R1220.3 B477 1992-93

REPORT

OF THE

RED RIVER COMPACT COMMISSION 1993

MAY, 1994

RED RIVER COMPACT COMMISSION

May 31, 1994

The President United States of America

The Honorable Jim Guy Tucker, Governor State of Arkansas

The Honorable Edwin W. Edwards, Governor State of Louisiana

The Honorable David Walters, Governor State of Oklahoma

The Honorable Ann Richards, Governor State of Texas

Brig. Gen. Ret. Jude Patin P. O. Box 94245 Capitol Station Baton Rouge, LA 70804-9245

Box 3080 State Line Plaza Texarkana, AR 75502

J. Randy Young, P.E. 101 East Capitol, Suite 350 Little Rock, AR 72201

Arthur R. Theis, P.E. 9433 West Tampa Dr.

Baton Rouge, LA 70815

Ken Fergeson P. O. Box 598 Altus, OK 73522

Commissioners John F. Stroud, Jr.

Patricia P. Eaton P. O. Box 150

Lowell Cable 858 Gilmer Sulphur Springs, TX 75482

Anthony C. Grigsby P. O. Box 13087 Capitol Station Austin, TX 78711-3087 Dear Mr. President and Governors:

Pursuant to Section 10.02 paragraphs (d) and (e) of the Red River Compact, Arkansas-Louisiana-Oklahoma-Texas, and as directed by the Red River Compact Commission (RRCC) at its fourteenth annual meeting, submitted is a copy of the report of the RRCC, together with an accounting of all funds received and expended by it in the Oklahoma City, OK 73101-0150 conduct of its work for FY 1993. A budget covering the anticipated expenses of the Commission for Fiscal Years 1994 through 1996 is also included in the report.

> The fourteenth annual meeting was hosted by the State of Arkansas and held in Hot Springs on March 24, 1993. In the absence of the Federal Commissioner and Chairman and in accord with the Commission's Rules for the Internal Organization, the meeting was called to order by the Vice-Chairman. Significant action taken by the Commission included the creation of a new standing committee to be called the Environmental and Natural Resources Committee. The Commissioners from the respective member states were asked to appoint one member of the committee and were encouraged, but not required, to make the appointment a representative from each state's environmental agency.

> Pursuant to a previous agreement to rotate the Office of Vice-Chairman and Secretary in connection with the rotation of the annual host state, the State of Oklahoma accepted meeting the responsibilities of both offices for FY 1994. The Office of Treasurer remained with the State of Arkansas.

Sincerely, 702 J. Randy Young, P.E. Vice-Chairman and Arkansas Commissioner

TEXAS

TABLE OF CONTENTS

	PAG
RED RIVER COMPACT COMMISSION MEMBERS	•••••i
RED RIVER COMPACT COMMISSION 1993 OFFICERS	ii
RED RIVER COMPACT COMMISSION 1993 COMMITTEE MEMBERS	
A. BUDGET COMMITTEE	<i>iii</i>
B. ENGINEERING COMMITTEE	•••• <i>iii</i>
C. LEGAL COMMITTEE.	iv
	•••••
APPROVED BUDGET, FISCAL YEARS 1994 AND 1995	1
이 같은 것에서 가장 가장 가장 있는 것이 가지 않는 것이 것을 통하지 않는 것을 가장하게 가장 가장 가장 가지 않는 것이 있다. 가장 가장 같은 것이 같은 것이 같은 것이 같은 것이 같은 것이 같은 것이 같이	
APPROVED BUDGET, FISCAL YEARS 1995 AND 1996	2
AUDIT OF THE RED RIVER COMPACT COMMISSION FUND JULY 1, 1992 - JUNE 30, 1993	3
MINUTES OF THE MAY 4, 1993 ANNUAL MEETING	6
· 성화·영철은 이상 - 이상 가장 있는 것 같아요. 좋아지 않는 것들은 것은 이상 것이 있는 것 같아. 	
STREAMFLOW GAGE DATA	16
RED RIVER COMPACT	73
RULES FOR INTERNAL ORGANIZATION	105
RULES AND REGULATIONS TO COMPUTE AND ENFORCE COMPACT COMPLIANCE	
A. REACH II, SUBBASIN 5	111
B. REACH I, SUBBASIN 1	117
C. REACH III, SUBBASIN 3 (as amended 4/25/90)	100

PAGE

RED RIVER COMPACT COMMISSION MEMBERS

1993

<u>Federal Commissioner</u> Brig General Pat M. Stevens, IV US Army Corps of Engineers Director of Military Programs 20 Massachusetts Ave., NW Washington, DC 20314-1000 (202) 272-0379

Arkansas Commissioners John F. Stroud, Jr. State Line Plaza Box 8030 Texarkana, Arkansas 75502 (501) 773-5651 (501) 772-2037 (FAX)

J. Randy Young, P.E., Executive Director Arkansas Soil and Water Conservation Commission 101 East Capitol, Suite 350 Little Rock, Arkansas 72201-3823 (501) 682-3986 (501) 682-3991 (FAX)

Louisiana Commissioners Arthur R. Theis, P.E. 9433 West Tampa Dr. Baton Rouge, Louisiana 70815 Business: (504) 927-5588 Residence: (504) 927-0414

Brig. Gen. (Ret.) Jude W.P. Patin, Secretary Department of Transportation and Development P. O. Box 94245, Capitol Station Baton Rouge, Louisiana 70804-9245 (504) 379-1200 (504) 379-1394 (FAX)

Oklahoma Commissioners Ken Fergeson Box 598 Altus, Oklahoma 73522 (405) 477-1100 (405) 477-1634 (FAX)

Patricia Eaton, Executive Director Oklahoma Water Resources Board P. O. Box 150 Oklahoma City, Oklahoma 73101-0150 (405) 231-2551 (405) 231-2600 (FAX)

<u>Texas Commissioners</u> Colonel Nathan Reiter, Jr. P. O. Box 660 Texarkana, Texas 75505 (903) 792-1988

Anthony C. Grigsby, Executive Director Texas Natural Resource Conservation Commission P. O. Box 13087, Capitol Station Austin, Texas 78711 (512) 463-7791 (512) 475-2454 (FAX)

RIVER COMPACT COMMISSION OFFICERS and COMMITTEE CHAIRMEN 1993

CHAIRMAN/FEDERAL COMMISSIONER Brig. General Pat M. Stevens, IV

US Army Corps of Engineers Director of Military Programs 20 Massachusetts Ave., NW Washington, DC 20314-1000 (202) 272-0379

77.

VICE CHAIRMAN/ARKANSAS COMMISSIONER

Randy Young, P.E., Executive Director Arkansas Soil and Water Conservation Commission 101 East Capitol, Suite 350 Little Rock, Arkansas 72201-3823 (501) 682-3986 (501) 682-3991 (FAX)

SECRETARY-TREASURER and BUDGET COMMITTEE CHAIR

Pris Houchens, Executive Assistant Arkansas Soil and Water Conservation Commission 101 East Capitol Mall, Suite 350 Little Rock, Arkansas 72201-3823 (501) 682-3986 (501) 682-3991 (FAX)

ENGINEERING COMMITTEE - CHAIRMAN

Earl T Smith, Jr., P.E., Chief Water Resources Management Division Arkansas Soil and Water Conservation Commission 101 East Capitol Mall, Suite 350 Little Rock, Arkansas 72201-3823 (501) 682-3991 (FAX) (501) 682-3979

LEGAL COMMITTEE - CHAIRMAN

John F. Gibson, Jr., Attorney at Law P. O. Box 573 Monticello, Arkansas 71655 (501) 367-9792 (501) 367-9793 (FAX)

<u>RED RIVER COMPACT COMMISSION</u> <u>COMMITTEE MEMBERS</u> 1993

-111-

BUDGET COMMITTEE

Pris Houchens, Executive Assistant (Committee Chair) Arkansas Soil and Water Conservation Commission 101 East Capitol, Suite 350 Little Rock, Arkansas 72201-3823 (501) 682-3986 (501) 682-3991 (FAX)

Brig. Gen. (Ret.) Jude W. P. Patin, Secretary Department of Transportation and Development P. O. Box 94245, Capitol Station Baton Rouge, Louisiana 70804-9245 (504) 379-1200 (504) 379-1394 (FAX)

Harold Springer, P.E., Chief Engineer Oklahoma Water Resources Board P. O. Box 150 Oklahoma City, Oklahoma 73101-0150 (405) 231-2530 (405) 231-2600 (FAX)

Colonel Nathan Reiter, Jr. P. O. Box 6660 Texarkana, Texas 75505 (903) 792-1988

ENGINEERING COMMITTEE

Earl T. Smith, Jr., P.E., Chief (Committee Chairman) Water Resources Management Division Arkansas Soil and Water Conservation Commission 101 East Capitol, Suite 350 Little Rock, Arkansas 72201-3823 (501) 682-3979 (501) 682-3991 (FAX)

Zahir "Bo" Bolourchi, P.E., Chief Water Resources Section Department of Transportation and Development P. O. Box 94245, Capitol Station Baton Rouge, Louisiana 70804-9245 (504) 379-1434 (504) 379-1857 (FAX)

