UG/L AS CD) (01027)	MIUM, DIS- SOLVED (UG/L AS CR) (01030)
OCT 18 NOV 09 DEC 21	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	PHORUS TOTAL (MG/L AS P) (00665)	TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)	DIS- SOLVED (TONS PER DAY) (70302)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	TOTAL (UG/L AS AS) (01002)	DIS- SOLVED (UG/L AS BA) (01005)	TOTAL RECOV- ERABLE (UG/L AS BA) (01007)	DIS- SOLVED (UG/L AS CD) (01025)	WATER UNFLTRI TOTAL (UG/L AS CD) (01027)	MIUM, DIS- SOLVED (UG/L AS CR) (01030)
OCT 18 NOV 09 DEC 21 JAN 30	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671) <.018	PHORUS TOTAL (MG/L AS P) (00665) .175	TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530) 65	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)	DIS- SOLVED (TONS PER DAY) (70302)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	ARSENIC DIS- SOLVED (UG/L AS AS) (01000) 3.0 E1.1	TOTAL (UG/L AS AS) (01002)	SOLVED (UG/L AS BA) (01005)	TOTAL RECOV- ERABLE (UG/L AS BA) (01007)	DIS- SOLVED (UG/L AS CD) (01025) <8.00	WATER UNFLITH TOTAL (UG/L AS CD) (01027) <.11	MIUM, DIS- SOLVED (UG/L AS CR) (01030) E.7
OCT 18 NOV 09 DEC 21 JAN 30 FEB 26	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671) <.018	PHORUS TOTAL (MG/L AS P) (00665) .175 1.02	TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530) 65 1180	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303) 1.40 .34	DIS- SOLVED (TOME) (TOME) (70302) 524 5760 3030	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 1030 251 837	ARSENIC DIS- SOLVED (UG/L AS AS) (01000) 3.0 E1.1 2.2	TOTAL (UG/L AS AS) (01002)	DIS- SOLVED (UG/L AS BA) (01005) 119 85.4	TOTAL RECOV- ERABLE (UG/L AS BA) (01007) 130 420	DIS- SOLVED (UG/L AS CD) (01025) <8.00 <8.00	WATER UNFLITH TOTAL (UG/L AS CD) (01027) <.11 E.11 .21	MIUM, DIS- SOLVED (UG/L AS CR) (01030) E.7 <.8
OCT	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671) <.018 .048 .039	PHORUS TOTAL (MG/L AS P) (00665) .175 1.02 .154 1.30	TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530) 65 1180 88	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303) 1.40 .34 1.14	DIS- SOLVED (TONS PER DAY) (70302) 524 5760 3030 11100	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 1030 251 837 300	ARSENIC DIS- SOLVED (UG/L AS AS) (01000) 3.0 E1.1 2.2 E1.3	TOTAL (UG/L AS AS) (01002) 3 6 3 5	DIS- SOLVED (UG/L AS BA) (01005) 119 85.4 164 94.6	TOTAL RECOV- ERABLE (UG/L AS BA) (01007) 130 420 184 511	DIS- SOLVED (UG/L AS CD) (01025) <8.00 <8.00 <8.00	WATER UNFLITH TOTAL (UG/L AS CD) (01027) <.11 E.11 .21	MIUM, DIS- SOLVED (UG/L AS CR) (01030) E.7 <.8 .9 <.8
OCT 18 NOV 09 DEC 21 JAN 30 FEB 26 MAR 22 APR 12	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671) <.018 .048 .039 .033	PHORUS TOTAL (MG/L AS P) (00665) .175 1.02 .154 1.30 1.04	TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530) 65 1180 88 1600 1650	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303) 1.40 .34 1.14 .41	DIS- SOLVED (TONS PER DAY) (70302) 524 5760 3030 11100 8640	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 1030 251 837 300 417	ARSENIC DIS- SOLVED (UG/L AS AS) (01000) 3.0 E1.1 2.2 E1.3 E1.9	TOTAL (UG/L AS AS) (01002) 3 6 3 5 6	DIS- SOLVED (UG/L AS BA) (01005) 119 85.4 164 94.6	TOTAL RECOV- ERABLE (UG/L AS BA) (01007) 130 420 184 511 456	DIS- SOLVED (UG/L AS CD) (01025) <8.00 <8.00 <8.00 <8.00	WATER UNFLITH TOTAL (UG/L AS CD) (01027) <.11 E.11 .21 .16	MIUM, DIS- SOLVED (UG/L AS CR) (01030) E.7 <.8 .9 <.8 <.8
OCT	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671) <.018 .048 .039 .033 .039	PHORUS TOTAL (MG/L AS P) (00665) .175 1.02 .154 1.30 1.04	TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530) 65 1180 88 1600 1650 286	SOLIDS, DIS- SOLVED (TONS FER AC-FT) (70303) 1.40 .34 1.14 .41 .57	DIS- SOLVED (TONS PER DAY) (70302) 524 5760 3030 11100 8640 4110	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 1030 251 837 300 417 875	ARSENIC DIS-SOLVED (UG/L AS AS) (01000) 3.0 E1.1 2.2 E1.3 E1.9 2.0	TOTAL (UG/L (AS AS) (01002) 3 6 3 5 6 3 5 5 13	DIS- SOLVED (UG/L AS BA) (01005) 119 85.4 164 94.6 127	TOTAL RECOV- ERABLE (UG/L AS BA) (01007) 130 420 184 511 456 244 311 788	DIS- SOLVED (UG/L AS CD) (01025) <8.00 <8.00 <8.00 <8.00 <8.00	WATER UNFLITH TOTAL (UG/L AS CD) (01027) <.11 E.11 .16 .12 <.11	MIUM, DIS- SOLVED (UG/L AS CR) (01030) E.7 <.8 .9 <.8 <.8 <.8 E.5 <.8
OCT	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671) <.018 .039 .033 .039 .041 <.018	PHORUS TOTAL (MG/L AS P) (00665) .175 1.02 .154 1.30 1.04 .299	TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530) 65 1180 88 1600 1650 286	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303) 1.40 .34 1.14 .41 .57 1.19	DIS- SOLVED (TONS PER DAY) (70302) 524 5760 3030 11100 8640 4110 8500	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 1030 251 837 300 417 875 920	ARSENIC DIS- SOLVED (UG/L AS AS) (01000) 3.0 E1.1 2.2 E1.3 E1.9 2.0 E1.9	TOTAL (UG/L	DIS- SOLVED (UG/L AS BA) (01005) 119 85.4 164 94.6 127 176	TOTAL RECOV- ERABLE (UG/L AS BA) (01007) 130 420 184 511 456 244 311	DIS- SOLVED (UG/L AS CD) (01025) <8.00 <8.00 <8.00 <8.00 <8.00 <8.00	WATER UNFLITH (UG/L AS CD) (01027) <.11 E.11 .21 .16 .12 <.11 .14	MIUM, DIS- SOLVED (UG/L AS CR) (01030) E.7 <.8 .9 <.8 <.8 <.8 <.8 <.8 <.8
OCT 18 NOV 09 DEC 21 JAN 30 FEB 26 MAR 22 APR 12 MAY 25 JUN 06	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671) <.018 .048 .039 .033 .039 .041 <.018	PHORUS TOTAL (MG/L AS P) (00665) .175 1.02 .154 1.30 1.04 .299 .480 2.08	TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530) 65 1180 88 1600 1650 286 540	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303) 1.40 .34 1.14 .41 .57 1.19 1.25	DIS- SOLVED (TONS PER DAY) (70302) 524 5760 3030 11100 8640 4110 8500 7370	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 1030 251 837 300 417 875 920 604	ARSENIC DIS-SOLVED (UG/L AS AS) (01000) 3.0 E1.1 2.2 E1.3 E1.9 2.0 E1.9	TOTAL (UG/L (AS AS) (01002) 3 6 3 5 6 3 5 5 13	DIS- SOLVED (UG/L AS BA) (01005) 119 85.4 164 94.6 127 176 173 141 130 160	TOTAL RECOV- REABLE (UG/L AS BA) (01007) 130 420 184 511 456 244 311 788 518	DIS- SOLVED (UG/L AS CD) (01025) <8.00 <8.00 <8.00 <8.00 <8.00 <8.00 <8.00	WATER UNFLITH TOTAL (UG/L AS CD) (01027) <.11 E.11 .16 .12 <.11 .14 .33	MIUM, DIS- DIS- SOLVED (UG/L AS CR) (01030) E.7 <.8 .9 <.8 <.8 E.5 <.8 <.8 <.8
OCT 18 NOV 09 DEC 21 JAN 30 FEB 26 MAR 22 AFR 12 MAY 25 JUN 06 JUL 17	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671) <.018 .048 .039 .033 .039 .041 <.018	PHORUS TOTAL (MG/L AS P) (00665) .175 1.02 .154 1.30 1.04 .299 .480 2.08	TOTAL AT 105 DEG. C. SUS- PENDED (MG/L) (00530) 65 1180 88 1600 1650 286 540 2410	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303) 1.40 .34 1.14 .57 1.19 1.25 .82	DIS- SOLVED (TONS PER DAY) (70302) 524 5760 3030 11100 8640 4110 8500 7370 5700	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 1030 251 837 300 417 875 920 604 514	ARSENIC DIS- SOLVED (UG/L AS AS) (01000) 3.0 E1.1 2.2 E1.3 E1.9 2.0 E1.9 E1.4 3.2	TOTAL (UG/L AS AS) (01002) 3 6 3 5 6 3 5 13 10	DIS- SOLVED (UG/L AS BA) (01005) 119 85.4 164 94.6 127 176 173 141 130	TOTAL RECOVERABLE (UG/L AS BA) (01007) 130 420 184 511 456 244 311 788 518	DIS- SOLVED (UG/L AS CD) (01025) <8.00 <8.00 <8.00 <8.00 <8.00 <8.00 <8.00 <8.00	WATER UNFLITH (UG/L AS CD) (01027) <.11 E.11 .21 .16 .12 <.11 .14 .33 .30	MIUM, DIS- SOLVED (UG/L AS CR) (01030) E.7 <.8 .9 <.8 <.8 <.8 <.8 <.8 <.8

07331000 WASHITA RIVER NEAR DICKSON, OK--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

	CHRO-								MANG	ia-			
DATE	MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) (01034)	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU) (01042)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE) (01045)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB) (01051)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055)	MERCURY DIS- SOLVED (UG/L AS HG) (71890)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG) (71900)	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI) (01067)
OCT 18 NOV	<1	<4.7	2.0	<10	520	E.06	1	<3.2	76	<.23	<.14	<53.0	<66
09	14	<4.7	17.6	M	12100	<.08	22	<3.2	925	<.23	<.14	<53.0	<66
DEC 21	ĩ	<4.7	5.8	<10	1220	E.07	3	10.2	74	<.23	<.14	<53.0	<66
JAN 30	18	<4.7	19.6	м	14500	E.06	21	9.1	1040	<.23	<.14	<53.0	E41
FEB 26	16	<4.7	17.1	<10	12900	E.07	20	E2.2	835	<.23	<.14	<53.0	<66
MAR 22 APR	4	<4.7	5.6	<10	3360	.09	4	6.9	267	<.23	<.14	<53.0	<66
12	5	<4.7	10.9	<10	4830	.31	7	6.7	470	<.01	<.01	<53.0	<66
MAY 25	30	<5.0	41.0	<10	23700	<.08	34	<3.0	2220	<.01	.05	<50.0	E34
JUN 06	6	< 5.0	22.6	<10	7660	. 68	20	<3.0	1340	<.01	.05	<50.0	<66
JUL 17 AUG	<1	<5.0	2.5	<10	300	E.06	. 1	5.1	74	<.01	<.01	<50.0	<66
24 SEP	2	<5.0	5.0	<10	2750	<.08	3	<3.0	240	<.01	<.01	<50.0	<66
12	, 2	<5.0	4.7	<10	1520	E. 04	2	<3.0	149	<.01	<.01	<50.0	<66
DATE	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	SELE- NIUM, TOTAL (UG/L AS SE) (01147)	SILVER, DIS- SOLVED (UG/L AS AG) (01075)	SILVER TOTAL RECOV- ERABLE (UG/L AS AG) (01077)	ZINC, DIS-	(UG/L AS ZN)	ALDRIN, TOTAL (UG/L) (39330)	ALPHA, BHC TOTAL (UG/L) (39337)	ALPH HCH-I SUR SCD 1608 WATER UNFLTRD PERCENT (99778)	6 1016		AROCLOR 1232 PCB TOTAL (UG/L) (39492)	AROCLOR 1248 PCB TOTAL (UG/L) (39500)
DATE OCT 18	NIUM, DIS- SOLVED (UG/L AS SE)	NIUM, TOTAL (UG/L AS SE)	DIS- SOLVED (UG/L AS AG)	TOTAL RECOV- ERABLE (UG/L AS AG)	ZINC, DIS- SOLVED (UG/L AS ZN)	TOTAL RECOV- ERABLE (UG/L AS ZN) (01092)	TOTAL (UG/L)	, BHC TOTAL (UG/L)	HCH-I SUR SCD 1608 WATER UNFLTRD PERCENT	06 1016 1242 PCB WATER UNFLTRD (UG/L)	AROCLOR 1221 PCB TOTAL (UG/L)	1232 PCB TOTAL (UG/L)	1248 PCB TOTAL (UG/L)
OCT	NIUM, DIS- SOLVED (UG/L AS SE) (01145)	NIUM, TOTAL (UG/L AS SE) (01147)	DIS- SOLVED (UG/L AS AG) (01075)	TOTAL RECOV- ERABLE (UG/L AS AG) (01077)	ZINC, DIS- SOLVED (UG/L AS ZN) (01090)	TOTAL RECOV- REABLE (UG/L AS ZN) (01092)	TOTAL (UG/L)	, BHC TOTAL (UG/L)	HCH-I SUR SCD 1608 WATER UNFLTRD PERCENT	06 1016 1242 PCB WATER UNFLTRD (UG/L)	AROCLOR 1221 PCB TOTAL (UG/L)	1232 PCB TOTAL (UG/L)	1248 PCB TOTAL (UG/L)
OCT 18 NOV 09 DEC	NIUM, DIS- SOLVED (UG/L AS SE) (01145) <2.4	NIUM, TOTAL (UG/L AS SE) (01147) <2.6 <2.6	DIS- SOLVED (UG/L AS AG) (01075)	TOTAL RECOV- ERABLE ERABLE (0/L AS AG) (01077) <.43 <.43	ZINC, DIS- SOLVED (UG/L AS ZN) (01090)	TOTAL RECOV- REABLE (UG/L AS ZN) (01092) <31	TOTAL (UG/L)	, BHC TOTAL (UG/L)	HCH-I SUR SCD 1608 WATER UNFLTRD PERCENT	06 1016 1242 PCB WATER UNFLTRD (UG/L)	AROCLOR 1221 PCB TOTAL (UG/L)	1232 PCB TOTAL (UG/L)	1248 PCB TOTAL (UG/L)
OCT 18 NOV 09 DEC 21	NIUM, DIS- SOLVED (UG/L AS SE) (01145) <2.4 <2.4 E1.4	NIUM, TOTAL (UG/L AS SE) (01147) <2.6 <2.6 <2.6	DIS- SOLVED (UG/L AS AG) (01075) <.2 <.2	TOTAL RECOV- ERABLE (UG/L AS AG) (01077) <.43 <.43 <.43	ZINC, DIS- SOLVEI (UG/L AS ZN) (01090) <20 <20 <20	TOTAL RECOV- REABLE (UG/L AS ZN) (01092) <31 46 E19	TOTAL (UG/L)	, BHC TOTAL (UG/L) (39337)	HCH-I SUR SCD 1608 WATER UNFLTRD PERCENT (99778)	06 1016 1242 PCB WATER UNFLTRD (UG/L)	AROCLOR 1221 PCB TOTAL (UG/L)	1232 PCB TOTAL (UG/L) (39492)	1248 PCB TOTAL (UG/L)
OCT 18 NOV 09 DEC 21	NIUM, DIS- SOLVED (UG/L AS SE) (01145) <2.4 <2.4 E1.4	NIUM, TOTAL (UG/L AS SE) (01147) <2.6 <2.6	DIS- SOLVED (UG/L AS AG) (01075)	TOTAL RECOV- ERABLE ERABLE (0/L AS AG) (01077) <.43 <.43	ZINC, DIS- SOLVED (UG/L AS ZN) (01090) <20 <20 <20 <20	TOTAL RECOV- REABLE (UG/L AS ZN) (01092) <31 46 E19 51	TOTAL (UG/L)	, BHC TOTAL (UG/L) (39337)	HCH-I SUR SCD 1608 WATER UNFLTRD PERCENT (99778)	06 1016 1242 PCB WATER UNFLTRD (UG/L)	AROCLOR 1221 PCB TOTAL (UG/L)	1232 PCB TOTAL (UG/L)	1248 PCB TOTAL (UG/L)
OCT 18 NOV 09 DEC 21 JAN 30 FEB	NIUM, DIS- SOLVED (UG/L AS SE) (01145) <2.4 <2.4 E1.4	NIUM, TOTAL (UG/L AS SE) (01147) <2.6 <2.6 <2.6 <2.6	DIS- SOLVED (UG/L AS AG) (01075) <.2 <.2 <.2	TOTAL RECOV- ERABLE (UG/L AS AG) (01077) <.43 <.43 <.43 <.43	ZINC, DIS- SOLVEI (UG/L AS ZN) (01090) <20 <20 <20	TOTAL RECOV- REABLE (UG/L AS ZN) (01092) <31 46 E19 51	TOTAL (UG/L)	, BHC TOTAL (UG/L) (39337)	HCH-I SUR SCD 1608 WATER UNFLTRD PERCENT (99778)	06 1016 1242 PCB WATER UNFLTRD (UG/L)	AROCLOR 1221 PCB TOTAL (UG/L)	1232 PCB TOTAL (UG/L) (39492)	1248 PCB TOTAL (UG/L)
OCT 18 NOV 09 DEC 21 JAN 30 FEB 26 MAR 22 AFR	NIUM, DIS- SOLVED (UG/L AS SE) (01145) <2.4 <2.4 <2.4 <2.4 <2.4	NIUM, TOTAL (UG/L AS SE) (01147) <2.6 <2.6 <2.6 <2.6 <2.6 <2.6	DIS- SOLVED (UG/L AS AG) (01075) <.2 <.2 <.2 <.2 <.2	TOTAL RECOV- ERABLE (UG/L AS AG) (01077) <.43 <.43 <.43 <.43 <.43 <.43	ZINC, DIS- SOLVEL (UG/L AS ZN) (01090) <20 <20 <20 <20 <20 <20	TOTAL RECOV- ERABLE (UG/L AS ZN) (01092) <31 46 E19 51 46 <31	TOTAL (UG/L) (39330)	, BHC TOTAL (UG/L) (39337)	HCH-I SUR SCD 1608 WATER UNFLTRD PERCENT (99778)	06 1016 1242 PCB WATER UNFLTRD (UG/L) (81648)	5/ AROCLOR 1221 PCB TOTAL (UG/L) (39488)	1232 PCB TOTAL (UG/L) (39492)	1248 PCB TOTAL (UG/L) (39500)
OCT 18 NOV 09 DEC 21 JAN 30 FEB 26 MAR	NIUM, DIS- SOLVED (UG/L AS SE) (01145) <2.4 <2.4 <2.4 <2.4 <2.4 <2.4	NIUM, TOTAL (UG/L AS SE) (01147) <2.6 <2.6 <2.6 <2.6 <2.6 <2.6 <2.6 <1.6 <2.6 <2.6 <1.6 <2.6	DIS- SOLVED (UG/L AS AG) (01075) <.2 <.2 <.2 <.2 <.2 <.2	TOTAL RECOVERABLE (UG/L AS AG) (01077) < . 43 < . 43 < . 43 < . 43 < . 43 < . 43 < . 43 < . 43 < . 43	ZINC, DIS- SOLVEL (UG/L AS ZN) (01090) <20 <20 <20 <20 <20 <20	TOTAL RECOV- REABLE (UG/L AS ZN) (01092) <31 46 E19 51 46 <31 38	TOTAL (UG/L)	, BHC TOTAL (UG/L) (39337)	HCH-I SUR SCD 1608 WATER UNFLTRD PERCENT (99778)	06 1016 1242 PCB WATER UNFLTRD (UG/L)	5/ AROCLOR 1221 PCB TOTAL (UG/L) (39488)	1232 PCB TOTAL (UG/L) (39492)	1248 PCB TOTAL (UG/L)
OCT 18 NOV 09 DEC 21 JAN 30 FEB 26 MAR 22 AFR 12 MAY 25 JUN	NIUM, DIS- SOLVED (UG/L AS SE) (01145) <2.4 <2.4 <2.4 <2.4 <2.4 <2.4 <2.4	NIUM, TOTAL (UG/L AS SE) (01147) <2.6 <2.6 <2.6 <2.6 <2.6 <2.6 <1.6 <2.6 <2.6 <2.6 <2.6 <1.6 <2.6 <2.6 <2.6 <2.6 <2.6	DIS- SOLVED (UG/L AS AG) (01075) <.2 <.2 <.2 <.2 <.2 <.2 <.2	TOTAL RECOV- ERABLE (UG/L AS AG) (01077) <.43 <.43 <.43 <.43 <.43 <.43 <.43 <.4	ZINC, DIS- SOLVEL (UG/L AS ZN) (01090) <20 <20 <20 <20 <20 <20 <20 <20 <20	TOTAL RECOV-ERABLE (UG/L AS ZN) (01092) <31 46 E19 51 46 <31 38 106	TOTAL (UG/L) (39330)	, BHC TOTAL (UG/L) (39337)	HCH-I SUR SCD 1608 WATER UNFLTRD PERCENT (99778)	06 1016 1242 PCB WATER UNFLTRD (UG/L) (81648)	5/ AROCLOR 1221 PCB TOTAL (UG/L) (39488)	1232 PCB TOTAL (UG/L) (39492)	1248 PCB TOTAL (UG/L) (39500)
OCT 18 NOV 09 DEC 21 JAN 30 FEB 26 MAR 22 APR 12 MAY 25	NIUM, DIS- SOLVED (UG/L AS SE) (01145) <2.4 <2.4 <2.4 <2.4 <2.4 <2.4	NIUM, TOTAL (UG/L AS SE) (01147) <2.6 <2.6 <2.6 <2.6 <2.6 <2.6 <2.6 <1.6 <2.6 <2.6 <1.6 <2.6	DIS- SOLVED (UG/L AS AG) (01075) <.2 <.2 <.2 <.2 <.2 <.2	TOTAL RECOVERABLE (UG/L AS AG) (01077) < . 43 < . 43 < . 43 < . 43 < . 43 < . 43 < . 43 < . 43 < . 43	ZINC, DIS- SOLVEL (UG/L AS ZN) (01090) <20 <20 <20 <20 <20 <20 <20 <20 <20 <20	TOTAL RECOV-ERABLE (UG/L AS ZN) (01092) <31 46 E19 51 46 <31 38 106 53	TOTAL (UG/L) (39330)	, BHC TOTAL (UG/L) (39337)	HCH-I SUR SCD 1608 WATER UNFLTRD PERCENT (99778)	06 1016 1242 PCB WATER UNFLTRD (UG/L) (81648)	5/ AROCLOR 1221 PCB TOTAL (UG/L) (39488)	1232 PCB TOTAL (UG/L) (39492)	1248 PCB TOTAL (UG/L) (39500)
OCT 18 NOV 09 DEC 21 JAN 30 FEB 26 MAR 22 APR 12 MAY 25 JUN 06 JUL	NIUM, DIS- SOLVED (UG/L AS SE) (01145) <2.4 <2.4 <2.4 <2.4 <2.4 <2.4 <2.4 <2.4	NIUM, TOTAL (UG/L AS SE) (01147) <2.6 <2.6 <2.6 <2.6 <2.6 <2.6 <3.6 <3.0 <3.0	DIS- SOLVEDO (UG/L AS AG) (01075) <.2 <.2 <.2 <.2 <.2 <.2 <.2	TOTAL RECOVERABLE (UG/L AS AG) (01077) < .43 < .43 < .43 < .43 < .43 < .43 < .43 < .43 < .43 < .43 < .40 < .40	ZINC, DIS- SOLVEL (UG/L AS ZN) (01090) <20 <20 <20 <20 <20 <20 <20 <20 <20	TOTAL RECOV-ERABLE (UG/L AS ZN) (01092) <31 46 E19 51 46 <31 38 106	TOTAL (UG/L) (39330)	, BHC TOTAL (UG/L) (39337)	HCH-I SUR SCD 1608 WATER UNFLTRD PERCENT (99778)	06 1016 1242 PCB WATER UNFLTRD (UG/L) (81648)	5/ AROCLOR 1221 PCB TOTAL (UG/L) (39488)	1232 PCB TOTAL (UG/L) (39492)	1248 PCB TOTAL (UG/L) (39500)

07331000 WASHITA RIVER NEAR DICKSON, OK--Continued

	AROCLOR 1254	-AROCLOR 1260	BETA BENZENE HEXA- CHLOR-	CHLOR- DANE CIS WATER		CHLOR- DANE TRANS WATER	DELTA BENZENE HEXA- CHLOR-	DI-			NDO- E SULFAN	NDRIN ALDE-	ENDRIN WATER
DATE	PCB TOTAL (UG/L) (39504)	PCB TOTAL (UG/L) (39508)	TOTAL (UG/L)	TOTAL (UG/L)	TOTAL (UG/L) (TOTAL (UG/L)	TOTAL (UG/L)	REC (UG/L) (TOTAL UG/L) (U		HYDE TOTAL (UG/L) 34366)	UNFLTRD REC (UG/L) (39390)
OCT 18					, 								
NOV 09			***										
DEC 21													
JAN 30	-								***		·		
FEB													
26 MAR								7					
22 APR						-							
12 MAY	<.1	<.1	<.03	<.1	<.1	<.1	<.09	<.020	<.1	<.04	<.6	<.2	<.060
25 JUN							. 					·	
06 JUL		"		~~					"				
17							* ,		 .				
AUG 24		**		·						·			-
SEP 12													
			нерта-		ISODRIN SUR SCD		PCB 207 SUR SCD		.	Dini	mov.		
	E	DATE	HEPTA- CHLOR EPOXIDE TOTAL (UG/L) (39420)	HEPTA- CHLOR, TOTAL (UG/L) (39410)		LINDANE TOTAL (UG/L) (39340)	207 SUR SCD 1608	P,P' DDD, TOTAL	P,P' DDE, TOTAL (UG/L) (39320)	P, P' DDT, TOTAL (UG/L) (39300)	TOX- APHENE TOTAL (UG/L (39400	.)	
	oc	e T	CHLOR EPOXIDE TOTAL (UG/L)	CHLOR, TOTAL (UG/L)	SUR SCD 1608 WTR, UNFLTRD PERCENT	TOTAL (UG/L)	207 SUR SCD 1608 WATER UNFLTRD PERCENT	P,P' DDD, TOTAL (UG/L)	DDE, TOTAL (UG/L)	DDT, TOTAL (UG/L)	APHENE TOTAL (UG/L	.)	
	oc	T 18	CHLOR EPOXIDE TOTAL (UG/L)	CHLOR, TOTAL (UG/L)	SUR SCD 1608 WTR, UNFLTRD PERCENT	TOTAL (UG/L)	207 SUR SCD 1608 WATER UNFLTRD PERCENT	P,P' DDD, TOTAL (UG/L)	DDE, TOTAL (UG/L)	DDT, TOTAL (UG/L)	APHENE TOTAL (UG/L	.)	
	oc	ET 18 DV 09	CHLOR EPOXIDE TOTAL (UG/L)	CHLOR, TOTAL (UG/L)	SUR SCD 1608 WTR, UNFLTRD PERCENT	TOTAL (UG/L)	207 SUR SCD 1608 WATER UNFLTRD PERCENT	P,P' DDD, TOTAL (UG/L)	DDE, TOTAL (UG/L)	DDT, TOTAL (UG/L)	APHENE TOTAL (UG/L	.)	
	OC DE	ET 18 DV 09 EC 21	CHLOR EPOXIDE TOTAL (UG/L)	CHLOR, TOTAL (UG/L)	SUR SCD 1608 WTR, UNFLTRD PERCENT	TOTAL (UG/L)	207 SUR SCD 1608 WATER UNFLTRD PERCENT	P,P' DDD, TOTAL (UG/L)	DDE, TOTAL (UG/L)	DDT, TOTAL (UG/L)	APHENE TOTAL (UG/L	.)	
	OC NC DE	TT 18 VV 09 EC 21 AN 30	CHLOR EPOXIDE TOTAL (UG/L)	CHLOR, TOTAL (UG/L)	SUR SCD 1608 WTR, UNFLITED PERCENT (90570)	TOTAL (UG/L)	207 SUR SCD 1608 WATER UNFLTRD PERCENT	P,P' DDD, TOTAL (UG/L)	DDE, TOTAL (UG/L)	DDT, TOTAL (UG/L)	APHENE TOTAL (UG/L	.)	
	OC NC DE JP	TT 18 DV 09 EC 21 NN 30 EB 26	CHLOR EPOXIDE TOTAL (UG/L)	CHLOR, TOTAL (UG/L)	SUR SCD 1608 WTR, UNFLITED PERCENT (90570)	TOTAL (UG/L)	207 SUR SCD 1608 WATER UNFLTRD PERCENT	P,P' DDD, TOTAL (UG/L)	DDE, TOTAL (UG/L)	DDT, TOTAL (UG/L)	APHENE TOTAL (UG/L	.)	
	OC NC DE JA FF	TT 18 18 09 EC 21 4N 30 EB 26 AR 22	CHLOR EPOXIDE TOTAL (UG/L)	CHLOR, TOTAL (UG/L)	SUR SCD 1608 WTR, UNFLITED PERCENT (90570)	TOTAL (UG/L)	207 SUR SCD 1608 WATER UNFLTRD PERCENT	P,P' DDD, TOTAL (UG/L)	DDE, TOTAL (UG/L)	DDT, TOTAL (UG/L)	APHENE TOTAL (UG/L	.)	
	OC NC DE JA FE MA	TT 18 DV 09 EC 21 NN 30 EB 26 AR 22 PR 12	CHLOR EPOXIDE TOTAL (UG/L)	CHLOR, TOTAL (UG/L)	SUR SCD 1608 WTR, UNFLITED PERCENT (90570)	TOTAL (UG/L)	207 SUR SCD 1608 WATER UNFLTRD PERCENT	P,P' DDD, TOTAL (UG/L)	DDE, TOTAL (UG/L)	DDT, TOTAL (UG/L)	APHENE TOTAL (UG/L	.)	
	OC NC DE JF FF MA AI	TT 18 18 18 09 EC 21 4N 30 EB 26 AR 222 PR 12 AY 25	CHLOR EPOXIDE TOTAL (UG/L) (39420)	CHLOR, TOTAL (UG/L) (39410)	SUR SCD 1608 WTR, UNFLTRD PERCENT (90570)	TOTAL (UG/L) (39340)	207 SUR SCD 1608 WATER UNFLITRD PERCENT (99781)	P,P'DDD, TOTAL (UG/L) (39310)	DDE, TOTAL (UG/L) (39320)	DDT, TOTAL (UG/L) (39300)	APHENE TOTAL (UG/L) (39400	.)	
	OC NC DE FE	TT 18 18 09 EC 21 30 EB 26 AR 22 PR 12 AY 25 UN 06	CHLOR EPOXIDE TOTAL (UG/L) (39420)	CHLOR, TOTAL (UG/L) (39410)	SUR SCD 1608 WTR, UNFLTRD PERCENT (90570)	TOTAL (UG/L) (39340)	207 SUR SCD 1608 WATER UNFLITRD PERCENT (99781)	P,P'DDD, TOTAL (UG/L) (39310)	DDE, TOTAL (UG/L) (39320)	DDT, TOTAL (UG/L) (39300)	APHENE TOTAL (UG/L) (39400	.)	
	OC NC DE FE	TT 18 18 09 EC 21 30 EB 26 AR 22 PR 12 AY 25 IN 18	CHLOR EPOXIDE TOTAL (UG/L) (39420)	CHLOR, TOTAL (UG/L) (39410)	SUR SCD 1608 WTR, UNFLTRD PERCENT (90570)	TOTAL (UG/L) (39340)	207 SUR SCD 1608 WATER UNFLITRD PERCENT (99781)	P,P'DDD, TOTAL (UG/L) (39310)	DDE, TOTAL (UG/L) (39320)	DDT, TOTAL (UG/L) (39300)	APHENE TOTAL (UG/L) (39400	.)	
	OC NC DE JA AI MA JI	TT 18 DV 09 CC 21 AN 30 EB 26 AR 12 PR 12 AY 25 UN 06 UL	CHLOR EPOXIDE TOTAL (UG/L) (39420)	CHLOR, TOTAL (UG/L) (39410)	SUR SCD 1608 WTR, UNFLTRD PERCENT (90570)	TOTAL (UG/L) (39340)	207 SUR SCD 1608 WATER UNFLITRD PERCENT (99781)	P,P'DDD, TOTAL (UG/L) (39310)	DDE, TOTAL (UG/L) (39320)	DDT, TOTAL (UG/L) (39300)	APHENE TOTAL (UG/L) (39400	.)	
	OC NC DE JF MZ AI MJ JT AI	TT 18 18 09 EC 21 30 EB 22 AR 22 PR 12 AY 25 UN 06 UL 17	CHLOR EPOXIDE TOTAL (UG/L) (39420)	CHLOR, TOTAL (UG/L) (39410)	SUR SCD 1608 WTR, UNFLTRD PERCENT (90570)	TOTAL (UG/L) (39340)	207 SUR SCD 1608 WATER UNFLITRD PERCENT (99781)	P,P'DDD, TOTAL (UG/L) (39310)	DDE, TOTAL (UG/L) (39320)	DDT, TOTAL (UG/L) (39300)	APHENE TOTAL (UG/L) (39400	.)	