Harold Springer, P.E., Chief Engineer Oklahoma Water Resources Board P. O. Box 150 Oklahoma City, Oklahoma 73101-0150 (405) 231-2530 (405) 231-2600 (FAX)

Herman R. Settemeyer, Engineer Advisor Red River Compact Texas Water Commission P. O. Box 13087, Capitol Station Austin, Texas 78711-3087 (512) 475-4617 (512) 463-8317 (FAX)

LEGAL COMMITTEE

- iv-

John F. Gibson, Jr., Attorney at Law (Committee Chairman) P. O. Box 573 Monticello, Arkansas 71655 (501) 367-9792 (501) 367-9793 (FAX)

James B. Frederick, Jr. Senior Assistant General Counsel Department of Transportation and Development P. O. Box 94245, Capitol Station Baton Rouge, Louisiana 70804-9245 (504) 379-1056 (504) 379-1012 (FAX)

Jerry Barnett, Attorney Oklahoma Water Resources Board P. O. Box 150 Oklahoma City, Oklahoma 73101-0150 (405) 231-2552 (405) 231-2600 (FAX)

Paul Elliott, Assistant Attorney General
Office of the Attorney General
Environmental Protection Division
P. O. Box 12548, Capitol Station
Austin, Texas 78711
(512) 463-2012 (512) 320-0052 (FAX)

RED RIVER COMPACT COMMISSION

FY-94/95 BUDGET (July 1, 1993 through June 30, 1996)

Adopted: 5/4/93

Fund Balance (4/30/93)	\$6,877.12
Projected Cash Receipts by 6/30/93 Interest Earned (Money Market Savings Account)	\$36.00
Projected Expenditures through 6/30/93 FY 92 Annual Report Printing (estimated) Mailing FY 91 & 92 Annual Reports (estimated) 1993 Annual Meeting Expenses (estimated) Total	\$950.00 \$100.00 <u>\$375.00</u> \$1,425.00
Projected Fund Balance	\$5,488.12

	<u>FY-94</u>	<u>FY-95</u>
Personnel Services, Office Expenses, Rent, & Travel	\$600.00	\$600.00
Audit	350.00	350.00
Treasurer's Bond	100.00	100.00
Postage, Stationery, & Office Supplies	225.00	225.00
Printing & Reports	1,350.00	1,350.00
Contingency	1,375.00	1,375.00
TOTAL	\$4,000.00	\$4,000.00

STATE ASSESSMENTS

In accordance with Article IX, Section 9.04.C, of the Compact, the amount of such budget shall be borne equally by the signatory states in an equal amount. Therefore, the FY-94 assessments are \$500.00 per state and the FY-95 assessments are \$500.00 per state.

ARKANSAS

LOUISIANA

OKLAHOMA

FY-95/96 BUDGET

-2-

(July 1, 1994 through June 30, 1997)

Approved: 3/24/94

Fund Balance (3/1/94)	\$7,428.32
Projected Cash Receipts by 6/30/94 Estimated Interest Earned by 6/30/94 (Money Market Savings Account)	\$44.00
Projected Expenditures through 6/30/94 FY 93 Annual Report Printing (estimated) Mailing FY 93 Annual Report (estimated) 1994 Annual Meeting Expenses (estimated) Total	\$950.00 \$50.00 <u>\$200.00</u> \$1,200.00
Projected Fund Balance	\$6,272.32
<u>FY-95</u>	<u>FY-96</u>

Personnel Services, Office Expenses, Rent, & Travel	\$600.00	\$600.00
Audit	350.00	350.00
Treasurer's Bond	100.00	100.00
Postage, Stationery, & Office Supplies	225.00	225.00
Printing & Reports	1,350.00	1,350.00
Contingency	1,375.00	1,375.00
TOTAL	\$4,000.00	\$4,000.00

STATE ASSESSMENTS

In accordance with Article IX, Section 9.04.C, of the Compact, the amount of such budget shall be borne equally by the signatory states in an equal amount. Therefore, the FY-95 assessments are \$500.00 per state and the FY-96 assessments are \$500.00 per state.

OKLAHOMA

Red River Compact Commission Statement of

Cash Receipts and Disbursements July 1, 1992 through June 30, 1993 Red River Compact Commission Little Rock, Arkansas

We have audited the accompanying statement of cash receipts and disbursements of the Red River Compact Commission for the period July 1, 1992 through June 30, 1993. The financial statement is the responsibility of the commission's management. Our responsibility is to express an opinion on this financial statement based on our audit.

BOB JOHNSON CERTIFIED PUBLIC ACCOUNTANT

We conducted our audit in accordance with generally accepted auditing standards for cash basis statements. Those standards require that we plan and perform the audit to obtain reasonable assurance about whether the financial statements are free of material misstatement. An audit includes examining, on a test basis, evidence supporting the amounts and disclosures in the financial statements. An audit also includes assessing the accounting principles used and significant estimates made by management, as well as evaluating the overall financial statement presentation. We believe that our audit provides a reasonable basis for our opinion.

The commission's policy is to prepare its financial statements on the basis of cash receipts and disbursements; consequently, certain revenue and related assets are recognized when received rather than when earned, and certain expenses are recognized when paid rather than when the obligation is incurred. Accordingly, the accompanying financial statement is not intended to present results of operations in conformity with generally accepted accounting principles.

In our opinion, the financial statement referred to above presents fairly, in all material respects, the recorded cash transactions of the Red River Compact Commission for the period ended June 30, 1993 on the basis of accounting described in the preceding paragraph.

Bob Johnson, CPA

December 10, 1993 Jacksonville, Arkansas

2227 WEST MAIN STREET • SUITE 5 • JACKSONVILLE, ARKANSAS 72076 TELEPHONE (501) 982-9461 • FAX (501) 982-1975 Red River Compact Commission Statements of Cash Receipts and Disbursements For the Period July 1, 1992 through June 30, 1993

Cash Balance, Citizens First Bank, July 1 1992	<u>\$ 6054.51</u>
Cash Receipts	
Member Assessments	1600.00
Interest	210.04
Total Cash Receipts	<u>\$ 1810.04</u>
Cash Disbursements	
Accounting	200.00
Public Official Bond	100.00
Postage & Shipping	68.55
Annual Report Printing	707.01
Conference Expense	419.65
Total Cash Disbursements	\$1495.21
Cash Balance, Savers Federal Savings, June 30, 1	993 \$6369.34

-5-

MINUTES OF THE THIRTEENTH ANNUAL MEETING of the RED RIVER COMPACT COMMISSION Metairie, Louisiana May 4, 1993

I. CALL TO ORDER

The 13th Annual Meeting of the Red River Compact Commission was called to order by Mr. Curtis Patterson, who substituted for Vice Chairman and Louisiana Red River Compact Commissioner Brigadier General Jude W. P. Patin, at 9:00 a.m. on May 4, 1993, at the Landmark Hotel, 2601 Severn Avenue, Metairie, Louisiana.

II. WELCOME

Mr. Curtis Patterson representing the host State of Louisiana welcomed the members of the Red River Compact Commission, staff and guests to the meeting in Metairie, Louisiana. Absent from the Commission meeting was Oklahoma Commissioner Patricia Eaton.

Those present at the meeting were:

Red River Compact Commissioners

John F. Stroud, Red River Compact Commissioner from Arkansas J. Randy Young, P.E., Red River Compact Commissioner from Arkansas and Executive Director of Arkansas Soil and Water Conservation Commission Tony Grigsby, Red River Compact Commissioner from Texas and Executive Director of Texas Water Commission Colonel Nathan Reiter, Red River Compact Commissioner from Texas Ken Fergeson, Red River Compact Commissioner from Oklahoma Arthur R. Theis, P.E., Red River Compact Commissioner from Louisiana

Curtis G. Patterson, substituted for Red River Compact Vice-Chairman Brigadier General (Ret.) Jude W. P. Patin from Louisiana

Representatives, Federal Agencies and Guests from Louisiana

George Arcement, U.S. Geological Survey, LA District James Frederick, LA Department of Transportation and Development Zahir "Bo" Bolourchi, LA Department of Transportation and Development Kimberlee McEacharn, LA Department of Transportation and Development

Representatives, Federal Agencies and Guests from Arkansas

John F. Gibson, Jr., Legal Advisor, Arkansas Soil and Water Conservation Commission

Dennis Hackbart, USDA Soil Conservation Service, Arkansas Pris Houchens, Treasurer, Red River Compact Commission, Arkansas Soil and

Water Conservation Commission Earl Smith, Engineer Advisor, Arkansas Soil and Water Conservation Commission

Representatives, Federal Agencies and Guests from Oklahoma Jerry Barnett, Oklahoma Water Resources Board Donna Kirby, Lugert-Altus Irrigation District, Oklahoma

Bert Marshall, Attorney, Lugert-Altus Irrigation District, Oklahoma

Wayne Morgan, U.S. Army Corps of Engineers, Oklahoma Duane Smith, Assistant Director, Oklahoma Water Resources Board Harold L. Springer, Engineer Advisor, Oklahoma Water Resources Board

-7-

Representatives, Federal Agencies and Guests from Texas Paul Elliott, Texas Attorney General's Office Bernie Massey, USGS Texas District, Austin, Texas Herman Settemeyer, Engineer Advisor, Texas Water Commission

Federal Agencies from Mississippi

Thomas C. Hill, U.S. Army Corps of Engineers, Lower Mississippi Valley Division, Vicksburg, Mississippi

111. ACT ON SUBSTITUTE SECRETARY FOR MEETING

Mr. Curtis Patterson of Louisiana moved that Ms. Kimberlee McEacharn be approved as the substitute secretary. The motion was seconded and carried by voice vote, seven ayes, zero nays.