07331000 WASHITA RIVER NEAR DICKSON, OK--Continued

SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER		N	OVEMBER			ECEMBER			JANUARY	
1 2 3 4 5	1640 1340 1390 1590 1730	1170 1170 1260 1390 1590	1380 1270 1300 1490 1680	620 632 635 584 499	602 607 559 477 332	611 618 613 530 443	991 1010 1080 1110 1100	924 991 1000 1070 1060	963 1000 1040 1090 1080	773 887 907 958 975	658 773 866 898 946	715 835 889 924 959
6 7 8 9 10 -	1720 1790 1890 1940 1950	1660 1670 1780 1860 1890	1680 1730 1850 1900 1930	436 494 523 504 538	331 414 440 418 443	388 441 488 449 467	1120 1160 1190 1330 1350	1100 1120 1160 1180 1330	1110 1140 1170 1260 1340	977 974 1080 1170 1120	964 961 973 1080 962	969 967 1010 1140 1040
11 12 13 14 15	1920 1930 1970 1990 2020	1890 1890 1920 1940 1640	1900 1910 1950 1980 1930	672 690 728 776 848	538 665 667 728 776	632 679 694 748 814	1350 1370 1360 1370 1370	1340 1350 1350 1340 1310	1350 1360 1360 1350 1340	962 956 953 1020 1020	916 910 924 953 999	938 924 932 1000 1010
16 17 18 19 20	1730 1250 1590 1680 1630	702 853 1250 1590 1480	1000 1010 1460 1640 1560	928 1000 1070 1080 1080	848 928 1000 1070	887 962 1040 1080	1330 1340 1300 1350 1350	1280 1300 1270 1300 1270	1300 1320 1280 1330 1290	1020 1020 998 1040 1070	999 987 982 997 1040	1010 1010 989 1020 1050
21 22 23 24 25	1560 1590 1030 1200 538	1450 931 835 435 419	1520 1320 940 794 463	1100 1120 1140 1120 438	1080 1100 1100 438 328	1080 1110 1130 658 379	1280 1310 1400 1450 1470	1270 1280 1310 1400 1440	1280 1300 1370 1430 1460	1180 1260 1310 1310 1320	1070 1180 1260 1300	1130 1220 1290 1300 1310
26 27 28 29 30 31	556 356 403 471 500 608	356 284 346 379 450 499	488 304 371 434 490 550	523 711 792 840 924	412 523 711 792 840	496 618 747 814 876	1440 530 595 663 552 658	420 446 503 466 466 552	831 482 546 576 505 608	1350 1350 1340 885 563 662	1320 1340 885 406 410 563	1330 1350 1280 579 492 632
MONTH	2020	284	1300	1140	328	719	1470	420	1120	1350	406	1010
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
DAY		MIN FEBRUARY		MAX	MIN MARCH	MEAN	MAX	MIN	MEAN	MAX	MIN MAY	MEAN
1 2 3 4 5		FEBRUARY	613	×		837	1480 1500 1480 1480 1390		MEAN 1480 1490 1480 1420 1380	1500 1520 1540 1540 968		1450 1520 1520 1480 723
1 2 3 4	664 895 1000 984	584 664 895 839	613 784 963 885 844	946 731 791 827	731 690 714 786	837 704 764 803 853	1480 1500 1480 1480 1390 1360 1350	APRIL 1470 1470 1470 1380	1480 1490 1480 1420 1380 1350 1340	1500 1520 1540 1540	MAY 1400 1500 1500 595	1450 1520 1520 1480
1 2 3 4 5 6 7 8 9	664 895 1000 984 868 955 1000 1040 1060	584 664 895 839 832 868 955 982 1020	613 784 963 885 844 913 982 1030 1040 946	946 731 791 827 881 951 1020 1060 1090 1110	731 690 714 786 825 880 951 1020 1060 1080	837 704 764 803 853 914 987 1040 1080 1090	1480 1500 1480 1480 1390 1360 1350 1340	APRIL 1470 1470 1470 1380 1360 1340 1330 1320 1310 1320	1480 1490 1480 1420 1380 1350 1340	1500 1520 1540 1540 968 1160	MAY 1400 1500 1500 595 396 887 893 1060 1160 1180	1450 1520 1520 1480 723 1070 1010 1080 1310
1 2 3 4 5 6 7 8 9 10 11 12 13	664 895 1000 984 868 955 1000 1040 1060 1060 990 1060 1090 1140	584 664 895 839 832 868 955 952 1020 901 909 990 1030 996	613 784 963 885 844 913 982 1030 1040 946 944 1040 1050 1090	946 731 791 827 881 951 1020 1060 1090 1110 1140 1170 1220 1150	731 690 714 786 825 880 951 1020 1060 1080	837 704 764 803 853 914 987 1040 1080 1090 1120 1160 1170 1100	1480 1500 1480 1390 1350 1350 1340 1380 1400 1400 1230	APRIL 1470 1470 1470 1380 1360 1340 1330 1320 1310 1320 996 1220 1190 995	1480 1480 1480 1420 1380 1350 1340 1320 1360 1190 1310 1340 1160	1500 1520 1540 1540 968 1160 1080 1160 1440 1500 1180 1190 1180	MAY 1400 1500 1500 595 396 887 893 1060 1180 1040 1120 1050 1030	1450 1520 1520 1480 723 1070 1010 1080 1310 1400 1090 1170 1110 1040
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	664 895 1000 984 868 955 1000 1040 1060 1060 1140 1150 377 445 526 600	584 664 895 839 832 868 955 982 1020 901 909 990 1030 996 377 282 288 445 526 600	613 784 963 885 844 913 982 1030 1040 946 944 1050 1050 1090 878 302 369 486 564	946 731 791 827 881 951 1020 1060 1090 1110 1140 1170 1220 1150 1230 1300 1300 1330	731 690 714 786 825 880 951 1020 1060 1080 1110 1140 1080 1150 1230 1230 1330	837 704 764 803 853 914 987 1040 1090 1120 1160 1170 1190 1210 1280 1310 1360	1480 1500 1480 1480 1390 1360 1350 1340 1380 1400 1400 1230 995 997 996 1120 1150	APRIL 1470 1470 1470 1380 1360 1340 1320 1310 1320 996 1220 1190 995 563 634 907 979 1110	1480 1490 1420 1380 1350 1340 1330 1320 1360 1190 1310 1160 642 784 962 1060 1130	1500 1520 1540 1540 968 1160 1080 1160 1440 1500 1180 1070 1180 1290 1290	MAY 1400 1500 1500 1500 595 396 887 893 1060 1180 1040 1120 1050 1070 1110 1160 1290	1450 1520 1520 1480 723 1070 1010 1080 1310 1400 1090 1170 1110 1040 1150 1210 1350
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 27 28 29 30	664 895 1000 984 868 955 1000 1060 1060 1060 1150 377 445 526 600 667 716 756 799 779 611 685 712 914	584 664 895 839 832 868 955 982 1020 901 909 990 1030 996 377 282 288 445 526 600 665 715 474 463 494	613 784 963 885 844 913 982 1030 1040 946 944 1040 1050 1090 878 302 369 486 564 632 692 735 752 630 697 853	946 731 791 827 881 951 1020 1060 1090 1110 1140 1170 1220 1150 1230 1300 1330 1390 1390 1310 1310 1260	731 690 714 786 825 880 951 1020 1060 1080 1110 1140 1080 1150 1200 1230 1300 1300 1270 1260 1270 1260 1270 1270 1270 1270 1330 1330 1330	837 704 764 803 853 914 987 1040 1080 1090 1120 1160 1170 1100 1190 1210 1280 1310 1360 1350 1290 1290 1230 1230 1250 1320 1340 1330 1360	1480 1500 1480 1390 1350 1350 1350 1380 1400 1420 1230 995 907 996 1120 1250 1260 1260 1260 1260 1280 1310	APRIL 1470 1470 1470 1380 1360 1340 1330 1320 1310 1320 996 1220 1190 995 563 634 907 979 1110 1150 1200 1230 1230 1230 1270 1290 1370 1370 1390 1400	1480 1480 1480 1420 1380 1350 1340 1320 1360 1190 1310 1160 642 784 962 1060 1250 1250 1250 1250 1250 1250 1290	1500 1520 1540 1540 968 1160 1080 1160 1440 1500 1180 1190 1180 1290 1320 908 919 926 808 985	MAY 1400 1500 1500 595 396 887 893 1060 1180 1040 1120 1050 1070 1110 1160 1290 848 848 398 509 808	1450 1520 1520 1480 723 1070 1010 1080 1310 1400 1170 1110 1100 1150 1210 1350 e1000 e1250 e1000 e926 869 880 653 638 926
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 3 24 25 27 27 28 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	664 895 1000 1040 1060 1060 1060 1060 1150 377 445 526 600 667 716 759 779 611 685 712 914	584 664 895 839 832 868 955 982 1020 901 909 990 1030 996 377 282 288 445 526 600 665 715 474 463 494 575 681 712	613 784 963 885 844 913 982 1030 1040 946 944 1040 1050 1090 878 302 369 486 564 632 692 735 752 631 572	946 731 791 827 881 951 1020 1060 1090 1110 1140 1170 1220 1150 1230 1330 1390 1390 1310 1310 1310 1260 1270 1340 1340 1340	731 690 714 786 825 880 951 1020 1060 1080 1110 1140 1080 1150 1230 1330 1300 1270 1260 1170 1260 1170 1200	837 704 764 803 853 914 987 1040 1080 1090 1120 1160 1170 1190 1210 1280 1310 1360 1350 1290 1290 1290 1230 1250 1320 1330	1480 1500 1480 1390 1360 1350 1340 1380 1400 1400 1230 995 907 996 1120 1150 1260 1260 1260 1260 1270 1310 1370 1390 1400	APRIL 1470 1470 1470 1380 1360 1340 1320 1320 1320 1320 1190 995 563 634 907 979 1110 1250 1200 1240 1230 1230 1270 1290 1300 1370 1390	1480 1490 1480 1420 1380 1350 1340 1320 1360 1190 1310 1340 1160 642 784 962 1060 1130 1250 1250 1250 1250 1250 1250 1350 1380 1390	1500 1520 1540 1540 968 1160 1080 1160 1180 1190 1180 1070 1120 1180 1290 1320 	MAY 1400 1500 1500 1500 595 396 887 893 1060 1160 1180 1040 1120 1050 1030 1070 1110 1160 1290 848 848 848 848 848	1450 1520 1520 1480 723 1070 1010 1080 1310 1400 1090 1170 1110 1040 1150 1210 1350 e1000 e1150 e1250 e1000 e926 880 653 638

07331000 WASHITA RIVER NEAR DICKSON, OK--Continued

SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

			•									
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	XAM	MIN	MEAN	MAX	MIN	MEAN
	-	JUNE			JULY	• .		AUGUST			SEPTEMBE	R
1	1140	855	1010	1380	768	943	1620	1530	1570	1380	1320	1350
5	1130	856	1020	1000	825	913	1660	1620	1640	1360	1230	1290
- - -	1220	1060	1170	1310	1000	1180	1680	1590	1650	1460	1250	1390
1 2 3 4	1060	720	843	1460	1310	1400	1660	1610	1650	1360	1210	1290
5	772	719	743	1500	1460	1480	1670	1620	1640	1410	1290	1360
5	112	113	743	1300	1400	1400	1070	1020	1040	1410	1230	
6	845	772	806	1550	1500	1520	1680	1650	1670	1290	1200	1240
7	892	845	874	1590	1550	1570	1730	1660	1690	1290	1190	1250
8	918	892	906	1650	1580	1630	1710	1670	1690	1360	1160	1270
9_	1030	911	960	1690	1600	1660	1720	1680	1700	1200	791	919
10 _	1100	1030	1070	1690	1600	1680	1740	1700	1730	1170	804	975
11	1190	1100	1140	1690	1460	1660	1760	1720	1740	1110	935	989
12	1360	1190	1280	1690	1620	1660	1760	1620	1690	1150	929	988
13	1450	1360	1430	1660	1580	1620	1720	1680	1700	1400	1150	1310
13				1650	1560	1610	1720	1710	1720	1510	1400	1460
14	1460	1430	1440									
15	1440	1400	1420	1570	1550	1560	1730	1680	1720	1550	138	1000
16	1470	1440	1460	1580	1560	1570	1730	1600	1640	672	273	325
17	1490	1460	1480	1580	1340	1540	1840	1730	1810	573	286	333
18	1590	1480	1550	1580	1520	1550	1950	1530	1840	590	267	374
19	1630	1590	1620	1560	1500	1540	1540	1210	1300	322	257	289
20	1610	1590	1600	1530	1460	1500	1700	1460	1650	344	194	267
21	1650	1590	1610	1540	1470	1500	1690	1500	1600	313	222	264
22	1770	1650	1730	1580	1530	1550	1700	1460	1610	456	313	366
		1770	1790	1620	1580	1600	1460	1160	1340	542	456	515
23	1830										468	
24	1830	1810	1820	1630	1550	1600	1160	1040	1100	514		483
25	1840	1800	1820	1600	1520	1560	1100	1040	1070	531	498	519
26	1810	1800	1800	1560	1470	1530	1120	1050	1090	499	488	493
27	1830	1790	1800	1530	1480	1510	1120	1070	1110	548	497	524
28	1810	1740	1780	1540	1500	1520	1150	1100	1120	590	547	569
29	1750	1700	1730	1570	1520	1560	1280	1150	1200	623	589	601
30	1700	1220	1470	1590	1560	1580	1350	1280	1330	664	623	641
31				1610	1550	1590	1400	1350	1380			
MONTH	1840	719	1370	1690	768	1510	1950	1040	1530	1550	138	821
YEAR	2020	138	1150	4								

e Estimated

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER		N	OVEMBER		ם	ECEMBER			JANUARY	
1 2 3 4 5	24.1 25.4 27.4 28.5 28.0	18.8 18.9 21.2 22.7 22.9	21.3 21.9 23.8 25.1 25.1	20.8 19.9 18.7 17.3 16.4	19.9 18.0 17.3 16.3 16.1	20.3 18.8 17.9 16.8 16.3	9.5 8.3 6.8 6.5 7.2	8.3 6.7 5.7 5.1 5.6	8.9 7.5 6.3 5.9 6.5	1.6 2.3 2.4 3.9 5.2	.4 .9 .6 1.7 3.1	1.0 1.6 1.6 2.7 4.1
6 7 8 9	22.9 16.9 15.9 16.9 14.9	16.9 12.6 10.8 9.7 10.9	19.7 14.2 12.8 12.8 12.7	16.4 15.6 13.0 10.0 9.8	15.6 13.0 10.0 8.8 8.3	16.2 14.1 11.3 9.2 9.1	7.9 7.4 8.6 8.0 9.6	6.8 5.4 6.8 7.2 7.2	7.5 6.6 7.6 7.5 8.4	6.0 6.9 6.5 6.0 5.6	4.0 5.4 4.9 4.5 4.8	5.0 6.1 5.8 5.4 5.1
11 12 13 14 15	17.7 21.0 22.5 21.7 24.0	12.5 15.3 17.0 19.5 19.5	14.7 17.6 19.4 20.3 21.1	9.5 9.1 8.6 8.5 8.4	8.9 8.5 7.2 6.7 7.4	9.0 8.9 8.0 7.7 8.0	9.5 4.7 1.4 2.1 3.0	4.7 .6 .2 .2	7.7 2.5 .7 1.1 2.2	5.1 5.8 7.0 6.7	4.4 4.6 4.9 5.3 5.1	4.8 4.9 5.2 6.1 6.0
16 17 18 19 20	24.0 23.2 22.6 22.5 20.4	20.2 19.7 18.9 17.4	21.8 21.5 20.7 19.8 18.4	10.0 9.1 8.5 9.1 8.9	8.4 7.4 7.5 6.9 7.5	9.1 8.2 7.9 8.0 8.2	4.6 3.2 3.6 3.5 4.5	3.0 1.7 1.6 1.8 1.9	3.5 2.4 2.5 2.6 3.1	6.4 5.6 4.5 4.8 3.5	5.6 4.2 3.7 3.4 2.0	6.0 4.8 4.1 4.0 2.9
21 22 23 24 25	17.9 19.3 20.5 20.2 18.8	16.9 17.3 19.1 18.8 18.1	17.5 18.1 19.6 19.6 18.4	8.6 9.3 10.4 10.9	6.6 7.8 9.3 10.4 10.1	7.7 8.4 10.0 10.6 10.4	4.4 3.6 2.9 3.1 2.9	2.9 2.0 2.2 1.3 2.6	3.5 2.8 2.6 2.2 2.8	4.8 5.4 6.2 7.0 7.0	2.8 3.1 4.8 6.1 5.1	3.6 4.2 5.4 6.5 6.2
26 27 28 29 30 31	18.5 18.9 19.6 19.9 20.4 20.8	18.1 17.9 18.9 19.2 19.6 19.8	18.2 18.3 19.2 19.5 20.0 20.2	10.2 9.9 10.2 10.4 9.6	9.2 8.8 8.6 9.0 8.2	9.8 9.4 9.5 9.8 8.9	2.6 1.9 2.8 3.2 2.6 2.3	1.9 1.4 1.5 2.4 1.6	2.2 1.5 2.1 2.7 2.2 1.4	8.9 8.2 6.7 6.7 7.0 7.1	6.6 5.9 5.9 6.1 6.1 6.2	7.6 6.7 6.2 6.4 6.5 6.6
MONTH	28.5	9.7	19.1	20.8	6.6	10.9	9.6	.2	4.1	8.9	.4	4.9

07331000 WASHITA RIVER NEAR DICKSON, OK--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
	-	FEBRUARY			MARCH			APRIL			MAY	
1 2 3 4 5	6.8 6.6 6.9 7.6 8.0	5.5 5.2 5.0 5.9 6.0	6.2 6.0 6.0 6.8 7.1	7.3 8.8 9.1 10.4 11.4	6.5 7.2 8.5 8.0 9.0	6.9 7.9 8.8 9.2 10.3	15.2 17.5 21.3 23.2 22.4	13.2 14.3 17.1 20.3 21.8	14.2 15.7 19.1 21.4 22.1	25.1 25.8 24.8 23.9 21.3	20.6 22.2 22.7 19.4 18.8	22.7 23.7 23.7 22.8 20.0
6 7 8 9-	9.3 11.4 13.5 13.8 8.7	7.0 8.5 11.4 8.7 6.7	8.2 9.6 12.4 11.5 7.5	11.9 13.5 13.4 12.5 12.8	9.8 10.9 11.3 9.9 10.5	12.2 12.1	22.5 22.1 22.0 23.5 22.6	21.2 20.0 20.7 20.7 21.7	21.8 21.1 21.2 21.9 22.3	21.8 23.3 24.7 24.9 25.3	20.7 20.1 20.6 22.1 23.0	21.0 21.6 22.6 23.6 24.1
11 12 13 14 15	7.3 6.9 8.3 11.1 10.6	6.2 6.3 6.9 8.3 5.6	6.8 6.6 7.4 9.9 8.1	12.8 14.2 14.5 14.2 13.7	12.2 12.0 11.9 13.0 11.6	12.4 12.9 13.3 13.6 12.9	21.7 20.3 20.7 20.0 20.8	19.5 18.1 17.6 18.6 18.3	20.8 19.1 19.1 19.4 19.3	24.9 25.7 26.8 27.4 27.3	23.1 21.9 23.7 24.3 24.7	23.9 23.7 25.1 25.7 25.9
16 17 18 19 20	5.6 5.3 5.9 7.9 10.4	4.4 4.1 4.8 5.4 7.7	4.9 4.6 5.3 6.4 8.8	11.9 11.8 11.4 11.6 13.0	9.4 9.9 10.6 9.9 9.6	10.8 11.0 11.0 10.7 11.2	21.8 20.2 17.4 16.9 19.6	18.9 16.9 15.0 15.4 16.8	20.2 18.2 16.3 16.3 18.1	27.7 28.0 28.7	24.4 25.5 25.0	26.0 26.6 26.8
21 22 23 24 25	10.3 9.2 9.1 10.7 11.3		9.8 8.4 8.3 9.7 10.7	14.6 16.6 18.0 17.8 13.3	11.2 13.2 15.0 13.3 10.5	12.9 14.9 16.5 15.8 11.8	20.1 20.8 21.2 21.1 21.8	19.4 19.2 18.4 17.5 18.0	19.6 19.8 19.8 19.3 19.7			
26 27 28 29 30 31	11.2 11.1 10.4	10.2 10.4 7.2	10.7 10.9 8.7	10.5 9.7 8.8 9.6 12.5 16.0	9.4 8.5 8.2 8.7 8.9	10.0 9.1 8.5 9.1 10.6 13.8	23.0 24.0 24.3 24.5 23.6	19.2 20.1 20.7 20.7 21.1	20.9 21.9 22.4 22.5 22.3	24.3 26.4 26.0 23.5 25.4 26.2	21.6 22.8 21.6 22.1 22.7 24.6	23.0 24.5 22.9 22.9 23.9 25.2
MONTH	13.8	4.1	8.1	18.0	6.5	11.4	24.5	13.2	19.9	28.7	18.8	23.8
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
DAY	XAM		MEAN	MAX	JULY	MEAN		MIN AUGUST	MEAN		MIN SEPTEMBE	
DAY 1 2 3 4 5			MEAN 24.5 25.5 27.2 27.2 27.2	29.3 31.2 32.0 33.3		27.6 28.9 29.8 30.5 31.4	35.1 34.7 34.7 35.0		31.6 31.9 31.3 31.5 32.1		25.8 25.4 26.7	
1 2 3 4	25.4 27.3 28.3 28.2	JUNE 23.4 24.0 26.3 26.2 26.3	24.5 25.5 27.2 27.2	29.3 31.2 32.0 33.3	JULY 26.0 27.1 27.9 28.2	27.6 28.9 29.8 30.5 31.4 31.8 31.8	35.1 34.7 34.7 35.0	28.5 29.4 28.1 28.1 28.8- 28.8 28.1 28.6	31.6 31.9 31.3 31.5 32.1 31.6 30.8 31.3	31.6 31.3 30.9 27.1 27.2 29.0 29.6 28.1	25.8 25.4 26.7 24.7	28.0 28.3 28.1 25.6 25.4 26.3
1 2 3 4 5 6 7 8 9 10	25.4 27.3 28.3 28.2 28.0 28.2 29.2 29.7 29.7 30.6	JUNE 23.4 24.0 26.3 26.2 26.3 25.9 26.9 27.7 27.9 28.1 28.4 28.1 27.0	24.5 25.5 27.2 27.2 27.2 27.1 28.0 28.5 28.8 29.2	29.3 31.2 32.0 33.3 34.1 34.4 34.0 34.9 35.0	26.0 27.1 27.9 28.2 28.9 29.3 29.5 29.2 29.1 29.5	27.6 28.9 29.8 30.5 31.4 31.8 31.8 31.8	35.1 34.7 35.0 35.7 34.2 33.9 34.4 34.8 34.5	28.5 29.4 28.1 28.1 28.8 28.8 28.1 28.6 28.5 28.6	31.6 31.9 31.3 31.5 32.1 31.6 30.8 31.3 31.4 31.4	31.6 31.3 30.9 27.1 27.2 29.0 29.6 28.1	25.8 25.4 26.7 24.7 24.1 24.3 24.9 25.1 23.1 21.6	28.0 28.3 28.1 25.6 25.4 26.3 27.1 26.4 24.9 24.2
1 2 3 4 5 6 7 8 9 10 11 12 13 14	25.4 27.3 28.3 28.0 28.2 29.7 29.7 30.6 30.8 30.8 30.8 30.8	JUNE 23.4 24.0 26.3 26.2 26.3 25.9 26.9 27.7 27.9 28.1 28.4 28.1 27.0	24.5 25.5 27.2 27.2 27.2 27.1 28.0 28.5 28.8 29.2 29.5 29.6 29.2	29.3 31.2 32.0 33.3 34.1 34.4 34.0 34.0 34.9 35.0 34.9 35.1 33.5 31.2 32.6	JULY 26.0 27.1 27.9 28.2 28.9 29.3 29.5 29.2 29.1 29.5 29.7 29.5 29.2 28.0 26.7	27.6 28.9 29.8 30.5 31.4 31.8 31.5 31.8 32.2 32.3 32.2 32.3	35.1 34.7 35.0 35.7 34.2 33.9 34.4 34.8 34.5	28.5 29.4 28.1 28.1 28.8 28.8 28.6 28.6 28.5 28.6 28.4 28.4 29.3 27.3	31.6 31.9 31.3 31.5 32.1 31.6 31.3 31.4 31.4 31.1 30.2 29.8 30.0 29.1 28.2 29.5	31.6 31.3 30.9 27.1 27.2 29.0 29.6 28.1 26.7 26.8 27.7 29.9 29.9	25.8 25.4 26.7 24.7 24.1 24.3 25.1 23.1 21.6 21.6 22.6 23.8	28.0 28.3 28.1 25.6 25.4 26.3 27.1 26.4 24.9 24.2 24.5 25.6 26.4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	25.4 27.3 28.3 28.2 28.0 28.2 29.7 29.7 30.6 30.8 30.8 30.8 30.3 29.4 29.5 30.2 30.2	JUNE 23.4 24.0 26.3 26.2 26.3 25.9 27.3 27.7 27.9 28.1 28.4 28.1 27.0 25.7 26.7 27.3 27.0	24.5 25.5 27.2 27.2 27.1 28.5 28.5 29.2 29.5 29.6 29.2 28.2 27.4 28.4 28.8 28.5 28.4	29.3 31.2 32.0 33.3 34.1 34.4 34.0 34.0 34.9 35.0 34.9 35.1 33.5 31.2 32.6 33.5 34.8	JULY 26.0 27.1 27.9 28.2 28.9 29.3 29.5 29.2 29.1 29.5 29.7 29.5 29.7 29.6 7 28.0 26.7	27.6 28.9 29.8 30.5 31.4 31.8 31.5 31.8 32.2 32.2 32.2 29.5 29.3 30.6 31.0 31.6 32.0	35.1 34.7 35.0 35.7 34.2 33.9 34.8 34.5 33.3 34.6 32.8 33.4 32.8 33.7 31.6	28.5 29.4 28.1 28.1 28.8 28.8 28.6 28.5 28.6 28.6 28.6 28.6 28.5 28.6 28.6 28.6 28.4 29.3 27.3 26.9 27.4 27.8 25.6 26.4	31.6 31.9 31.3 31.5 32.1 31.6 30.8 31.3 31.4 31.4 31.4 31.2 29.8 30.0 29.1 28.2 29.5 30.1	31.6 31.3 30.9 27.1 27.2 29.0 29.6 28.1 26.7 26.8 27.7 29.9 28.7 27.4 23.3 25.2 24.6 24.2	25.8 25.4 26.7 24.7 24.1 24.3 24.9 25.1 21.6 21.6 22.6 23.2 23.8 20.4 21.4 23.3 23.1 22.0	28.0 28.3 28.1 25.6 25.4 26.3 27.1 26.4 24.9 24.2 24.5 25.6 26.4 23.6 22.2 24.1 24.0 23.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 20 20 20 20 20 20 20 20 20 20 20 20 20	25.4 27.3 28.3 28.2 28.0 28.2 29.7 29.7 30.6 30.8 30.8 30.3 29.4 29.5 30.2 30.2 30.0 31.1	JUNE 23.4 24.0 26.3 26.2 26.3 25.9 26.9 27.7 27.9 28.1 28.4 28.1 27.0 25.7 27.3 27.0 26.7 27.3 27.0 26.7 27.3 27.0 26.7 26.7 27.3 27.0 26.9 27.3	24.5 25.5 27.2 27.2 27.2 27.1 28.0 28.5 28.8 29.2 29.6 29.2 28.2 27.4 28.4 28.8 29.1 29.6 28.9 28.9	29.3 31.2 32.0 33.3 34.1 34.4 34.0 34.9 35.0 34.9 35.1 33.5 31.2 32.6 33.5 34.8 34.8 35.0 35.5 35.3 35.9	JULY 26.0 27.1 27.9 28.2 28.9 29.3 29.5 29.1 29.5 29.7 29.5 29.2 28.0 26.7 28.0 28.5 29.5 29.5 29.6 29.2 29.6 29.2 29.6 29.2 29.6 29.8 30.2	27.6 28.9 29.8 30.5 31.4 31.8 31.8 31.5 31.8 32.2 32.3 32.2 31.6 31.6 32.0 31.6 32.1 32.1 32.1 32.2 32.3	35.1 34.7 35.0 35.7 34.2 33.9 34.4 34.8 34.5 33.3 34.6 32.8 33.3 30.7 31.6 32.9 32.6 31.9 32.1 33.0 30.7 30.5 30.0 30.0 30.0	28.5 29.4 28.1 28.1 28.8 28.6 28.6 28.6 28.6 28.6 28.6 27.3 26.9 27.4 27.6 27.6 27.6 27.6 27.6 27.2	31.6 31.9 31.3 31.5 32.1 31.6 30.8 31.3 31.4 31.1 30.2 29.8 30.0 29.1 29.5 30.1	31.6 31.3 30.9 27.1 27.2 29.0 29.6 28.1 26.7 26.8 27.7 29.0 29.9 28.7 27.4 23.3 25.2 24.6 24.2 23.9	25.8 25.4 26.7 24.7 24.1 24.3 24.9 25.1 21.6 21.6 22.6 23.2 23.8 20.4 21.4 23.3 22.0 20.8	28.0 28.3 28.1 25.6 25.4 26.3 27.1 26.4 24.9 24.2 24.5 25.6 22.1 24.0 23.0 22.1 21.8 23.4 24.0 22.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 27 28 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	25.4 27.3 28.2 28.0 28.2 29.2 29.7 30.6 30.8 30.8 30.8 30.3 29.5 30.2 29.9 30.2 29.9 30.2 30.2 29.7 30.2 30.2 29.7 30.2 30.2 29.7 30.2 30.2 29.7 30.2 30.2 29.7 30.2 30.2 30.2 30.2 30.2 30.2 30.2 30.2	JUNE 23.4 24.0 26.3 26.2 26.3 25.9 26.9 27.7 27.9 28.1 28.4 27.0 25.7 27.3 27.0 26.7 27.3 27.0 26.7 27.3 27.0 26.7 27.3 27.0 26.7 27.3 27.0 26.7 27.3 27.0 26.7 27.3 27.0 26.7 27.3	24.5 25.5 27.2 27.2 27.2 27.1 28.0 28.5 29.6 29.6 29.2 27.4 28.8 28.5 28.9 29.6 28.9 28.9 28.9 28.9 28.9 28.9 28.9	29.3 31.2 32.0 33.3 34.1 34.4 34.0 34.9 35.0 34.9 35.1 33.5 34.0 34.8 34.8 35.0 35.5 36.0 34.9 35.1 33.5 35.7 34.3 35.7	JULY 26.0 27.1 27.9 28.2 28.9 29.3 29.5 29.1 29.5 29.7 29.5 29.2 28.0 26.7 28.0 28.5 29.5 29.5 29.6 29.2 29.6 29.2 29.6 29.2 29.6 29.8 30.2	27.6 28.9 29.8 30.5 31.4 31.8 31.8 31.5 31.8 32.2 32.3 32.2 31.6 31.6 32.0 31.6 32.1 32.1 32.1 32.2 32.3	35.1 34.7 35.0 35.7 34.2 33.9 34.8 34.5 33.4 32.8 33.3 30.7 31.6 32.9 32.1 32.9 32.1 32.2 33.0 30.7 30.8 30.0 30.0 28.2 29.9	28.5 29.4 28.1 28.1 28.8 28.1 28.8 28.1 28.6 28.5 28.6 28.4 29.3 27.3 26.9 27.4 27.8 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.2 27.2	31.6 31.9 31.3 31.5 32.1 31.6 30.8 31.3 31.4 31.4 30.6 31.1 31.1 29.8 30.0 29.1 28.2 29.5 30.1 29.4 29.4 29.4 29.4 29.4 29.4 29.4 29.4	31.6 31.3 30.9 27.1 27.2 29.0 29.6 28.1 26.7 26.8 27.7 29.9 28.7 27.4 23.3 25.2 24.6 24.2 23.9 23.0 24.4 25.3 24.2 21.3 21.6 22.1 22.3	25.8 25.4 26.7 24.7 24.1 24.3 24.9 25.1 21.6 21.6 23.2 23.8 20.4 21.4 23.3 22.0 20.8 21.0 20.8 21.0 20.8 21.0 20.8 21.0 20.8 21.0 20.8 21.0 20.8 21.0 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20	28.0 28.3 28.1 25.6 25.4 26.3 27.1 26.4 24.2 24.5 26.4 22.1 23.6 22.1 23.6 22.1 23.1 21.8 23.4 24.0 22.0 20.1 20.2 20.7 20.8

07315500 Red River near Terral, OK--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.-CHEMICAL DATA: Oct. 1967 to Sept. 1997.
BIOLOGICAL DATA: May 1997 to Sept. 1997; Oct. 1999 to current year.

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	E COLI, MTEC MF WATER (COL/ 100 ML) (31633)
FEB									
~ 08 APR	1230	2660	3390	7.0	12.2	10.6	104	32	20
19 MAY	1520	778	4430	8.5	19.5	14.7	170	140	130
23 AUG	1100	13800	1220	7.7	20.6	8.1	92.7	1600	2000
09	1020	252	4900	7.6	32.5	8.8	127	13	9

07308500 Red River near Burkburnett, TX--Continued

WATER-CUALITY RECORDS

PERIOD OF RECORD . --

CHEMICAL DATA: May 1968 to current year.
BIOCHEMICAL DATA: Oct. 1974 to Aug. 1994.
PESTICIDE DATA: Oct. 1973 to Sept. 1982, Oct. 1996 to current year.

PERIOD OF DAILY RECORD . --

RIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: July 1968 to Sept. 1981, Oct. 1994 to current year. WATER TEMPERATURE: July 1968 to Sept. 1981, Oct. 1994 to current year.

INSTRUMENTATION. -- Water-quality monitor Dec. 1968 to Sept. 1981 and Oct. 1994 to current year.

REMARKS. -- Records fair. Mean monthly and annual concentrations and loads for selected chemical constituents have been computed using the daily (or continuous) records of specific conductance and a regression relation between each chemical constituent and specific conductance. The computation of the selected constituent loads might include estimated discharge or specific conductance data. New regression equations were developed based on data from water years 1992 to 2001. The standard error of estimate for dissolved solids is 3%, chloride is 7%, sulfate is 16% and for hardness is 10%. Regression equations developed for this station may be obtained from the U.S. Geological Survey Texas District Office upon request.

DIS-

EXTREMES FOR PERIOD OF DAILY RECORD.—
SPECIFIC CONDUCTANCE: Maximum, 17,400 microsiemens/cm, July 30, 1972; minimum, 462 microsiemens/cm, Feb. 24, 1997.
WATER TEMPERATURE: Maximum, 38.0°C, July 24, 2001; minimum, 0.0°C, on many days during winter months.

EXTREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum, 11,400 microsiemens/cm, Sept. 8; minimum, 616 microsiemens/cm, Nov. 3.
WATER TEMPERATURE: Maximum, 38.0°C, July 24; minimum, 0.0°C, Jan. 2, 3.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

OXYGEN,

HARD-

DATE	TIME	CHARGE, INST. CUBIC FEET PER SECON								DIS- SOLVED (MG/L .) AS	DIS- SOLVED (MG/L CA) AS	(MG/L MG) AS	SODIUM AD- SORP- TION RATIO NA)
		(00061)	(00095)	(00400)	(00010)	(00300)	(00301)	(00900)	(00904)	(00915)	(00925)	(00930)	(00931)
OCT 04 NOV	1535	19	6670	8.1	29.4	8.0	111	1300	1200	328	128	1010	12
30 DEC	1400	821	7880	7.8	8.9	10.8	98	1200	1000	311	101	1240	.16
21 JAN	1245	525	9780	7.6	4.7	12.3	101	1500	1300	398	128	1480	16
29	1415	1700	3320	8.1	6.9	11.2	97	600	490	153	53.	8 498	9
FEB 05	1200	914	7750	8.1	6.5	9.1	78	1300	1100	343	113	1240	15
MAR 30	1120	728	7110	8.3	12.2	11.2	111	1400	1200	349	123	1050	12
APR 25	1415	348	7800	8.2	22.6	11.5	140	1500	1400	372	136	1180	13
JUN 01	1245	9500	2040	7.2	23.4	8.0	97	470	360	125	27	4 251	_
18 JUL	1120	565	5310	8.1	24.8	7.8	99	1000	950	261	37.4 96.5		5 10
12 AUG	1240	210	5730	8.0	28.8	7.6	104	1100	1000	260	110	811	11
09 SEP	1220	88	5160	7.9	29.1	7.6	104	1100	980	245	111	755	10
21	1020	657	3820	7.9	22.1	7.3	88	660	570	171	56.0	0 502	9
									•				
		ALKA					SOLID	S, RESIL	UE NITE	C- NIT	RO- NIT	RO- NIT	TD (
	DOM: C			GTTT 0		ATT 741							
	POTAS SIUM.	- LINITY		CHLO-			A, SUM O	F TOTAL	GEN	, GE	N, GE	N, GE	N,
	SIUM, DIS-	- LINITY WAT DIS TOT IT	SULFATE DIS-	RIDE, DIS-	FLUO RIDE, DIS-	DIS- SOLVED	A, SUM O	F TOTAL	GEN	, GE		N, GE AMMONIA	N, NITRO-
	SIUM, DIS- SOLVED	- LINITY WAT DIS TOT IT FIELD	SULFATE DIS- SOLVED	RIDE, DIS- SOLVED	RIDE, DIS- SOLVED	DIS- SOLVED (MG/L	A, SUM O CONSTI- TUENTS, DIS-	F TOTAL AT 105 DEG. C, SUS-	GEN NITRATE DIS- SOLVED	, GE NITRITE DIS- SOLVED	N, GE NO2+NO3 DIS-	N, GE AMMONIA DIS-	N,
DATE	SIUM, DIS- SOLVED (MG/L	WAT DIS TOT IT FIELD MG/L AS	SULFATE DIS- SOLVED (MG/L	RIDE, DIS- SOLVED (MG/L	RIDE, DIS- SOLVED (MG/L	DIS- SOLVED (MG/L AS	A, SUM O CONSTI- TUENTS, DIS- SOLVED	F TOTAL AT 105 DEG. C, SUS- PENDED	GEN NITRATE DIS- SOLVED (MG/L	, GE NITRITE DIS- SOLVED (MG/L	N, GE NO2+NO3 DIS- SOLVED (MG/L	N, GE AMMONIA DIS- SOLVED (MG/L	n, nitro- gen, total (mg/l
DATE	SIUM, DIS- SOLVED (MG/L AS K)	WAT DIS TOT IT FIELD MG/L AS CACO3	SULFATE DIS- SOLVED (MG/L AS SO4)	RIDE, DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2)	A, SUM O CONSTI- TUENTS, DIS- SOLVED (MG/L)	F TOTAL AT 105 DEG. C, SUS- PENDED (MG/L)	MITRATE DIS- SOLVED (MG/L AS N)	, GE NITRITE DIS- SOLVED (MG/L AS N)	N, GE NO2+NO3 DIS- SOLVED (MG/L AS N)	N, GE AMMONIA DIS- SOLVED (MG/L AS N)	N, NITRO- GEN, TOTAL (MG/L AS N)
DATE	SIUM, DIS- SOLVED (MG/L	WAT DIS TOT IT FIELD MG/L AS	SULFATE DIS- SOLVED (MG/L	RIDE, DIS- SOLVED (MG/L	RIDE, DIS- SOLVED (MG/L	DIS- SOLVED (MG/L AS	A, SUM O CONSTI- TUENTS, DIS- SOLVED	F TOTAL AT 105 DEG. C, SUS- PENDED	GEN NITRATE DIS- SOLVED (MG/L	, GE NITRITE DIS- SOLVED (MG/L	N, GE NO2+NO3 DIS- SOLVED (MG/L	N, GE AMMONIA DIS- SOLVED (MG/L	n, nitro- gen, total (mg/l
OCT	SIUM, DIS- SOLVED (MG/L AS K)	WAT DIS TOT IT FIELD MG/L AS CACO3	SULFATE DIS- SOLVED (MG/L AS SO4)	RIDE, DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2)	A, SUM O CONSTI- TUENTS, DIS- SOLVED (MG/L)	F TOTAL AT 105 DEG. C, SUS- PENDED (MG/L)	MITRATE DIS- SOLVED (MG/L AS N)	, GE NITRITE DIS- SOLVED (MG/L AS N)	N, GE NO2+NO3 DIS- SOLVED (MG/L AS N)	N, GE AMMONIA DIS- SOLVED (MG/L AS N)	N, NITRO- GEN, TOTAL (MG/L AS N)
OCT 04 NOV	SIUM, DIS- SOLVED (MG/L AS K)	WAT DIS TOT IT FIELD MG/L AS CACO3	SULFATE DIS- SOLVED (MG/L AS SO4)	RIDE, DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2)	A, SUM O CONSTI- TUENTS, DIS- SOLVED (MG/L)	F TOTAL AT 105 DEG. C, SUS- PENDED (MG/L)	MITRATE DIS- SOLVED (MG/L AS N)	, GE NITRITE DIS- SOLVED (MG/L AS N)	N, GE NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	N, GE AMMONIA DIS- SOLVED (MG/L AS N) (00608)	N, NITRO- GEN, TOTAL (MG/L AS N)
OCT 04	SIUM, DIS- SOLVED (MG/L AS K) (00935)	WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955)	A, SUM O CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	F TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	MITRATE DIS- SOLVED (MG/L AS N) (00618)	, GE NITRITE DIS- SOLVED (MG/L AS N) (00613)	N, GE NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	N, GE AMMONIA DIS- SOLVED (MG/L AS N) (00608)	N, NITRO- GEN, TOTAL (MG/L AS N)
OCT 04 NOV 30	SIUM, DIS- SOLVED (MG/L AS K) (00935)	WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 100 180 260	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955)	A, SUM O CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	F TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	MITRATE DIS- SOLVED (MG/L AS N) (00618)	MITRITE DIS- SOLVED (MG/L AS N) (00613)	N, GE NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) <.047	N, GE AMMONIA DIS- SOLVED (MG/L AS N) (00608)	N, NITRO- GEN, TOTAL (MG/L AS N) (00600)
OCT 04 NOV 30 DEC 21 JAN 29	SIUM, DIS- SOLVED (MG/L AS K) (00935) 11.4	WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945) 1220 940	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 1590	RIDE, DIS- SOLVED (MG/L (MG/L) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955) 8.6	A, SUM O CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 4350 4780	F TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	MITRATE DIS- SOLVED (MG/L AS N) (00618)	MITRITE DIS- SOLVED (MG/L AS N) (00613) <.006	N, GE NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) <.047 1.16	N, GE AMMONIA DIS- SOLVED (MG/L AS N) (00608) E.030	N, NITRO- GEN, TOTAL (MG/L AS N) (00600)
OCT 04 NOV 30 DEC 21 JAN	SIUM, DIS- SOLVED (MG/L AS K) (00935) 11.4 8.65	WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 100 180 260	SULFATE DIS- SOLVED (MG/L AS SO4) (00945) 1220 940 1170	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 1590 2050	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955) 8.6 10.7 8.7	A, SUM O CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 4350 4780 5590	F TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530) 35 67	MITRATE DIS- SOLVED (MG/L AS N) (00618)	I, GE NITRITE DIS- SOLVED (MG/L AS N) (00613) <.006	N, GE NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) <.047 1.16 1.35	N, GE AMMONIA DIS- SOLVED (MG/L AS N) (00608) E.030 E.021	N, NITRO- GEN, TOTAL (MG/L AS N) (00600)
OCT 04 NOV 30 DEC 21 JAN 29 FEB 05	SIUM, DIS- SOLVED (MG/L AS K) (00935) 11.4 8.65 1.50	WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 100 180 260	SULFATE DIS- SOLVED (MG/L AS SO4) (00945) 1220 940 1170 425	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 1590 2050 2270 824	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955) 8.6 10.7 8.7 6.3	A, SUM O CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 4350 4780 5590 2040	F TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530) 35 67 31	GEN NITRATE DIS- SOLVED (MG/L AS N) (00618)	J. GE NITRITE DIS- SOLVED (MG/L AS N) (00613) <.006 .012 .026	N, GE NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) <.047 1.16 1.35 1.16	N, GE AMMONIA DIS- SOLVED (MG/L AS N) (00608) E.030 E.021 .092 .090 E.027	N, NITRO- GEN, TOTAL (MG/L AS N) (00600)
OCT 04 NOV 30 DEC 21 JAN 29 FEB 05 MAR 30 APR 25	SIUM, DIS- SOLVED (MG/L AS K) (00935) 11.4 8.65 1.50 5.17	WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 100 180 260 112 183	SULFATE DIS- SOLVED (MG/L AS SO4) (00945) 1220 940 1170 425	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 1590 2050 2270 824 2030	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955) 8.6 10.7 8.7 6.3 9.2	A, SUM O CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 4350 4780 5590 2040 4910	F TOTAI AT 105 DEG. C, SUS- PENDED (MG/L) (00530) 35 67 31 576 178	GEN NITRATE DIS- SOLVED (MG/L AS N) (00618) 1.14 1.32 1.14 1.55	, GE NITRITE DIS- SOLVED (MG/L AS N) (00613) <.006 .012 .026 .019	N, GE NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) <.047 1.16 1.35 1.16 1.57	N, GE AMMONIA DIS- SOLVED (MG/L AS N) (00608) E.030 E.021 .092 .090 E.027 <.041	N, NITRO- GEN, TOTAL (MG/L (MG/L) (00600)
OCT 04 NOV 30 DEC 21 JAN 29 FEB 05 MAR 30 APR 25 JUN 01	SIUM, DIS- SOLVED (MG/L AS K) (00935) 11.4 8.65 1.50 5.17 7.95 7.25 9.28	- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 100 180 260 112 183 190 97 106	SULFATE DIS- SOLVED (MG/L AS SO4) (00945) 1220 940 1170 425 1050 1150 1320 348	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 1590 2050 2270 824 2030 1760 1900	RIDE, DIS- SOLVED (MG/L AS F) (00950) .4 .4 .4 .3 .4	DIS- SOLVED (MG/L AS SIO2) (00955) 8.6 10.7 8.7 6.3 9.2 5.4	A, SUM O CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 4350 4780 5590 2040 4910 4540 4970 1210	F TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530) 35 67 31 576 178 93 59 <10	GEN NITRATE DIS- SOLVED (MG/L AS N) (00618) 1.14 1.32 1.14 1.55 .605	J. GE NITRITE DIS- SOLVED (MG/L AS N) (00613) <.006 .012 .026 .019 .024 .012 <.006	N, GE NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) <.047 1.16 1.35 1.16 1.57 .617 <.047	N, GE AMMONIA DIS- SOLVED (MG/L AS N) (00608) E.030 E.021 .092 .090 E.027 <.041 <.041 E.021	N, NITRO- GEN, TOTAL (MG/L AS N) (00600)
OCT 04 NOV 30 DEC 21 JAN 29 FEB 05 MAR 30 APR 25 JUN 01 18	SIUM, DIS- SOLVED (MG/L AS K) (00935) 11.4 8.65 1.50 5.17 7.95 7.25 9.28 6.06 8.34	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 100 180 260 112 183 190 97 106 98	SULFATE DIS- SOLVED (MG/L AS SO4) (00945) 1220 940 1170 425 1050 1150 1320 348 928	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 1590 2050 2270 824 2030 1760 1900 378 1150	RIDE, DIS- SOLVED (MG/L AS F) (00950) .4 .4 .4 .4 .4 .4	DIS- SOLVED (MG/L AS SIO2) (00955) 8.6 10.7 8.7 6.3 9.2 5.4 .7	A, SUM O CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 4350 4780 5590 2040 4910 4540 4970 1210 3240	F TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530) 35 67 31 576 178 93 59 <10 500	GEN NITRATE DIS- SOLVED (MG/L AS N) (00618) 1.14 1.32 1.14 1.55 .605	J. GE NITRITE DIS- SOLVED (MG/L AS N) (00613) <.006 .012 .026 .019 .024 .012 <.006	N, GE NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) <.047 1.16 1.35 1.16 1.57 .617 <.047 .538 <.050	N, GE AMMONIA DIS- SOLVED (MG/L AS N) (00608) E.030 E.021 .092 .090 E.027 <.041 <.041 E.021 <.040	N, NITRO-GEN, TOTAL (MG/L AS N) (00600)
OCT 04 NOV 30 DEC 21 JAN 29 FEB 05 MAR 30 APR 25 JUN 01 18 JUL 12 AUG	SIUM, DIS- SOLVED (MG/L AS K) (00935) 11.4 8.65 1.50 5.17 7.95 7.25 9.28 6.06 8.34 9.25	LINITY WAT DIS TOT IS FIELD MG/L AS CACO3 (39086) 100 180 260 112 183 190 97 106 98 94	SULFATE DIS- SOLVED (MG/L AS SO4) (00945) 1220 940 1170 425 1050 1150 1320 348 928 983	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 1590 2050 2270 824 2030 1760 1900 378 1150	RIDE, DIS- SOLVED (MG/L AS F) (00950) .4 .4 .4 .4 .4 .4	DIS- SOLVED (MG/L AS SIO2) (00955) 8.6 10.7 8.7 6.3 9.2 5.4 .7	A, SUM O CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 4350 4780 5590 2040 4910 4540 4970 1210 3240 3500	F TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530) 35 67 31 576 178 93 59 <10 500	GEN NITRATE DIS- SOLVED (MG/L AS N) (00618) 1.14 1.32 1.14 1.55 .605	J. GE NITRITE DIS- SOLVED (MG/L AS N) (00613) <.006 .012 .026 .019 .024 .012 <.006	N, GE NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) <.047 1.16 1.35 1.16 1.57 .617 <.047 .538 <.050 <.050	N, GE AMMONIA DIS- SOLVED (MG/L AS N) (00608) E.030 E.021 .092 .090 E.027 <.041 <.041 E.021 <.040 <.040	N, NITRO-GEN, TOTAL (MG/L AS N) (00600)
OCT 04 NOV 30 DEC 21 JAN 29 FEB 05 MAR 30 APR 25 JUN 18 11	SIUM, DIS- SOLVED (MG/L AS K) (00935) 11.4 8.65 1.50 5.17 7.95 7.25 9.28 6.06 8.34	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 100 180 260 112 183 190 97 106 98	SULFATE DIS- SOLVED (MG/L AS SO4) (00945) 1220 940 1170 425 1050 1150 1320 348 928	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 1590 2050 2270 824 2030 1760 1900 378 1150	RIDE, DIS- SOLVED (MG/L AS F) (00950) .4 .4 .4 .4 .4 .4	DIS- SOLVED (MG/L AS SIO2) (00955) 8.6 10.7 8.7 6.3 9.2 5.4 .7	A, SUM O CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 4350 4780 5590 2040 4910 4540 4970 1210 3240	F TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530) 35 67 31 576 178 93 59 <10 500	GEN NITRATE DIS- SOLVED (MG/L AS N) (00618) 1.14 1.32 1.14 1.55 .605	J. GE NITRITE DIS- SOLVED (MG/L AS N) (00613) <.006 .012 .026 .019 .024 .012 <.006	N, GE NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) <.047 1.16 1.35 1.16 1.57 .617 <.047 .538 <.050 <.050	N, GE AMMONIA DIS- SOLVED (MG/L AS N) (00608) E.030 E.021 .092 .090 E.027 <.041 <.041 E.021 <.040 <.040	N, NITRO-GEN, TOTAL (MG/L AS N) (00600)

07308500 Red River near Burkburnett, TX--Continued

DATE	NITRO- GEN, ORGANIC TOTAL (MG/L AS N) (00605)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	(MG/L AS P)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	PHOS- PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) (00660)	ARSENIC TOTAL (UG/L AS AS) (01002)	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA) (01007)	BARIUM, DIS- SOLVED (UG/L AS BA) (01005)	CADMIUM WATER UNFLTRD TOTAL (UG/L AS CD) (01027)	CADMIUM DIS- SOLVED (UG/L AS CD) (01025)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) (01034)
OCT 04		1.0	E.055	<.060	<.018		5	4.4	114	100	<.11	<.14	5
NOV 30		. 59	.125	.080	.072	.221	4	3.1	166	156	<.22	<.28	<1
DEC 21	-1.0	1.1	E.056	<.060	.028	.086	3	2.3	113	126	<.44	<.14	<1
JAN	~												
29 FEB	2.4	2.5	.521	.074			5	E1.7	278		.12	<.28	8
05 MAR		1.1	.236	E.039	.031	.095	4	3.1	146	127	<.33	< .42	8
30 APR		1.0	.128	<.060	<.018		3	2.5	102	91.9	<.33	<.42	2
25		.97	.093	<.060	<.018		E2	2.1	96.0	86.3	<.14	E.03	2
JUN 01		3.2	1.36	E.059	.057	.175	13	4.0	577	98.9	.39	<.04	26
18		.79	.113	<.060	<.020		4	3.2	174	163	<.11	<.08	<1
JUL 12		1.0	.088	<.060	<.020		4	3.7	147	132	<.11	<.10	2
AUG 09	.97	1.0	E.051	<.060	<.020		7	5.5	114	103	<.11	<.10	<1
SEP 21	3.6	3.7	1.24	<.060	.018	.055	12	2.3	371	103	.44	<.07	17
								MANG	A-				
	CHRO-	COPPER		IRON,		LEAD,		MANG NESE	, MANG			NICK	
	MIUM,	TOTAL	COPPER,	TOTAL	IRON,	TOTAL	LEAD,	NESE TOTAL	, MANG NESE,	TOTAL	MERCURY	TOTAL	NICKEL,
	MIUM, DIS-	TOTAL RECOV-	COPPER, DIS-	TOTAL RECOV-	DIS-	TOTAL RECOV-	DIS-	NESE TOTAL RECOV-	, MANG NESE, DIS-	TOTAL RECOV-	MERCURY DIS-	TOTAL RECOV-	NICKEL, DIS-
DATE	MIUM, DIS- SOLVED	TOTAL RECOV- ERABLE	COPPER, DIS- SOLVED	TOTAL RECOV- ERABLE	DIS- SOLVED	TOTAL RECOV- ERABLE	DIS- SOLVED	NESE TOTAL	, MANG NESE,	TOTAL	MERCURY	TOTAL	NICKEL,
DATE	MIUM, DIS-	TOTAL RECOV-	COPPER, DIS-	TOTAL RECOV-	DIS-	TOTAL RECOV-	DIS-	nese Total Recov- Erable	, MANG NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY DIS- SOLVED (UG/L AS HG)	TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, DIS- SOLVED (UG/L AS NI)
DATE	MIUM, DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L	COPPER, DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L	NESE TOTAL RECOV- ERABLE (UG/L	, MANG NESE, DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L	MERCURY DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L	NICKEL, DIS- SOLVED (UG/L
	MIUM, DIS- SOLVED (UG/L AS CR)	TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, DIS- SOLVED (UG/L AS CU)	TOTAL RECOV- ERABLE (UG/L AS FE)	DIS- SOLVED (UG/L AS FE)	TOTAL RECOV- ERABLE (UG/L AS PB)	DIS- SOLVED (UG/L AS PB)	NESE TOTAL RECOV- ERABLE (UG/L AS MN)	, MANG NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY DIS- SOLVED (UG/L AS HG)	TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, DIS- SOLVED (UG/L AS NI)
OCT 04	MIUM, DIS- SOLVED (UG/L AS CR)	TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, DIS- SOLVED (UG/L AS CU)	TOTAL RECOV- ERABLE (UG/L AS FE)	DIS- SOLVED (UG/L AS FE)	TOTAL RECOV- ERABLE (UG/L AS PB)	DIS- SOLVED (UG/L AS PB)	NESE TOTAL RECOV- ERABLE (UG/L AS MN)	, MANG NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY DIS- SOLVED (UG/L AS HG)	TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, DIS- SOLVED (UG/L AS NI)
OCT 04 NOV 30	MIUM, DIS- SOLVED (UG/L AS CR) (01030)	TOTAL RECOV- ERABLE (UG/L AS CU) (01042)	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	TOTAL RECOV- ERABLE (UG/L AS FE) (01045)	DIS- SOLVED (UG/L AS FE) (01046)	TOTAL RECOV- ERABLE (UG/L AS PB) (01051)	DIS- SOLVED (UG/L AS PB) (01049)	NESE TOTAL RECOV- ERABLE (UG/L AS MN) (01055)	, MANG NESE, DIS- SOLVED (UG/L AS MN) (01056)	TOTAL RECOV- ERABLE (UG/L AS HG) (71900)	MERCURY DIS- SOLVED (UG/L AS HG) (71890)	TOTAL RECOV- ERABLE (UG/L AS NI) (01067)	NICKEL, - DIS- SOLVED (UG/L AS NI) (01065)
OCT 04 NOV 30 DEC 21	MIUM, DIS- SOLVED (UG/L AS CR) (01030)	TOTAL RECOV- ERABLE (UG/L AS CU) (01042)	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	TOTAL RECOV- ERABLE (UG/L AS FE) (01045)	DIS- SOLVED (UG/L AS FE) (01046)	TOTAL RECOV- ERABLE (UG/L AS PB) (01051)	DIS- SOLVED (UG/L AS PB) (01049)	NESE TOTAL RECOV- ERABLE (UG/L AS MN) (01055)	, MANG NESE, DIS- SOLVED (UG/L AS MN) (01056)	TOTAL RECOV- ERABLE (UG/L AS HG) (71900)	MERCURY DIS- SOLVED (UG/L AS HG) (71890)	TOTAL RECOV- ERABLE (UG/L AS NI) (01067)	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)
OCT 04 NOV 30 DEC 21 JAN 29	MIUM, DIS- SOLVED (UG/L AS CR) (01030)	TOTAL RECOV- ERABLE (UG/L AS CU) (01042) 2.1 2.0	COPPER, DIS- SOLVED (UG/L AS CU) (01040) E1.3	TOTAL RECOV- ERABLE (UG/L AS FE) (01045)	DIS- SOLVED (UG/L AS FE) (01046) <50	TOTAL RECOV- ERABLE (UG/L AS PB) (01051) <1	DIS- SOLVED (UG/L AS PB) (01049) <1.00	NESE TOTAL RECOV- ERABLE (UG/L AS MN) (01055)	, MANG NESE, DIS- SOLVED (UG/L AS MN) (01056) 24.6	TOTAL RECOV- ERABLE (UG/L AS HG) (71900) <.14 <.14	MERCURY DIS- SOLVED (UG/L AS HG) (71890)	TOTAL RECOV- ERABLE (UG/L AS NI) (01067)	NICKEL, - DIS- SOLVED (UG/L AS NI) (01065) <2.40
OCT 04 NOV 30 DEC 21 JAN 29 FEB	MIUM, DIS- SOLVED (UG/L AS CR) (01030) <.8 <.8	TOTAL RECOV- ERABLE (UG/L AS CU) (01042) 2.1 2.0 E.9	COPPER, DIS- SOLVED (UG/L AS CU) (01040) E1.3 E.9 <1.3	TOTAL RECOV- ERABLE (UG/L AS FE) (01045) 210 590	DIS- SOLVED (UG/L AS FE) (01046) <50 <50 <100	TOTAL RECOV- ERABLE (UG/L AS PB) (01051) <1 2 <1	DIS- SOLVED (UG/L AS PB) (01049) <1.00 <1.00 <3.00	NESE TOTAL RECOV- ERABLE (UG/L AS MN) (01055) 65 56	, MANG NESE, DIS- SOLVED (UG/L AS MN) (01056) 24.6 24.3	TOTAL RECOV- ERABLE (UG/L AS HG) (71900) <.14 <.14	MERCURY DIS- SOLVED (UG/L AS HG) (71890) .33 <.23	TOTAL RECOV. ERABLE (UG/L AS NI) (01067) <2 2 E1	NICKEL, - DIS- SOLVED (UG/L AS NI) (01065) <2.40 <2.40
OCT 04 NOV 30 DEC 21 JAN 29 FEB	MIUM, DIS- SOLVED (UG/L AS CR) (01030) <.8 <.8 <.8 1.1	TOTAL RECOV- ERABLE (UG/L AS CU) (01042) 2.1 2.0 E.9 9.6	COPPER, DIS- SOLVED (UG/L AS CU) (01040) E1.3 E.9 <1.3	TOTAL RECOVER AS FE) (01045) 210 590 110 7810	DIS- SOLVED (UG/L AS FE) (01046) <50 <50 <100	TOTAL RECOV- ERABLE (UG/L AS PB) (01051) <1 2 <1 10	DIS- SOLVED (UG/L AS PB) (01049) <1.00 <1.00 <3.00 <1.00	NESE TOTAL RECOV- ERABLE (UG/L AS MN) (01055) 65 56 53	, MANG NESE, DIS- SOLVED (UG/L AS MN) (01056) 24.6 24.3 39.2	TOTAL RECOV- ERABLE (UG/L AS HG) (71900) <.14 <.14 <.14	MERCURY DIS- SOLVED (UG/L AS HG) (71890) .33 <.23 <.23 <.23	TOTAL RECOVERABLE (UG/L AS NI) (01067)	NICKEL, - DIS- SOLVED (UG/L AS NI) (01065)
OCT 04 NOV 30 DEC 21 JAN 29 FEB 05 MAR 30 APR	MIUM, DIS- SOLVED (UG/L AS CR) (01030) <.8 <.8 <.8 <.8 1.1 <1.6 <.8	TOTAL RECOV- REABLE (UG/L AS CU) (01042) 2.1 2.0 E.9 9.6 3.9 E1.8	COPPER, DIS- SOLVED (UG/L AS CU) (01040) E1.3 E.9 <1.3 E.9 <2.6	TOTAL RECOV- ERABLE (UG/L AS FE) (01045) 210 590 110 7810 2300 630	DIS- SOLVEID (UG/L AS FE) (01046) <50 <100 <30 <100 <50	TOTAL RECOV-ERABLE (UG/L AS PB) (01051) <1 2 <1 10 1 <2	DIS- SOLVED (UG/L AS PE) (01049) <1.00 <1.00 <1.00 <2.00 <2.00	NESE TOTAL RECOV- ERABLE (UG/L AS MN) (01055) 65 56 53 379 108	, MANG NESE, DIS- SOLVED (UG/L AS MN) (01056) 24.6 24.3 39.2 39.6 55.8	TOTAL RECOVERABLE (UG/L AS HG) (71900) <.14 <.14 <.14 <.10 <.14 <.01	MERCURY DIS- SOLVED (UG/L AS HG) (71890) .33 <.23 <.23 <.20 <.23 <.01	TOTAL RECOVERABLE (UG/L AS NI) (01067) <2 2 E1 13 4 E3	NICKEL, - DIS- SOLVED (UG/L AS NI) (01065) <2.40 <2.40 <2.40 <4.80
OCT 04 NOV 30 DEC 21 JAN 29 FEB 05 MAR 30 APR 25 JUN	MIUM, DIS- SOLVED (UG/L AS CR) (01030) <.8 <.8 <.8 <.8 1.1 <1.6 <.8	TOTAL RECOV- ERABLE (UG/L AS CU) (01042) 2.1 2.0 E.9 9.6 3.9 E1.8 4.1	COPPER, DIS- SOLVED (UG/L AS CU) (01040) E1.3 E.9 <1.3 E.9 <2.6 <2.6 6.4	TOTAL RECOV- ERABLE (UG/L AS FE) (01045) 210 590 110 7810 2300 630 190	DIS- SOLVEID (UG/L AS FE) (01046) <50 <100 <30 <100 <50 <50	TOTAL RECOV-ERABLE (UG/L AS PB) (01051) <1 2 <1 10 1 <2 <4	DIS- SOLVED (UG/L AS PB) (01049) <1.00 <1.00 <1.00 <2.00 <2.00	NESE TOTAL RECOV- ERABLE (UG/L AS MN) (01055) 65 56 53 379 108 49	, MANG NESE, DIS- SOLVED (UG/L AS MN) (01056) 24.6 24.3 39.2 39.6 55.8 11.3 18.6	TOTAL RECOV- ERABLE (UG/L AS HG) (71900) <.14 <.14 <.14 <.10 <.14 <.01 <.01	MERCURY DIS- SOLVED (UG/L AS HG) (71890) .33 <.23 <.23 <.23 <.20 <.23 <.01 <.01	TOTAL RECOVERABLE (UG/L AS NI) (01067) <2 2 E1 13 4 E3 19	NICKEL, - DIS- SOLVED (UG/L AS NI) (01065) <2.40 <2.40 <2.40 <4.80 <4.80 <.03
OCT 04 NOV 30 DEC 21 JAN 29 FEB 05 MAR 30 APR 25	MIUM, DIS- SOLVED (UG/L AS CR) (01030) <.8 <.8 <.8 <.8 1.1 <1.6 <.8	TOTAL RECOV- REABLE (UG/L AS CU) (01042) 2.1 2.0 E.9 9.6 3.9 E1.8	COPPER, DIS- SOLVED (UG/L AS CU) (01040) E1.3 E.9 <1.3 E.9 <2.6	TOTAL RECOV- ERABLE (UG/L AS FE) (01045) 210 590 110 7810 2300 630	DIS- SOLVEID (UG/L AS FE) (01046) <50 <100 <30 <100 <50	TOTAL RECOV-ERABLE (UG/L AS PB) (01051) <1 2 <1 10 1 <2	DIS- SOLVED (UG/L AS PE) (01049) <1.00 <1.00 <1.00 <2.00 <2.00	NESE TOTAL RECOV- ERABLE (UG/L AS MN) (01055) 65 56 53 379 108	, MANG NESE, DIS- SOLVED (UG/L AS MN) (01056) 24.6 24.3 39.2 39.6 55.8	TOTAL RECOVERABLE (UG/L AS HG) (71900) <.14 <.14 <.14 <.10 <.14 <.01	MERCURY DIS- SOLVED (UG/L AS HG) (71890) .33 <.23 <.23 <.20 <.23 <.01	TOTAL RECOVERABLE (UG/L AS NI) (01067) <2 2 E1 13 4 E3	NICKEL, - DIS- SOLVED (UG/L AS NI) (01065) <2.40 <2.40 <2.40 <4.80
OCT 04 NOV 30 DEC 21 JAN 29 FEB 05 MAR 30 AFR 25 JUN 01 18 JUL	MIUM, DIS- SOLVED (UG/L AS CR) (01030) <.8 <.8 <.8 <.8 1.1 <1.6 <.8 1.6 E.5 <.8	TOTAL RECOV- REABLE (UG/L AS CU) (01042) 2.1 2.0 E.9 9.6 3.9 E1.8 4.1 24.8 6.1	COPPER, DIS- SOLVED (UG/L AS CU) (01040) E1.3 E.9 <1.3 E.9 <2.6 <2.6 6.4 3.7 6.5	TOTAL RECOV- ERABLE (UG/L AS FE) (01045) 210 590 110 7810 2300 630 190 16200 510	DIS- SOLVEID (UG/L AS FE) (01046) <50 <100 <30 <100 <50 <50 <10 <30	TOTAL RECOVERABLE (UG/L AS PB) (01051) <1 2 <1 10 1 <2 <4 23 <3 <3	DIS- SOLVED (UG/L AS PB) (01049) <1.00 <1.00 <1.00 <2.00 <2.00 .22 E.05 <.20	NESE TOTAL RECOV- ERABLE (UG/L AS MN) (01055) 65 56 53 379 108 49 41 1130 73	, MANG NESE, DIS- SOLVED (UG/L AS MN) (01056) 24.6 24.3 39.2 39.6 55.8 11.3 18.6	TOTAL RECOV- ERABLE (UG/L AS HG) (71900) <.14 <.14 <.14 <.10 <.14 <.01 <.01 <.01	MERCURY DIS- SOLVED (UG/L AS HG) (71890) .33 <.23 <.23 <.20 <.23 <.01 <.01 <.01	TOTAL RECOVERABLE (UG/L AS NI) (01067) <2 2 E1 13 4 E3 19 30 9	NICKEL, - DIS- SOLVED (UG/L AS NI) (01065) <2.40 <2.40 <2.40 <2.40 <4.80 <4.80 <.03 .23 <.20
OCT 04 NOV 30 DEC 21 JAN 29 FEB 05 MAR 30 AFR 25 JUN 01 18 JUL 12 AUG	MIUM, DIS- SOLVED (UG/L AS CR) (01030) <.8 <.8 <.8 <.8 <.8 1.1 <1.6 <.8 1.6 E.5 <.8 E.5	TOTAL RECOV- ERABLE (UG/L AS CU) (01042) 2.1 2.0 E.9 9.6 3.9 E1.8 4.1 24.8 6.1 3.1	COPPER, DIS- DIS- SOLVED (UG/L AS CU) (01040) E1.3 E.9 <1.3 E.9 <2.6 <2.6 6.4 3.7 6.5 6.2	TOTAL RECOV- ERABLE (UG/L AS FE) (01045) 210 590 110 7810 2300 630 190 16200 510 320	DIS- SOLVEID (UG/L AS FE) (01046) <50 <100 <30 <100 <50 <50 <10 <30 <10	TOTAL RECOV-ERABLE (UG/L AS PB) (01051) <1 2 <1 10 1 <2 <4 23 <3 <3 <3	DIS- SOLVED (UG/L AS PE) (01049) <1.00 <1.00 <1.00 <2.00 <2.00 .22 E.05 <.20 <.20	NESE TOTAL RECOV- ERABLE (UG/L AS MN) (01055) 65 56 53 379 108 49 41 1130 73 53	, MANG NESE, DIS- SOLVED (UG/L AS MN) (01056) 24.6 24.3 39.2 39.6 55.8 11.3 18.6	TOTAL RECOVERABLE (UG/L AS HG) (71900) <.14 <.14 <.14 <.10 <.14 <.01 <.01 .03 <.01 .01	MERCURY DIS- SOLVED (UG/L AS HG) (71890) .33 <.23 <.23 <.20 <.23 <.01 <.01 <.01 <.01	TOTAL RECOVERABLE (UG/L AS NI) (01067) <2 2 E1 13 4 E3 19 30 9 5	NICKEL, - DIS- SOLVED (UG/L AS NI) (01065) <2.40 <2.40 <2.40 <4.80 <4.80 <.03 .23 <.20 1.76
OCT 04 NOV 30 DEC 21 JAN 29 FEB 05 MAR 30 AFR 25 JUN 01 18 JUL 12	MIUM, DIS- SOLVED (UG/L AS CR) (01030) <.8 <.8 <.8 <.8 1.1 <1.6 <.8 1.6 E.5 <.8	TOTAL RECOV- REABLE (UG/L AS CU) (01042) 2.1 2.0 E.9 9.6 3.9 E1.8 4.1 24.8 6.1	COPPER, DIS- SOLVED (UG/L AS CU) (01040) E1.3 E.9 <1.3 E.9 <2.6 <2.6 6.4 3.7 6.5	TOTAL RECOV- ERABLE (UG/L AS FE) (01045) 210 590 110 7810 2300 630 190 16200 510	DIS- SOLVEID (UG/L AS FE) (01046) <50 <100 <30 <100 <50 <50 <10 <30	TOTAL RECOVERABLE (UG/L AS PB) (01051) <1 2 <1 10 1 <2 <4 23 <3 <3	DIS- SOLVED (UG/L AS PB) (01049) <1.00 <1.00 <1.00 <2.00 <2.00 .22 E.05 <.20	NESE TOTAL RECOV- ERABLE (UG/L AS MN) (01055) 65 56 53 379 108 49 41 1130 73	, MANG NESE, DIS- SOLVED (UG/L AS MN) (01056) 24.6 24.3 39.2 39.6 55.8 11.3 18.6	TOTAL RECOV- ERABLE (UG/L AS HG) (71900) <.14 <.14 <.14 <.10 <.14 <.01 <.01 <.01	MERCURY DIS- SOLVED (UG/L AS HG) (71890) .33 <.23 <.23 <.20 <.23 <.01 <.01 <.01	TOTAL RECOVERABLE (UG/L AS NI) (01067) <2 2 E1 13 4 E3 19 30 9	NICKEL, - DIS- SOLVED (UG/L AS NI) (01065) <2.40 <2.40 <2.40 <2.40 <4.80 <4.80 <.03 .23 <.20