IV. APPROVAL OF THE AGENDA

Arkansas Commissioner, Mr. John Stroud, moved that the proposed agenda for the May 4, 1993, Red River Compact Commission be approved. The motion to approve the agenda was seconded and carried by voice vote, zero nays. - Seven ager ?

V. APPROVAL OF THE MINUTES OF THE MAY 5, 1992 MEETING

Mr. Curtis Patterson pointed out the name Neil L. Wagoner should be changed to Brigadier General (Ret.) Jude W. P. Patin on page 1 of the May 5, 1992, meeting minutes. Louisiana Commissioner, Mr. Arthur Theis said that on page 11, paragraph 3, Damonville should be changed to Daingerfield. Mr. John Stroud moved that the minutes be approved subject to the corrections mentioned. The motion to approve the minutes was seconded and carried by voice vote, seven ayes, zero nays.

VI. REPORT OF THE CHAIRMAN

Mr. Curtis Patterson stated that the next item for consideration on the Commission's agenda was the REPORT OF THE CHAIRMAN. Mr. Patterson reported that there would be no report from the Chairman, since the Chairman and Federal Commissioner, Brigadier General Pat M. Stevens, IV, was absent from the meeting.

VII. **REPORT OF THE SECRETARY**

There was no report given.

REPORT OF THE TREASURER VTIT.

Mr. Curtis Patterson called for the REPORT OF THE TREASURER which was given by Treasurer Pris Houchens. Ms. Houchens presented financial reports and discussed the Commission's income and expenses for FY-92 and FY-93. She also presented a copy of the proposed FY-94/95 budget to each of the commissioners.

It was moved that the report of the Treasurer be accepted. The motion to accept the Treasurer's report was seconded and carried by voice vote, seven ayes, zero nays. A copy of report of the Treasurer is attached to the minutes. (See Attachment No. 1)

IX. REPORT OF THE COMMISSIONERS

Commissioner Randy Young reported on ground water Α. Arkansas. activities: a) Vulnerability Study - The Arkansas Soil and Water Conservation Commission has utilized grant funds from Section 106 of the Clean Water Act in an effort to identify areas of the state which may be particularly vulnerable or susceptible to contamination for surface activities, especially the use of pesticides. A statewide sensitivity map was produced using a geographic information system at the University of Arkansas/National Center for Resource Innovations. A detailed sensitivity map has also been developed for Woodruff County, in eastern Arkansas, where a large volume of agricultural chemicals are used. However, it should be stressed that probably the best output of this program is the development of the data coverages themselves, not the various modeling and mapping activities; and b) Arkansas Soil and Water Conservation Commission has received funds to develop a comprehensive ground water program and is in the process of forming an advisory committee to assist in the development of the program.

As implementation of the Section 319 non-point source pollution program continues, four additional technicians have been contracted by the Arkansas Soil and Water Conservation Commission, which totals fifteen in the state. These technicians will provide assistance to local conservation district offices in writing "long-term agreements" with landowners for incorporation of Best Management Practices. Included in that program is assistance to farmers wanting to assess effects of land use on individual domestic wells.

The Arkansas/Oklahoma Environmental Task Force has been established on joint environmental concerns of both states. Initial work has centered on two major river systems, the Arkansas and Red, and nine watersheds within these two large river basins which form the boundary waters of the two states. Over the last few years, as industry, agri-business, recreation and tourism in western Arkansas and eastern Oklahoma has developed and expanded, concern about protecting the high quality scenic streams, rivers and lakes in the region have correspondingly increased. Many of these waters have interstate significance, and regulations relating to the use and protection of these waters impact citizens of both states. One of the recommendations of the Task Force was to request the creation of a standing committee on the environment for both the Red River and Arkansas/Oklahoma Arkansas River Compact.

Illinois River Monitoring - Monitoring is underway in Illinois Basin. Plans are to expand into Poteau and Little River Basins during this fiscal year.

The Governor's Animal Waste Task Force produced its final report in January. Two broad areas of waste were studied: 1) liquid waste from swine, dairy, and laying hen operations, and 2) dry waste, which is chiefly from broiler farms. Regulations for control of liquid waste were investigated and a recommendation was submitted to the Arkansas Pollution Control and Ecology Commission which led to adoption of Regulation No. 5. This regulation requires all producers of liquid animal waste to acquire permits and that all permit holders receive

annual training in management of animal waste.

The Task Force has recommended that management of dry animal waste continue as a voluntary program. An effective voluntary program should include education, technical assistance, research and development, financial assistance, program management, and industry involvement. The Task Force recommended that the program be evaluated over the next five years. Recommendations of the Task Force included legislative initiatives.

1993 Legislative Session initiatives were:

- a. to eliminate the use of phosphorous in detergents for domestic use
- b. to eliminate pit disposal of fowl carcasses
- c. to increase fees for dam permits
- d. to give authority to charge fees for certain Commission activities such as non-riparian permits

<u>B.</u> Oklahoma. In the absence of Commissioner Patricia Eaton, the Oklahoma Commissioner's report was given by Mr. Duane Smith of the Oklahoma Water Resources Board. He presented information on climate and streamflow information for 1992, legislative activities, water resources financing, water use reports, groundwater studies, and some litigation in Oklahoma. (See Attachment No. 2)

C. Texas. Commissioner Tony Grigsby of Texas presented a lengthy report to the Commission that included information on the TransTexas Water Program, Little Cypress Reservoir, Watermaster, Water Conservation Rules, and The Edwards Aquifer. (See Attachment No. 3)

D. Louisiana. Mr. Curtis Patterson reported on activities in Louisiana. The Department of Transportation and Development, in which Mr. Patterson is one of six directors under the DOTD Secretary, is still being reorganized. Mr. Patterson is the Director of the Public Works and Flood Control Directorate and Mr. Ed Preau is the Assistant Director.

The amount of \$52 million dollars has been committed through the Port Construction and Development Priority Program since it was created by Act 452 of 1989 funding forty projects.

To date, the Statewide Flood Control Program has provided funding of over \$100 million dollars for projects designed to bring about flood damage reduction. The recommended construction program for FY 93 contains 39 projects which will require \$133 million dollars in state funds. The legislative appropriation is \$10 million dollars.

The Department of Transportation and Development is the assuring agency for the deepening of the Mississippi River to 45 feet. Dredging of Phase I is complete to river mile 181 near Donaldsonville. The Local Cooperation Agreement for mitigation of saltwater intrusion into the water supply of Plaquemines Parish is awaiting final approval from the Assistant Secretary of the Army for Civil Works. The General Design Memorandum for Phase II of the project, deepening the river from mile 181 to Baton Rouge, is under review at the Washington level. It was hoped to have Phase II underway by later this year, but it does not look promising.

Mr. Patterson also reported that the <u>Handbook for Construction of Boreholes</u> and <u>Groundwater Monitoring Systems</u>, prepared jointly by the Louisiana Department of Transportation and Development and the Louisiana Department of Environmental Quality, has just been completed and is in the final review process by each Department's Technical Advisory Committee. The handbook will be used to regulate drilling and plugging of all geotechnical boreholes and monitoring wells throughout the State of Louisiana. The handbook will be used as a supplement to the existing <u>Water Well Rules</u>, <u>Regulations and Standards</u>, State of Louisiana.

X. REPORT OF COMMITTEES

Legal Advisory Committee. Mr. James Frederick, Jr., Chairman, State Α. of Louisiana, distributed a copy of the Legal Committee report. The report primarily addressed two significant aspects of the appointment process for the Federal Commissioner: 1) The personal appointment of Brigadier General Pat M. Stevens, IV, to succeed Major General Thomas A. Sands; and 2) The ex-officio appointment of the Lower Mississippi Valley Division Commander as the permanent United States Commissioner. On motion duly made, seconded, and the Commission approved the Legal Committee's carried, unanimously recommendation to direct the Vice Chairman to request President Clinton to appoint Brigadier General Eugene S. Witherspoon as the United States Commissioner to the Red River Compact Commission to succeed Brigadier General Pat M. Stevens, IV. The Commission waived the requirement under Article VI No. 6.1 of the Internal Rules and Regulations that requires thirty days notice of a rule change. A motion was made by Commissioner John Stroud to accept the recommendations for Internal Rule changes for 2.7, 2.2, 2.3, 1.4, 2.4, and 2.5 as recommended by the Legal Committee. The motion was seconded and carried by voice vote, seven ayes, zero nays. The Committee's recommendation to modify 4.11 concerning unanimous consent resolution was not accepted and was withdrawn. It was moved that the Legal Advisory Committee report be approved. (See Attachment No. 4)

<u>B.</u> Engineering Advisory Committee. Mr. Zahir Bolourchi presented the report of the Engineering Advisory Committee. The Committee was given the assignment at last year's compact meeting to work on unfinished Rules and Regulations of the Compact. Specifically, Oklahoma and Texas were assigned to work on the rules for Sub-basins 1 and 4 of Reach 1. These sub-basins include Lake Texoma and the main stem of the Red River above Denison Dam (Sub-basin 4) and the North Fork of the Red River Basin (Sub-basin 1) which includes Sweetwater Creek. The Commission requested that the engineer advisors from each state work together and meet with the Corps of Engineers concerning Lake Texoma.