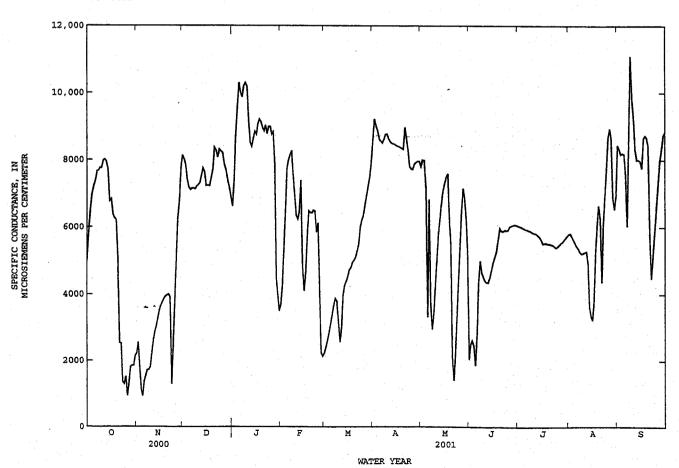
07308500 Red River near Burkburnett, TX--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	ENDO- SULFAN II TOTAL (UG/L) (34356)	BETA BENZENE HEXA- CHLOR- IDE TOTAL (UG/L) (39338)	CHLOR- DANE CIS WATER WHOLE TOTAL (UG/L) (39062)	DELTA BENZENE HEXA- CHLOR- IDE TOTAL (UG/L) (34259)	P,P' DDD, TOTAL (UG/L) (39310)	P,P' DDE, TOTAL (UG/L) (39320)	P,P' DDT, TOTAL (UG/L) (39300)	CHLOR- DANE TRANS WATER WHOLE TOTAL (UG/L) (39065)
OCT							•	
04		•						
NOV 30								
DEC								
21								
JAN								
29		·						
FEB								
05 MAR				, 				
30								·
APR								
25							,	
JON .	. 04				_			
01 18	<.04 .24	<.03 .15	<.1 E.1	<.09 <.09	<.1 E.1	<.04 E.04	<.1 <.1	<.1 E.1
JUL	.24	.13	E. I	~.09	E.1	E. 04	₹.1	E. 1
12	<.04	<.03	<.1	<.09	<.1	<.04	<.1	<.1
AUG							*	
09								
SEP								
21							'	

MONTHLY AND ANNUAL MEANS AND LOADS FOR OCTOBER 2000 TO SEPTEMBER 2001

MONTH	YEAR	DISCHARGE (CFS-DAYS)	SPECIFIC CONDUCT- ANCE (MICRO- SIEMENS)	DIS- SOLVED SOLIDS (MG/L)	DIS- SOLVED SOLIDS (TONS)	DIS- SOLVED CHLORIDE (MG/L)	DIS- SOLVED CHLORIDE (TONS)	DIS- SOLVED SULFATE (MG/L)	DIS- SOLVED SULFATE (TONS)	HARDNESS (CA,MG) (MG/L)	
OCT.	2000	56226	1570	1010	152800	300	45770	340	51060	380	
NOV.	2000	44588	2310	1480	178100	470	56770	470	56020	530	
DEC.	2000	16858	7590	4790	217900	1800	83460	1200	54510	1400	
JAN.	2001	24531	8000	5030	333200	2000	132500	1200	78400	1400	
FEB.	2001	40737	5330	3380	372000	1200	133000	930	102500	1100	
MAR.	2001	35925	4170	2660	257800	900	87440	780	75850	900	
APR.	2001	16356	8510	5350	236300	2100	93760	1300	55820	1500	
MAY	2001	127817	4330	2750	949700	960	329800	790	271600	910	
JUNE	2001	43347	3390	2170	253700	710	83280	660	77410	760	
JULY	2001	6272	5750	3 650	61770	1300	21930	1000	17190	1200	
AUG.	2001	7566	5980	3790	77380	1400	28130	1000	20870	1200	
SEPT	2001	9204	7950	5000	124400	2000	48840	1200	29890	1400	
TOTAL		429427	**	**	3215100	**	1144700	**	891100	**	
WID.A	VG.	1180	4370	2770	**	990	**	770	**	890	

07308500 Red River near Burkburnett, TX--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001


DATE	SELE- NIUM, TOTAL (UG/L AS SE) (01147)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	SILVER, TOTAL RECOV- ERABLE (UG/L AS AG) (01077)	SILVER, DIS- SOLVED (UG/L AS AG)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN) (01092)	SOLVED (UG/L AS ZN)	ALDRIN, TOTAL (UG/L) (39330)	PCB	/	AROCLOR 1232 PCB TOTAL (UG/L) (39492)	AROCLOR 1248 PCB TOTAL (UG/L) (39500)	AROCLOR 1254 PCB TOTAL (UG/L) (39504)	AROCLOR 1260 PCB TOTAL (UG/L) (39508)
OCT 04 NOV	3.7	3.1	<.43	<.2	<93	<100			·		·		
30	3.9	3.6	<.86	<.2	<93	<100						, 	
DEC 21 JAN	4.1	5.1	<.86	.5	<93	<200							
29 FEB	E1.3	E1.5	<.40	<.2	33	<60							
05 MAR	E2.2	4.5	<.86	<.3	<93	<200		- -					
30 APR	4.8	3.0	<.86	<.3	<93	<100							
25 JUN	4.4	4.0	<.20	<1.0	4	6		·					
01	2.2	1.9	.10	<1.0	105	2	<.040	<.10	<1	<.1	<.1	<.1	<.1
18	5.0	4.1	<.15	<3.0	7	8	<.040	<.10	<1	<.1	<.1	<.1	<.1
JUL 12 AUG	3.6	4.7	<.15	<3.0	5	. 5	<.040	<.10	<1	<.1	<.1	<.1	<.1
09 SEP	2.6	3.4	<.15	<3.0	6	6						· .	
21	4.6	3.1	.12	<2.0	322	4						, -	·
DATE	CHLOR- DANE, TECH- NICAL TOTAL (UG/L) (39350)	DI- ELDRIN TOTAL (UG/L) (39380)	ENDO- SULFAN SULFATE TOTAL (UG/L) (34351)	ENDRIN WATER UNFLITED REC (UG/L) (39390)	ENDRIN ALDE- HYDE TOTAL (UG/L) (34366)	HEPTA- CHLOR, TOTAL (UG/L) (39410)	HEPTA- CHLOR EPOXIDE TOTAL (UG/L) (39420)	LINDANE TOTAL (UG/L) (39340)	PCB 207 SUR SCD 1608 WATER UNFLITED PERCENT (99781)	TOX- APHENE, TOTAL (UG/L) (39400)	ENDO- SULFAN- I WATER WHOLE REC (UG/L) (34361)		ALPHA- HCH-D6 SUR SCD 1608 WATER UNFLTRD PERCENT (99778)
OCT	DANE, TECH- NICAL TOTAL (UG/L)	DI- ELDRIN TOTAL (UG/L)	SULFAN SULFATE TOTAL (UG/L)	WATER UNFLIRD REC (UG/L)	ALDE- HYDE TOTAL (UG/L)	CHLOR, TOTAL (UG/L)	CHLOR EPOXIDE TOTAL (UG/L)	TOTAL (UG/L)	207 SUR SCD 1608 WATER UNFLTRD PERCENT	TOX- APHENE, TOTAL (UG/L)	SULFAN- I WATER WHOLE REC (UG/L)	ALPHA BHC TOTAL (UG/L)	HCH-D6 SUR SCD 1608 WATER UNFLTRD PERCENT
OCT 04 NOV	DANE, TECH- NICAL TOTAL (UG/L)	DI- ELDRIN TOTAL (UG/L)	SULFAN SULFATE TOTAL (UG/L)	WATER UNFLIRD REC (UG/L)	ALDE- HYDE TOTAL (UG/L)	CHLOR, TOTAL (UG/L)	CHLOR EPOXIDE TOTAL (UG/L)	TOTAL (UG/L)	207 SUR SCD 1608 WATER UNFLTRD PERCENT	TOX- APHENE, TOTAL (UG/L)	SULFAN- I WATER WHOLE REC (UG/L)	ALPHA BHC TOTAL (UG/L)	HCH-D6 SUR SCD 1608 WATER UNFLTRD PERCENT
OCT 04 NOV 30 DEC	DANE, TECH- NICAL TOTAL (UG/L)	DI- ELDRIN TOTAL (UG/L)	SULFAN SULFATE TOTAL (UG/L)	WATER UNFLIRD REC (UG/L)	ALDE- HYDE TOTAL (UG/L)	CHLOR, TOTAL (UG/L)	CHLOR EPOXIDE TOTAL (UG/L)	TOTAL (UG/L)	207 SUR SCD 1608 WATER UNFLTRD PERCENT	TOX- APHENE, TOTAL (UG/L)	SULFAN- I WATER WHOLE REC (UG/L)	ALPHA BHC TOTAL (UG/L)	HCH-D6 SUR SCD 1608 WATER UNFLTRD PERCENT
OCT 04 NOV 30 DEC 21	DANE, TECH- NICAL TOTAL (UG/L)	DI- ELDRIN TOTAL (UG/L)	SULFAN SULFATE TOTAL (UG/L)	WATER UNFLIRD REC (UG/L)	ALDE- HYDE TOTAL (UG/L)	CHLOR, TOTAL (UG/L)	CHLOR EPOXIDE TOTAL (UG/L)	TOTAL (UG/L)	207 SUR SCD 1608 WATER UNFLTRD PERCENT	TOX- APHENE, TOTAL (UG/L)	SULFAN- I WATER WHOLE REC (UG/L)	ALPHA BHC TOTAL (UG/L)	HCH-D6 SUR SCD 1608 WATER UNFLTRD PERCENT
OCT 04 NOV 30 DEC 21 JAN	DANE, TECH- NICAL TOTAL (UG/L)	DI- ELDRIN TOTAL (UG/L)	SULFAN SULFATE TOTAL (UG/L)	WATER UNFLIRD REC (UG/L)	ALDE- HYDE TOTAL (UG/L)	CHLOR, TOTAL (UG/L)	CHLOR EPOXIDE TOTAL (UG/L)	TOTAL (UG/L)	207 SUR SCD 1608 WATER UNFLTRD PERCENT	TOX- APHENE, TOTAL (UG/L)	SULFAN- I WATER WHOLE REC (UG/L)	ALPHA BHC TOTAL (UG/L)	HCH-D6 SUR SCD 1608 WATER UNFLTRD PERCENT
OCT 04 NOV 30 DEC 21 JAN 29 FEB 05	DANE, TECH- NICAL TOTAL (UG/L)	DI- ELDRIN TOTAL (UG/L)	SULFAN SULFATE TOTAL (UG/L)	WATER UNFLIRD REC (UG/L)	ALDE- HYDE TOTAL (UG/L)	CHLOR, TOTAL (UG/L)	CHLOR EPOXIDE TOTAL (UG/L)	TOTAL (UG/L)	207 SUR SCD 1608 WATER UNFLTRD PERCENT	TOX- APHENE, TOTAL (UG/L)	SULFAN- I WATER WHOLE REC (UG/L)	ALPHA BHC TOTAL (UG/L)	HCH-D6 SUR SCD 1608 WATER UNFLTRD PERCENT
OCT 04 NOV 30 DEC 21 JAN 29 FEB 05 MAR 30	DANE, TECH- NICAL TOTAL (UG/L)	DI- ELDRIN TOTAL (UG/L)	SULFAN SULFATE TOTAL (UG/L)	WATER UNFLIRD REC (UG/L)	ALDE- HYDE TOTAL (UG/L)	CHLOR, TOTAL (UG/L)	CHLOR EPOXIDE TOTAL (UG/L)	TOTAL (UG/L)	207 SUR SCD 1608 WATER UNFLTRD PERCENT	TOX- APHENE, TOTAL (UG/L)	SULFAN- I WATER WHOLE REC (UG/L)	ALPHA BHC TOTAL (UG/L)	HCH-D6 SUR SCD 1608 WATER UNFLTRD PERCENT
OCT 04 NOV 30 DEC 21 JAN 29 FEB 05 MAR 30 APR 25	DANE, TECH- NICAL TOTAL (UG/L)	DI- ELDRIN TOTAL (UG/L)	SULFAN SULFATE TOTAL (UG/L)	WATER UNFLIRD REC (UG/L)	ALDE- HYDE TOTAL (UG/L)	CHLOR, TOTAL (UG/L)	CHLOR EPOXIDE TOTAL (UG/L)	TOTAL (UG/L)	207 SUR SCD 1608 WATER UNFLTRD PERCENT	TOX- APHENE, TOTAL (UG/L)	SULFAN- I WATER WHOLE REC (UG/L)	ALPHA BHC TOTAL (UG/L)	HCH-D6 SUR SCD 1608 WATER UNFLTRD PERCENT
OCT 04 NOV 30 DEC 21 JAN 29 FEB 05 MAR 30 AFR 25 JUN	DANE, TECH- NICAL TOTAL (UG/L) (39350)	DI- ELDRIN TOTAL (UG/L) (39380)	SULFAN SULFATE TOTAL (UG/L) (34351)	WATER UNFLITED REC (UG/L) (39390)	ALDE- HYDE TOTAL (UG/L) (34366)	CHLOR, TOTAL (US/L) (39410)	CHLOR EPOXIDE TOTAL (UG/L) (39420)	TOTAL (UG/L) (39340)	207 SUR SCD 1608 WATER UNFLTRD PERCENT	TOX- APHENE, TOTAL (UG/L)	SULFAN- I WATER WHOLE REC (UG/L)	ALPHA BHC TOTAL (UG/L)	HCH-D6 SUR SCD 1608 WATER UNFLITED PERCENT (99778)
OCT 04 NOV 30 DEC 21 JAN 29 FEB 05 MAR 30 AFR 25 JUN 01	DANE, TECH- NICAL TOTAL (UG/L) (39350)	DI- ELDRIN TOTAL (UG/L)	SULFAN SULFATE TOTAL (UG/L)	WATER UNFLIRD REC (UG/L)	ALDE- HYDE TOTAL (UG/L)	CHLOR, TOTAL (UG/L) (39410)	CHLOR EPOXIDE TOTAL (UG/L)	TOTAL (UG/L) (39340)	207 SUR SCD 1608 WATER UNFITRD PERCENT (99781)	TOX- APHENE, TOTAL (UG/L) (39400)	SULFAN- I WATER WHOLE REC (UG/L) (34361)	ALPHA BHC TOTAL (UG/L) (39337)	HCH-D6 SUR SCD 1608 WATER UNFLITED PERCENT (99778)
OCT 04 NOV 30 DEC 21 JAN 29 FEB 05 MAR 25 JUN 18 JUL 12	DANE, TECH- NICH- VOTAL (UG/L) (39350)	DI- ELDRIN TOTAL (UG/L) (39380)	SULFAN SULFATE TOTAL (UG/L) (34351)	WATER UNFLITED REC (UG/L) (39390)	ALDE- HYDE TOTAL (UG/L) (34366)	CHLOR, TOTAL (UG/L) (39410)	CHLOR EPOXIDE TOTAL (UG/L) (39420)	TOTAL (UG/L) (39340)	207 SUR SCD 1608 WATER UNFLIRD PERCENT (99781)	TOX- APHENE; TOTAL (UG/L) (39400)	SULFAN- I WATER WHOLE REC (UG/L) (34361)	ALPHA BHC TOTAL (UG/L) (39337)	HCH-D6 SUR SCD 1608 WATER UNFLTRD PERCENT (99778)
OCT 04 NOV 30 DEC 21 JAN 29 FEB 05 MAR 30 APR 25 JUN 01 18 JUL	DANE, TECH- NICAL TOTAL (UG/L) (39350)	DI- ELDRIN TOTAL (UG/L) (39380)	SULFAN SULFATE TOTAL (UG/L) (34351)	WATER UNFLITED REC (UG/L) (39390) <.060 .239	ALDE- HYDE TOTAL (UG/L) (34366)	CHLOR, TOTAL (UG/L) (39410)	CHLOR EPOXIDE TOTAL (UG/L) (39420)	TOTAL (UG/L) (39340)	207 SUR SCD 1608 WATER UNFLIRD PERCENT (99781) 1133 `13	TOX- APHENE, TOTAL (UG/L) (39400)	SULFAN- I WATER WHOLE REC (UG/L) (34361)	ALPHA BHC TOTAL (UG/L) (39337)	HCH-D6 SUR SCD 1608 WATER UNFLTRD PERCENT (99778)

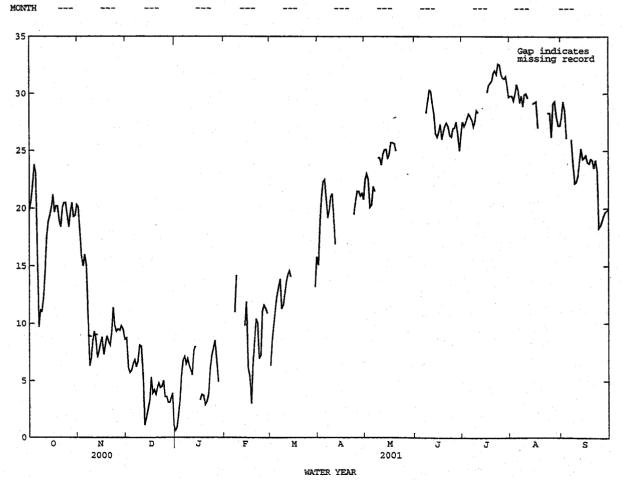
07308500 Red River near Burkburnett, TX--Continued

SPECIFIC CONDUCTANCE	(MICROSTEMENS/CM	AT 25 DEG	C)	באבש מביתמעו	OCHODED	2000 90	CEDITEMBED	2001

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
	-	JUNE			JULY			AUGUST			SEPTEMB	ER
1			e2040	6060	6010	6030	5850	5760	5810	8910	6720	8450
2			e2490	6050	5990	6020	5900	5740	5820	8780	8120	8340
3			e2600	6040	5970	6000	5790	5640	5720	8230	8130	8180
4			e2450	6000	5940	5970	5700	5540	5620	8230	8180	8210
5			e1860	5980	5920	5940	5600	5450	5530	8230		e8180
6			e2770	5950	5900	5930	5500	5380	5440			e7620
7			e4300	5940	5880	5900	5430	5290	5370	7530	4940	6040
8	5180	4700	5000	5920	5860	5890	5340	5210	5270	11400	5080	7960
9	4800	4580	4640	5890	5830	5860	5250	5170	5220	11400	10200	11100
10 ~	4590	4460	4510	5860	5810	5830	5280	5190	5240	10200	9700	9900
11	4460	4340	4400	5840	5790	5820	5300	5230	5270	9820	8620	9270
12	4460	4240	4350	5830	5790	5800	5330	5240	5290	8640	8050	8320
13	4380	4310	4340	5790	5720	5760			e4910	8190	7830	8010
14	4610	4400	4500	5750	5660	5710			e3620	8090	7960	8010
15	4810	4600	4720			e5630	3590	3210	3370	8040	7910	7970
16	5000	4810	4920			e5510	3480	2560	3230	8370	7460	7760
17	5200	4990	5100	5560	5490	5530			e3810	9020	8100	8650
18	5310	5200	5270	5550	5470	5520			e5220	8890	8390	8730
19	6160	5250	5610	5550	5460	5510			e6010	8770	8490	8680
20	6020	5940	5970	5550	5450	5500			e6650	8500	8210	8430
21	6000	5800	5880	5540	5430	5490			e6270			e5720
22 .	5930	5830	5870	5530	5420	5480			e4370			e4480
23	5960	5870	5910	5500	5370	5440	~		e6140			e5100
24	5930	5860	5890	5440	5330	5390			e7000			e5830
25	5980	5880	5910	5460	5380	5420			e7710			e6520
26	6050	5980	6010	5510	5440	5480			e8670			e7230
27	6070	6020	6040	5560	5490	5530			e8940			e7920
28	6090	6040	6060	5610	5520	5570			e8650			e8350
29	6100	6040	6070	5670	5590	5630	7800		e6880	8920	8320	8730
30	6080	6020	6060	5740	5640	5690	7380	6030	6550	8940	8700	8840
31				5800	5700	5750	8670	6470	6950			
MONTH			4720			5690			5820			7880

e Estimated

.