The Committee concluded that the waters released from Lake Texoma for hydroelectric or navigation purposes were not part of either state's 200,000 acre-foot limitation imposed by Reach 1 Sub-basin 4. It was recognized that these releases would go toward satisfying water use in the downstream states. The Committee concluded that the limitation imposed is restricted to the diversion of waters from Lake Texoma and the Red River upstream to the Texas-Oklahoma boundary at 100 degrees west.

The Engineering Advisory Committee has drafted a set of Interim Rules for Reach 1, Sub-basin 4 for review and comment by the Commission. The intent of

the Committee is to bring a final draft before the Commission for consideration at its next meeting. (See Attachment No. 5)

The second part of the assignment was the Sweetwater Creek/North Fork Red River issue. The area which has been at an impasse between Texas and Oklahoma for over 25 years. The solution to this controversy remains unresolved. Oklahoma indicates that the Oklahoma Water Resources Board has completed some work in the area of a compromise for the Sweetwater problem, however, the proposal is not complete and has not been presented to Texas. It is anticipated a proposal may be ready by the next meeting.

The Committee also made the recommendation that certain gage data be included in the 1992 Annual Report. It was then moved that the Engineering Advisory Committee report be approved. (See Attachment No. 6)

C. Budget Committee. The Budget Committee report was presented to the Commission as the Red River Compact Commission FY-94/95 Budget. The projected Commission fund balance at the end of June 1993 is \$5,488.12. In prior years, the Commission tried to maintain at least a \$5,000.00 reserve with which to pay Commission expenses and have a surplus to expend in the event the Commission needed to implement some program during the year and prior to each state being able to budget additional funds. The Budget Committee recommended to the Commission that the States be assessed \$500.00 each for FY-94 and \$500.00 each for FY-95.

It was moved that the proposed budget for FY-94/95 be approved. The motion to approve the budget was seconded and carried by a seven member vote without opposition. (See Attachment No. 7)

XI. FEDERAL AGENCY REPORTS

<u>A.</u> United States Bureau of Reclamation. Because no representative from the United States Bureau of Reclamation was present, Mr. Harold Springer, with the Oklahoma Water Resources Board, distributed a prepared report entitled ACTIVITY REPORT RED RIVER COMPACT COMMISSION MEETING. The report gives information regarding the general investigation of the Northwest Oklahoma Water Supply; the Arbuckle Project; the Kiamichi Project; the High Plain Groundwater Recharge Demonstration Program, which includes the Blaine Gypsum Project in Oklahoma; the Texas High Plains Project; and wetland areas. (See Attachment No. 8)

B.(1) Corps of Engineers, Tulsa District. Mr. Wayne Morgan addressed the Commission on the activities being performed by the Corps of Engineers. Mr. Morgan reported on seven projects:

- 1. Lake Wichita-Holliday Creek Texas
- 2. McGrath Creek, Texas
- 3. Plum Creek, Texas
- 4. Red River Waterway (Index Arkansas to Denison Dam)
- 5. Bowie County Levee, Texas
- 6. Red River Basin Chloride Control, Oklahoma and Texas
- 7. Pecan Bayou, Texas

(See Attachment No. 9)

B.(2) Corps of Engineers, Vicksburg District. Mr. Tom Hill reported General Eugene Witherspoon was recovering from a serious accident and sends his regrets that he could not be in attendance. Mr. Hill then addressed the Commission on the activities being performed by the Corps.

The Red River Waterway Project - This project from the Mississippi River through Old River to Shreveport, continues to be constructed. Locks and Dams 1 and 2 were open to navigation during December 1987. Lock Dam 3 was open to navigation during April 1992. Locks and Dams 4 and 5 are about 40 percent complete. The construction on Locks and Dams 4 and 5 will continue, provided funding is appropriated by Congress. There is continued construction on other project features including revetments, dikes, maintenance facilities, relocations, and repair of flood damages in pools of dams 1, 2 and 3.

The draft Local Cooperation Agreement (LCA) for purchase of 5,000 acres of land in the Loggy Bayou area is in the Office of the Assistant Secretary of the Army (Civil Works) for approval. This draft LCA is for the acquisition of the first segment of lands authorized for mitigation associated with the Red River Waterway Project. When approved, the Local Cooperation Agreement should be signed by the project Local Sponsor and the Assistant Secretary of the Army (Civil Works). When this is accomplished, acquisition of the land can begin.

The Red River Waterway Project, Shreveport to Daingerfield Reach Reevaluation Report - A Washington level review of the report of the District and Division Commanders, Lower Mississippi Valley Division, is currently being conducted. The purpose of this effort is to carefully review what has been done by the field and to insure that the criteria used in the study have been applied This is a common procedure applied to all Corps of Engineers correctly. Consideration will be given to environmental concerns, engineering projects. feasibility and economic viability in accordance with the "Economic and Environmental Principles and Guidelines for Water and Related Land Resources Implementation Studies", the National Environmental Policy Act and other There have been no agreements or decisions made at the applicable laws. Washington level regarding completion of this project. Once this review is completed, a final decision will be reached on this project.

The Mississippi River Ship Channel, Phase I, 45-Foot Channel from Gulf of Mexico to Mile 181 - The third supplement for mitigation of this reach is in the office of the Assistant Secretary of the Army (Civil Works) for approval.

The first two Cost Sharing Agreements for the Corps of Engineers Constructed, which are referred to as the Breaux Bill projects, the LaBranch project and the Vermillion River project, were signed by the Local Sponsor and the Corps on April 15, 1993.

In addition, the Local Cooperation Agreement for the Davis Pond Freshwater Diversion Structures was also signed by the Local Sponsor and the Corps on April 15, 1993. This should allow construction of this structure to be initiated in the near future. The Caernarvon Freshwater structure construction is completed. These projects represent two such structures for the Mississippi River and Tributaries project.

C. Soil Conservation Service. Mr. Dennis Hackbart of the Soil

Conservation Service of Little Rock, Arkansas reported that the Soil Conservation Service is undergoing a period of uncertainty with the change of administration and are awaiting appointment of a new chief. There are several proposals concerning the future of the Soil Conservation Service, from including it into a new farm services agency (one stop shopping for farmers), or adding and/or subtracting programs, or keeping agency as it (a stand alone agency). The problem is that several Soil Conservation Service programs serve non-farmers, as well as farmers. There is also the possibility that the structure will stay in tact. The 1990 Farm Bill amended the "Small Watershed Act", or Public Law 83-566, to authorize cost sharing on wetland enhancement or floodplain easements. Legislation is being proposed to authorize Public Law 83-566 funding of rural water supply developments.

D.(1) U.S. Geological Survey. Mr. Bernie Massey of the U.S. Geological Survey office located in Austin, Texas presented a 12 page report to the Commission. The report showed the maximum peak discharge for the period of record and WY 92 and the average discharge for the period of record and WY 92 together with hydrograph plots for the following five gaging stations:

Red River near Burkburnett, Texas; Red River near Terral, Oklahoma; Red River near Gainesville, Texas; Red River at Arthur City, Texas; Red River near Dekalb, Texas

D.(2) U.S. Geological Survey. Mr. George Arcement from the U.S. Geological Survey office located in Baton Rouge, Louisiana gave a brief report. He said there may be a reduction in the Federal Funding Program for the United States Geological Survey. If this happens, there may be an impact on the gaging stations that are operated on the Red River.

XII. UNFINISHED BUSINESS

There was no unfinished business to report.

XIII. NEW BUSINESS

<u>A. Annual Report</u>. Arkansas Commissioner Randy Young made a motion that the Commission include the approved minutes in the annual report. The motion was seconded, and carried by voice vote, seven ayes, zero nays.

B. Assignments to Committees.

1. Legal Committee - Mr. James Frederick, Jr., stated that the Committee would continue to study the proposed new section numbered 4.11 of the Article IV of the Internal Rules. Also, further consideration will be given to initiating congressional legislation amending 94 Stat. 3305 so as to add a new Subsection "c" to Section 5 which would authorize the Federal Commissioner to designate a representative to serve in his absence at the Commission meetings. The recommendation of the Legal Committee on these two assignments will be given at the next meeting.

2. Engineering Committee - Mr. Zahir Bolourchi said the Engineering Committee will ask the United States Geological Survey to study and analyze the gaging system and its funding. Also, further refinement will be done for the set of Interim Rules for Reach 1, Sub-basin 4 and a final copy will be brought before the Commission at its next meeting.

3. Budget Committee - No assignments were given pending the outcome of the Engineering Committee's review of the gaging system and its funding.