07308500 Red River near Burkburnett, TX--Continued

SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

~		CONDUCTAL	NCE (MICE	KOSTEMENS/		DEG. C),	WATER YEA	AR OCTOB		TO SEPTEME	SER 2001	
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
	•											
	-	OCTOBER		N	OVEMBER		DE	CEMBER			JANUARY	•
1	5650	4740	5000	2310	2190	2220	8190	8090	8140	6710	6510	6620
2	6300	5630	5860	2790	2310	2560	8130	7950	8020	8100	6680	7410
3	6850	6290	6510	3100	616	1840	8010	7710	7860	9440	8100	8740
4	7160	6850	6980	1610	801	1110	7710	7150	7410	10000	9440	9590
5	7300	7130	7210	1130	803	933	7360	6980	7180	10500	10000	10300
6	7570	7210	7370	1530	1130	1360	7200	7070	7110	10500	9680	10000
7	7780	7570	7660	1650	1500	1550	7230	7070	7160	10100	9680	9870
8	7810	7600	7680	1780	1640	1720	7190	7130	7150	10400	9990	10200
9~	7950	7670	7760	1770	1680	1730	7200	7090	7130	10500	10100	10300
10 ~	8010	7500	7760	1980	1680	1800	7230	7180	7210	10500	9810	10200
11	8040	7910	7980	2400	1980	2190	7280	7180	7250	9830	8050	9150
12	8070	7960	8010	2820	2400	2610	7380	7230	7310	8880	7880	8520
13	8010	7900	7950	2930	2820	2880	7740	7350	7520	8640	7590	8400
14	7910	7460	7720	3150	2920	3020	7800	7710	7750	8740	8360	8630
15	7490	6410	6770	3390	3140	3270	7780	7540	7640			e8840
16	7110	6430	6830	3600	3390	3500	7550	7130	7230			e8760
17	6990	5980	6370	3720	3600	3660	7380	7050	7240	9300	8710	9070
18	6490	6080	6270	3810	3720	3760	7300	7120	7220	9340	8740	9210
19	6250	6170	6200	3900	3800	3850	7550	7130	7470	9400	8780	9130
20	6240	2550	5120	3980	3890	3930	7890	7500	7720	9170	8540	8950
	0555	0500	25.40	400.0	20.00	2000	0550	7000	0270		0400	0000
21	2550	2530 2280	2540 2520	4010 4020	3960 3960	3980 4000	8550 8550	7890 8010	8370 8280	9070 9150	8420 8870	8860 9030
22 23	2730 2520	919	2520 _. 1360	3970	3250	3920	8320	7910	8070	9020	8570	8770
24	1580	920	1300			e1290	8490	7940	8310	9200	8660	8990
25	2060	860	1530			e2400	8370	8040	8250	9210	8600	8990
						2522			2012		0040	0050
26 27	1160 1500	793 967	944 1310			e3600 e5000	8330 8150	7940 7440	8210 7870	9030 9040	8540 7870	8750 8820
28	2100	1450	1810	6440	5820	6260	7870	7480	7690	9020	6760	7890
29	2100	1710	1860	7240	6440	6790	7560	6860	7400	6760	3240	4470
30	1990	1770	1860	8120	7240	7770	7550	6800	7190			e4000
31	2210	1990	2150				7290	6570	6900			e3500
MONTH	8070	793	5100			3150	8550	6570	7590			8510
HOIVII	0070	,,,,	3200			3130	0350	00.0				
DAY	MAX	MIN	MEAN	MAX	MIN,	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
DAY	MAX			MAX	,	MEAN	MAX		MEAN	MAX		MEAN
DAY	MAX	MIN FEBRUARY		мах	MIN _, MARCH	MEAN	MAX	MIN APRIL	MEAN		MAY	
1	MAX		e3700	2330	MARCH 2100	e2220	9010	APRIL 8080	8530	7990	MAY 7730	7810
1 2	MAX	FEBRUARY	e3700 e4260	2330 2520	MARCH 2100 2330	e2220 2420	9010 9380	APRIL 8080 9010	8530 9220	7990 8060	MAY 7730 7910	7810 8000
1 2 3		FEBRUARY	e3700 e4260 e5730	2330 2520 2740	MARCH 2100 2330 2520	e2220 2420 2630	9010 9380 9150	APRIL 8080 9010 8840	8530 9220 9000	7990 8060 8080	MAY 7730 7910 7830	7810 8000 7990
1 2 3 4	MAX	FEBRUARY	e3700 e4260 e5730 e6790	2330 2520 2740 3020	MARCH 2100 2330 2520 2740	e2220 2420 2630 2870	9010 9380 9150 9000	8080 9010 8840 8740	8530 9220 9000 8880	7990 8060	MAY 7730 7910	7810 8000
1 2 3		FEBRUARY	e3700 e4260 e5730	2330 2520 2740 3020 3300	MARCH 2100 2330 2520 2740 3020	e2220 2420 2630 2870 3160	9010 9380 9150 9000 8770	8080 9010 8840 8740 8480	8530 9220 9000 8880 8620	7990 8060 8080 8020 7980	MAY 7730 7910 7830 3020 1690	7810 8000 7990 7160 3320
1 2 3 4 5		FEBRUARY	e3700 e4260 e5730 e6790 e7750	2330 2520 2740 3020 3300	MARCH 2100 2330 2520 2740 3020 3300	e2220 2420 2630 2870 3160	9010 9380 9150 9000 8770	APRIL 8080 9010 8840 8740 8480	8530 9220 9000 8880 8620	7990 8060 8080 8020 7980	MAY 7730 7910 7830 3020 1690 4830	7810 8000 7990 7160 3320 6830
1 2 3 4 5	 8370	FEBRUARY	e3700 e4260 e5730 e6790 e7750 e8010 8160	2330 2520 2740 3020 3300 3590 3820	MARCH 2100 2330 2520 2740 3020 3300 3590	e2220 2420 2630 2870 3160 3430 3700	9010 9380 9150 9000 8770 8600 8540	8080 9010 8840 8740 8480 8530 8480	8530 9220 9000 8880 8620 8560	7990 8060 8080 8020 7980	MAY 7730 7910 7830 3020 1690 4830 2870	7810 8000 7990 7160 3320 6830 3730
1 2 3 4 5 6 7 8		FEBRUARY	e3700 e4260 e5730 e6790 e7750 e8010 8160 8270	2330 2520 2740 3020 3300 3590 3820 3920	MARCH 2100 2330 2520 2740 3020 3300 3590 3820	e2220 2420 2630 2870 3160 3430 37700 3870	9010 9380 9150 9000 8770 8600 8540 8700	8080 9010 8840 8740 8480 8530 8480 8510	8530 9220 9000 8880 8620 8560 8500 8610	7990 8060 8080 8020 7980	MAY 7730 7910 7830 3020 1690 4830	7810 8000 7990 7160 3320 6830 3730 e2950
1 2 3 4 5 6 7 8 9	 8370	FEBRUARY	e3700 e4260 e5730 e6790 e7750 e8010 8160	2330 2520 2740 3020 3300 3590 3820	MARCH 2100 2330 2520 2740 3020 3300 3590	e2220 2420 2630 2870 3160 3430 3700	9010 9380 9150 9000 8770 8600 8540	8080 9010 8840 8740 8480 8530 8480	8530 9220 9000 8880 8620 8560	7990 8060 8080 8020 7980	7730 7910 7830 3020 1690 4830 2870	7810 8000 7990 7160 3320 6830 3730
1 2 3 4 5 6 7 8 9	8370 8380	FEBRUARY 7870 7980	e3700 e4260 e5730 e6790 e7750 e8010 8160 8270 e7550 e7000	2330 2520 2740 3020 3300 3590 3820 3920 3850 3700	MARCH 2100 2330 2520 2740 3020 3390 3590 3820 3700 2640	e2220 2420 2630 2870 3160 3430 37700 3870 3800 3210	9010 9380 9150 9000 8770 8600 8540 8700 8830	8080 9010 8840 8740 8480 8530 8480 8510 8650 8740	8530 9220 9000 8880 8620 8560 8500 8610 8760	7990 8060 8080 8020 7980 8380 5450 	7730 7910 7830 3020 1690 4830 2870	7810 8000 7990 7160 3320 6830 3730 e2950 e3420 e4340
1 2 3 4 5 6 7 8 9 10	8370 8380	7870 7980	e3700 e4260 e5730 e6790 e7750 e8010 8160 8270 e7550 e7000	2330 2520 2740 3020 3300 3590 3820 3920 3850 3700	MARCH 2100 2330 2520 2740 3020 3300 3590 3820 3700 2640	e2220 2420 2630 2870 3160 3430 3700 3870 3800 3210	9010 9380 9150 9000 8770 8600 8540 8700 8830 8760	8080 9010 8840 8740 8480 8530 8530 8510 8650 8740	8530 9220 9000 8880 8620 8560 8610 8760 8770	7990 8060 8080 8020 7980	7730 7910 7830 3020 1690 4830 2870	7810 8000 7990 7160 3320 6830 3730 e2950 e3420 e4340 e5070
1 2 3 4 5 6 7 8 9 10	8370 8380	FEBRUARY 7870 7980	e3700 e4260 e5730 e6790 e7750 e8010 8160 8270 e7550 e7000 e6340 e6240	2330 2520 2740 3020 3300 3590 3820 3920 3850 3700 2640 3610	MARCH 2100 2330 2520 2740 3020 3390 3590 3820 37700 2640 2520 2630	e2220 2420 2630 2870 3160 3430 3700 3870 3870 3800 3210 2560 3010	9010 9380 9150 9000 8770 8600 8540 8700 8830 8800	8080 9010 8840 8740 8480 8530 8480 8510 8650 8740	8530 9220 9000 8880 8620 8560 8560 8770 8760 8770	7990 8060 8080 8020 7980 8380 5450 	7730 7910 7830 3020 1690 4830 2870	7810 8000 7990 7160 3320 6830 3730 e2950 e3420 e4340 e5070 e5750
1 2 3 4 5 6 7 8 9 10	8370 8380 	7870 7980	e3700 e4260 e5730 e6790 e7750 e8010 8160 8270 e7550 e7000 e6340 e6240 e6440	2330 2520 2740 3020 3300 3590 3820 3920 3850 3700 2640 3610 4230	MARCH 2100 2330 2520 2740 3020 3399 3820 3700 2640 2520 2630 3610	e2220 2420 2630 2870 3160 3430 37700 3870 3800 3210 2560 3010 3960	9010 9380 9150 9000 8770 8600 8540 8700 8830 8800 8760 8650 8540	8080 9010 8840 8740 8480 8530 8510 8650 8740 8510 8650 8740	8530 9220 9000 8880 8620 8560 8610 8760 8760 8760 8550 8550	7990 8060 8080 8020 7980 8380 5450 	7730 7910 7830 3020 1690 4830 2870	7810 8000 7990 7160 3320 6830 3730 e2950 e3420 e4340 e5770 e5750 e6220
1 2 3 4 5 6 7 8 9 10	8370 8380	FEBRUARY 7870 7980	e3700 e4260 e5730 e6790 e7750 e8010 8160 8270 e7550 e7000 e6340 e6240	2330 2520 2740 3020 3300 3590 3820 3920 3850 3700 2640 3610	MARCH 2100 2330 2520 2740 3020 3390 3590 3820 37700 2640 2520 2630	e2220 2420 2630 2870 3160 3430 3700 3870 3870 3800 3210 2560 3010	9010 9380 9150 9000 8770 8600 8540 8700 8830 8800	8080 9010 8840 8740 8480 8530 8480 8510 8650 8740	8530 9220 9000 8880 8620 8560 8560 8770 8760 8770	7990 8060 8080 8020 7980 8380 5450 	7730 7910 7830 3020 1690 4830 2870	7810 8000 7990 7160 3320 6830 3730 e2950 e3420 e4340 e5070 e5750
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	8370 8380 7830 7160	FEBRUARY 7870 7980 6760 3440	e3700 e4260 e5730 e6790 e7750 e8010 8160 8270 e7550 e7000 e6340 e6440 7380 4890	2330 2520 2740 3020 3300 3590 3820 3920 3850 3700 2640 4230	MARCH 2100 2330 2520 2740 3020 3390 3590 3820 3700 2640 2520 2630 3610 4230	e2220 2420 2630 2870 3160 3430 3700 3870 3800 3210 2560 3010 3960 e4270 e4380	9010 9380 9150 9000 8770 8600 8540 8700 8830 8830 8760 8650 8540 8500 8480	8080 9010 8840 8740 8480 8530 8480 8510 8650 8740 8580 8510 8480 8450 8450	8530 9220 9000 8880 8620 8560 8760 8770 8640 8550 8550 8480 8460	7990 8060 8080 8020 7980 8380 5450 	MAY 7730 7910 7830 3020 1690 4830 2870	7810 8000 7990 7160 3320 6830 3730 e2950 e3420 e4340 e5070 e6720 e6710 e7070
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	8370 83870 8380 7160	FEBRUARY 7870 7980 6760 3440	e3700 e4260 e5730 e6790 e7750 e8010 8160 8270 e7550 e7000 e6340 e6240 e6440 7380 4890	2330 2520 2740 3020 3300 3590 3820 3920 3850 3700 2640 3610 4230	MARCH 2100 2330 2520 2740 3020 3399 3820 3700 2640 2520 2630 3610 4230	e2220 2420 2630 2870 3160 3430 37700 3870 3870 38210 2560 3010 3960 e4270 e4380	9010 9380 9150 9000 8770 8600 8540 8700 8830 8800 8760 8650 8540 8500 8480	8080 9010 8840 8740 8480 8530 8480 8510 8650 8740 8580 8510 8450 8450 8450	8530 9220 9000 8880 8620 8560 8560 8770 8640 8550 8500 8480 8460	7990 8060 8080 8020 7980 8380 5450 	MAY 7730 7910 7830 3020 1690 4830 2870	7810 8000 7990 7160 3320 6830 3730 e2950 e3420 e4340 e5070 e6720 e6720 e6720 e7310
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	8370 8380 7830 7160	FEBRUARY 7870 7980 6760 3440 3870 4300	e3700 e4260 e5730 e6790 e7750 e8010 8160 8270 e7550 e7000 e6340 e6240 e6440 7380 4890 4100 4660	2330 2520 2740 3020 3300 3590 3820 3920 3850 3700 2640 3610 4230	MARCH 2100 2330 2520 2740 3020 3390 3590 38700 2640 2520 2630 3610 4230	e2220 2420 2630 2870 3160 3430 3700 38700 3810 3960 2560 3010 3960 e4270 e4380 e4540 e4730	9010 9380 9150 9000 8770 8600 8540 8700 8830 8800 8760 8550 8540 8540 8540 8540 8540 8540 854	8080 9010 8840 8840 8510 8530 8480 8510 8550 8740 8580 8510 8480 8450 8450 8450 8370	8530 9220 9000 8880 8620 8500 8760 8770 8550 8590 8440 8440	7990 8060 8080 8020 7980 8380 5450 	MAY 7730 7910 7830 3020 1690 4830 2870	7810 8000 7990 7160 3320 6830 3730 e2950 e3420 e4340 e5070 e5750 e6220 e6710 e7070
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	 8370 8380 7830 7160 4420 4870 6460	FEBRUARY 7870 7980 6760 3440 3870 4870	e3700 e4260 e5730 e6790 e7750 e8010 8160 8270 e7550 e7000 e6340 e6240 e6440 7380 4890 4160 5710	2330 2520 2740 3020 3300 3590 3820 3920 3850 3700 2640 3610 4230	MARCH 2100 2330 2520 2740 3020 3399 3820 3700 2640 2520 2630 3610 4230	e2220 2420 2630 2870 3160 3430 37700 3870 3870 38210 2560 3010 3960 e4270 e4380	9010 9380 9150 9000 8770 8600 8540 8700 8830 8800 8760 8650 8540 8500 8480	8080 9010 8840 8740 8480 8530 8480 8510 8650 8740 8580 8510 8450 8450 8450	8530 9220 9000 8880 8620 8560 8560 8770 8640 8550 8500 8480 8460	7990 8060 8080 8020 7980 8380 5450 	MAY 7730 7910 7830 3020 1690 4830 2870	7810 8000 7990 7160 3320 6830 3730 e2950 e3420 e4340 e5070 e6720 e6720 e6720 e7310
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	8370 8380 7830 7160	FEBRUARY 7870 7980 6760 3440 3870 4300	e3700 e4260 e5730 e6790 e7750 e8010 8160 8270 e7550 e7000 e6340 e6240 e6440 7380 4890 4100 4660	2330 2520 2740 3020 3300 3590 3820 3920 3850 3700 2640 4230	MARCH 2100 2330 2520 2740 3020 3390 3590 3620 3700 2640 2520 2630 3610 4230	e2220 2420 2630 2870 3160 3430 3700 3870 3800 3210 2560 3010 3960 e4270 e4380 e4540 e4730 e4790	9010 9380 9150 9000 8770 8600 8540 8700 8830 88650 8540 8550 8540 8540 8440 8440	8080 9010 8840 8740 8480, 8530 8650 8650 8740 8580 8510 8480 8450 8450 8450 8370 8380 8370 8340	8530 9220 9000 8880 8620 8560 8760 8770 8640 8550 8480 8460 8420 8420 8380	7990 8060 8080 8020 7980 8380 5450 	MAY 7730 7910 7830 3020 1690 4830 2870	7810 8000 7990 7160 3320 6830 3730 e2950 e3420 e5750 e6220 e6710 e7310 e7500 e7600
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	 8370 8380 7830 7160 4420 4420 6460 6490	FEBRUARY 7870 7980 6760 3440 3870 4300 4870 6220 6410	e3700 e4260 e5730 e6790 e7750 e8010 8160 8270 e7550 e7000 e6340 e6240 e6440 7380 4890 4100 4660 5710 6480 6430	2330 2520 2740 3020 3300 3590 3820 3920 3850 3700 2640 4230	MARCH 2100 2330 2520 2740 3020 3390 3590 3620 2640 2520 2630 3610 4230	e2220 2420 2630 2870 3160 3430 3700 3870 3800 3210 2560 3010 3960 e4270 e4380 e4540 e4730 e4790 e4960 e5020	9010 9380 9150 9000 8770 8600 8540 8700 8830 8650 8540 8550 8540 8540 8410 8430 8410 8380 8340	8080 9010 8840 8440 8480 8530 8480 8550 8650 8740 8510 8480 8450 8370 8380 8370 8340 8320 8300	8530 9220 9000 8880 8620 8560 8760 8770 8550 8550 8480 8480 8420 8380 8350 8320	7990 8060 8080 8020 7980 8380 5450 	MAY 7730 7910 7830 3020 1690 4830 2870	7810 8000 7990 7160 3320 6830 3730 e2950 e3420 e6710 e7750 e7310 e7500 e7500 e7600 e6160 e5520
1 2 3 4 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	 8370 8380 7830 7160 4420 4870 6460 6490	FEBRUARY 7870 7980 6760 3440 3870 4300 4870 6220 6410	e3700 e4260 e5730 e6790 e7750 e8010 8160 8270 e7550 e7000 e6340 e6440 7380 4890 4100 4660 5710 6480 6430	2330 2520 2740 3300 3590 3820 3920 3850 3700 2640 3610 4230	MARCH 2100 2330 2520 2740 3020 3390 3590 3820 3700 2640 2520 2630 3610 4230	e2220 2420 2630 2870 3160 3430 3700 3870 3800 3210 2560 3010 3960 e4270 e4380 e4540 e4730 e4790 e4960 e5020	9010 9380 9150 9000 8770 8600 8540 8700 8830 8850 8540 8550 8540 8540 8540 8540 8440 84	8080 9010 8840 8740 8480, 8530 8480 8510 8650 8740 8580 8450 8450 8450 8370 8340 8320 8320 8300	8530 9220 9000 8880 8620 8560 8770 8640 8550 8480 8460 8420 8420 8430 8350 8350 8320	7990 8060 8080 8020 7980 8380 5450 -	MAY 7730 7910 7830 3020 1690 4830 2870 1480	7810 8000 7990 7160 3320 6830 3730 e2950 e3420 e4340 e5070 e6720 e6710 e7500 e76000 e76000 e76000 e76000 e76
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	 8370 8380 7830 7160 4420 4870 6460 6490 6500 6560	FEBRUARY 7870 7980 6760 3440 3870 4300 4870 6220 6410 6340 6380	e3700 e4260 e5730 e6790 e7750 e8010 8160 8270 e7550 e7000 e6340 e6240 e6440 7380 4890 4100 4660 5710 6480 6430 6420 6500	2330 2520 2740 3020 3300 3590 3820 3920 3850 3700 2640 4230	MARCH 2100 2330 2520 2740 3020 3390 3590 3620 2640 2520 2630 3610 4230	e2220 2420 2430 2870 3160 3430 37700 3870 3800 3210 2560 3010 3960 e4270 e4380 e4540 e4730 e4790 e4960 e5020 e5110 e5290	9010 9380 9150 9000 8770 8600 8540 8700 8830 8650 8540 8550 8540 8540 8410 8430 8410 8380 8340	8080 9010 8840 8440 8480 8530 8480 8550 8650 8740 8510 8480 8450 8370 8380 8370 8340 8320 8300	8530 9220 9000 8880 8620 8560 8760 8770 8550 8550 8480 8480 8420 8380 8350 8320	7990 8060 8080 8020 7980 8380 5450 	MAY 7730 7910 7830 3020 1690 4830 2870	7810 8000 7990 7160 3320 6830 3730 e2950 e3420 e6710 e7750 e7310 e7500 e7500 e7600 e6160 e5520
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	 8370 8380 7830 7160 4420 4870 6460 6490	FEBRUARY 7870 7980 6760 3440 4870 6220 6410 6340 6340 6330	e3700 e4260 e5730 e6790 e7750 e8010 8160 8270 e7550 e7000 e6340 e6440 7380 4890 4100 4660 5710 6480 6430	2330 2520 2740 3020 3300 3590 3820 3920 3850 3700 2640 3610 4230	MARCH 2100 2330 2520 2740 3020 3390 3590 3820 2640 2520 2630 3610 4230	e2220 2420 2630 2870 3160 3430 3700 3870 3800 3210 2560 3010 3960 e4270 e4380 e4540 e4730 e4790 e4960 e5020	9010 9380 9150 9000 8770 8600 8540 8740 8830 8850 8540 8550 8480 8460 8430 8410 8380 8340	8080 9010 8840 8740 8480 8530 8480 8510 8650 8740 8580 8450 8450 8450 8370 8320 8320 8320	8530 9220 9000 8880 8520 8560 8560 8770 8640 8550 8580 8480 8460 8420 8480 8380 8380 8320 e8970 e8640	7990 8060 8080 8020 7980 8380 5450 -	MAY 7730 7910 7830 3020 1690 4830 2870 1480	7810 8000 7990 7160 3320 6830 3730 e2950 e3420 e4340 e5750 e6710 e7770 e7310 e7500 e7600 e6160 e5520
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	 8370 8380 7830 7160 4420 4420 6460 6490 6560 6560 6550	FEBRUARY 7870 7980 6760 3440 3870 4300 4870 6220 6410 6340 6380	e3700 e4260 e5730 e6790 e7750 e8010 8160 8270 e7550 e7000 e6340 e6240 e6440 7380 4890 4100 4660 5710 6480 6430 6420 6500 6500 6470	2330 2520 2740 3020 3300 3590 3820 3920 3850 3700 2640 4230 	MARCH 2100 2330 2520 2740 3020 3390 3590 3610 2640 2520 2630 3610 4230	e2220 2420 2630 2870 3160 3430 3700 3870 3800 3210 2560 3010 3960 e4270 e4380 e4540 e4790 e4960 e5020 e5110 e5290 e55500	9010 9380 9150 9000 8770 8600 8540 8700 8830 8650 8540 8550 8540 8410 8380 8410 8380	8080 9010 8840 8840 8530 8480 8530 8650 8650 8740 8510 8480 8450 8370 8370 8320 8300	8530 9220 9000 8880 8620 8560 8770 8640 8750 8550 8460 8460 8420 8400 8380 8350 84970 e8970 e8930	7990 8060 8080 8020 7980 8380 5450 -	MAY 7730 7910 7830 3020 1690 4830 2870 1480	7810 8000 7990 7160 3320 6830 3730 e3420 e4340 e5750 e6220 e6710 e77070 e7500 e7500 e7500 e7500 e7500 e7500 e220 e2280
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	 8370 8380 7830 7160 4420 4470 6460 6500 6550 6470 6510	FEBRUARY 7870 7980 6760 3440 3870 4300 4870 6220 6410 6340 6330 4940 4740	e3700 e4260 e5730 e6790 e7750 e8010 8160 8270 e7550 e7000 e6340 e6240 e6440 7380 4890 4100 6480 5710 6480 6420 6590 6470 5850 6120	2330 2520 2740 3020 3300 3590 3820 3920 3850 3700 2640 4230 	MARCH 2100 2330 2520 2740 3020 33590 38590 38700 2640 2520 2630 3610 4230	e2220 2420 2630 2870 3160 3430 3700 38700 38700 38100 2560 3010 3960 e4270 e4380 e4540 e4730 e4790 e4960 e5020 e5110 e5290 e6000 e6200	9010 9380 9150 9000 8770 8600 8540 8760 8650 8540 8540 8540 8540 8410 8380 8410 8380 8410 8380	8080 9010 8840 8840 8530 8480 8550 8650 8740 8580 8450 8450 8370 8340 8320 8370 8370 8370 8370 8370 8370 8370 837	8530 9220 9000 8880 8620 8560 8770 8550 8550 8550 8460 8460 8420 8460 8380 8350 8460 8470 8480 8380 8350 8480 8350 8480 8480 8480 8480 8480 8480 8480 84	7990 8060 8080 8020 7980 8380 5450 3660 	MAY 7730 7910 7830 3020 1690 4830 2870 1480 1480	7810 8000 7990 7160 3320 6830 3730 e3420 e4340 e5750 e6220 e6710 e700 e7500 e7500 e7500 e7500 e7500 e3480 e1420 e2280 e3480 e4500
1 2 3 4 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	 8370 8380 7830 7160 4420 4870 6460 6600 6490 6550 6470 6510	FEBRUARY 7870 7980 6760 3440 3870 4870 6220 6410 6340 6330 4940 4740	e3700 e4260 e5730 e6790 e7750 e8010 8160 8270 e7550 e7000 e6340 e6240 e6440 7380 4890 4100 4660 5710 6480 6430 6420 6500 6470 5850 6120	2330 2520 2740 3020 3300 3590 3820 3920 3920 3610 4230 	MARCH 2100 2330 2520 2740 3020 3390 3590 3620 3700 2640 2520 2630 3610 4230	e2220 2420 2630 2870 3160 3430 3700 3870 3800 3210 2560 3010 3960 e4270 e4380 e4730 e4790 e4960 e5020 e5110 e5290 e5500 e6000 e6200 e6330	9010 9380 9150 9000 8770 8600 8540 8700 8830 88650 8540 8550 8440 8430 8440 8430 8440 8380 8340	8080 9010 8840 8740 8480, 8530 8650 8650 8740 8580 8450 8450 8380 8370 8340 8320 8300 8370 8360 8370 8360 8370 8360 8370 8360 8370 8360 8370 8360 8370 8360 8370 8360 8370 8360 8370 8360 8370 8360 8370 8360 8370 8370 8370 8370 8370 8370 8370 837	8530 9220 9000 8880 8620 8560 8510 8770 8640 8550 8550 8480 8480 8420 8420 8420 8420 8420 842	7990 8060 8080 8020 7980 8380 5450 -	MAY 7730 7910 7830 3020 1690 4830 2870 1480	7810 8000 7990 7160 3320 6830 3730 e2950 e3420 e6710 e77310 e77310 e7500 e6160 e5520 2040 e1420 e2280 e3480 e4500
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27	 8370 8380 7830 7160 4420 4870 6460 6500 6550 6470 6550 6470 6550	FEBRUARY 7870 7980 6760 3440 3870 4300 4870 6220 6410 6380 6330 4940 4740 2650	e3700 e4260 e5730 e6790 e7750 e8010 8160 8270 e7550 e7000 e6340 e6440 7380 4890 4100 4660 5710 6430 6420 6500 6470 5850 6120 3540 2240	2330 2520 2740 3020 3300 3590 3820 3920 3850 3700 2640 4230 	MARCH 2100 2330 2520 2740 3020 3390 3590 3820 2640 2520 2630 3610 4230	e2220 2420 2430 2870 3160 3430 37700 3870 3800 3210 2560 3010 3960 e4270 e4380 e4540 e4730 e4790 e4960 e5020 e5110 e5290 e5500 e6000 e6200 e6330 e6630	9010 9380 9150 9000 8770 8600 8540 8760 8650 8540 8540 8540 8540 8410 8380 8410 8380 8410 8380	8080 9010 8840 8840 8530 8480 8550 8650 8740 8580 8450 8450 8370 8340 8320 8370 8370 8370 8370 8370 8370 8370 837	8530 9220 9000 8880 8620 8560 8770 8550 8550 8550 8460 8460 8420 8460 8380 8350 8460 8470 8480 8380 8350 8480 8350 8480 8480 8480 8480 8480 8480 8480 84	7990 8060 8080 8020 7980 8380 5450 3660 	MAY 7730 7910 7830 3020 1690 4830 2870 1480	7810 8000 7990 7160 3320 6830 3730 e2950 e3420 e6710 e77310 e77310 e7500 e6160 e5520 2040 e1420 e2280 e3480 e4500
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	 8370 8380 7830 7160 4420 4870 6460 6600 6490 6550 6470 6510	FEBRUARY 7870 7980 6760 3440 3870 4870 6220 6410 6340 6330 4940 4740	e3700 e4260 e5730 e6790 e7750 e8010 8160 8270 e7550 e7000 e6340 e6240 e6440 7380 4890 4100 4660 5710 6480 6430 6420 6500 6470 5850 6120	2330 2520 2740 3020 3300 3590 3820 3920 3850 3700 2640 4230 	MARCH 2100 2330 2520 2740 3020 3390 3590 3620 3700 2640 2520 2630 3610 4230	e2220 2420 2630 2870 3160 3430 3700 3870 3800 3210 2560 3010 3960 e4270 e4380 e4730 e4790 e4960 e5020 e5110 e5290 e6000 e6200 e6330 e6630 e6920 e7200	9010 9380 9150 9000 8770 8600 8540 8700 8830 8850 8540 8500 8440 8340 8410 8380 8410 8380 8760 8480 8410 8410 8410 8410 8410 8410 841	8080 9010 8840 8740 8480 8530 8650 8650 8740 8580 8450 8450 8370 8340 8370 8340 8370 8340 8370 8340 8370 8340 8370 8340 8370 8340 8370 8340 8370 8340 8370 8340 8370 8340 8370 8340 8370 8340 8370 8340 8370 8340 8370 8370 8370 8370 8370 8370 8370 837	8530 9220 9000 8880 8620 8560 8760 8770 8640 8450 8480 8480 8480 84970 e8640 e8300 7730 7720 7860 7960	7990 8060 8080 8020 7980 8380 5450 3660 	MAY 7730 7910 7830 3020 1690 4830 2870 1480 1480	7810 8000 7990 7160 3320 6830 3730 e2950 e3420 e6710 e7750 e6220 e6710 e7500 e7600 e6160 e5520 2040 e1420 e2280 e3480 e4500 e5580 e6520 e6710 e67600 e68670
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 27 28 29 30 20 20 20 20 20 20 20 20 20 20 20 20 20	8370 83870 83870 83870 7160 4420 4870 6460 6500 6550 6470 6550 6470 6550	FEBRUARY 7870 7980 6760 3440 3870 4300 4870 6220 6410 6380 6330 4940 4740 2650 1940 1900	e3700 e4260 e5730 e6790 e7750 e8010 8160 8270 e7550 e7000 e6340 e6440 7380 4890 4100 4660 5710 6480 6430 6420 6500 6470 5850 6120 3540 e2130 e2130	2330 2520 2740 3020 3300 3590 3820 3850 3700 2640 3610 4230 	MARCH 2100 2330 2520 2740 3020 3390 3890 38700 2640 2520 2630 3610 4230	e2220 2420 2430 2870 3160 3430 3700 3870 3800 3210 2560 3010 3960 e4270 e4380 e4540 e4730 e4790 e4960 e5020 e5110 e5290 e65000 e6200 e6330 e6630 e6630 e6630 e66200 e7500	9010 9380 9150 9000 8770 8600 8540 8830 8800 8760 8550 8540 8450 8450 8450 8460 8430 8410 8410 7840 7840 7840 7840 8010 8020 8040	8080 9010 8840 8440 8480 8510 8650 8740 8510 8450 8450 8450 8370 8340 8320 8320 8300 7740 7600 7650 7860 7860 7860	8530 9220 9000 8880 8620 8560 8770 8640 8550 8550 8500 8480 8480 8490 8380 8320 88970 88640 88300 7730 7720 7960	7990 8060 8080 8020 7980 8380 5450 3660 	MAY 7730 7910 7830 3020 1690 4830 2870 1480 1480	7810 8000 7990 7160 3320 6830 3730 e2950 e3420 e4340 e5070 e6720 e6720 e7600 e6160 e5520 2040 e1420 e2280 e4340 e4500 e5520 e7600 e6160 e5520 e6220 e7600 e6160 e6160 e6520 e6220 e7600 e7600 e6160 e6160 e6520 e7600 e7600 e6160 e6220 e7600 e7600 e6160 e6220 e7600 e6220 e7600 e6220 e7600 e6220 e7600 e6220 e7600 e6220 e7600 e6220 e7600 e6220 e7600 e6220 e76000 e7600 e
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	8370 8380 7830 7160 4420 4420 6460 6500 6490 6550 6470 6510	FEBRUARY 7870 7980 7870 7980 6760 3440 4870 6220 6410 6340 6340 6330 4940 4740 2650 1940 1900	e3700 e4260 e5730 e6790 e7750 e8010 8160 8270 e7550 e7000 e6340 e6440 7380 4890 4100 4660 5710 6480 6430 6420 6500 6470 5850 6120 3540 2240 e2130	2330 2520 2740 3020 3300 3590 3820 3920 3850 3700 2640 4230 	MARCH 2100 2330 2520 2740 3020 3390 3590 3620 3700 2640 2520 2630 3610 4230	e2220 2420 2630 2870 3160 3430 3700 3870 3800 3210 2560 3010 3960 e4270 e4380 e4730 e4790 e4960 e5020 e5110 e5290 e6000 e6200 e6330 e6630 e6920 e7200	9010 9380 9150 9000 8770 8600 8540 8700 8830 8850 8540 8500 8440 8340 8410 8380 8410 8380 8760 8480 8410 8410 8410 8410 8410 8410 841	8080 9010 8840 8740 8480 8530 8650 8650 8740 8580 8450 8450 8370 8340 8370 8340 8370 8340 8370 8340 8370 8340 8370 8340 8370 8340 8370 8340 8370 8340 8370 8340 8370 8340 8370 8340 8370 8340 8370 8340 8370 8340 8370 8370 8370 8370 8370 8370 8370 837	8530 9220 9000 8880 8620 8560 8760 8770 8640 8450 8480 8480 8480 84970 e8640 e8300 7730 7720 7860 7960	7990 8060 8080 8020 7980 8380 5450 3660 	MAY 7730 7910 7830 3020 1690 4830 2870 1480 1480	7810 8000 7990 7160 3320 6830 3730 e2950 e3420 e4340 e5070 e6720 e6720 e7600 e6160 e5520 2040 e1420 e2280 e4340 e5520 e2280 e4500 e6520 e7160 e6520 e7160 e6520 e7600 e7600 e6160 e6160 e6160 e6160 e6160 e6220 e7600 e6220 e7600 e6220 e7600 e6220 e7600 e6220 e7600 e6220 e7600 e6220 e7600 e6220 e7600 e6220 e7600 e6220 e7600 e6220 e7600 e6220 e7600 e6220 e7600 e6220 e76000 e7600 e
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 27 28 29 30 20 20 20 20 20 20 20 20 20 20 20 20 20	8370 8380 7830 7160 4420 4420 6460 6500 6550 6470 6510 4770 2650 	FEBRUARY 7870 7980 6760 3440 3870 4300 4870 6220 6410 6380 6330 4940 4740 2650 1940 1900	e3700 e4260 e5730 e6790 e7750 e8010 8160 8270 e7550 e7000 e6340 e6440 7380 4890 4100 4660 5710 6480 6430 6420 6500 6470 5850 6120 3540 e2130 e2130	2330 2520 2740 3020 3300 3590 3820 3850 3700 2640 3610 4230 	MARCH 2100 2330 2520 2740 3020 3390 3890 38700 2640 2520 2630 3610 4230	e2220 2420 2430 2870 3160 3430 3700 3870 3800 3210 2560 3010 3960 e4270 e4380 e4540 e4730 e4790 e4960 e5020 e5110 e5290 e65000 e6200 e6330 e6630 e6630 e6630 e66200 e7500	9010 9380 9150 9000 8770 8600 8540 8830 8800 8760 8550 8540 8450 8450 8450 8460 8430 8410 8410 7840 7840 7840 7840 8010 8020 8040	8080 9010 8840 8440 8480 8510 8650 8740 8510 8450 8450 8450 8370 8340 8320 8320 8300 7740 7600 7650 7860 7860 7860	8530 9220 9000 8880 8620 8560 8770 8640 8550 8550 8500 8480 8480 8490 8380 8320 88970 88640 88300 7730 7720 7960	7990 8060 8080 8020 7980 8380 5450 3660 	MAY 7730 7910 7830 3020 1690 4830 2870 1480 1480	7810 8000 7990 7160 3320 6830 3730 e2950 e3420 e6710 e7750 e7550 e7500 e7600 e6160 e5520 2040 e1420 e2280 e3480 e4500 e5580 e6580 e6580 e67160 e6870

07308500 Red River near Burkburnett, TX--Continued
TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
	-	JUNE			JULY			AUGUST			SEPTEMBE	R
1				29.1	25.9	27.5	35.3	25.6	29.8	31.8	24.9	27.9
2				28.8	25.3	27.1	35.1	26.5	29.8	34.0	25.3	29.3
3				29.4	25.6	27.4	34.6	25.4	29.4	32.0	26.2	28.5
4				29.7	25.7	27.8	35.7	25.5	30.0	27.8	25.0	26.1
5				29.6	26.5	28.2	36.9	26.1	30.8		23.6	
6				29.6	26.2	28.0	35.1	26.6	30.3	30.4		
7				29.1	26.0	27.7	34.5	25.5	29.2	30.0	23.0	26.0
8	31.1	26.1	28.3	28.9	25.2	27.1	34.2	26.4	29.8	25.6	22.3	23.8
9	32.1	26.6	29.3	29.5	25.7	27.5	33.9	25.6	28.9	24.8	19.6	22.2
10 -	33.6	27.5	30.3	30.0	26.9	28.5	35.4	25.7	29.9	26.3	18.9	22.3
11	33.0	27.9	30.2	29.5	26.7	28.3	35.6	26.6	30.0	26.5	20.4	22.8
12	31.9	26.9	29.1				35.2	26.0	29.6	26.8	22.1	24.0
13	30.0	26.9	28.2							29.2	22.4	25.2
14	27.4	25.7	26.5	31.0	26.9	28.7	32.8			25.7	22.8	24.3
15	28.7	23.9	26.2				33.6	25.5	29.1	25.5	23.6	24.4
	20.7	23.5	20.2				33.0	23.3	23.1	23.3	23.0	24.3
16	29.2	24.3	26.6				34.7	26.7	29.2	27.6	22.7	24.6
17	29.3	25.5	27.3	34.2	27.1	30.1	33.4	26.4	29.3	25.5	22.5	24.0
18	27.2	24.6	26.0	35.1	27.5	30.7	32.9	24.0	27.0	25.5	22.5	23.9
19	30.8	24.1	26.7	35.6	27.4	30.9				27.2	22.0	24.3
20	30.9	24.1	27.2	36.3	27.3	31.1				26.9	22.5	24.2
,20	30.3	44.1	47.2	30.5	27.3	31.1				20.9	42.5	44.4
21	30.9	24.5	27.4	37.2	27.8	31.8				27.2	21.1	23.5
22	31.9	23.2	27.1	37.6	27.8	32.0				27.7	21.5	24.2
23	29.5	23.5	26.3	37.4	27. 7	31.7				26.5	20.1	23.3
24	31.1	22.3	26.2	38.0	28.9	32.6	33.6	24.6	28.3	21.7		18.3
25	31.6	23.2	26.9	37.7	28.7	32.5	33.9	24.0	28.3	23.1	14.6	18.5
	32.0		20.5	3,	20.7	32.3	33.3	24.0	20.5	23.1	14.0	
26	31.1	23.5	27.0	36.2	28.0	31.7	29.0	23.8	26.2	23.2	15.5	18.9
27	30.9	24.4	27.5	36.2	28.0	31.4	34.7	25.4	29.1	24.1	15.6	19.4
28	28.4	24.4	26.4	36.5	28.1	31.3	32.9	26.5	29.3	23.8	16.3	19.7
29	27.8	23.0	25.0	37.4	28.2	31.5	29.5	26.6	28.0	24.5	16.2	19.8
30	28.8	24.1	26.3	35.7	27.2	30.7	28.8	25.8	27.2	25.4	15.7	20.0
31				35.0	25.8	29.7	30.4	25.2	27.2	23.4		20.0
				33.0	45.0	23.1	30.4	43.2	21.2			

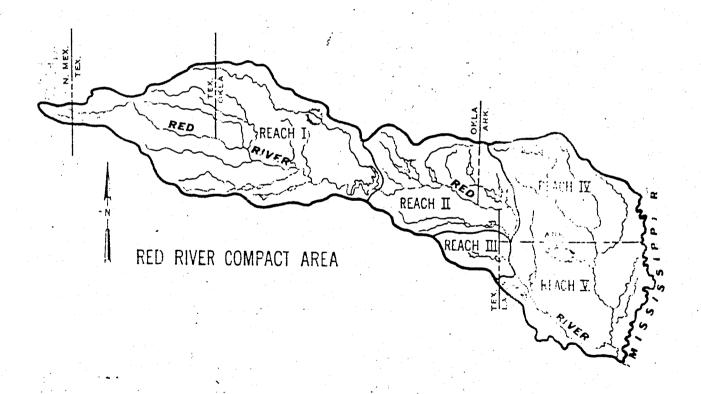
07308500 Red River near Burkburnett, TX--Continued
TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