<u>C.</u> Resolution of Appreciation for Past Commissioner. A motion for approval of a Resolution for Mr. Jesus Garza in appreciation for service and accomplishments as Compact Commissioner from the State of Texas was moved and seconded, and carried by voice vote, seven ayes, zero nays. It was also moved, seconded and carried by voice vote, seven ayes, zero nays, to accept new Texas Commissioner, Mr. Tony Grigsby. (See Attachment No. 10)

D. Election of Officers. Commissioner John Stroud moved that Commissioner Randy Young be elected as the Vice-Chairman for the Red River Compact Commission meeting scheduled for the spring of 1994 in the State of Arkansas. The motion was seconded and carried by voice vote, seven ayes, zero nays. Commissioner John Stroud also moved that Ms. Pris Houchens be elected Secretary and re-elected Treasurer. This motion was seconded and carried by voice vote, seven ayes, zero nays.

E. Appointments to Committees. Legal Committee - Oklahoma Commissioner Ken Fergeson moved that Mr. Jerry Barnett replace Mr. Dean Couch on the Legal Committee. This motion was seconded and carried by voice vote, seven ayes, zero nays. Texas Commissioner Tony Grigsby moved that Mr. Paul Elliot replace Mr. Philip Poplin, also on the Legal Committee. This motion was seconded and carried by voice vote, seven ayes, zero nays.

Texas Commissioner Tony Grigsby also motioned that the Chairman of each Committee, Legal, Engineering, and Budget, change as the host state is alternated and that committee membership remain the same with the exception of the change previously modified by Oklahoma and Texas. This motion was seconded and accepted by voice vote, seven ayes, zero nays.

F. Fourteenth Annual Meeting. The Red River Compact agreed to have the Fourteenth Annual Meeting in Hot Springs, Arkansas. Arkansas Commissioner Randy Young motioned that the date of the meeting be the first week of April, 1994. The motion was seconded and accepted by voice vote, seven ayes, zero nays.

<u>G. Other Business</u>. Commissioner Randy Young said President Bill Clinton, when serving as Arkansas Governor, formed an Arkansas/Oklahoma Environmental Task Force. The Task Force has recommended that the Red River Compact Commission appoint a new Standing Committee, an Environmental Committee, to carry on the work of this Task Force. Texas and Louisiana were asked if they were interested in being added. The Legal Committee was instructed to look at the rules for creating a new Standing Committee and to define its duties. The recommendation of the Legal Committee will be heard at the next meeting. It was motioned by Commissioner Young to consider the Environmental Committee, motion was seconded, and carried by voice vote, seven ayes, zero nays.

Oklahoma Commissioner Ken Fergeson then asked Mr. Bert Marshall, an attorney with the Lugert-Altus Irrigation District in Oklahoma, to present a paper regarding their statement on prior appropriation of water within Reach 1,

Sub-basin 1 of the Red River Compact. A motion was made that Texas and Oklahoma make a response to the Legal Committee by March 1, 1994, regarding the statement. This motion was seconded, and carried by voice vote, seven ayes, zero nays. (See Attachment No. 11)

XIV. PUBLIC COMMENT

No comments from the public were presented at the meeting.

XV. ADJOURN

There being no further business, Commissioner John Stroud moved that the Red River Compact meeting adjourn. The motion was seconded and carried by a voice vote of seven ayes, zero nays. The Thirteenth Annual Meeting of the Red River Compact Commission was adjourned at 12:30 p.m. on May 4, 1993, in Metairie, Louisiana.

ATTACHMENTS:

- 1. Treasurer Report
- 2. Oklahoma Commissioner's Report
- 3. Texas Commissioner's Report
- 4. Legal Advisory Committee Report
- 5. Draft Interim Rules for Reach 1, Sub-basin 4
- 6. Engineering Advisory Committee Report
- 7. Proposed Budget for FY 94/95
- 8. United States Bureau of Reclamation Report
- 9. Corps of Engineers', Tulsa District, Report
- 10. Resolution of Appreciation
- 11. Lugert-Altus Irrigation District Statement

Respectfully submitted,

Jude W. P. Patin Vice-Chairman

HAPPL 44

07337000 RED RIVER AT INDEX

(National stream-quality accounting network station)

LOCATION.--Lat 33°33'07", long 94°02'28", in NW1/4SW1/4 sec.7, T.14 S., R.28 W., Miller County, Hydrologic Unit 11140106, near right bank on downstream side of southbound bridge on U.S. Highway 71 at Index, 2.2 mi south of Ogden, 20.6 mi upstream from Little River, and at mile 485.3.

DRAINAGE AREA -- 48,030 mi², of which 5,936 mi² is probably noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- July 1936 to current year. Gage-height records collected at same site since 1917 are contained in reports of National Weather Service.

REVISED RECORDS -- WSP 1211: Drainage area.

GAGE --Water-stage recorder. Datum of gage is 246.87 ft above National Geodetic Vertical Datum of 1929. Prior to Dec. 12, 1939, nonrecording gage, and Dec. 12, 1939, to July 19, 1979, water-stage recorder, at site 500 ft downstream at present datum.

REMARKS.--No estimated daily discharges. Water-discharge records good. Some regulation since Oct. 31, 1943, by Lake Texoma (Texas), 241 mi upstream, capacity, 5,392,900 acre-ft, since Sept. 28, 1967, by Pat Mayse Lake (Texas), capacity, 352,700 acre-ft, and since Jan. 18, 1974, by Hugo Lake (Oklahoma) capacity, 966,700 acre-ft. Satellite telemeter at station.

AVERAGE DISCHARGE .-- 57 years, 13,000 ft³/s, 9,418,000 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD -- Maximum discharge, 297,000 ft³/s Feb. 23, 1938, gage height, 34.25 ft; minimum, 378 ft³/s Nov. 28, 1956.

EXTREMES FOR CURRENT YEAR .-- Maximum discharge, 109,000 ft³/s May 12, gage height, 19.15 ft; minimum daily, 2,180 ft³/s Oct. 11. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993 DAILY MEAN VALUES

												000
DAY	OCT.	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
· · ·	4350	2880	24500	39500	13900	47900	15600	25700	64000	11300	7000	4670
5	3430	2960	23200	32700	13300	54200	15000	31100	63200	9450	7030	4510
2	3400	2000	20200	28200	12800	67700	21600	31700	62700	8720	7060	4470
3	3100	2950	19400	25700	12500	66300	29800	27100	60800	9390	7310	4380
4	3150	2960	19400	23700	12400	57500	31500	22100	61100	9400	8830	4070
5	2730	2960	18/00	34900	13400	57500	31300	22100	01100	5100		
6	2420	2880	17000	36400	15100	58800	31900	19800	61500	7920	12800	3980
7	2360	2700	15000	31300	16400	62900	34900	26300	60300	7560	11500	4080
8	2480	2610	13400	29200	17000	63400	37900	33000	58900	7360	8600	3800
ă	2420	2740	12500	27400	15500	61900	37900	38600	56000	7220	8040	3780
10	21 90	3040	12500	23800	13700	54400	36700	52000	55200	6660	7830	3710
10	21.00	5010	11.500	20000							2012	
11	2180	3100	13300	21300	12500	45700	32800	84900	55900	5820	7490	3610
1.2	2550	2950	16200	20400	12100	40400	28200	105000	54500	5450	6880	3650
13	2980	2740	20000	20600	15200	39100	21700	87000	54300	5250	6570	3690
14	3160	2560	22100	21200	19000	36200	19000	63600	56000	5020	6310	3440
16	3080	2630	36800	20900	19800	31300	19900	58300	50500	4800	5880	3450
10	3000	2050	30000	20500	1,000					1. A 1.		
16	2650	2870	61000	20400	22000	28900	25100	62000	47500	4640	5250	4100
17	2470	3200	67300	18600	34100	29700	34700	66500	45100	4640	5190	4560
า้ด	2950	3900	65700	17200	43200	35600	41200	70700	39800	4690	5220	5180
19	3110	4050	62200	16900	40000	36800	45200	73300	34800	4660	5340	7290
20	4580	3530	64000	16800	40700	36300	48700	70400	28900	4590	5350	8710
20	4500	0000	0.000									1
21	4300	4400	70000	17600	42000	40500	49200	67100	25300	4560	5170	8770
22	3330	6130	73200	22600	45000	44400	43700	65800	22300	4640	5060	8420
23	2620	8610	71000	31900	46600	40800	38200	65200	19000	4630	4950	7070
24	2320	10600	68600	33000	44700	34500	31800	65500	16400	4530	4890	7060
25	2500	12200	67600	32700	45400	34000	23700	65200	14500	4530	4860	8570
20	2,500	12200	0,000	52100								·
26	2800	19600	65200	30800	50500	37800	19500	62400	13500	4780	4770	9210
27	2870	25000	57700	26900	51400	35500	17700	62600	12900	5770	5050	7570
28	2840	29500	52500	21700	49700	30700	20900	64000	13000	6350	5230	6300
20	2040	28800	50500	17900		28700	26000	63200	14000	6730	4910	5960
29	2350	26500	49100	15800		25400	25700	64200	13300	6880	4810	6010
30	22.00	20500	45700	14500		19400		65300		6990	4890	
31	2990		45700	14000	· · · · ·	17100						
TOTAL	91520	231590	1276600	768800	777500	1326700	905700	1759600	1235200	194930	200070	164070
MEAN	2952	7720	41180	24800	27770	42800	30190	56760	41170	6288	6454	5469
MAX	4580	29500	73200	39500	51400	67700	49200	105000	64000	11300	12800	9210
MTN	21 80	2560	12500	14500	12100	19400	15000	19800	12900	4530	4770	3440
AC-FT	181500	459400	2532000	1525000	1542000	2632000	1796000	3490000	2450000	386600	396800	325400
	101000			-								$= \frac{1}{2} (e^{-i\omega} - i\omega) e^{-i\omega}$
CAL YR	1992	TOTAL 874	3140 MEA	N 23890	MAX 7320	0 MIN 2	2180 AC-FT	17340000				
WTR YR	1993	TOTAL 893	2280 MEA	N 24470	MAX 10500	0 MIN 2	2180 AC-FT	17720000				

07337000 RED RIVER AT INDEX--CONTINUED

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1947-1956, April 1980 to current year.

PERIOD OF DAILY RECORD.--

SPECIFIC CONDUCTANCE: January to September 1981.

WATER TEMPERATURE: January to September 1981.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993

DATE	· · · · ·	TIME		AGENCY COL- LECTING SAMPLE (CODE NUMBER) (00027)	AGENCY ANA- G LYZING SAMPLE (CODE NUMBER (00028	DI CHAR INS CUE FE PE SEC SEC	S- GE, SP ST. CI SIC CO ET DU R AN COND (US 061) (00	E- WH FIC WH N- FJ CT- (SJ CE A /CM) UN 095) (00	PH ATER HOLE IELD IAND- ARD VITS) 0400)	TEMPE ATUR WATE (DEG (0001)	R- TU E BI R IT C) (NT 0) (000	(R- OXY D- D 'Y SC 'U) (M '76) (00	GEN, IS- DLVED G/L) 300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	COLI- FORM,) FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)
					and the second		$ A ^{1}= I_{1} ^{2}$				e			(,	(01010)
NC	v			i di							•			the prove	
та	17.	1440		80513	8002	0 3050		955	8.4	14	.5 16		12.7	125	, K8C
MA	20. R	1445		80513	8002	0 18000		900	8.0	7	.0 47		11.9	99	180
23	17.	1435		80513	8002	0 30400		870	8.0	10	.5 96		11.2	101	140
AP	R 29.	0700		80513	8002	0 22600		725	8.0	17.	.0 99		8.5	89	1 37
JU	10. L	1400		80513	8002	0 52100		725	7.7	24	.5 120		7.4	90	36
	13.	1505		80513	8002	0 6420		865	8.5	32	.0 130		5.8	81	. К5
	۲) ا	1975		is the s						22.5					
	DATI	2	TIME	S TC F KF (C 10	TREP- COCCI ECAL, AGAR OLS. PER 0 ML) 1673) (HARD- NESS TOTAL (MG/L AS CACO3) 00900)	HARD- NESS NONCARB DISSOLV FLD. AS CACO3 (MG/L) (00904)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAC 1 S1 D1 5 S01 (MC AS	SNE- IUM, S IS- LVED S J/L MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM PERCENT	SOD A SOR TI RAT	IUM P D- P- ON S 'IO (A	OTAS- SIUM, DIS- OLVED MG/L S K)
					10/5/ (003007	(00304)	(00913)	(003	23)	(00930)	(00932)	(009	31) (0	0935)
	NO	v										· · · ·			
		17.	1440		K39	250	73	68	19)	95	45		3	5.0
	JI	20.	1445		520	230	120	59	19)	99	48		3	4.3
	M	17.	1435		К330	220	110	57	19) 1.	81	44		2	3.4
	AI .TI	29.	0700		K270	180	87	47	15	•	62	42		2	3.0
	л	10. II.	1400		130	210	110	58	17		64	39		2	3.5
		13.	1505		K4	270	120	73	22		81	39		2	4.6
	. i	$\{ i_{i_1}, \ldots, i_{i_k}\}$													
	DATE		TIME	A LI WA TO F MG (0	LKA- (NITY B T DIS 1 T FET D IELD 1 /L AS M ACO3 0418) ((CAR- ONATE WATER IS IT FIELD G/L AS CO3 00452)	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	SULF DIS SOL (MG AS S (009	ATE VED /L 04) 45) (CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILI DIS SOL (MG AS SIO (009	SO CA, RE - AT VED DI /L I SC 2) (1 55) (7)	LIDS, SIDUE 180 EG. C DIS- OLVED MG/L) 0300)
															e de la composition d
•	NC	V 17.	1440		174	O	215	176	110		120	0.30	5	.6	554
	JA	20.	1445		102	Ó	124	102	140		150	0.30	5	.5	549
: ¹	MA	R 17.	1435		111	O	137	112	120		130	0.10	б	. 6	533
	AP	R 29.	0700		93	0	113	93	95		91	0.20	5	. 9	394
	JU	N 10.	1400		100	0	124	102	110		110	0.20	б	. 6	445
	JU	L 13.	1505		152	1	183	152	130		110	0.20	1.	.4	543
1.1		artin di Artin da													

SWATER-QUALITY DATA. WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993

		OWA	IEK-QUALL	LI DAIN, "					1. C.	<i>.</i> .	· . ·,
			SOLIDS, SUM OF CONSTI- TUENTS, DIS-	SOLIDS, DIS- SOLVED (TONS	SOLIDS, DIS- SOLVED (TONS	NITRO- GEN, NITRATE DIS- SOLVED	NITRO- GEN, NITRITE DIS- SOLVED	NITRO- GEN, NO2+NO3 DIS- SOLVED	NITRO- GEN, AMMONIA DIS- SOLVED	NITRO- GEN, ORGANIC TOTAL	NITRO- GEN, AM- MONIA + ORGANIC TOTAL
DATE	TIME		SOLVED (MG/L)	PER DAY) (70302)	PER AC-FT) (70303)	(MG/L AS N) (00618)	(MG/L AS N) (00613)	(MG/L AS N) (00631)	(MG/L AS N) (00608)	(MG/L AS N) (00605)	(MG/L AS N) (00625)
	1. Chines		(/0501/	(10302)			1. m			1.14	
NOU											· · · · · ·
NOV 17	1440		530	4560	0.75		0.030	<0.050	0.020	0.68	0.70
JAN 20	1445		541	26700	0.75	0.320	0.040	0.360	0.060	0.44	0.50
MAR 17	1435		487	43700	0.72	0.420	0.020	0.440	0.040	0.56	0.60
APR	0700		277	24000	0.54		<0,010	0.280	0.030	0.57	0.60
JUN	0700		377	24000	0.01		<0.010	0 380	0.040	0.26	0.30
10.	1400		432	62600	0.61		(0.010	0.000	0.000	0 17	0.20
13.	1505		514	9410	0.74	<u></u>	<0.010	<0.050	0.030	0.17	0.20
			PHOS- PHORUS	PHOS- PHORUS DIS- SOLVED	PHOS- PHORUS ORTHO, DIS- SOLVED	ALUM- INUM, DIS- SOLVED	BARIUM, DIS- SOLVED	COBALT, DIS- SOLVED	IRON, DIS- SOLVED	LITHIUM DIS- SOLVED	MANGA- NESE, DIS- SOLVED
DATE	TIME		(MG/L AS P) (00665)	(MG/L AS P) (00666)	(MG/L AS P) (00671)	(UG/L AS AL) (01106)	(UG/L AS BA) (01005)	(UG/L AS CO) (01035)	(UG/L AS FE) (01046)	(UG/L AS LI) (01130)	(UG/L AS MN) (01056)
NOV	1440		0.120	<0.010	0.010	20	150	<3	29	13	10
JAN 20	1445		0.110	0.030	0.040	<10	120	<3	36	10	13
MAR	1435		0.230	0.020	0.020			'	'		 , , '
APR	1435		0.150	0:030	0.010	30	95	<3	39	6	6
29. JUN	0700		0.150	0.000	0.010						
10. JUL	1400		0.040	0.030	0.020					10	1 60
13.	1505		0.600	0.010	<0.010	50	170	<3	41	10	
					1 1 - A					SEDI-	SED.
			MOLYB- DENUM, DIS- SOLVED	NICKEL, DIS- SOLVED	SELE- NIUM, DIS- SOLVED	SILVER, DIS- SOLVED	STRON- TIUM, DIS- SOLVED (UG/1	VANA- DIUM, DIS- SOLVED (UG/L	SEDI- MENT, SUS- PÉNDED	MENT, DIS- CHARGE, SUS- PENDED	SUSP. SIEVE DIAM. % FINER THAN
DATE	TIME	:	(0G/L AS_MO)	AS NI) (01065)	AS SE) (01145)	AS AG) (01075)	AS SR) (01080)	AS V) (01085)	(MG/L) (80154)	(T/DAY) (80155)	.062 MM (70331)
			(01000)	(01000)			•				
NOV											
17.	1440)	<10) 1	<1	<1.0	660	. <6	300	2470	04
JAN 20.	1445	5	<10) <1	<1	<1.0	640	<6	5 178	8650	68
MAR 17	. 1439	5						'	528	43300	69
APR 29	0700)	<10	0 1	<1	<1.0	460)	5 673	41100	54
JUN	1 400	- 3							1140	160000	48
JUL	150	-	<1	0 <1	. <1	<1.0) 680) <(5 1640	28400	44
13	. 130			s e t							

07340000 LITTLE RIVER NEAR HORATIO

LOCATION.--Lat 33°55'10", long 94°23'15", in NE1/4 sec.10, T.10 S., R.32 W., Sevier County, Hydrologic Unit 11140109, near left bank on downstream side of bridge on State Highway 41, 0.9 mi downstream from Rolling Fork, 2.0 mi southwest of Horatio, 28.5 mi upstream from Cossatot River, and at mile 72.0.