		Imiria	mione,	WATER (DEG	. C), WA	IER IEAR	OCTOBER	2000 10 3	er i ember	2002		
DAY	_ MAX	MIN	MEAN	XAM	MIN	MEAN	MAX	MIN	MEAN	XAM	MIN	MEAN
	_	OCTOBER		N	OVEMBER			DECEMBER			JANUARY	
1	24.9	15.7	19.8	21.4	18.4	20.1	11.1		8.7	1.2	.3	. 6
2 3	26.6 27.9	16.2 17.6	20.7 22.1	19.8 17.8	16.2 14.8	18.1 15.9	7.2 7.9	5.3 4.1	6.1 5.7	2.4 5.6	.0 .0	.9 1.9
4	29.9	19.4	23.8	15.3	14.6	15.0	7.8	4.7	5.9	7.1	1.6	3.3
5	29.5	18.1	23.0	16.7	15.3	16.0	7.5	5.7	6.5	8.8	3.5	5.5
6 7	18.1 11.6	11.6 8.6	15.0 9.7	16.4 13.4	13.4 8.4	15.1 10.6	7.4 8.9	5.8 3.9	6.8 6.2	9.9 9.7	4.5 5.2	6.8 7.1
8	16.3	8.6	11.2	8.4	5.6	6.3	8.4	6.0	6.7	9.6	3.9	6.5
9- 10 -	17.5 17.4	6.1 8.7	11.1 12.3	9.3 10.8	5.3 6.4	7.0 8.4	10.2 9.6	6.6 7.3	8.1 8.0	9.8 7.1	4.4 5.5	6.9 6.3
11	20.3	11.1	14.5	10.6	8.1	9.3	8.2	2.4	5.4	7.3	5.1	5.9
12	22.2	13.8	17.6	10.4	6.9 4.9	8.7 7.0	2.4	.4 1.3	1.1 1.8	6.3 11.0	4.4 5.7	5.5 7.6
13 14	20.7 22.3	17.2 17.5	18.8 19.4	10.5	4.8	7.5	2.9	2.1	2.5	10.8	5.2	8.0
15	22.8	18.0	20.1	10.1	6.3	8.2	3.7	2.9	3.3			
16	25.2	18.4 17.4	21.2	11.4 9.5	6.7 5.3	8.8 7.3	6.5 6.1	3.6 2.1	5.3 3.9	6.5 4.9	2.7	3.3
17 18	23.9	17.5	19.7 20.2	11.1	6.3	8.2	6.1	2.7	4.2	6.7	2.3	3.8
19 20	23.0 20.3	17.4 18.5	20.2 19.0	12.4 11.2	6.1 6.2	8.9 8.4	6.0 6.1	2.5 2.6	3.8 4.4	6.1 5.3	1.8	3.7 2.9
21	19.5	17.5	18.4	12.0	5.0	8.1	5.6	4.1	4.8	6.1	2.3	3.2
22	22.7	18.4	20.1	11.2	7.5	9.3	5.2	2.8	4.4	5.8	2.7	3.8
23 24	20.9 21.1	20.0 19.6	20.5 20.5	12.5 11.3	10.6 9.1	11.4 9.8	5.8 6.2 4.6	4.5	4.5 5.0	7.9		6.0 7.2
25	20.2	18.1	19.4	11.1	7.9	9.3	4.6	3.3	3.6	9.0	7.4	7.9
26	19.0	17.9 18.5	18.4 19.6	11.5 11.4	7.6 7.7	9.5 9.4	3.7 3.5	3.6 2.7	3.6 3.1	9.1 9.1	7.5 5.7	8.5 6.9
27 28	21.0 21.2	20.0	20.5	12.4	7.6	9.8	3.3	2.9	3.1	5.9	4.0	4.9
29 30	20.1 21.0	18.2 17.8	19.3 19.4	11.9 10.9	7.4 6.8	9.5 8.6	3.8 4.4	3.2 2.2	3.5 3.9		3.3	
. 31	21.3	19.4	20:3				2.2	.4	1.0			
MONTH	29.9	6.1	18.6	21.4	4.8	10.3	11.1	.4	4.7			
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
DAY		MIN FEBRUARY		MAX	MIN MARCH	MEAN	MAX	MIN APRIL	MEAN	MAX	MIM YAM	MEAN
1				10.2	MARCH	6.3	17.5	APRIL	15.1	27.6	MAY 18.4	22.5
1 2					MARCH			APRIL 12.9 15.7	15.1 18.9 21.1	27.6 27.8 25.1	MAY 18.4 19.1 20.7	22.5 23.0 22.5
1 2 3 4		FEBRUARY		10.2 10.4 13.1 15.5	MARCH 3.4 6.9 7.1 7.8	6.3 8.5 9.7 11.2	17.5 23.4 24.2 25.6	12.9 15.7 18.5 19.8	15.1 18.9 21.1 22.3	27.6 27.8 25.1 22.4	MAY 18.4 19.1 20.7 18.4	22.5 23.0 22.5 20.1
1 2 3 4 5		FEBRUARY		10.2 10.4 13.1 15.5 16.8	MARCH 3.4 6.9 7.1 7.8 8.9	6.3 8.5 9.7 11.2 12.4	17.5 23.4 24.2 25.6 23.6	APRIL 12.9 15.7 18.5 19.8 21.3	15.1 18.9 21.1 22.3 22.5	27.6 27.8 25.1 22.4 23.8	MAY 18.4 19.1 20.7 18.4 18.0	22.5 23.0 22.5 20.1 20.3
1 2 3 4 5		FEBRUARY	11.0	10.2 10.4 13.1 15.5 16.8	MARCH 3.4 6.9 7.1 7.8 8.9 10.6 11.2	6.3 8.5 9.7 11.2 12.4 13.2 13.9	17.5 23.4 24.2 25.6 23.6 22.2 20.8	12.9 15.7 18.5 19.8 21.3- 20.2 17.3	15.1 18.9 21.1 22.3 22.5 20.9 19.2	27.6 27.8 25.1 22.4 23.8 24.1 22.9	MAY 18.4 19.1 20.7 18.4 18.0 20.0 20.6	22.5 23.0 22.5 20.1 20.3 21.9 21.5
1 2 3 4 5 6 7 8	13.7	FEBRUARY		10.2 10.4 13.1 15.5 16.8 16.4 18.5	MARCH 3.4 6.9 7.1 7.8 8.9 10.6 11.2 9.6	6.3 8.5 9.7 11.2 12.4 13.2 13.9	17.5 23.4 24.2 25.6 23.6	12.9 15.7 18.5 19.8 21.3- 20.2 17.3 19.0	15.1 18.9 21.1 22.3 22.5	27.6 27.8 25.1 22.4 23.8	MAY 18.4 19.1 20.7 18.4 18.0	22.5 23.0 22.5 20.1 20.3
1 2 3 4 5	13.7 14.0 16.5	FEBRUARY 8.4 12.4	 11.0	10.2 10.4 13.1 15.5 16.8 16.4 18.5 14.5	MARCH 3.4 6.9 7.1 7.8 8.9 10.6 11.2	6.3 8.5 9.7 11.2 12.4 13.2 13.9	17.5 23.4 24.2 25.6 23.6 22.2 20.8 21.2	12.9 15.7 18.5 19.8 21.3 20.2 17.3 19.0	15.1 18.9 21.1 22.3 22.5 20.9 19.2 19.9	27.6 27.8 25.1 22.4 23.8 24.1 22.9	MAY 18.4 19.1 20.7 18.4 18.0 20.0 20.6	22.5 23.0 22.5 20.1 20.3 21.9 21.5
1 2 3 4 5 6 7 8 9 10	13.7 14.0 16.5	FEBRUARY 8.4 12.4	 11.0	10.2 10.4 13.1 15.5 16.8 16.4 18.5 14.5 16.2 15.0	MARCH 3.4 6.9 7.1 7.8 8.9 10.6 11.2 9.6 7.7 10.9	6.3 8.5 9.7 11.2 12.4 13.2 11.3 11.6 12.6	17.5 23.4 24.2 25.6 23.6 22.2 20.8 21.2 22.3 22.0	APRIL 12.9 15.7 18.5 19.8 21.3- 20.2 17.3 19.0 19.9 20.8	15.1 18.9 21.1 22.3 22.5 20.9 19.2 19.9 21.0 21.3	27.6 27.8 25.1 22.4 23.8 24.1 22.9 26.7 26.2	MAY 18.4 19.1 20.7 18.4 18.0 20.0 20.6 22.4 22.9 22.3	22.5 23.0 22.5 20.1 20.3 21.9 21.5 24.4 24.4
1 2 3 4 5 6 7 8 9	13.7 14.0 16.5	FEBRUARY 8.4 12.4	11.0 14.2 9.8	10.2 10.4 13.1 15.5 16.8 16.4 18.5 14.5 16.5 17.1	MARCH 3.4 6.9 7.1 7.8 8.9 10.6 11.2 9.6 7.7 10.9 12.3 12.1 11.8	6.3 8.5 9.7 11.2 12.4 13.9 11.3 11.6 12.6	17.5 23.4 24.2 25.6 23.6 22.2 20.8 21.2 22.3 22.0 21.1	12.9 15.7 18.5 19.8 21.3- 20.2 17.3 19.0 19.9 20.8	15.1 18.9 21.1 22.3 22.5 20.9 19.2 19.9 21.0 21.3	27.6 27.8 25.1 22.4 23.8 24.1 22.9 26.7 26.2 25.3 27.7 26.4	MAY 18.4 19.1 20.7 18.4 18.0 20.6 22.4 22.9 22.3 22.3 23.5	22.5 23.0 22.5 20.1 20.3 21.9 21.5 24.4 24.4 23.8 24.7 25.1
1 2 3 4 5 6 7 8 9 10 11 12 13 14	13.7 14.0 16.5 11.4 13.6	FEBRUARY 8.4 12.4 8.7 8.6	11.0 14.2 9.8	10.2 10.4 13.1 15.5 16.8 16.4 18.5 14.5 16.2 15.0	MARCH 3.4 6.9 7.1 7.8 8.9 10.6 11.2 9.6 7.7 10.9 12.3 12.1	6.3 8.5 9.7 11.2 12.4 13.2 13.9 11.3 11.6 12.6	17.5 23.4 24.2 25.6 23.6 22.2 20.8 21.2 22.3 22.0	12.9 15.7 18.5 19.8 21.3- 20.2 17.3 19.0 19.9 20.8	15.1 18.9 21.1 22.3 22.5 20.9 19.2 19.9 21.0 21.3	27.6 27.8 25.1 22.4 23.8 24.1 22.9 26.7 26.2 25.3 27.7	MAY 18.4 19.1 20.7 18.4 18.0 20.0 20.6 22.4 22.9 22.3 22.3	22.5 23.0 22.5 20.1 20.3 21.9 21.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	13.7 14.0 16.5 11.4 13.6 8.7	FEBRUARY 8.4 12.4 8.7 8.6 4.7	 11.0 14.2 9.8 11.9 6.1	10.2 10.4 13.1 15.5 16.8 16.4 18.5 14.5 16.2 15.0	MARCH 3.4 6.9 7.1 7.8 8.9 10.6 11.2 9.6 7.7 10.9 12.3 12.1 11.8 13.0	6.3 8.5 9.7 11.2 12.4 13.9 11.3 11.6 12.6 13.7 14.3 14.6 14.1	17.5 23.4 24.2 25.6 23.6 22.2 20.8 21.2 22.3 22.0 21.1	APRIL 12.9 15.7 18.5 19.8 21.3 20.2 17.3 19.0 19.9 20.8 17.6 15.5	15.1 18.9 21.1 22.3 22.5 20.9 19.2 19.9 21.0 21.3	27.6 27.8 25.1 22.4 23.8 24.1 22.9 26.7 26.2 25.3 27.7 26.4 25.9 25.4	MAY 18.4 19.1 20.7 18.4 18.0 20.6 22.4 22.9 22.3 22.3 23.5 24.2 23.1	22.5 23.0 22.5 20.1 20.3 21.9 21.5 24.4 24.4 23.8 24.7 25.1 25.1 24.3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	13.7 14.0 16.5 11.4 13.6 8.7 8.1 6.7	FEBRUARY 8.4 12.4 8.7 8.6 4.7 3.7 1.5	11.0 14.2 9.8 11.9 6.1 5.3	10.2 10.4 13.1 15.5 16.8 16.4 18.5 14.5 16.2 15.0	MARCH 3.4 6.9 7.1 7.8 8.9 10.6 11.2 9.6 7.7 10.9 12.3 12.1 11.8 13.0	6.3 8.5 9.7 11.2 12.4 13.2 13.9 11.6 12.6 13.7 14.3 14.6	17.5 23.4 24.2 25.6 23.6 22.2 20.8 21.2 22.3 22.0	APRIL 12.9 15.7 18.5 19.8 21.3 20.2 17.3 19.0 19.9 20.8 17.6 15.5	15.1 18.9 21.1 22.3 22.5 20.9 19.2 21.0 21.3	27.6 27.8 25.1 22.4 23.8 24.1 22.9 	MAY 18.4 19.1 20.7 18.4 18.0 20.0 20.6 22.4 22.9 22.3 23.5 24.2 23.1	22.5 23.0 22.5 20.1 20.3 21.9 21.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	13.7 14.0 16.5 11.4 13.6 8.7	FEBRUARY 8.4 12.4 8.7 8.6 4.7	11.0 14.2 9.8 11.9 6.1	10.2 10.4 13.1 15.5 16.8 16.4 18.5 14.5 16.2 15.0 15.9	MARCH 3.4 6.9 7.1 7.8 8.9 10.6 11.9 9.6 7.7 10.9 12.3 12.1 11.8 13.0	6.3 8.5 9.7 11.2 12.4 13.9 11.3 11.6 12.6 14.1	17.5 23.4 24.2 25.6 23.6 22.2 20.8 21.2 22.3 22.0 21.1 18.3	APRIL 12.9 15.7 18.5 19.8 21.3 20.2 17.3 19.0 19.9 20.8 17.6 15.5	15.1 18.9 21.1 22.3 22.5 20.9 19.2 19.9 21.0 21.3	27.6 27.8 25.1 22.4 23.8 24.1 22.9 26.7 26.2 25.3 27.7 26.4 25.9 25.4 26.0 26.9	MAY 18.4 19.1 20.7 18.4 18.0 20.6 22.4 22.9 22.3 22.3 23.5 24.2 23.1 23.4 24.6 24.0	22.5 23.0 22.5 20.1 20.3 21.9 21.5 24.4 24.4 23.8 24.7 25.1 25.1 24.3 24.7 25.7 25.7 25.7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	13.7 14.0 16.5 11.4 13.6 8.7 8.1 6.7	FEBRUARY 8.4 12.4 8.7 8.6 4.7	11.0 14.2 9.8 11.9 6.1 5.3 3.0 6.3	10.2 10.4 13.1 15.5 16.8 16.4 18.5 14.5 15.0 15.9	MARCH 3.4 6.9 7.1 7.8 8.9 10.6 11.2 9.6 7.7 7.7 10.9 12.3 12.1 11.8 13.0	6.3 8.5 9.7 11.2 12.4 13.2 13.9 11.3 11.6 12.6 13.7 14.3 14.6 14.1	17.5 23.4 24.2 25.6 23.6 22.2 20.8 21.2 22.3 22.0 21.1 18.3	APRIL 12.9 15.7 18.5 19.8 21.3 20.2 17.3 19.0 19.9 20.8 17.6 15.5	15.1 18.9 21.1 22.3 22.5 20.9 19.2 19.9 21.3	27.6 27.8 25.1 22.4 23.8 24.1 22.9 26.7 26.2 25.3 27.7 26.4 25.9 25.9 25.4	MAY 18.4 19.1 20.7 18.4 18.0 20.6 22.4 22.9 22.3 23.5 24.2 23.1	22.5 23.0 22.5 20.1 20.3 21.9 21.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	13.7 14.0 16.5 11.4 13.6 8.7 8.1 6.7 8.4 11.7 11.3	FEBRUARY 8.4 12.4 8.7 8.6 4.7 3.7 1.5 4.3 5.8 10.1	 11.0 14.2 9.8 11.9 6.1 5.3 3.0 6.3 8.6 10.4	10.2 10.4 13.1 15.5 16.8 16.4 18.5 14.5 16.2 15.0 15.9	MARCH 3.4 6.9 7.1 7.8 8.9 10.6 11.2 9.6 7.7 10.9 12.3 12.1 11.8 13.0	6.3 8.5 9.7 11.2 12.4 13.2 13.9 11.6 12.6 13.7 14.3 14.1	17.5 23.4 24.2 25.6 23.6 22.2 20.8 21.2 22.3 22.0 21.1 18.3	APRIL 12.9 15.7 18.5 19.8 21.3 20.2 17.3 19.0 19.9 20.8 17.6 15.5	15.1 18.9 21.1 22.3 22.5 20.9 19.2 19.9 21.0 21.3	27.6 27.8 25.1 22.4 23.8 24.1 22.9 26.7 26.2 25.3 27.7 26.4 25.9 25.4 26.0 26.9 27.1 27.0 27.9	MAY 18.4 19.1 20.7 18.4 18.0 20.6 22.4 22.9 22.3 23.5 24.2 23.1 23.4 24.6 24.0 23.2	22.5 23.0 22.5 20.1 20.3 21.9 21.5 24.4 24.4 23.8 24.7 25.1 25.1 24.3 24.7 25.7 25.7 25.7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	13.7 14.0 16.5 11.4 13.6 8.7 8.1 6.7 8.4 11.7 11.3	FEBRUARY 8.4 12.4 8.7 8.6 4.7 3.7 1.5 4.3 5.8 10.1 8.2 6.5 7.0	11.0 14.2 9.8 11.9 6.1 5.3 3.00 6.3 8.6 10.4	10.2 10.4 13.1 15.5 16.8 16.4 18.5 14.5 16.2 15.0 15.9 17.1 18.0 15.9	MARCH 3.4 6.9 7.1 7.8 8.9 10.6 11.2 9.6 7.7 10.9 12.3 12.1 11.8 13.0	6.3 8.5 9.7 11.2 12.4 13.2 13.9 11.3 11.6 12.6 14.1	17.5 23.4 24.2 25.6 23.6 22.2 22.3 22.0 21.1 18.3	APRIL 12.9 15.7 18.5 19.8 21.3 20.2 17.3 19.0 19.9 20.8 17.6 15.5	15.1 18.9 21.1 22.3 22.5 20.9 19.2 19.9 21.3 19.2 16.9	27.6 27.8 25.1 22.4 23.8 24.1 22.9 26.7 26.2 25.3 27.7 26.4 25.9 27.1 27.0 27.9	MAY 18.4 19.1 20.7 18.4 18.0 20.6 22.4 22.9 22.3 23.5 24.5 24.2 23.1 23.4 24.6 24.2 24.0 23.2	22.5 23.0 22.5 20.1 20.3 21.9 21.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	13.7 14.0 16.5 11.4 13.6 8.7 8.1 6.7 8.4 11.7 11.3	FEBRUARY 8.4 12.4 8.7 8.6 4.7 3.7 1.5 4.3 5.8 10.1	11.0 14.2 9.8 11.9 6.1 5.3 3.0 6.3 8.6 10.0 6.9	10.2 10.4 13.1 15.5 16.8 16.4 18.5 14.5 16.2 15.0 15.9 17.1 18.0 15.9	MARCH 3.4 6.9 7.1 7.8 8.9 10.6 11.2 9.6 7.7 10.9 12.3 12.1 11.8 13.0	6.3 8.5 9.7 11.2 12.4 13.2 13.9 11.6 12.6 14.3 14.6 14.1	17.5 23.4 24.2 25.6 23.6 22.2 20.8 21.2 22.3 22.0 21.1 18.3	APRIL 12.9 15.7 18.5 19.8 21.3 20.2 17.3 19.0 19.9 20.8 17.6 15.5	15.1 18.9 21.1 22.3 22.5 20.9 19.2 19.9 21.0 21.3	27.6 27.8 25.1 22.4 23.8 24.1 22.9 26.7 26.2 25.3 27.7 26.4 25.9 25.4 26.0 26.9 27.1 27.0 27.9	MAY 18.4 19.1 20.7 18.4 18.0 20.0 20.6 22.4 22.9 22.3 22.3 23.5 24.2 23.1 23.4 24.6 24.2 24.0 23.2	22.5 23.0 22.5 20.1 20.3 21.9 21.5 24.4 24.4 23.8 24.7 25.1 25.1 24.3 24.7 25.7 25.7 25.6 25.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	13.7 14.0 16.5 11.4 13.6 8.7 8.1 6.7 8.4 11.7 11.3 11.4 8.2 7.5 14.8 14.2	FEBRUARY 8.4 12.4 8.7 8.6 4.7 3.7 1.5 4.3 5.8 10.1 8.2 6.5 7.0 7.5 9.7	11.0 14.2 9.8 11.9 6.1 5.3 3.0 6.3 8.6 10.4 10.0 6.9 7.2 11.1	10.2 10.4 13.1 15.5 16.8 16.4 18.5 16.2 15.0 15.9 17.1 18.0 15.9	MARCH 3.4 6.9 7.1 7.8 8.9 10.6 11.2 9.6 7.7 10.9 12.3 12.1 11.8 13.0 9.2	6.3 8.5 9.7 11.2 12.4 13.2 13.9 11.3 11.6 12.6 14.1 	17.5 23.4 24.2 25.6 23.6 22.2 20.8 21.2 22.3 22.3 21.1 18.3	APRIL 12.9 15.7 18.5 19.8 21.3 20.2 17.3 19.0 19.9 20.8 17.6 15.5 14.8 16.1	15.1 18.9 21.1 22.3 22.5 20.9 19.2 19.0 21.3 19.2 16.9	27.6 27.8 25.1 22.4 23.8 24.1 22.9 26.7 26.2 25.3 27.7 26.4 25.9 25.4 26.0 27.1 27.0 27.9	MAY 18.4 19.1 20.7 18.4 18.0 20.6 22.4 22.9 22.3 23.5 24.2 23.1 23.4 24.6 24.2 24.0 23.2	22.5 23.0 22.5 20.1 20.3 21.9 21.5 24.4 24.4 23.8 24.7 25.1 24.3 24.7 25.7 25.7 25.7 25.6 25.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27	13.7 14.0 16.5 11.4 13.6 8.7 8.1 6.7 8.4 11.3 11.4 8.2 7.5 14.8 14.2	FEBRUARY 8.4 12.4 8.7 8.6 4.7 3.7 1.5 4.3 5.8 10.1 8.2 6.5 7.0 7.5 9.7	11.0 14.2 9.8 11.9 6.1 5.3 3.0 6.3 8.6 10.4 10.0 6.9 7.2 11.1 11.6	10.2 10.4 13.1 15.5 16.8 16.4 18.5 16.2 15.0 15.9 17.1 18.0 15.9	MARCH 3.4 6.9 7.1 7.8 8.9 10.6 11.2 9.6 7.7 10.9 12.3 12.1 11.8 13.0 9.2 9.2	6.3 8.5 9.7 11.2 12.4 13.2 13.9 11.6 12.6 14.3 14.6 14.1	17.5 23.4 24.2 25.6 23.6 22.2 20.8 21.2 3 22.0 21.1 18.3 	APRIL 12.9 15.7 18.5 19.8 21.3 20.2 17.3 19.9 20.8 17.6 15.5 14.8 16.1 17.4 17.6	15.1 18.9 21.1 22.3 22.5 20.9 19.2 19.9 21.0 21.3 19.2 16.9	27.6 27.8 25.1 22.4 23.8 24.1 22.9 	MAY 18.4 19.1 20.7 18.4 18.0 20.0 20.6 22.4 22.9 22.3 23.5 24.2 23.1 23.4 24.6 24.2 24.0 23.2	22.5 23.0 22.5 20.1 20.3 21.9 21.5 24.4 24.4 23.8 24.7 25.1 25.1 24.3 24.7 25.7 25.6 25.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 223 24 25 26 27 28 29	13.7 14.0 16.5 11.4 13.6 8.7 8.1 6.7 8.4 11.7 11.3 11.4 8.2 7.5 14.8 14.2	FEBRUARY 8.4 12.4 8.7 8.6 4.7 3.7 1.5 4.3 5.8 10.1 8.2 6.5 7.0 7.5 9.7	11.0 14.2 9.8 11.9 6.1 5.3 3.0 6.3 8.6 10.4 10.0 6.9 7.2 11.1 11.6	10.2 10.4 13.1 15.5 16.8 16.4 18.5 14.5 16.2 15.0 15.9 17.1 18.0 15.9	MARCH 3.4 6.9 7.1 7.8 8.9 10.6 11.2 9.6 11.2 9.6 11.2 9.6 11.8 13.0 9.2 9.2	6.3 8.5 9.7 11.2 12.4 13.2 13.9 11.3 11.6 12.6 13.7 14.3 14.6 14.1	17.5 23.4 24.2 25.6 23.6 22.2 22.3 22.0 21.1 18.3 	APRIL 12.9 15.7 18.5 19.8 21.3 20.2 17.3 19.0 19.9 20.8 17.6 15.5	15.1 18.9 21.1 22.3 22.5 20.9 19.2 19.9 21.3 19.2 16.9 19.5 20.6 21.5 21.5 21.5 21.1	27.6 27.8 25.1 22.4 23.8 24.1 22.9 26.7 26.2 25.3 27.7 26.4 25.9 27.1 27.0 27.9	MAY 18.4 19.1 20.7 18.4 18.0 20.6 22.4 22.9 22.3 23.5 24.2 23.1 23.4 24.6 24.2 24.0 23.2	22.5 23.0 22.5 20.1 20.3 21.9 21.5 24.4 24.4 23.8 24.7 25.1 25.1 24.3 24.7 25.7 25.6 25.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	13.7 14.0 16.5 11.4 13.6 8.7 8.1 6.7 8.4 11.7 11.3 11.4 8.2 7.5 14.8 14.2	FEBRUARY 8.4 12.4 8.7 8.6 4.7 3.7 1.5 4.3 5.8 10.1 8.2 6.5 7.0 7.5 9.7	11.0 14.2 9.8 11.9 6.1 5.3 3.0 6.3 8.6 10.4 10.0 6.9 7.2 11.1 11.6	10.2 10.4 13.1 15.5 16.8 16.4 18.5 16.2 15.0 15.9 17.1 18.0 15.9	MARCH 3.4 6.9 7.1 7.8 8.9 10.6 11.2 9.6 7.7 10.9 12.3 12.1 11.8 13.0 9.2 9.2 9.2	6.3 8.5 9.7 11.2 12.4 13.2 13.9 11.6 12.6 14.3 14.6 14.1	17.5 23.4 24.2 25.6 23.6 22.2 20.8 21.2 22.3 22.0 21.1 18.3 	APRIL 12.9 15.7 18.5 19.8 21.3 20.2 17.3 19.0 19.9 20.8 17.6 15.5 14.8 16.1 17.6 17.8 3 17.6 17.8	15.1 18.9 21.1 22.3 22.5 20.9 19.2 19.9 21.3 19.2 16.9 19.5 20.6 21.5 21.5 21.5	27.6 27.8 25.1 22.4 23.8 24.1 22.9 26.7 26.2 25.3 27.7 26.4 25.9 25.4 26.0 27.1 27.0 27.9	MAY 18.4 19.1 20.7 18.4 18.0 20.6 22.4 22.9 22.3 23.5 24.2 23.1 23.4 24.6 24.2 24.0 23.2	22.5 23.0 22.5 20.1 20.3 21.9 21.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 27 28 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	13.7 14.0 16.5 11.4 13.6 8.7 8.1 6.7 8.4 11.7 11.3 11.4 8.2 7.5 14.8 14.2	FEBRUARY 8.4 12.4 8.7 8.6 4.7 3.7 1.5 4.3 5.8 10.1 8.2 6.5 7.0 7.5 9.7	11.0 14.2 9.8 11.9 6.1 5.3 3.0 6.3 8.6 10.4 10.0 6.9 7.2 11.1 11.6	10.2 10.4 13.1 15.5 16.8 16.4 18.5 14.5 16.2 15.0 15.9 17.1 18.0 15.9	MARCH 3.4 6.9 7.1 7.8 8.9 10.6 11.2 9.6 7.7 10.9 12.3 12.1 11.8 13.0 9.2 9.2 10.2	6.3 8.5 9.7 11.2 12.4 13.2 13.9 11.6 12.6 13.7 14.3 14.4 14.1	17.5 23.4 24.2 25.6 23.6 22.2 20.8 21.2 22.3 22.0 21.1 18.3 	APRIL 12.9 15.7 18.5 19.8 21.3 20.2 17.3 19.0 19.9 20.8 17.6 15.5 14.8 16.1 17.4 17.6 3 17.8 17.6 3 17.8	15.1 18.9 21.1 22.3 22.5 20.9 19.2 21.0 21.3 19.2 16.9 19.5 20.6 21.5 21.5 21.1 21.3	27.6 27.8 25.1 22.4 23.8 24.1 22.9 26.7 26.2 25.3 27.7 26.4 25.9 25.4 26.9 27.1 27.0 27.9	MAY 18.4 19.1 20.7 18.4 18.0 20.0 20.6 22.4 22.9 22.3 22.3 23.5 24.2 23.1 23.4 24.6 24.2 24.0 23.2	22.5 23.0 22.5 20.1 20.3 21.9 21.5 24.4 24.4 23.8 24.7 25.1 25.1 25.7 25.7 25.6 25.0

07300000 Salt Fork Red River near Wellington, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.-CHEMICAL DATA: Feb. 1951 to Oct. 1954, Oct. 1967 to Sept. 1997, Oct. 1999 to current year.
BIOLOGICAL DATA: Oct. 1974 to Sept. 1997, Oct. 1999 to current year.


PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: June 1952 to Sept. 1954, Oct. 1967 to Sept. 1991.
TEMPERATURE: June 1952 to Sept. 1954, Oct. 1967 to Sept. 1991.

WATER-QUALITY	DATA,	WATER	YEAR	OCTOBER	2000	TO	SEPTEMBER 2	001

DATE	T¥ME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGE DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	FORM,	E COLI, MTEC MF WATER		HAR NESS NONCARB DISSOLV FLD. AS CACO3 (MG/L) (00904)	CALCIUM	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	
FEB														
08	1500	48	2910	8.2	14.0	9.4	100	770	580	1160	1000	330	81.0	
APR 19	1155	21	3340	8.1	19.0	8.5	99.6	58	42	1520	1370	464	88.8	
MAY														
23 AUG	1310	43	2560	7.9	25.5	7.9	105	57	60	926	772	258	68.2	
09	1130	2.2	3080	8.0	29.9	7.7	110	370	470	1650	1520	518	86.1	
	SODIUM, DIS-	SODIUM AD- SORP-	POTAS- SIUM, DIS-	ALKA- LINITY WAT DIS TOT IT	SULFATE DIS-	CHLO- RIDE, DIS-	FLUO- RIDE, DIS-	SILICA, DIS- SOLVED	CONSTI-	TOTAL AT 105		NITRO- GEN, NITRITE DIS-	NITRO- GEN, NO2+NO3 DIS-	
	SOLVED	TION	SOLVED	FIELD	SOLVED	SOLVED	SOLVED	(MG/L	DIS-	SUS-	SOLVED	SOLVED	SOLVED	
DATE	(MG/L AS NA) (00930)	(00931)	(MG/L AS K) (00935)	MG/L AS CACO3 (39086)	(MG/L AS SO4) (00945)	(MG/L AS CL) (00940)	(MG/L AS F) (00950)	AS SIO2) (00955)	(MG/L)	PENDED (MG/L) (00530)	(MG/L AS N) (00618)	(MG/L AS N) (00613)	(MG/L AS N) (00631)	
FEB														
08 APR	216	2.76	4.51	157	1030	296	.8	18.6	2080	15		E.005	.764	
19 MAY	206	2.29	3.88	150	1400	295	.7	19.4	2570	<10	1.53	.011	1.54	
23 AUG	205	2.94	5.52	154	836	274	.8	26.1	1770	44	:			
09	140	1.50	4.04	124	1540	198	. 6	24.2	2600	<10	1.90	.025	1.92	
		DATE EB	NITROGEN, AMMONIA DIS- SOLVEL (MG/L AS N) (00608)	MITROGEN, TOTAL (MG/L AS N) (00600)	ORGANI TOTAL (MG/L AS N) (00605	ORGANI C DIS- SOLVE (MG/I AS N)	GEN, A C MONIA ORGAN D DIS. (MG/ AS N () (0062	M- GEN, A + MONIA IC ORGAN TOTA L (MG/) AS N 3) (0062	AM- A + PHO NIC PHOR AL TOT. (L (MG N) AS	US DI AL SOL /L (MG P) AS 65) (006	US ORT S- DIS VED SOLV /L (MG/ P) AS P 66) (006	EUS PHO, :- ED L :71)		
		08 PR 19	.073	1.10	.263	.167	7 .2 E.0							
		23 JG			·					-	_	.		
		09	.072	2.18	.182	.171	L .2	4 .25	.0	04 <.0	06 <.0	20		

RED RIVER COMPACT ARKANSAS - LOUISIANA - OKLAHOMA - TEXAS

APPROVED BY THE RED RIVER COMPACT COMMISSION

MAY 12, 1978

TABLE OF CONTENTS

	Page
PREAMBLE	1
ARTICLE I, PURPOSES	2
ARTICLE II, GENERAL PROVISIONS	3
ARTICLE III, DEFINITIONS	6
ARTICLE IV, APPORTIONMENT OF WATER - REACH I	8
ARTICLE V, APPORTIONMENT OF WATER - REACH II	10
ARTICLE VI, APPORTIONMENT OF WATER - REACH III	14
ARTICLE VII, APPORTIONMENT OF WATER - REACH IV	18
ARTICLE VIII, APPORTIONMENT OF WATER - REACH V	20
ARTICLE IX, ADMINISTRATION OF THE COMPACT	21
ARTICLE X, POWERS AND DUTIES OF THE COMMISSION	-23
ARTICLE XI, POLLUTION	26
ARTICLE XII, TERMINATION AND AMENDMENT OF COMPACT	28
ARTICLE XIII, RATIFICATION AND EFFECTIVE DATE OF COMPACT	29

PREAMBLE

The States of Arkansas, Louisiana, Oklahoma, and Texas, pursuant to the acts of their respective Governors or legislatures; or both, being moved by considerations of interstate comity, have resolved to compact with respect to the water of the Red River and its tributaries. By Act of Congress, Public Law No. 346 (84th Congress, First Session), the consent of the United States has been granted for said states to negotiate and enter into a compact providing for an equitable apportionment of such water; and pursuant to that Act the President has designated the representative of the United States.

Further, the consent of Congress has been given for two or more states to negotiate and enter into agreements relating to water pollution control by the provisions of the Federal Water Pollution Control Act (P. L. 92-500, 33 U.S.C. 8 1251 et seq.).

The Signatory States acting through their duly authorized Compact Commissioners, after several years of negotiations, have agreed to an equitable apportionment of the water of the Red River and its tributaries and do hereby submit and recommend that this compact be adopted by the respective legislatures and approved by Congress as hereinafter set forth:

ARTICLE I

PURPOSES

SECTION 1.01. The principal purposes of this Compact are:

(

- (a) To promote interstate comity and remove causes of controversy between each of the affected states by governing the use, control and distribution of the interstate water of the Red River and its tributaries;
- (b) To provide an equitable apportionment among the Signatory States of the water of the Red River and its tributaries;
- (c) To promote an active program for the control and alleviation of natural deterioration and pollution of the water of the Red River Basin and to provide for enforcement of the laws related thereto;
- (d) To provide the means for an active program for the conservation of water, protection of lives and property from floods, improvement of water quality, development of navigation and regulation of flows in the Red River Basin; and
- (e) To provide a basis for state or joint state planning and action by ascertaining and identifying each state's share in the interstate water of the Red River Basin and the apportionment thereof.

ARTICLE II

Ç

GENERAL PROVISIONS

SECTION 2.01. Each Signatory State may use the water allocated to it by this Compact in any manner deemed beneficial by that state. Each state may freely administer water rights and uses in accordance with the laws of that state, but such uses shall be subject to the availability of water in accordance with the apportionments made by this Compact.

SECTION 2.02. The use of water by the United States in connection with any individual Federal project shall be in accordance with the Act of Congress authorizing the project and the water shall be charged to the state or states receiving the benefit therefrom.

SECTION 2.03. Any Signatory State using the channel of Red River or its tributaries to convey stored water shall be subject to an appropriate reduction in the amount which may be withdrawn at the point of removal to account for transmission losses.

SECTION 2.04. The failure of any state to use any portion of the water allocated to it shall not constitute relinquishment or forfeiture of the right to such use.

SECTION 2.05. Each Signatory State shall have the right to:

- (a) Construct conservation storage capacity for the impoundment of water allocated by this Compact;
- (b) Replace within the same area any storage capacity recognized or authorized by this Compact made unusable by any cause, including losses due to sediment storage;
- (c) Construct reservoir storage capacity for the purposes of flood and sediment control as well as storage of water which is either imported or is to be exported if such storage does not adversely affect the delivery of water apportioned to any other Signatory State; and
- (d) Use the bed and banks of the Red River and its tributaries to convey stored water, imported or exported water, and water apportioned according to this Compact.

SECTION 2.06. Signatory States may cooperate to obtain construction of facilities of joint benefits to such states.

SECTION 2.07. Nothing in this Compact shall be deemed to impair or affect the powers, rights, or obligations of the United States, or those claiming under its authority, in, over and to water of the Red River Basin.

SECTION 2.08. Nothing in this Compact shall be construed to include within the water apportioned by this Compact any water consumed in each state by livestock or for domestic purposes; provided, however, the storage of such water is in accordance with the laws of the respective states but any such impoundment shall not exceed 200 acre-feet, or such smaller quantity as may be provided for by the laws of each state.

SECTION 2.09. In the event any state shall import water into the Red River Basin from any other river basin, the Signatory State making the importation shall have the use of such imported water.

SECTION 2.10. Nothing in this Compact shall be deemed to:

- (a) Interfere with or impair the right or power of any Signatory State to regulate within its boundaries the appropriation, use, and control of water, or quality of water, not inconsistent with its obligations under this Compact;
- (b) Repeal or prevent the enactment of any legislation or the enforcement of any requirement by any Signatory State imposing any additional conditions or restrictions to further lessen or prevent the pollution or natural deterioration of water within its jurisdiction; provided nothing contained in this paragraph shall alter any provision of this Compact dealing with the apportionment of water or the rights thereto; or
- (c) Waive any state's immunity under the Eleventh Amendment of the Constitution of the United States, or as constituting the consent of any state to be sued by its own citizens.

SECTION 2.11. Accounting for apportionment purposes on interstate streams shall not be mandatory under the terms of the Compact until one or more affected states deem the accounting necessary.

SECTION 2.12. For the purposes of apportionment of the water among the Signatory States, the Red River is hereby divided into the following major subdivisions:

(a) Reach I - the Red River and tributaries from the New Mexico-Texas State boundary to Denison Dam;

(

- (b) Reach II the Red River from Denison Dam to the point where it crosses the Arkansas-Louisiana state boundary and all tributaries which contribute to the flow of the River within this reach;
- (c) Reach III the tributaries west of the Red River which cross the Texas-Louisiana state boundary, the Arkansas-Louisiana state boundary, and those which cross both the Texas-Arkansas state boundary and the Arkansas-Louisiana state boundary.
- (d) Reach IV the tributaries east of the Red River in Arkansas which cross the Arkansas-Louisiana state boundary; and
- (e) Reach V that portion of the Red River and tributaries in Louisiana not included in Reach III or in Reach IV.

SECTION 2.13. If any part or application of this Compact shall be declared invalid by a court of competent jurisdiction, all other severable provisions and applications of this Compact shall remain in full force and effect.

SECTION 2.14. Subject to the availability of water in accordance with this Compact, nothing in this Compact shall be held or construed to alter, impair, or increase, validate, or prejudice any existing water right or right of water use that is legally recognized on the effective date of this Compact by either statutes or courts of the Signatory State within which it is located.

ARTICLE III

DEFINITIONS

SECTION 3.01. In this Compact:

- (a) The States of Arkansas, Louisiana, Oklahoma, and Texas are referred to as "Arkansas," "Louisiana," "Oklahoma," and "Texas," respectively, or individually as "State" or "Signatory State," or collectively as "States" or "Signatory States."
- (b) The term "Red River" means the stream below the crossing of the Texas-Oklahoma state boundary at longitude 100 degrees west.
- (c) The term "Red River Basin" means all of the natural drainage area of the Red River and its tributaries east of the New Mexico-Texas state boundary and above its junction with Atchafalaya and Old Rivers.
- (d) The term "water of the Red River Basin" means the water originating in any part of the Red River Basin and flowing to or in the Red River or any of its tributaries.
- (e) The term "tributary" means any stream which contributes to the flow of the Red River.
- (f) The term "interstate tributary" means a tributary of the Red River, the drainage area of which includes portions of two or more Signatory States.
- (g) The term "intrastate tributary" means a tributary of the Red River, the drainage area of which is entirely within a single Signatory State.
- (h) The term "Commission" means the agency created by Article IX of this Compact for the administration thereof.
- (i) The term "pollution" means the alteration of the physical, chemical, or biological characteristics of water by the acts or instrumentalities of man which create or are likely to result in a material and adverse effect upon human beings, domestic or wild animals, fish and other aquatic life, or adversely affect any other lawful use of such water; provided, that for the purposes of this Compact,

"pollution" shall not mean or include "natural deterioration."

- (j) The term "natural deterioration" means the material reduction in the quality of water resulting from the leaching of solubles from the soils and rocks through or over which the water flows naturally.
- (k) The term "designated water" means water released from storage, paid for by non-Federal interests, for delivery to a specific point of use or diversion.
- (1) The term "undesignated water" means all water released from storage other than "designated water."
- (m) The term "conservation storage capacity" means that portion of the active capacity of reservoirs available for the storage of water for subsequent beneficial use, and it excludes any portion of the capacity of reservoirs allocated solely to flood control and sediment control, or either of them.
- (n) The term "runoff" means both the portion of precipitation which runs off the surface of a drainage area and that portion of the precipitation that enters the streams after passing through the portions of the earth.

ARTICLE IV

APPORTIONMENT OF WATER - REACH I

OKLAHOMA - TEXAS

Subdivison of Reach I and apportionment of water therein.

Reach I of the Red River is divided into topographical subbasins, with the water therein allocated as follows:

·.

SECTION 4.01. Subbasin 1 - Interstate streams - Texas.

- (a) This includes the Texas portion of Buck Creek, Sand (Lebos) Creek, Salt Fork Red River, Elm Creek, North Fork Red River, Sweetwater Creek, and Washita River, together with all their tributaries in Texas which lie west of the 100th Meridian.
- (b) The annual flow within this subbasin is hereby apportioned sixty (60) percent to Texas and forty (40) percent to Oklahoma.

SECTION 4.02. Subbasin 2 - Intrastate and Interstate streams - Oklahoma.

- (a) This subbasin is composed of all tributaries of the Red River in Oklahoma and portions thereof upstream to the Texas-Oklahoma state boundary at longitude 100 degrees west, beginning from Denison Dam and upstream to and including Buck Creek.
- (b) The State of Oklahoma shall have free and unrestricted use of the water of this subbasin.

SECTION 4.03. Subbasin 3 - Intrastate streams - Texas.

- (a) This includes the tributaries of the Red River in Texas, beginning from Denison Dam and upstream to and including Prairie Dog Town Fork Red River.
- (b) The State of Texas shall have free and unrestricted use of the water in this subbasin.

SECTION 4.04. Subbasin 4 - Mainstem of the Red River and Lake Texoma.

(a) This subbasin includes all of Lake Texoma and the Red River beginning at Denison Dam and continuing upstream to the Texas-Oklahoma state boundary at longitude 100 degrees west.

(b) The storage of Lake Texoma and flow from the mainstem of the Red River into Lake Texoma is apportioned as follows:

ς

- (1) Oklahoma 200,000 acre-feet and Texas 200,000 acre-feet, which quantities shall include existing allocations and uses; and
- (2) Additional quantities in a ratio of fifty (50) percent to Oklahoma and fifty (50) percent to Texas.

SECTION 4.05. Special Provisions.

- (a) Texas and Oklahoma may construct, jointly or in cooperation with the United States, storage or other facilities for the conservation and use of water; provided that any facilities constructed on the Red River boundary between the two states shall not be inconsistent with the Federal legislation authorizing Denison Dam and Reservoir project.
- (b) Texas shall not accept for filing, or grant a permit, for the construction of a dam to impound water solely for irrigation, flood control, soil conservation, mining and recovery of minerals, hydroelectric power, navigation, recreation and pleasure, or for any other purpose other than for domestic, municipal, and industrial water supply, on the mainstem of the North Fork Red River or any of its tributaries within Texas above Lugert-Altus Reservoir until the date that imported water, sufficient to meet the municipal and irrigation needs of Western Oklahoma is provided, or until January 1, 2000, which ever occurs first.