DRAINAGE AREA .-- 2,662 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.-October 1930 to current year. Monthly discharge only for some periods, published in WSP 1311.

REVISED RECORDS.--WSP 858: 1932, 1935-36. WSP 1211: 1931, drainage area. WSP 1561: 1932. WRD Ark. 1978: drainage area.

GAGE.--Water-stage recorder. Datum of gage is 272.89 ft above National Geodetic Vertical Datum of 1929. Prior to Feb. 5, 1935, nonrecording gage, and Feb. 5, 1934, to Sept. 13, 1961, water-stage recorder, at site 50 ft upstream at present datum.

REMARKS.--Water-discharge records good. Some regulation since Oct. 3, 1968, by Broken Bow Lake (Oklahoma), 31.4 mi upstream, capacity, 1,368,000 acre-ft, and since June 1, 1969, by Pine Creek Lake (Oklahoma), 73.3 mi upstream, capacity, 465,800 acre-ft. Satellite telemeter at station.

AVERAGE DISCHARGE -- 63 years, 3,932 ft³/s, 2,849,000 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 120,000 ft³/s Mar. 30, 1945, gage height, 37.70 ft, from rating curve extended above 93,000 ft³/s; minimum, 1.0 ft³/s Aug. 18 to Sept. 1, 1934.

EXTREMES OUTSIDE PERIOD OF RECORD .-- Flood in August 1915, reached a stage of 38.0 ft, discharge, 124,000 ft³/s.

EXTREMES FOR CURRENT YEAR .-- Maximum discharge, 30,900 ft³/s Dec. 16, gage height, 28.63 ft; minimum daily, 287 ft³/s Oct. 28.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993

						LI PEAN	ALCES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	6510	432	7870	13500	3740	9540	5790	11200	1940	2040	1750	610
2	8930	112	7710	9260	3490	14200	3340	10400	5080	1600	638	396
à	8970	1140	6120	8370	2360	13100	2300	9290	e\4800	1480	799	457
ă	6000	924	5510	13800	2380	11600	1790	8850	e3500	956	927	642
5	6050	793	4730	23400	2370	11300	2570	8500	e1100	541	1150	256
	00.50	123	1/50	23400	2370	11500	2370	0.500	erroo	541	1150	150
6	5760	775	2670	19100	2000	10600	38.90	8520	e860	565	1180	982
7	3420	1180	2860	13400	1700	9590	2410	8460	636	504	802	872
8	2730	486	2810	13700	1350	9020	2360	8180	1560	585	741	611
ğ	1330	302	5170	14200	1540	7980	2130	4640	760	522	532	343
10	869	30.9	10900	15000	21 20	6710	2390	12900	743	955	1050	598
	005		10500	10000		0,10	2000	12300			1050	550
11	497	403	10500	15400	3120	e6600	1480	16100	653	905	1510	618
12	387	786	8890	15400	4480	e6200	1180	15500	558	511	1320	489
13	560	1490	6580	16000	4910	4600	1560	16700	568	595	1110	301
14	828	1270	6240	16000	3070	1740	2820	14000	560	688	1110	485
15	1030	1010	21500	15600	3310	1360	9070	13600	1060	1120	808	324
	1050	1010	11500	15000	3310	1500	2010	15000	1000	1110		524
16	468	726	30000	11900	10400	9490	11400	14200	806	1520	482	380
17	474	790	25800	8440	12200	18400	11000	14600	1320	1370	1470	439
18	356	873	21600	8500	12100	13600	9460	15500	1090	791	1610	513
19	335	755	16700	8780	12000	10800	7760	15600	1380	451	1600	571
20	779	3910	16500	8670	10300	16100	98.60	13100	1310	706	1640	585
					10000		2000	10100	1010		1010	555
21	522	7030	17800	10300	10100	17100	9840	12400	975	1050	759	871
22	332	10300	17400	10300	10100	12900	8230	11700	1110	992	579	1200
23	300	16600	17100	9250	10000	9970	5710	7870	2390	948	412	779
24	414	13300	16700	8620	7320	10400	3670	8600	1710	1000	583	1300
25	347	10400	16300	8100	11400	13500	1910	11700	1350	1060	610	960
3.2		1.1			1999 - S. 1	10 A. 19 A.						
26	292	10600	16000	8430	16500	15000	2710	11500	1090	1080	409	796
27	288	9370	15700	8370	12400	14100	9440	10800	964	1330	665	614
28	287	8630	15700	6980	10100	10900	10300	8610	601	1260	763	1320
29	549	8340	15800	6220		9860	10900	6990	1110	1640	553	2610
30	486	8080	15800	5700		10300	11000	2820	1680	1430	387	1210
31	649	·	15800	4030		8010		1930		1690	541	
		101000	4007.00	254200	10000	204520	1 (0 0 0 0	224762				
TOTAL	60/49	121330	400760	354720	196960	324570	168270	334/60	43264	31885	28490	22632
MEAN	1960	4045	12930	11440	66/4	10470	5609	10800	1442	1029	919	/54
MAX	8970	10000	30000	23400	16500	18400	11400	16/00	5080	2040	1750	-2610
MIN	287	302	2670	4030	1350	1360	1180	1930	558	451	387	301
AC-FT	120500	240700	794900	703600	370600	643800	333800	664000	85810	63240	56510	44890
CAT VD	1002	TOTAL 206		5655 M	AX 30000	MTN 207	AC-ET 414	05000				
WTD VD	1003	TOTAL 200	8296 MEAN	5694 M	AX 30000	MTN 287	AC-FT 410	22000				1.1.1
HIN IN	2993	TOTAT 201	UZ JU PIEAN	2024 H	nn 30000	1111 207	- AC-11 41	22000				

• Estimated

-20-RED RIVER BASIN

07340000 LITTLE RIVER NEAR HORATIO-CONTINUED

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1954-59, 1969-78, October 1979 to current year. PERIOD OF DAILY RECORD.--

SPECIFIC CONDUCTANCE: October 1953 to September 1959.

WATER TEMPERATURES: October 1953 to September 1959.

COOPERATION .-- Records were furnished by Arkansas Department of Pollution Control and Ecology, Little Rock, Arkansas.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993

DATE	TIME		AGENCY COL- LECTING SAMPLE (CODE NUMBER) (00027)	AGENCY ANA- LYZING SAMPLE (CODE NUMBER) (00028)	DIS CHARG INST CUBI FEE PER SECC (0006	E, C T	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPE ATUE WATE (DEG (0001	ER- (RE ER C) LO)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) (00310)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	
OCT	1 .						÷.,						
06. NOV	1505		9827	9827	6090		7.	6 2	1.0	7.8	0.9	10	
17. DEC	1310		9827	9827	964		7.:	3 14	4.0	8.8	1.9	32	
01. FEB	1230		9827	9827	7870		7.1	0 10	0.0	11.0	0.7	11	
02. MAY	1320		9827	9827	3500		б.	9 9	9.0	8.6	0.5	10	
03. .ПІМ	1330		9827	9827	9250		7.	4 1	7.0	6.6	0.9	11	
28. JUL	1410		9827	9827	574		7.	1 2	7.0		1.0	25	
12. AUG	1425		9827	9827	473		6.	5 2	9.0	6.0	1.0	7	
10. SEP	1400		9827	9827	1300		7.	2 2	8.0	5.1	0.8	18	1
14.	1355		9827	9827	670		7.	2 2	4.0	6.1	1.0	12	:
DATE	TIME		SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	SOLII RESII AT 18 DEG, DIS SOLV (MG) (7030	OS, DUE 80 . C S- VED /L) 00)	TUR- BID- ITY LAB (NTU) (82079	RESI TOTA AT 1 DEG. SUS PEND (MG) (005	DUE L 05 C, ED /L) 30)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N) (00630)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N) (00610)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	
OCT 06.	1505		2.0	2.7		34	10		13	0.050	0.057	0.042	2
NOV	1310		4.0	12		76	8.2		4	0.130	0.076	0.059	9
DEC 01.	1230		5.6	2.8		33	11		10	0.100	<0.050	0.035	Ĵ
FEB 02.	1320		8.4	4.1		42	10		Ġ	0.190	0.053	<0.030)
MAY 03.	1330		6.3	2.4		37	19		11	0.120	0.073	0.044	4
JUN 28.	1410		4.0	9.1		52	7.2		5	0.210	0.077	0.052	2
JUL 12.	1425		4.1	7.1		. 42	6.1		4	0.050	0.085	0.038	3
AUC 10.	1400		5.1	21		81	6.2		10	<0.020	<0.050	0.073	3
SEP 14.	1355		4.5	9.9		51	4.4		6	0.030	<0.050	<0.030	С
DA	TE	TIME	PH PHC ORT TC (M AS (70	IOS- DRUS CA THO OI DTAL IG/L S P) ISO7) (1	ARBON, RGANIC TOTAL (MG/L AS C) 00680)	CAD D SO (U AS (01	MIUM IS- DIVED G/L CD) 025)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR) (01030)	COPH DIS SOI (UC AS (010	PER, L S- LVED S G/L (CU) A D40) (0	EAD, 2 DIS- OLVED S UG/L (S PB) A 1049) (C	LINC, DIS- SOLVED (UG/L AS ZN) D1090)	
	OCT												
	06. NOV	1505	<0	0.030	4.7		<0.5	<1	-		<2	<8	
	17. DEC	1310	<0	0.030	4.7		<0.5	<1		<25	<2	<8	
•	01. FEB	1230	<(0.030	3.6		<0.5	<1		<25	<2	<8	
	02. MAY	1320	<(0.030	3.8							 	
	03. TUN	1330	<(0.030	4.4				, · ·				
	28.	1410	<(0.030	4.0						<u> </u>		
	12.	1425	<(0.030	4.2								
	10.	1400	<(0.030	3.6								
	5EP 14.	1355	<(0.030	3.1								
	- F 2 (2)							1.4					