ARTICLE V

APPORTIONMENT OF WATER - REACH II ARKANSAS, OKLAHOMA, TEXAS AND LOUISIANA

Subdivision of Reach II and allocation of water therein.

Reach II of the Red River is divided into topographic subbasins, and the water therein is allocated as follows:

SECTION 5.01. Subbasin 1 - Intrastate streams - Oklahoma.

(a) This subbasin includes those streams and their tributaries above existing, authorized or proposed last downstream major damsites, wholly in Oklahoma and flowing into Red River below Denison Dam and above the Oklahoma-Arkansas state boundary. These streams and their tributaries with existing, authorized or proposed last downstream major damsites are as follows:

•			Location		
Stream	<u>Site</u>	<u>Ac-ft</u>	Latitude	Longitude	
Island-Bayou	Albany	85,200	33°51.5'N	96 ⁰ 11.4'W	
Blue River	Durant	147,000	33 ⁰ 55.5'n	96 ⁰ 04.2'W	
Boggy River	Boswell	1,243,800	34°01.6'N	95 ⁰ 45.0'W	
Kiamichi River	Hugo	240,700	34°01.0'N	95°22.6'W	

(b) Oklahoma is apportioned the water of this subbasin and shall have unrestricted use thereof.

SECTION 5.02. Subbasin 2 - Intrastate streams - Texas.

(a) This subbasin includes those streams and their tributaries above existing authorized or proposed last downstream major damsites, wholly in Texas and flowing into Red River below Denison Dam and above the Texas-Arkansas state boundary.
 These streams and their tributaries with existing, authorized or proposed last downstream major damsites are as follows:

Latitude	Longitude
33 ⁰ 48.1'N	96 ⁰ 34.8'W
33 ⁰ 38.7'N	96°21.5'W
33 ⁰ 42.9'N	95 ⁰ 58.2'W
0	0

Location

Site	Ac-ft	Latitude	Longitude
Randall Lake			96 ⁰ 34.8'W
Valley Lake	,		96°21.5'W
•	130,600	33 ⁰ 42.9'N	95 ⁰ 58.2'W
	8,000	33 ⁰ 44.1'N	95 ⁰ 58.0'W
	3,900	33°44.5'N	95 ⁰ 55.5'W
	124,500	33°51.2'N	95°32.9'W
•			95 ⁰ 34.0'W
			95 ⁰ 11.7'W
·		_	94 ⁰ 58.7'W
	-	_	94 ⁰ 29.3'W
Liberty Hill	-		94 [°] 27.3'W
KVW Ranch Lakes (3)	3,440	33 34.8'N	94 2/.3 W
	Randall Lake Valley Lake New Bonham Reservoir Coffee Mill Lake Lake Crockett Pat Mayse Lake Crook Big Pine Lake Pecan Bayou Liberty Hill	Randall Lake 5,400 Valley Lake 15,000 New Bonham Reservoir 130,600 Coffee Mill Lake 8,000 Lake Crockett 3,900 Pat Mayse 124,500 Lake Crook 11,011 Big Pine Lake 138,600 Pecan Bayou 625,000 Liberty Hill 97,700	Randall Lake 5,400 33°48.1'N Valley Lake 15,000 33°38.7'N New Bonham Reservoir 130,600 33°42.9'N Coffee Mill Lake 8,000 33°44.1'N Lake Crockett 3,900 33°44.5'N Pat Mayse 124,500 33°51.2'N Lake Crook 11,011 33°43.7'N Big Pine Lake 138,600 33°52.0'N Pecan Bayou 625,000 33°41.1'N Liberty Hill 97,700 33°33.0'N

Texas is apportioned the water of this subbasin and shall have unrestricted use thereof.

Subbasin 3 - Interstate Streams - Oklahoma and Arkansas. SECTION 5.03.

- This subbasin includes Little River and its tributaries above Millwood Dam.
- The States of Oklahoma and Arkansas shall have free and unrestricted use of the water of this subbasin within their respective states, subject, however, to the limitation that Oklahoma shall allow a quantity of water equal to 40 percent of the total runoff originating below the · following existing, authorized or proposed last downstream major damsites in Oklahoma to flow into Arkansas:

			Location	
Stream	Site	Ac-ft		Longitude
Little River	Pine Creek	70,500	34°06.8'N	95~04.9'W
Glover Creek	Lukfata	258,600	34 ⁰ 08.5'N 34 ⁰ 08.9'N	94 55.4 W
Mountain Fork River	Broken Bow	4/0,100	34 UO.9 N	J

Accounting will be on an annual basis unless otherwise deemed necessary by the States of Arkansas and Oklahoma.

SECTION 5.04. Subbasin 4 - Interstate streams - Texas and Arkansas.

(a) This subbasin shall consist of those streams and their tributaries above existing, authorized or proposed last downstream major damsites, originating in Texas and crossing the Texas-Arkansas state boundary before flowing into the Red River in Arkansas. These streams and their tributaries with existing, authorized or proposed last downstream major damsites are as follows:

			Location	
Stream	<u>Site</u>	Ac-ft	Latitude	Longitude
McKinney Bayou Trib.	Bringle Lake	3,052	33°30.6'N	94 ⁰ 06.2'W
Barkman Creek	Barkman Reservoir	15,900	33 ⁰ 29.7'N	94°10.3'W
Sulphur River	Texarkana	386,900	33°18.3'N	94°09.6'W

(b) The State of Texas shall have the free and unrestricted use of the water of this subbasin.

SECTION 5.05. Subbasin 5 - Mainstem of the Red River and tributaries.

- (a) This subbasin includes that portion of the Red River, together with its tributaries, from Denison Dam down to the Arkansas-Louisiana state boundary, excluding all tributaries included in the other four subbasins of Reach II.
- (b) Water within this subbasin is allocated as follows:
 - (1) The Signatory States shall have equal rights to the use of runoff originating in subbasin 5 and undesignated water flowing into subbasin 5, so long as the flow of the Red River at the Arkansas-Louisiana state boundary is 3,000 cubic feet per second or more, provided no state is entitled to more than 25 percent of the water in excess of 3,000 cubic feet per second.
 - (2) Whenever the flow of the Red River at the Arkansas-Louisiana state boundary is less than 3,000 cubic feet per second, but more than 1,000 cubic feet per second, the States of Arkansas, Oklahoma, and Texas shall

allow to flow into the Red River for delivery to the State of Louisiana a quantity of water equal to 40 percent of the total weekly runoff originating in subbasin 5 and 40 percent of undesignated water flowing into subbasin 5; provided, however, that this requirement shall not be interpreted to require any state to release stored water.

- (3) Whenever the flow of the Red River at the Arkansas-Louisiana state boundary falls below 1,000 cubic feet per second, the States of Arkansas, Oklahoma, and Texas shall allow a quantity of water equal to all the weekly runoff originating in subbasin 5 and all undesignated water flowing into subbasin 5 within their respective states to flow into the Red River as required to maintain a 1,000 cubic foot per second flow at the Arkansas-Louisiana state boundary.
- (c) Whenever the flow at Index, Arkansas, is less than 526 c.f.s., the states of Oklahoma and Texas shall each allow a quantity of water equal to 40 percent of the total weekly runoff originating in subbasin 5 within their respective states to flow into the Red River; provided however, this provision shall be invoked only at the request of Arkansas, only after Arkansas has ceased all diversions from the Red River itself in Arkansas above Index, and only if the provisions of Sub-sections 5.05 (b) (2) and (3) have not caused a limitation of diversions in subbasin 5.
- (d) No state guarantees to maintain a minimum low flow to a downstream state.

SECTION 5.06. Special Provisions.

(a) Reservoirs within the limits of Reach II, subbasin 5, with a conservation storage capacity of 1,000 acre feet or less in existence or authorized on the date of the Compact pursuant to the rights and privileges granted by a Signatory State authorizing such reservoirs, shall be exempt from the provisions of Section 5.05; provided, if any right to store water in, or use water from, an existing exempt reservoir expires or is cancelled after the effective date of the Compact the exemption for such rights provided by this section shall be lost.

- (b) A Signatory State may authorize a change in the purpose or place of use of water from a reservoir exempted by subparagraph (a) of this section without losing that exemption, if the quantity of authorized use and storage is not increased.
- (c) Additionally, exemptions from the provisions of Section 5.05 shall not apply to direct diversions from Red River to off-channel reservoirs or lands.

ARTICLE VI

APPORTIONMENT OF WATER - REACH III

ARKANSAS, LOUISIANA, AND TEXAS

Subdivision of Reach III and allocation of water therein.

Reach III of the Red River is divided into topographic subbasins, and the water therein allocated, as follows:

SECTION 6.01. Subbasin 1 - Interstate streams - Arkansas and Texas.

- (a) This subbasin includes the Texas portion of those streams crossing the Arkansas-Texas state boundary one or more times and flowing through Arkansas into Cypress Creek-Twelve Mile Bayou watershed in Louisiana.
- (b) Texas is apportioned sixty (60) percent of the runoff of this subbasin and shall have unrestricted use thereof; Arkansas is entitled to forty (40) percent of the runoff of this subbasin.

SECTION 6.02. Subbasin 2 - Interstate streams - Arkansas and Louisiana.

- (a) This subbasin includes the Arkansas portion of those streams flowing from Subbasin 1 into Arkansas, as well as other streams in Arkansas which cross the Arkansas-Louisiana state boundary one or more times and flow into Cypress Creek-Twelve Mile Bayou watershed in Louisiana.
- (b) Arkansas is apportioned sixty (60) percent of the runoff of this subbasin and shall have unrestricted use thereof; Louisiana is entitled to forty (40) percent of the runoff of this subbasin.

SECTION 6.03. Subbasin 3 - Interstate streams - Texas and Louisian

- (a) This subbasin includes the Texas portion of all tributaries crossing the Texas-Louisiana state boundary one or more times and flowing into Caddo Lake, Cypress Creek-Twelve Mile Bayou or Cross Lake, as well as the Louisiana portion of such tributaries.
- (b) Texas and Louisiana within their respective boundaries shall each have the unrestricted use

of the water of this subbasin subject to the following allocation:

(

- (1) Texas shall have the unrestricted right to all water above Marshall, Lake O' the Pines, and Black Cypress damsites; however, Texas shall not cause runoff to be depleted to a quantity less than that which would have occurred with the full operation of Franklin County, Titus County, Ellison Creek, Johnson Creek, Lake O' the Pines, Marshall, and Black Cypress Reservoirs constructed, and those other impoundments and diversions existing on the effective date of this Compact. Any depletions of runoff in excess of the depletions described above shall be charged against Texas' apportionment of the water in Caddo Reservoir.
- (2) Texas and Louisiana shall each have the unrestricted right to use fifty (50) percent of the conservation storage capacity in the present Caddo Lake for the impoundment of water for state use, subject to the provision that supplies for existing uses of water from Caddo Lake, on date of Compact, are not reduced.
- (3) Texas and Louisiana shall each have the unrestricted right to fifty (50) percent of the conservation storage capacity of any future enlargement of Caddo Lake, provided, the two states may negotiate for the release of each state's share of the storage space on terms mutually agreed upon by the two states after the effective date of this Compact.
- (4) Inflow to Caddo Lake from its drainage area downstream from Marshall, Lake 0' the Pines, and Black Cypress damsites and downstream from other last downstream dams in existence on the date of the signing of the Compact document by the Compact Commissioners, will be allowed to continue flowing into Caddo Lake except that any manmade depletions to this inflow by Texas will be subtracted from the Texas share of the water in Caddo Lake.

- (c) In regard to the water of interstate streams which do not contribute to the inflow to Cross Lake or Caddo Lake, Texas shall have the unrestricted right to divert and use this water on the basis of a division of runoff above the state boundary of sixty (60) percent to Texas and forty (40) percent to Louisiana.
- (d) Texas and Louisiana will not construct improvements on the Cross Lake watershed in either state that will affect the yield of Cross Lake; provided, however, this subsection shall be subject to the provisions of Section 2.08.

SECTION 6.04. Subbasin 4 - Intrastate streams - Louisiana.

- (a) This subbasin includes that area of Louisiana in Reach III not included within any other subbasin.
- (b) Louisiana shall have free and unrestricted use of the water of this subbasin.

ARTICLE VII

APPORTIONMENT OF WATER - REACH IV

ARKANSAS AND LOUISIANA

Subdivision of Reach IV and allocation of water therein.

Reach-IV of the Red River is divided into topographic subbasins, and the water therein allocated as follows:

SECTION 7.01. Subbasin 1 - Intrastate streams - Arkansas.

(a) This subbasin includes those streams and their tributaries above last downstream major damsites originating in Arkansas and crossing the Arkansas-Louisiana state boundary before flowing into the Red River in Louisiana. Those major last downstream damsites are as follows:

- -	*			Location	
Stream	Site	<i>:</i>	Ac-ft	Latitude	Longitude
Ouachita River	Lake Catherine	•	19,000	34°26.6'N	93 ⁰ 01.6'W
Caddo River	DeGray Lake		1,377,000	34°13.2'N	93 ⁰ 06.6'W
Little Missouri River	Lake Greeson		600,000	34°08.9'N	93 ⁰ 42.9'W
Alum Fork, Saline					
River	Lake Winona		63,264	32°47.8'N	92 ⁰ 51.0'W

(b) Arkansas is apportioned the waters of this subbasin and shall have unrestricted use thereof.

SECTION 7.02. Subbasin 2 - Interstate Streams - Arkansas and Louisiana.

- (a) This subbasin shall consist of Reach IV less subbasin 1 as defined in Section 7.01 (a) above.
- (b) The State of Arkansas shall have free and unrestricted use of the water of this reach subject to the limitation that Arkansas shall allow a quantity of water equal to forty (40) percent of the weekly runoff originating below or flowing from the last downstream major damsite to flow into Louisiana. Where there are no designated last downstream damsites, Arkansas shall allow a quantity of

water equal to forty (40) percent of the total weekly runoff originating above the state boundary to flow into Louisiana. Use of water in this subbasin is subject to low flow provisions of subparagraph 7.02(b).

SECTION 7.03. Special Provisions.

- (a) Arkansas may use the beds and banks of segments of Reach IV for the purpose of conveying its share of water to designated downstream diversions.
- (b) The State of Arkansas does not guarantee to maintain a minimum low flow for Louisiana in Reach IV. However, on the following streams when the use of water in Arkansas reduces the flow at the Arkansas-Louisiana state boundary to the following amounts:
 - (1) Ouachita 780 cfs
 - (2) Bayou Bartholomew 80 cfs
 - (3) Boeuf River 40 cfs
 - (4) Bayou Macon 40 cfs

the State of Arkansas pledges to take affirmative steps to regulate the diversions of runoff originating or flowing into Reach IV in such a manner as to permit an equitable apportionment of the runoff as set out herein to flow into the State of Louisiana. In its control and regularition of the water of Reach IV any adjudication or order rendered by the State of Arkansas or any of its instrumentalities or agencies affecting the terms of this Compact shall not be effective against the State of Louisiana nor any of its citizens or inhabitants until approved by the Commission.

ARTICLE VITT

APPORTIONMENT OF WATER - REACH V

SECTION 8.01. Reach V of the Red River consists of the mainstem Red River and all of its tributaries lying wholly within the State of Louisiana. The State of Louisiana shall have free and unrestricted use of the water of this subbasin.

ARTICLE IX

ADMINISTRATION OF THE COMPACT

SECTION 9.01. There is hereby created an interstate administrative agency to be known as the "Red River Compact Commission," hereinafter called the "Commission." The Commission shall be composed of two representatives from each Signatory State who shall be designated or appointed in accordance with the laws of each state, and one Commissioner representing the United States, who shall be appointed by the President. The Federal Commissioner shall be the Chairman of the Commission but shall not have the right to vote. The failure of the President to appoint a Federal Commissioner will not prevent the operation or effect of this Compact, and the eight representatives from the Signatory States will elect a Chairman for the Commission.

SECTION 9.02. The Commission shall meet and organize within 60 days after the effective date of this Compact. Thereafter, meetings shall be held at such times and places as the Commission shall decide.

SECTION 9.03. Each of the two Commissioners from each state shall have one vote; provided, however, that if only one representative from a state attends he is authorized to vote on behalf of the absent Commissioner from that state. Representatives from three states shall constitute a quorum. Any action concerned with administration of this Compact or any action requiring compliance with specific terms of this Compact shall require six concurring votes. If a proposed action of the Commission affects existing water rights in a state, and that action is not expressly provided for in this Compact, eight concurring votes shall be required.

SECTION 9.04.

- (a) The salaries and personal expenses of each state's representative shall be paid by the government that it represents, and the salaries and personal expenses of the Federal Commissioner will be paid for by the United States.
- (b) The Commission's expenses for any additional stream flow gauging stations shall be equitably apportioned among the states involved in the reach in which the stream flow gaging stations are located.
- (c) All other expenses incurred by the Commission shall be borne equally by the Signatory States and shall be paid by the Commission out of the "Red River

Compact Commission Fund." Such Fund shall be initiated and maintained by equal payments of each state into the fund. Disbursement shall be made from the fund in such manner as may be authorized by the Commission. Such fund shall not be subject to audit and accounting procedures of the state; however, all receipts and disbursements of the fund by the Commission shall be audited by a qualified independent public accountant at regular intervals, and the report of such audits shall be included in and become a part of the annual report of the Commission. Each state shall have the right to make its own audit of the accounts of the Commission at any reasonable time.

ARTICLE X

POWERS AND DUTIES OF THE COMMISSION

SECTION 10.01. The Commission shall have the power to:

- (a) Adopt rules and regulations governing its operation and enforcement of the terms of the Compact;
- (b) Establish and maintain an office for the conduct of its affairs and, if desirable, from time to time, change its location;
- (c) Employ or contract with such engineering, legal, clerical and other personnel as it may determine necessary for the exercise of its functions under this Compact without regard to the Civil Service Laws of any Signatory State; provided that such employees shall be paid by and be responsible to the Commission and shall not be considered employees of any Signatory State;
- (d) Acquire, use and dispose of such real and personal property as it may consider necessary;
- (e) Enter into contracts with appropriate State or Federal agencies for the collection, correlation and presentation of factual data, for the maintenance of records and for the preparation of reports;
- (f) Secure from the head of any department or agency of the Federal or State government such information as it may need or deem to be useful for carrying out its functions and as may be available to or procurable by the department or agency to which the request is addressed; provided such information is not privileged and the department or agency is not precluded by law from releasing same.
- (g) Make findings, recommendations or reports in connection with carrying out the purposes of this Compact, including, but not limited to, a finding that a Signatory State is or is not in violation of any of the provisions of this Compact. The Commission is authorized to make

such investigations and studies, and to hold such hearings as it may deem necessary for said purposes. It is authorized to make and file official certified copies of any of its findings, recommendations or reports with such officers or agencies of any Signatory State, or the United States, as may have any interest in or jurisdiction over the subject matter. The making of findings, recommendations, or reports by the Commission shall not be a condition precedent to the instituting or maintaining of any action or proceeding of any kind by a Signatory State in any court or tribunal, or before any agency or officer, for the protection of any right under this Compact or for the enforcement of any of its provisions; and

(h) Print or otherwise reproduce and distribute its proceedings and reports.

SECTION 10.02. The Commission shall:

- (a) Cause to be established, maintained, and operated such stream, reservoir and other gaging stations as are necessary for the proper administration of the Compact;
- (b) Cause to be collected, analyzed and reported such information on stream flows, water quality, water storage and such other data as are necessary for the proper administration of the Compact;
- (c) Perform all other functions required of it by the Compact and do all things necessary, proper and convenient in the performance of its duties thereunder;
- (d) Prepare and submit to the governor of each of the Signatory States a budget covering the anticipated expenses of the Commission for the following fiscal biennium;
- (e) Prepare and submit an annual report to the governor of each Signatory State and to the President of the United States covering the activities of the Commission for the preceding fiscal year, together with an accounting of all funds received and expended by it in the conduct of its work;

- (f) Make available to the governor or to any official agency of a Signatory State or to any authorized representative of the United States, upon request, any information within its possession;
- (g) Not incur any obligation in excess of the unencumbered balance of its funds, nor pledge the credit of any of the Signatory States; and
- (h) Make available to a Signatory State or the United States in any action arising under this Compact, without subpoena, the testimony of any officer or employee of the Commission having knowledge of any relevant facts.

ARTICLE XI

POLLUTION

SECTION 11.01. The Signatory States recognize that the increase in population and the growth of industrial, agricultural, mining and other activities combined with natural pollution sources may lead to a diminution of the quality of water in the Red River Basin which may render the water harmful or injurious to the health and welfare of the people and impair the usefulness or public enjoyment of the water for beneficial purposes, thereby resulting in adverse social, economic, and environmental impacts.

SECTION 11.02. Although affirming the primary duty and responsibility of each Signatory State to take appropriate action under its own laws to prevent, diminish, and regulate all pollution sources within its boundaries which adversely affect the water of the Red River Basin, the states recognize that the control and abatement of the naturally-occurring salinity sources as well as, under certain circumstances, the maintenance and enhancement of the quality of water in the Red River Basin may require the cooperative action of all states.

SECTION 11.03. The Signatory States agree to cooperate with agencies of the United States to devise and effectuate means of alleviating the natural deterioration of the water of the Red River Basin.

SECTION 11.04. The Commission shall have the power to cooperate with the United States, the Signatory States and other entities in programs for abating and controlling pollution and natural deterioration of the water of the Red River Basin, and to recommend reasonable water quality objectives to the states.

SECTION 11.05. Each Signatory State agrees to maintain current records of waste discharges into the Red River Basin and the type and quality of such discharges, which records shall be furnished to the Commission upon request.

SECTION 11.06. Upon receipt of a complaint from the governor of a Signatory State that the interstate water of the Red River Basin in which it has an interest are being materially and adversely affected by pollution and that the state in which the pollution originates has failed after reasonable notice to take appropriate abatement measures, the Commission shall make such findings as are appropriate and thereafter provide such findings to the governor of the state in which such pollution originates and request appropriate corrective action. The Commission, however, shall not take any action with respect to pollution which adversely affects only the state in which such pollution originates.

SECTION 11.07. In addition to its other powers set forth under this Article, the Commission shall have the authority, upon receipt of six concurring votes, to utilize applicable Federal statutes to institute legal action in its own name against the person or entity responsible for interstate pollution problems; provided, however, sixty (60) days before initiating legal action the Commission shall notify the Governor of the state in which the pollution source is located to allow that state an opportunity to initiate action in its own name.

SECTION 11.08. Without prejudice to any other remedy available to the Commission, or any Signatory State, any state which is materially and adversely affected by the pollution of the water of the Red River Basin by pollution originating in another Signatory State may institute a suit against any individual, corporation, partnership, or association, or against any Signatory State or political or governmental subdivision thereof, or against any officer, agency, department, bureau, district or instrumentality of or in any Signatory State contributing to such pollution in accordance with applicable Federal statutes. Nothing herein shall be construed as depriving any persons of any rights of action relating to pollution which such person would have if this Compact had not been made.

ARTICLE XII

TERMINATION AND AMENDMENT OF COMPACT

SECTION 12.01. This Compact may be terminated at any time by appropriate action of the legislatures of all of the four Signatory States. In the event of such termination, all rights established under it shall continue unimpaired.

SECTION 12.02. This Compact may be amended at any time by appropriate action of the legislatures of all Signatory States that are affected by such amendment. The consent of the United States Congress must be obtained before any such amendment is effective.

ARTICLE XIII

RATIFICATION AND EFFECTIVE DATE OF COMPACT

....

SECTION 13.01. Notice of ratification of this Compact by the legislature of each Signatory State shall be given by the governor thereof to the governors of each of the other Signatory States and to the President of the United States. The President is hereby requested to give notice to the governors of each of the Signatory States of the consent to this Compact by the Congress of the United States.

SECTION 13.02. This Compact shall become effective, binding and obligatory when, and only when:

- (a) It has been duly ratified by each of the Signatory States; and
- (b) It has been consented to by an Act of the Congress of the United States, which Act provides that:

Any other statute of the United States to the contrary notwithstanding, in any case or controversy:

which involves the construction or application of this Compact;

in which one or more of the Signatory States to this Compact is a plaintiff or plaintiffs; and

which is within the judicial power of the United States as set forth in the Constitution of the United States;

and without any requirement, limitation or regard as to the sum or value of the matter in controversy, or of the place of residence or citizenship of, or of the nature, character or legal status of, any of the other proper parties plaintiff or defendant in such case or controversy:

The consent of Congress is given to name and join the United States as a party defendant or otherwise in any such case or controversy in the Supreme Court of the United States if the United States is an indispensable party thereto.

SECTION 13.03. The United States District Courts shall have original jurisdiction (concurrent with that of the Supreme Court of the United States, and concurrent with that of any other Federal or state court, in matters in which the Supreme Court, or other court has original jurisdiction) of any case or controversy involving the application or construction of this Compact; that said jurisdiction shall include, but not be limited to, suits between Signatory States; and that the venue of such case or controversy may be brought in any judicial district in which the acts complained of (or any portion thereof) occur.

SIGNED AND APPROVED on the 12th day of May 1978 at Denison Dam.

John P. Saxton, Commissioner State of Arkansas

Arthur R. Theis, Commissioner State of Louisiana

Quville B,

Orville B. Saunders, Commissioner State of Oklahoma Fred Parkey, Commissioner State of Texas

Mman hell

R. C. MARSHALL, Major General Representative United States of America

RULES FOR THE INTERNAL ORGANIZATION of the RED RIVER COMPACT COMMISSION

(As Amended April 25, 1984, April 30, 1991, May 4, 1993, and March 24, 1994)

ARTICLE I THE COMMISSION

- 1.1 The Commission is the "Red River Compact Commission," which is referred to in Article X of the Red River Compact.
- 1.2 The credentials of each Commissioner shall be filed with both the Chairman and the Secretary of the Commission. When the credentials of a new Commissioner are received, the Secretary shall promptly notify each of the other Commissioners of the name and address of the new Commissioner.
- 1.3 Each Commissioner shall advise in writing the office of the Commission as to his address at which all official notices and other communications of the Commission shall be sent to him. Any change of address shall be promptly communicated in writing to the office of the Commission.
- 1.4 Persons designated to substitute for duly appointed Commissioners at meetings of the Compact Commission shall present the Commission with credentials of authority by letter, or other form of appointment acceptable to the Commission, which states the scope or limitations of the appointment, together with a copy of the state or federal law or Attorney General's opinion which authorizes the appointment.

ARTICLE II OFFICERS

- 2.1 The officers of the Commission shall be a Chairman, a Vice-Chairman, Secretary and a Treasurer.
- 2.2 The Commissioner representing the United States shall be the Chairman of the Commission. The Chairman or the designated representative of the Chairman, shall preside at meetings of the Commission. His duties shall be those usually imposed upon such officers and as may be assigned by these rules or by the Commission from time to time.
- 2.3 The Vice-Chairman shall be elected at the annual meeting from the Commissioners of the host state for the coming year as reflected by the minutes, and shall hold office for a term of one year, beginning on July 1 following the election, or until a successor is elected. The Vice-Chairman shall serve as Chairman in the event the President of the United States fails to appoint a Federal Commissioner, or in the absence of the Federal Commissioner or the designated representative of the Federal Commissioner.
- 2.4 The Secretary shall be selected at the annual meeting by the Commission from the state designated to host the next annual meeting as reflected in the minutes. The Secretary shall serve for the term of one year, beginning on July 1 following the selection, and perform the duties as the Commission shall direct. In case of a vacancy in the office of the Secretary, the Commission shall select a new Secretary as expeditiously as possible.

- 2.5 The Treasurer shall be selected by the Commission for a term of one year, beginning on July 1 following the selection. The Treasurer shall furnish a fidelity bond, the cost of which shall be paid by the Commission. The Treasurer shall receive, hold and disburse all funds which come into the his hands of the Treasurer.
- 2.6 The Secretary and Treasurer may be members of the Commission, and their offices may be combined by the Commission. Any one person may hold both offices.
- 2.7 Whenever there is a permanent change in the Commander of the Lower Mississippi Valley Division, Department of the Army Corps of Engineers, or its counterpart in any future reorganization of the Corps, the Vice-Chairman shall immediately request the President to appoint the new Commander as the U.S. Commissioner to the Compact Commission.

ARTICLE III PRINCIPAL OFFICE

- 3.1 The principal office of the Commission shall be either the office of the Chairman or the Secretary, as the Commission shall direct.
- 3.2 Official books and records of the Commission shall be kept at the principal office.

ARTICLE IV MEETINGS

- 4.1 The annual meeting of the Commission shall be held on the last Tuesday of April of each year.
- 4.2 Special meetings of the Commission may be called by the Chairman at any time. Upon the written request of each of the Commissioners of two states setting forth the matters to be considered at such meeting, the chairman shall call a special meeting.
- 4.3 Reasonable notice of all special meetings of the Commission shall be sent by the Chairman, to all members of the Commission by ordinary mail at least ten days in advance of each meeting and notice shall state the purpose thereof.
- 4.4 Emergency meetings of the Commission may be called by the Chairman at any time upon the concurrence of at least two states and such meetings may be conducted by long-distance telephone conference call or other electronic means. Any such long-distance telephone conference call or other electronic communication shall be recorded and made available for public inspection in accordance with the laws of the respective signatory states. Each of the signatory states shall be represented by at least one Commissioner during such an emergency conference and concur in the action.

An emergency is defined as a situation involving an eminent threat of injury to persons or damage to property or eminent financial loss when the time requirements for public notice and travel to a special meeting would make such procedure and travel impractical and increase the likelihood of injury or damage or eminent financial loss.

4.5 Notice to the public shall be given of all Commission meetings. Except as otherwise provided, the Chairman shall furnish notice of all meetings to the Commissioners of each signatory state, whose responsibility it shall be to give said notice to the public in accordance with the laws of their respective states. In the event of an emergency meeting held by telephone or other electronic communication, no advance notice is required.

All meetings of the Commission shall be held at the principal office unless another place shall be agreed upon by the Commissioners.

- 4.6 Minutes of the Commission shall be preserved in suitable manner. Minutes, until approved, shall not be official and shall be furnished only to members of the Commission, its employees and committees.
- 4.7 Commissioners from three of the signatory states shall constitute a quorum. However, if an emergency meeting is conducted as provided for in rule 4.4, or if a proposed action of the Commission affects existing water rights in a state, and that actions is not expressly provided for in the Compact, eight concurring votes shall be required. Any other actions concerned with the administration of the Compact or requiring compliance with specific terms of the Compact shall require six concurring votes.
- 4.8 At each regular or annual meeting of the Commission, the order of business, unless agreed otherwise, shall be as follows:

Call to order;
Approval of Agenda;
Approval of the minutes;
Report of Chairman;
Report of Secretary;
Report of the Treasurer;
Report of the Commissioners;
Report of Committees;
Unfinished business;
New business;
Adjournment;

4.9 All meetings of the Commission, except executive sessions and except as otherwise provided, shall be open to the public. Executive sessions shall be open only to members of the Commission and such advisers as may be designated by each member and employees as permitted by the Commission; provided, however, that the Commission may call witnesses before it when in such sessions.

The Commission may hold executive sessions only for the purposes of discussing;

- (1) The employment, appointment, promotion, demotion, disciplining or resignation of a Commission employee or employees, members, advisers, or committee members.
- (2) Pending or contemplated litigation, settlement offers, and matters where the duty of the Commission's counsel to his client, pursuant to the Code of Professional Responsibility, clearly conflicts with the public's right to know.
- (3) The report, development, or course of action regarding security, personnel, plans, or devices.

No executive session may be held except on a vote, taken in public by a majority of a quorum of the members present. At least one Commissioner from each of the signatory states must agree to the holding of an executive session.

Any motion or other decision considered or arrived at in executive session shall be voidable unless, following the executive session, the Commission reconvenes in public session and presents and votes on such motion or other decision.

4.10 In the absence of a Chairman and Vice-Chairman, all of the Commissioners from any two (2) states may call an emergency or a special meeting of the Compact Commission.

ARTICLE V COMMITTEES

- 5.1 There may be the following standing committees:
 - (a) Budget Committee;
 - (b) Engineering Committee;
 - (c) Environmental and Natural Resources Committee;
 - (d) Legal Committee.
- 5.2 The committees shall have the following duties:
 - (1) The Budget Committee shall prepare the annual budget and shall advise the Commission on all fiscal matters that may be referred to it.
 - (2) The Engineering Committee shall advise the Commission all engineering matters that may be referred to it.
 - (3) The Environmental and Natural Resources Committee shall advise the Commission on all environmental and natural resource matters that may be referred to it.
 - (4) The Legal Committee shall advise the Commission on all legal matters that may be referred to it.
- 5.3 Commissioners may be members of committees. The number of members of each committee shall be determined from time to time by the Commission. The Commissioners of each state shall designate the member or members on each committee representing the State, and each State shall have one vote.
- 5.4 The Chairman may appoint a non-voting member of each committee.
- 5.5 The Chairman of each committee shall be designated by the Commission from members of the committee; however, in the event a Chairman is unable to perform his duties, the committee shall appoint an Interim Chairman.
- 5.6 The Commission may from time to time create special committees and assign it tasks. The Commission may also determine the composition of the special committees.
- 5.7 Formal committee reports shall be made in writing and filed with the Commission.

ARTICLE VI RULES AND REGULATIONS

- 6.1 So far as is consistent with the Compact, the Commission may adopt rules and regulations and amend them from time to time. Rules and regulations to be adopted shall be presented by resolution and approved by a quorum as set out in Rule 4.7. Copies of proposed resolutions for rule adoption shall be presented in writing to each of the Commissioners at least thirty days before the meeting upon which they are to be voted. However, at its meeting, by unanimous vote, the Commission may waive this notice requirement.
- Rules and regulations of the Commission may be compiled and copies may be prepared for distribution to the public under such terms and conditions as the Commission may prescribe.

ARTICLE VII FISCAL

- 7.1 All funds of the Commission shall be deposited in a depository or depositories designated by the Commission under the name of the "Red River Compact Commission Fund".
- 7.2 Disbursement of funds in the hands of the Treasurer, for items included in the approved budget, shall be made by check signed by him and the Vice-Chairman or by such person as may be designated by the Commission. Disbursement of funds for non-budgeted items shall be made by check signed by the Treasurer and Vice-Chairman upon voucher approved by at least six of the Commissioners, four of whom shall be from different signatory states.
- 7.3 At the annual meeting of each year, the Commission shall adopt a budget covering an estimate of its expenses for the following two fiscal years.
- 7.4 The payment of expenses of the Commission and of its employees shall not be subject to the audit and accounting procedures of the states.
- 7.5 All receipts and disbursements of the Commission shall be audited periodically as determined by the Commission by a qualified independent public accountant to be selected by the Commission and the report of the audit shall be included in and become a part of the annual report of the Commission.
- 7.6 The fiscal year of Commission shall begin July 1, of each year and end June 30 of the next succeeding year.

ARTICLE VIII ANNUAL REPORT

8.1 The Commission shall make an annual report and transmit it on or before the last day of May to the governors of the signatory states to the Red River Compact and to the President of the United States.

- 8.2 The annual report shall contain:
 - (1) Minutes of all regular, special or emergency meetings held during the year;
 - (2) All findings of facts made by the Commission during the preceding year;
 - (3) Recommendations for actions by the signatory states;
 - (4) Statements as to any cooperative studies made during the preceding year;
 - (5) All data which the Commission deems pertinent;
 - (6) The budget for current and future years;
 - (7) The most recent audit report or current financial statement of the Red River Compact Fund;
 - (8) Name, address and phone number of each Commissioner and each member of all standing committees;
 - (9) Such other pertinent matters as the Commission may require.

RED RIVER COMPACT INTERIM RULES AND REGULATIONS To Compute and Enforce Compact Compliance REACH II, SUBBASIN 5

(Adopted 4/30/87)

- 1. These rules and regulations to be used to compute and enforce Compact compliance within Subbasin 5 of Reach II, Red River Compact, are adopted subject to the following conditions and assumptions.
 - a. It is fully understood that these rules and regulations should be modified as new or improved gaging stations are constructed, whenever experience or detailed studies demonstrate the need for modification, and if the Commission should modify its interpretation of Compact provisions relating to this Subbasin.
 - **b.** Definitions:
 - (1) "Diversion" as used in these rules and regulations, is the net loss to a water source from use by a diverter, and is computed as the diversion from the water source minus the part of the diversion which is returned to the water source. Normally, return flows must be measured to be considered; however, the EAC may consider and recommend exceptions. As used herein, "diversion" is equivalent to "net diversion" from a water source and to "depletion" or "consumptive use" of a water source.

2. Management of Compact Compliance Computations.

- a. Management Using State Centers:
 - (1) State EAC representatives will establish State Computation Control Centers
 - (a) State representatives will gather data, exchange data and meet via conference call to check on computation results, if necessary.
 - (b) EAC will determine compliance with Compact.

b. Management Period for Weekly Flow and Diversions:

- (1) Next week's State diversions will be allocated based on last week's compliance computations.
- (2) It is each State's responsibility to limit its total State diversion allocation among its State diverters.
- (3) The weekly period for use and flow data will start and end at 8:00 a.m. on Tuesday of each week.
- (4) Data collection and dissemination will be completed on Tuesday of each week.
- (5) Computation of Compliance will be completed on Wednesday of each week.
- (6) Each State can request an update at any time.
- c. Management Improvement Studies: The EAC will monitor the effect on accounting management of the following factors and will report thereon to the Commission whenever procedure changes appears desirable.
 - (1) Errors caused by travel time.
 - (2) Future restrictions computed from past week's data.
 - (3) Failure to consider channel loss.
 - (4) Failure to consider ungaged return flows.
 - (5) Failure to consider flow trends.
 - (6) Addition of needed gages.

3. Enforcement of Compact Compliance Requirements. Each State will be responsible for insuring that the sum of the diversions by State users does not exceed the total State diversion authorized by the Red River Compact. In this regard, each State will be responsible for establishing clear legal authority within its State for enforcing the restrictions imposed by the Red River Compact.

4. Data Reporting Procedures.

- a. Streamflow Gaging Station Records: The EAC will make arrangements with the Corps of Engineers, the U.S. Geological Survey and with States as required to collect daily and/or weekly data, as needed, and forward to the State Computation and Control Centers.
- **b. Diversion Records:** Each State will be responsible to collect daily and/or weekly data, as needed, and forward to the State Computation and Control Centers.
- c. Archived Records: Records will be archived by Commission Chairman.

5. General Compliance Requirements of Section 5.05, Red River Compact.

- a. Section 5.05 (b)(1):
 - (1) Compact prescribes: "The Signatory States shall have equal rights to the use of the runoff originating in subbasin 5 and undesignated water flowing into subbasin 5, so long as the flow of the Red River at the Arkansas-Louisiana state boundary is 3,000 cubic feet per second or more, provided no state is entitled to more than 25 percent of the water in excess of 3,000 cubic feet per second."
 - (2) In computing the Subbasin 5 water allocation, when the flow of the Red River at the Arkansas-Louisiana State Boundary is 3,000 cfs or more and the total runoff and undesignated flow of Subbasin 5 is greater than or equal to 7,500 cfs but less than or equal to 12,000 cfs, Louisiana's allocation shall be 3,000 cfs and each of the three upstream states will equally share the runoff and undesignated flow in excess of 3,000 cfs.
 - When the total runoff and undesignated flow of Subbasin 5 is 12,000 cfs or more, each of the signatory states shall be entitled to 25% of the total runoff and undesignated flow.
 - (4) State compliance with Section 5.05 (b)(1) does not need to be determined except when specifically requested by a Compact State.

b. Section 5.05 (b)(2):

(1) The Compact states: "Whenever the flow of the Red River at the Arkansas-Louisiana state boundary is less than 3,000 cubic feet per second, but more than 1,000 cubic feet per second, the States of Arkansas, Oklahoma, and Texas shall allow to flow into the Red River for delivery to the State of Louisiana a quantity of water equal to 40 percent of the total weekly runoff originating in subbasin 5 and 40 percent of undesignated water flowing into subbasin 5; provided, however, that this requirement shall not be interpreted to require any state to release stored water."

- In computing the Subbasin 5 water allocation to Louisiana when flow of Red River at the Arkansas-Louisiana State boundary is less than 3,000 cfs but more than 1,000 cfs, the Subbasin 5 runoff for each of the three upstream States and the undesignated water flowing into Subbasin 5 from each upstream State totaled, and the three upstream States should allow to pass to Louisiana 40 percent of the total, or 1,000 cfs, whichever is greater.
- When the Subbasin 5 runoff plus undesignated water totals at least 2,500 cfs and not more than 7,500 cfs, each of the three upstream States are allocated 60 percent of its runoff plus undesignated inflow and the other 40 percent is to be allowed to flow into the Red River for delivery to Louisiana.
- (4) When the Subbasin 5 runoff plus undesignated water totals at least 1,000 cfs but less than 2,500 cfs, the allocation to Louisiana is 1,000 cfs because of Compact Section 5.05 (b)(3). The total Subbasin 5 runoff plus undesignated water is compared to the Louisiana allocation of 1,000 cfs and a percentage is established. Each of the three upstream States will be entitled to divert and use a quantity computed using (100 percent minus the established percentage) times (the total of runoff from its Subbasin 5 areas plus undesignated water flowing into its Subbasin 5 areas).
- (5) This Compact compliance determination should be made whenever the flow of the Red River at the Arkansas-Louisiana State boundary falls below 3,000 cfs and is more than 1,000 cfs.

c. Section 5.05 (b)(3):

- (1) The Compact states: "Whenever the flow of the Red River at the Arkansas-Louisiana state boundary falls below 1,000 cubic feet per second, the States of Arkansas, Oklahoma, and Texas shall allow a quantity of water equal to all the weekly runoff originating in Subbasin 5 and all undesignated water flowing into Subbasin 5 within their respective states to flow into the Red River as required to maintain a 1,000 cubic foot per second flow at the Arkansas-Louisiana state boundary."
- In computing the Subbasin 5 allocation when the flow of the Red River at the Arkansas-Louisiana State boundary falls below 1,000 cfs, and when the Subbasin 5 runoff and undesignated water flowing into Subbasin 5 total 1,000 cfs or less, all flow must be passed to Louisiana.
- When the Subbasin 5 runoff and undesignated water flowing into Subbasin 5 total more than 1,000 cfs but less than 2,500 cfs, Louisiana is allocated 1,000 cfs. This 1,000 cfs Louisiana entitlement is compared to the total runoff plus undesignated water and a percentage is established. Each of the three upstream States will be entitled to divert and use a quantity computed using (100 percent minus the established percentage) times (its total State runoff and undesignated water inflow).
- (4) See rules for Compact Section 5.05 (b)(2) when the Subbasin 5 runoff and undesignated water flowing into Subbasin 5 total 2,500 cfs or more up to 7.500 cfs.
- (5) This Compact compliance determination should be made whenever the flow of the Red River at the Arkansas-Louisiana State boundary falls below 1,000 cfs.

d. Section 5.05 (c):

- (1) The Compact states: "Whenever the flow at Index, Arkansas, is less than 526 c.f.s., the states of Oklahoma and Texas shall each allow a quantity of water equal to 40 percent of the total weekly runoff originating in Subbasin 5 within their respective states to flow into the Red River; provided however, this provision shall be invoked only at the request of Arkansas, only after Arkansas has ceased all diversions from the Red River itself in Arkansas above Index, and only if the provisions of Sub-sections 5.05 (b)(2) and (3) have not caused a limitation of diversions in subbasin 5."
- (2) In computing the Subbasin 5 allocation when flow of Red River at Index Arkansas is less than 256 cfs, the States of Oklahoma and Texas are to pass 40 percent of weekly runoff from respective Subbasin 5 areas.
- This Compact compliance determination will be made only when requested by Arkansas, only after Arkansas has ceased all diversions from the Red River, and only if the provisions of subsections 5.05 (b)(2) and (3) have not caused a limitation of diversions in Subbasin 5.
- 6. Procedures (Disregarding Designated Flows) to Compute State Runoff, Runoff plus Undesignated Inflows, and Flow of Red River at Arkansas-Louisiana State Boundary.

a. Oklahoma.

- (1) Runoff plus Undesignated Inflows of Denison Dam to DeKalb Gage:
 - (a) Kiamichi River near Hugo, OK, Gage flow, plus Muddy Boggy Creek near Unger, OK, Gage flow plus Blue River near Blue, OK Gage flow, plus
 - (b) Fifty percent of (DeKalb Gage flow, plus Texas and Oklahoma diversions, minus gaged flows at Kiamichi River near Hugo, Ok, Muddy Boggy Creek near Unger, OK, Blue River near Blue, OK, and Sanders Creek near Chicota, Texas, streamflow Gages).
- (2) Runoff plus Undesignated Inflows, DeKalb Gage to Oklahoma-Arkansas State line: Fifteen and one-half (15.5) percent of (Index Gage flow, minus DeKalb Gage flow, plus Oklahoma, Texas and Arkansas diversions downstream from DeKalb Gage).
- (3) Runoff only, Denison Dam to Oklahoma-Arkansas State line.
 - (a) Fifty percent of (DeKalb Gage flow, minus Red River at Denison Dam Gage flow, plus Texas and Oklahoma diversions upstream from DeKalb Gage, minus Blue River near Blue, OK, Gage flow, minus Muddy Boggy Creek near Unger-Okla. Gage flow, minus Kiamichi River near Hugo-Okla. Gage flow minus Gage flow), plus
 - (b) Fifteen and one-half (15.5) percent of (Index Gage flow, minus DeKalb Gage flow, plus Oklahoma, Texas and Arkansas diversions between DeKalb and Index Gages).

b. Texas.

- (1) Runoff plus Undesignated Inflows, DeKalb Gage to Index Gage:
 - (a) Sanders Creek near Chicota Gage flow, plus
 - (b) Fifty percent of: (DeKalb Gage flow, plus Texas and Oklahoma diversions, minus gaged flows at Kiamichi River near Hugo, OK, Muddy Boggy Creek near Unger, OK, Blue River near Blue, OK, and Sanders Creek near Chicota, TX, streamflow Gages).

- (2) Runoff plus Undesignated Inflows, DeKalb Gage to Index Gage: Fifty (50) percent of (Index Gage flow, minus DeKalb Gage flow, plus Oklahoma, Texas and Arkansas diversions downstream from DeKalb Gage).
- (3) Runoff plus Undesignated Inflows, Sulphur River Gage: One hundred percent of (Sulphur River near Texarkana Gage flow) minus (Texas diversions from river below gage) plus (Texas diversions below Texarkana Dam).
- (4) Runoff Only, Denison Dam to Index Gage: Fifty percent of (Index Gage flow, minus Red River at Denison Dam Gage flow, plus Oklahoma and Texas and Arkansas diversions upstream from the Index Gage, minus Blue River near Blue, OK, Gage flow, minus Muddy Boggy Creek near Unger-Okla. Gage flow, minus Kiamichi River near Hugo-Okla. flow, minus Sanders Creek near Chicota-Texas Gage flow).

c. Arkansas Runoff plus Undesignated Inflows.

(1) Oklahoma-Arkansas State Line to Index Gage: Thirty-four and one-half (34.5) percent of (Index Gage flow, minus DeKalb Gage flow, plus Oklahoma and Texas and Arkansas diversions between DeKalb and Index Gages).

(2) Index Gage to Hosston Gage:

- (a) Hosston Gage flow, plus Louisiana diversions above Hosston Gage, minus Index Gage flow, minus (Sulphur River near Texarkana Gage flow less Texas diversions from river below gage), plus Arkansas diversions downstream from Index Gage.
- d. Louisiana Streamflow at Arkansas-Louisiana State Boundary.
 - (1) Red River flow at Arkansas-Louisiana State boundary equals (Gage flow) plus (Louisiana diversions from Red River downstream from the State boundary and upstream from gage).
 - (2) Data needed to make interim Louisiana calculations
 - (a) For Red River flows up to 5,000 cfs Hosston Gage flow, plus Louisiana diversions from Red River upstream from Hosston Gage.
 - (b) For Red River flows of 5,000 cfs or larger Shreveport Gage flow, plus Louisiana diversions from Red River upstream from Shreveport Gage, minus Twelvemile Bayou near Dixie-La Gage flow, plus Louisiana diversions from Twelvemile Bayou below Twelvemile Bayou near Dixie-La Gage.
 - (3) Effect of Flow Trends, Scheduled Change of Reservoir Releases, and Other Events Certain to Significantly Change Flow at Arkansas-Louisiana State Boundary During Coming Week.

In addition to the Arkansas-Louisiana State boundary flow estimated based on subparagraph (2) (a) or (b) above, the EAC will also advise the Commission of probable significant changes in State boundary flow which should result from flow trends, scheduled change of reservoir releases, and other such known events.

7. Procedures (Using Designated Flow Data) to Compute State Runoff plus Undesignated Inflows and Flow of Red River at Arkansas-Louisiana State boundary. Procedures outlined in paragraph 6 above will be followed except that designated inflows, designated outflows and diversion of designated flows will be accounted for whenever appropriate.

RED RIVER COMPACT RULES AND REGULATIONS To Compute and Enforce Compact Compliance REACH I, SUBBASIN 1

(Adopted 4/30/87)

- 1. General. These rules and regulations to be used to compute and enforce Compact compliance within Subbasin I of Reach 1, Red River Compact, are adopted subject to the following conditions and assumptions.
 - a. It is fully understood that these rules and regulations should be modified as new or improved gaging stations are constructed, whenever experience or detailed studies demonstrate the need for modification, and if the Commission should modify its interpretation of Compact provisions relating to this Subbasin.
- 2. Management of Compact Compliance Computations.
 - a. Management Using State Centers:
 - (1) Texas and Oklahoma representatives will establish State Computation and Control Centers.
 - (a) State representatives will gather data, exchange data and meet prior to the annual Commission meeting to check on computation results
 - (b) The EAC will determine compliance with Compact.
 - b. Management Period for Compact Compliance Computations:
 - (1) Computation will be on the calendar year basis.
 - (2) Water data for a calendar year should be exchanged prior to March 15 of the following year.
 - (3) Compact Compliance Computation for a calendar year should be completed by April 15 of the following year.
- 3. Enforcement of Compact Compliance Requirements. Texas will be responsible for insuring that the sum of Texas uses does not exceed the total Texas water use authorized by the Red River Compact, and Texas will be responsible for establishing clear legal authority within Texas for enforcing the restrictions imposed by the Red River Compact.
- 4. Data Reporting Procedures.
 - a. Streamflow Gaging Station Records: The EAC will make arrangements with federal and State agencies, as required, to collect calendar year data as needed, and forward to the Texas and Oklahoma Computation Control Centers.
 - b. Archived Records: Records will be archived by the Commission Chairman.
- 5. General Compliance Requirements of Section 4.01 Red River Compact.
 - a. SECTION 4.01. Subbasin 1 Interstate Streams Texas:
 - (1) The Compact prescribes:
 - "(a) This includes the Texas portion of Buck Creek, Sand (Lebos) Creek, Salt Fork Red River, Elm Creek, North Fork Red River, Sweetwater Creek and Washita River, together with all their tributaries in Texas which lie west of the 100th Meridian."
 - "(b) The annual flow within this subbasin is hereby apportioned sixty (60) percent to Texas and forty (40) percent to Oklahoma."

SECTION 4.01 is modified in part by SECTION 4.05. Special Provisions, as follows:

- "(b) Texas shall not accept for filing, or grant a permit, for the construction of a dam to impound water solely for irrigation, flood control, soil conservation, mining and recovery of minerals, hydroelectric power, navigation, recreation and pleasure, or for any other purpose other than for domestic, municipal, and industrial water supply, on the mainstem of the North Fork Red River or any of its tributaries within Texas about Lugert-Altus Reservoir until the date that imported water, sufficient to meet the municipal and irrigation needs of Western Oklahoma is provided, or until January 1, 2000, which ever occurs first."
- (2) Pertinent extracts from the Supplemental Interpretive Comments of Legal Advisory Committee, as approved by the Red River Compact Commission on the 19th day of September 1978, are as follows:

Pages 9 and 10 " * * * * * The flow of interstate tributaries is generally divided 60 percent to the upstream State and 40 percent to the downstream State. Because flows in Reach I are primarily from flood flows, an annual basis of accounting was adopted"

* * * * *

"Section 4.05(b) reflects the compromise of a long-standing dispute between Oklahoma and Texas over the water of the North Fork of the Red River and Sweetwater Creek. * * * * *"

"Under the Compromise Texas will limit development on North Fork and Sweetwater Creek to projects justified on the basis of municipal, industrial, and domestic needs until the year 2000. However, if sufficient imported water becomes available in Western Oklahoma before 2000, Texas will be free to pursue full development of its 60% of these interstate tributaries. * * * * *"

- (2) Until January 1, 2000 (assuming that imported water is not provided prior to that date in sufficient amounts to meet municipal and irrigation needs of Western Oklahoma) special restrictions apply to Texas water use in its North Fork Red River watershed upstream from the Lugert-Altus Reservoir. Therefore, some of the Compact compliance rules for the North Fork Red River watershed upstream from the Lugert-Altus Reservoir (para 5.f.(3) & (4) and g.(3) & (4) below) expire on January 1, 2000, if still in effect at that time.
- b. Buck Creek Watershed in Texas: Buck Creek watershed covers about 300 square miles in Texas. There are no existing gaging stations on Buck Creek in Texas or in Oklahoma. Since neither the Texas nor Oklahoma use of flow from Buck Creek is significant at this time, it is not required to make an annual accounting of the flow in Buck Creek. It also appears that establishing gaging stations and channel loss values so that future annual accountings could be made is not economically justified at this time. Annual accounting procedures for this watershed should be developed to provide a 60:40 apportionment whenever requested by either Oklahoma or Texas.

- c. Sand (Lebos) Creek Watershed in Texas: Sand Creek watershed covers about 65 square miles in Texas. There are no gaging stations on Sand Creek in Texas or in Oklahoma. Since neither Texas nor Oklahoma makes significant use of flow from Sand Creek, it is not necessary to make an annual accounting of the flow in Sand Creek, and it does not seem to be economically justified at this time to establish gaging stations and determine channel loss values so that future annual accountings could be made. Annual accounting procedures for this watershed should be developed to provide a 60:40 apportionment whenever requested by either Oklahoma or Texas.
- d. Salt Fork Red River Watershed in Texas: Salt Fork Red River watershed in Texas covers about 1,380 square miles, of which 209 are non-contributing.

The USGS streamflow gage number 07300000, Salt Fork Red River near Wellington, Texas, is about 16 miles upstream from the Oklahoma-Texas State line and measures flow from a 1,222 sq. mi. drainage area, of which 209 is probably non-contributing. The average annual discharge (1953-1966) was 52,600 AF/yr, and the average annual discharge since Greenbelt Reservoir was completed (1967-1977) has been 33,250 AF/yr.

The USGS streamflow gage 07300500, Salt Fork Red River at Mangum, Oklahoma, is about 29 miles downstream from the Oklahoma-Texas State line and measures flow from a 1,566 sq. mile drainage area, of which 209 is probably non-contributing. The average annual discharge (1937-1977) has been 62,450 AF/yr.

- (1) The actual annual delivery at the Oklahoma State line is computed as follows:
 - (a) The annual flow at the Wellington gage,
 - (b) Minus channel losses to Wellington gage flows between gage and State line (until this specific channel loss value is available, the Compact compliance calculations will be made ignoring this channel loss adjustment).
 - (c) Plus Texas' flow between Wellington gage and the State line. (This flow will be computed based on intervening drainage area between Wellington and Mangum gages adjusted for both Texas and Oklahoma man-made depletions.), and
 - (d) Minus Texas' man-made depletions downstream from the Wellington gage.
- (2) The scheduled annual delivery at the Oklahoma State line is 40 percent of the natural flow at State line without diversions or impoundments, and would be computed as 40 percent of the following:
 - (a) The actual annual delivery (para 5.d.(1) above),
 - (b) Plus all man-made depletions in Texas, and
 - (c) Minus the increased channel losses in Texas which would have incurred had Texas depletions not occurred (until this specific channel loss value is available, the Compact compliance calculations will be made ignoring this channel loss adjustment).
- (3) Compact compliance is achieved as long as actual delivery exceeds scheduled delivery.

e. Elm Creek Watershed in Texas: Elm Creek watershed covers about 360 square miles in Texas which includes the North Elm Creek tributary. There is no streamflow gage on Elm Creek in Texas. The USGS gage number 07303400, Elm Fork of North Fork Red River near Carl, Oklahoma, is about 6 miles downstream from the Oklahoma-Texas State line, and was used to measure flow from a 416 square mile drainage area but discharge measurements at this site were discontinued in 1980. The average annual discharge (20 years) was 30,280 AF/yr. No Compact compliance accounts can be made until the Gage near Carl has been reestablished.

(1) The actual annual delivery at State line is computed as follows:

(a) Flow at the State line. (This flow will be computed based on the drainage area and on the flow measured at Carl gage, adjusted for both Texas and Oklahoma depletions.), and

(b) Minus Texas' man-made depletions.

(2) The scheduled annual delivery at State line is 40 percent of the natural flow at State line without diversions or impoundments and would be computed as 40 percent of the following:

(a) The actual annual delivery (para 5.e.(1) above),

(b) Plus man-made depletions in Texas, and

- (c) Minus the increased channel losses in Texas which would have been incurred if Texas had not depleted the flow (until this specific channel loss value is available, the Compact compliance calculations will be made ignoring this channel loss adjustment).
- (3) Compact compliance is achieved as long as the actual delivery exceeds the scheduled delivery.
- Mashita River Watershed in Texas: There is no streamflow gage on the Washita River in Texas. The USGS streamflow gage number 07316500, Washita River near Cheyenne, Oklahoma, is over 21 miles downstream from the Oklahoma-Texas State line, and measures flow from a 794 square mile drainage area, of which about 441 square miles are in Texas. The average annual discharge at the Cheyenne gage (44 years) has been 20,720 AF/yr.
 - (1) The actual annual delivery at Oklahoma State line is computed as follows:

(a) The annual flow at the Cheyenne gage,

- (b) Plus channel losses to the State line flow between the State line and the gage (until this specific channel loss value is available, the Compact compliance calculations will be made ignoring this channel loss adjustment),
- (c) Minus Oklahoma's flow between the State line and Cheyenne gage. (This flow will be computed based on the drainage area upstream from the Cheyenne gage, adjusted for both Texas and Oklahoma man-made depletions.), and

(d) Minus Texas' man-made depletions.

- The annual scheduled delivery at State line is 40 percent of the natural flow at State line without diversions or impoundments, and would be computed as 40 percent of the following:
 - (a) The actual annual delivery at State line (para 5.h.(1) above),

(b) Plus man-made depletions in Texas, and

(c) Minus the increased channel losses which would have occurred if Texas had not made any diversions (until this specific channel loss value is available, the Compact compliance calculations will be made ignoring this channel loss adjustment).

Compact compliance is achieved as long as the actual delivery exceeds the scheduled delivery.

(3)

•		

RED RIVER COMPACT RULES AND REGULATIONS To Compute and Enforce Compact Compliance REACH III, SUBBASIN 3

(as amended 4/25/89)

- 1. These rules and regulations to be used to compute and enforce Compact compliance within Subbasin 3 of Reach III, Red River Compact, are adopted subject to the following conditions and assumptions.
 - a. It is fully understood that these rules and regulations should be modified whenever experience or detailed studies demonstrate the need for modification, and if the Commission should modify its interpretation of Compact provisions relating to this Subbasin.

b. Definitions:

- (1) "Diversion", as used in these rules and regulations, is the net loss to a water source from use by a diverter, and is computed as the diversion from the water source minus the part of the diversion which is returned to the water source. Normally, return flows must be measured to be considered; however, the Engineering Committee may consider and recommend exceptions. As used herein, "diversion" is equivalent to "net diversion" from a water source and to "depletion" or "consumptive use" of a water source.
- "Drawdown", as used in these rules and regulations, means that period commencing on the first day water ceases spilling over the existing Caddo Lake spillway (or the raised spillway, if Caddo Lake is enlarged), and continuing so long as the Caddo Lake surface elevation continues to fall, until the day when appreciable inflow reaches Caddo Lake, causing the Caddo Lake surface elevation to rise leading to a spill from Caddo Lake.

2. Management of Compact Compliance Computations.

a. Management Using State Centers:

- (1) State Engineering Committee representatives will establish State Computation Control Centers.
 - (a) State representatives will gather data, exchange data and meet via conference call to check on computation results, if necessary.
 - (b) The Engineering Committee will compute compliance with Compact.

b. Management Period for Compact Compliance Computations:

- (1) Next week's State diversions will be allocated based on last week's compliance computations.
- (2) It is each State's responsibility to limit its total State diversion allocation among its State diverters.
- (3) The weekly period for use and flow data will start and end at 8:00 a.m. on Tuesday of each week.
- (4) Data collection and dissemination will be completed on Tuesday of each week.
- (5) Computation of Compliance will be completed on Wednesday of each week.
- (6) Each State can request an update at any time.

c. Management Improvements Studies: The Engineering Committee will monitor the effect on accounting management of the following factors and will report thereon to the Commission whenever procedure changes appear desirable.

(1) Errors caused by travel time.

(2) Future restrictions computed from past week's data.

(3) Failure to consider channel loss.

(4) Failure to consider ungaged return flows.

(5) Failure to consider flow trends.

(6) Addition of needed gages.

3. Enforcement of Compact Compliance Requirements. Each State will be responsible for insuring that the sum of the diversions by State users does not exceed the total State diversion authorized by the Red River Compact Commission. In this regard, each State will be responsible for establishing clear legal authority within its State for enforcing the restrictions imposed by the Red River Compact.

4. Data Reporting Procedures.

- a. Streamflow Gaging Station Records: The Engineering Committee will make arrangements with Corps of Engineers, the U.S. Geological Survey and with States as required to collect daily and/or weekly data, as needed, and forward to the State Computation and Control Centers.
- **b. Diversion Records:** Each State will be responsible to collect weekly data, as needed, and forward to the State Computation and Control Centers.
- c. Archived Records: Records will be archived by the Commission Chairman.
- 5. General Compliance Requirements of Section 6.03 Red River Compact.

a. Section 6.03 (b)(1):

- (1) The Compact states: "Texas shall have the unrestricted right to all water above Marshall, Lake O' the Pines, and Black Cypress damsites; however, Texas shall not cause runoff to be depleted to a quantity less than that which would have occurred with the full operation of Franklin County, Titus County, Ellison Creek, Johnson Creek, Lake O' the Pines, Marshall, and Black Cypress Reservoirs constructed, and those other impoundments and diversions existing on the effective date of this Compact. Any depletions of runoff in excess of the depletions described above shall be charged against Texas' apportionment of the water in Caddo Reservoir."
- (2) Texas may use the bed and banks of the streams or tributaries available within this Subbasin to convey its developed water downstream from the aforesaid dam sites to specified authorized users. Such water would retain its identity and would not be subject to the Caddo Lake drawdown provisions of Section 5.b. of these rules until passing the designated point of diversion. Appropriate transportation losses will be approved by the Red River Compact Commission.

(3) Until both Marshall Reservoir (with an estimated capacity of 782,300 acre-feet and yield of 325,000 acre-feet annually) and Black Cypress Reservoir (with estimated capacity of 824,400 acre-feet and yield and 220,000 acre-feed annually) have been constructed, it will be virtually impossible for Texas to deplete runoff in excess of that authorized. In the future, whenever potential Texas depletions above Marshall, Lake O' the Pines, and Black Cypress damsites become a concern to Louisiana, procedures to compute Texas depletion of runoff in excess of that

authorized by Section 6.03 (b)(1) of the Compact should be developed by the Engineering Committee and presented for Commission consideration.

b. Section 6.03 (b)(2):

- (1) The Compact states: "Texas and Louisiana shall each have the unrestricted right to use fifty (50) percent of the conservation storage capacity in the present Caddo Lake for the impoundment of water for state use, subject to the provision that supplies for existing uses of water from Caddo Lake, on date of Compact, are not reduced."
- Whenever water is spilling over the existing spillway at 168.5 feet above mean sea level, each state may withdraw or divert water from Caddo Lake without restriction.
- (3) Whenever Caddo Lake is not spilling over the existing spillway at 168.5 feet above mean sea level, the total consumptive use by each state shall not exceed 8,400 acre-feet during the drawdown period, provided that neither state shall divert more than 3,600 acre-feet during any one month or 4,800 acre-feet during any two consecutive months.

c. Section 6.03 (b)(3):

- (1) The Compact states: "Texas and Louisiana shall each have the unrestricted right to fifty (50) percent of the conservation storage capacity of any future enlargement of Caddo Lake, provided the two states may negotiate for the release of each state's share of the storage space on terms mutually agreed upon by the two states after the effective date of this Compact."
- (2) This Compact provision requires no separate computation procedures but other rules may be changed if enlargement of Caddo Lake occurs. If enlargement of Caddo Lake is authorized in the future, the Engineering Committee should review and modify as necessary Rule 5 (b) and Rule 6.

d. Section 6.03 (b)(4):

- (1) The Compact states: "Inflow to Caddo Lake from its drainage area downstream from Marshall, Lake O' the Pines, and Black Cypress damsites and downstream from other last downstream dams in existence on the date of the signing of the Compact document by the Compact Commissioners, will be allowed to continue flowing into Caddo Lake except that any manmade depletions to this inflow by Texas will be subtracted from the Texas share of the water in Caddo Lake."
- (2) As indicated in paragraph 5 a. (2) above, it is virtually impossible for Texas at the present time to reduce inflow to Caddo Lake below that which would occur with both Marshall and Black Cypress Reservoirs constructed and operating. However potential Texas depletions become a concern to Louisiana, procedures to compute excess depletion by Texas of inflow to Caddo Lake should be develop by the Engineering Committee and presented for Commission Consideration.

e. Section 6.03 (c):

(1) The Compact states: "In regard to the water of interstate streams which do not contribute to the inflow to Cross Lake or Caddo Lake, Texas shall have the unrestricted right to Divert and use this water on the basis of a division of runoff above the state boundary of sixty (60) percent to Texas

(2) The Engineering Committee will review known Texas diversion data for the previous year and report to the Commission any Texas non-compliance with Compact Section 6.03 (c).

f. Section 6.03 (d):

- (1) The Compact states: "Texas and Louisiana will not construct improvements on the Cross Lake watershed in either state that will affect the yield of Cross Lake; provided, however, this subsection shall be subject to the provisions of Section 2.08."
- (2) The Engineering Committee will renew any known improvements on the Cross Lake watershed and report to the Commission any non-compliance with Compact Section 6.03 (d).

6. Caddo Lake Content Accounting Procedure During Drawdown Periods.

- a. Whenever water is spilled from Caddo Lake, both state's accounts are full and no accounting is necessary. Accounting shall start the first day of no-spill following each period of spilling and shall continue until the first day of spill in the next period of spilling. The accounting procedure for computing the quantity of water in Caddo Lake during periods of drawdown belonging to the States of Louisiana and Texas shall be as follows:
 - (1) At the beginning of the drawdown, the Caddo Lake contents belong 50 percent to each state. Otherwise, begin with water ownership on Caddo Lake as shown in the most recent previous report.
 - Each State shall be credited with one-half of the inflow to Caddo Lake since the previous report.
 - (3) Each State's account shall be reduced by its share of Caddo Lake evaporation losses during the period since the previous report.
 - Each State's account shall be reduced by its diversions from Caddo Lake since the previous report.
 - (5) A State's account shall not exceed 50 percent of the capacity of Caddo Lake. If these accounting procedures result in a greater State content than 50 percent of the total capacity of Caddo Lake, the excess computed quantity shall be "spilled" into the other State's account as needed to bring the other State's account up, but in no case shall either State's account exceed 50 percent of the total capacity of Caddo Lake.
- b. Using a stage-area-capacity relationship concurred in by both States, the content of Caddo Lake at the end of each accounting period shall be determined and inflow for that period shall be computed as follows:
 - (1) From the present content, as determined above, subtract the content determined at the end of the previous period.
 - (2) -. Add to the figure resulting from Step (1) the total Texas and Louisiana diversions since the end of the previous period.
 - (3) Add to the figure resulting from Step (2) the computed gross evaporation since the end of the previous period as determined in c. (2) below. This results in total inflow.

c. Evaporation will be computed as follows:

- (1) The Weather Bureau's pan evaporation data shall be used to compute gross lake evaporation using a standard conversion coefficient agreed to by the engineer advisors of each State.
- (2) The average lake surface area for the accounting period shall be determined from the stage-area-capacity relationship concurred in by both States and multiplied by the gross lake evaporation as determined in Step (1) to determine the volume of evaporation for the period.
- 7. Availability of Diversion Records. Arrangements shall be made for all Texas and Louisiana diverters, during "drawdown" of Caddo Lake, to maintain daily diversion records open for inspection, and to provide weekly use data as required by Rule 2 b. (3).

		,

	요합하는데 뭐 많은 그렇지?		
		관심하다 그를 보고 있다.	아들 등이 들었다.
	늘 하루 하고 그리고 있는데 되어 먹다.		발표를 보고 있는 말라고 그 날아보다고
	보고 얼마 크바라 만살았다.		발생님, 생생님 그 되는 어디 하는 생각이다.
		그의 그 생기는 그 경기	임임하다 위도 함께는 경우화 하는 하다
	소리 방송하는 경기 가지 어느라들요		
그는 함께는 그는 이는 일이 때 학생이다는 말을 통하는			
			일하다 되는데 없는 그렇게 많은 그렇게
	선내 보고 있다는 생생님은 설계		이용함에 마시 그림은 불일 회의가 많.
	그렇는 그 그렇게 모르다 보니다.		
어머니는 사람이 어느 보고를 하는데 그릇하다.			님 계속 살 눈이 얼마 하는 보고 있는데?
그는 그 하는 그리고 사용하다 가고 밝혔다.			
가는 하는 항상이 되는 이 사람은 중에 다시했다.	보다의 시작들은 그 이 기가 있다.		용으로 된 11일 이 보고 등록 등로 불어받는다.
			보인 시청시간 하는 이 우리 수 없었다.
			하는 살길 모든 보여 하는데 되다.
된 마음 점하기 들었다 하는 사회, 양면 나는 많다는		연락 시간 기업을 받는데 보다	불의 동말한 말씀하다 그녀는 아래에 모르는
		하하다 프리지 등 작가 있습	
			한 2012년 전에 대학생 학생 등에 있다.
당근 소의 회사와 전이 된 길을 맞여 길이 없어	일본이 목하다 목하다 나라 있다.	요. [[하는 경험시스 글놈 휴	
			그리우인 시민 학생들이 하다는 하는 것이
			그 사람이 나라면 얼마를 받다.
Print Company of State (Section 2)			
			异类医疗性病 医弗雷克氏病
이 등일 하는만 하나를 하십 년째 나를 하는 없죠?			
그는 돈 없는 경기가 얼마 얼마가 하는 것 같아요?	음악인의 전환되는 것이 많은		어떤 살이 없는 바람이 하는 어떻게 하다를 된
			D. 在自己的特别。 计通讯编码 1000 T
그는 문문에게 없이 어떤 것으로 가는데 말을 해			
			가 있어 가게 처음 덩치를 걸렸다
			医环状腺素 化二氯化二氯化二氯化甲酚二氯酚 医甲基磺胺二氯化二氯化二氯

Ì