07362000 OUACHITA RIVER AT CAMDEN (National stream-quality accounting network station)

LOCATION.--Lat 33°35'47", long 92°49'05", in SE14 sec.14, T.13 S., R.17 W., Ouachita County, Hydrologic Unit 08040102, at bridge on U.S. Highway 79 at Camden, 3.4 mi downstream from Ecore Fabre Bayou, 6.2 mi upstream from Two Bayou Creek, and at mile 354.1. DRAINAGE AREA .-- 5,357 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.-September 1928 to September 1960 and October 1965 to current year in reports of Geological Survey. October 1929 to date in reports of U.S. Army Corps of Engineers. Monthly discharge only, October 1929 to September 1960 published in WSP 1311 and WSP 1731. Gage heights collected since 1885 in this vicin- ity are contained in reports of National Weather Service.

GAGE.--Water-stage recorder. Datum of gage is 71.69 ft above National Geodetic Vertical Datum of 1929. Aug. 8, 1928, to July 10, 1935, and July 11, 1935, to Jan. 4, 1945, nonrecording gage at present site and datum. Jan. 5, 1945, to Oct. 27, 1947, nonrecording gage at site 0.4 mi downstream at present datum. Aug. 10, 1938, to May 31, 1949, supplementary nonrecording gage, 4.5 mi upstream. Since Jan. 1, 1957, auxiliary water-stage recorder, 3.2 mi downstream.

REMARKS.--Water-discharge records good, except for estimated daily discharges, which are fair. Flow regulated since 1925 by Lake Catherine, 102 mi upstream, capacity, 35,250 acre-ft, since 1932 by Lake Hamilton, capacity, 190,100 acre-ft, since 1949 by Lake Greeson, capacity, 407,900 acre-ft, since 1952 by Lake Ouachita, capacity, 2,768,400 acre-ft, and since August 1969 by DeGray Lake, capacity, 881,900 acre-ft. Satellite telemeter at station.

AVERAGE DISCHARGE .-- 65 years, 7,712 ft³/s, 5,587,000 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD .-- Maximum discharge, 243,000 ft³/s Apr. 3, 1945, gage height, 44.82 ft; minimum, 125 ft³/s Sept. 16, 24-26, 1943.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 28,700 ft³/s Dec. 18; maximum gage height, 28.89 ft Dec. 20; minimum daily discharge, 893 ft³/s Oct. 26.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993 DAILY MEAN VALUES

			1 C C C C C C C C C C C C C C C C C C C									
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	5370	e1070	e2200	8210	7980	18000	8720	12200	4560	3920	3500	e 900
2	3000	e1540	2010	6750	7780	16000	7480	12700	2050	4270	4560	- A950
3	1740	e1200	2330	5820	7490	17100	8140	16100	1070	4040	e1600	a1000
4	2060	e1020	2550	5460	70.90	18600	6740	14800	1310	4390	01800	2950
5 .	3110	e1210	2290	9390	6040	19200	6010	14200	2160	4330	01600	2950
-		01010		5050	0040	19200	\$ 0010	14200	2100	4120	61900	e950
6	2730	e1400	2010	17700	6410	18500	7840	15000	2160	3220	1310	e900
7	2360	e1590	1820	21400	5620	16600	8690	14600	1260	3440	5530	e900
8	2030	e1720	2340	22600	5930	13400	10700	13700	1880	3860	6660	e900
9	2390	e1450	3210	22200	4360	11100	12400	11000	3810	3860	e2900	e900
10	3370	e1300	5060	19600	4410	9280	12000	13100	3950	3400	e2000	e900
11	3270	e1390	8210	18900	61 20	7560	9520	19300	3470	2970	e2000	
12	1600	e1650	8290	18500	6580	7710	75 90	22100	3950	1510	01700	
11	1250	e1590	7050	16700	5410	9520	6070	21 400	3930	1010	-1700	e900
14	2080	e2550	4770	13800	4860	10400	5820	10800	3970	16/0	e1/00	e900
15	1340	02000	5020	12200	4760	10400	11:200	13000	3330	2520	e2000	e900
10	1340	eroso	5020	12300	4700	8190	11200	17400	3530	3130	e1800	e900
16	2290	e1730	15900	11600	5360	7380	19000	15700	5640	3380	e2000	e900
17	3340	e2030	24200	9670	11200	10300	20600	14100	6620	3330	e2000	e900
18	2030	e2290	28100	7570	13900	15800	19200	11600	6320	3640	e2100	e900
19	1340	e1740	27900	9720	14600	17000	14400	9670	5160	4280	e2200	e900
20	1280	e2110	28200	12800	13800	15900	10700	9300	4100	3230	e1600	e900
21	1210	e3800	26200	14000	10800	14600	12000	9590	2930	3670	e1300	e 950
22	983	e9260	22900	15100	9100	16200	11800	8550	2570	3780	e1500	e1000
23	978	e10100	21300	15000	7930	16700	9220	6440	2870	3340	01700	e1200
24	1050	e9340	19300	14200	8100	16600	7140	5640	3700	2730	01500	1700
25	981	e6390	16300	16000	8390	15600	65.60	5470	4260	2700	02400	1950
						10000	0000	5470	42.00	2,00	62400	1000
26	893	e5340	12700	17300	12000	13300	9170	5170	4710	2320	e2400	1920
21	1050	e4110	10400	16300	15900	11700	11900	5200	4710	e1800	e1400	1210
28	1050	e3190	8600	14300	17800	10400	11100	5240	3510	e2200	e1300	1120
29	1060	e2580	7380	12800		8250	9850	5790	3640	e2000	e1400	1040
30	1070	e2440	7180	11400		7900	10400	5420	3530	e1900	e1100	1070
31	946		7890	8560		9160	· · ·	5040		3490	e1000	
TOTAL	59251	88980	343610	425650	239720	407960	311970	365320	106750	98110	67560	31310
MEAN	1911	2966	11080	13730	8561	13160	10400	11780	3558	3165	2179	1044
MAX	5370	10100	28200	22600	17800	19200	20600	22100	6620	4390	6660	1020
MIN	893	1020	1820	5460	4360	7380	5830	5040	1070	1510	1000	1920
AC-FT	117500	176500	681600	844300	475500	809200	618800	724600	211700	104600	134000	500
		1.0000	201000	011000	110000	009200	010000	124000	211/00	194000	134000	02100
CAL YR	1992	TOTAL 249	4811 MEAN	6816 M	AX 46900	MIN 893	AC-FT 49	48000				

07362000 OUACHITA RIVER AT CAMDEN--CONTINUED

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1947-52, October 1974 to current year. PERIOD OF DAILY RECORD.--

SPECIFIC CONDUCTANCE: July 1976 to September 1981.

WATER TEMPERATURES: July 1976 to September 1981.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993

DATE	TIME		AGENCY COL- LECTING SAMPLE (CODE NUMBER) (00027)	AGENCY ANA- LYZINC SAMPLE (CODE NUMBEE (00028	DI: CHARC INS CUB CUB FEI PEI SEC (000	S- GE, SPE I. CIF IC CON ET DUC' R ANC OND (US/ 61) (000	PH - WAT IC WHO - FIE T- (STA) E AR CM) UNI 95) (004	ER LE ND- ATU D WAT TS) (DEG 00) (000	ER- TU RE BI ER IT C) (NT 10) (000	R- OXYG D- DI Y SOL U) (MG 76) (003	OXYGE DIS SOLV EN, (PEF S- CEN VED SATU (L) ATIC 00) (0030	N, COL - FOR /ED FEC - 0.7 IT UM- JR- (COL N) 100 (316	I- M, AL, MF .S./ ML) 25)
NOV								·· · ·	о г – В	7	0.0	02	820
JAN	7. 1100		80513	8003	20 1930		87	/.o 1	2.5 6	• /	9.9	92	
2	0. 0945		80513	8003	20 10500		67	8.4	6.5 26	1	1.0	89 >	•600
JUN 0	9. 1045		80513	8003	20 3800		79	7.4 2	6.0 8	.0	7.0	86	23
JUL	2 1225		80513	800	20 1550		51	7.5 2	9.0 5	.2	6.9	90	К2
			100 A.C.						1. ·				
	DATE	TIME	ST TOC FF KF (CC 100 (31	TREP- COCCI ECAL, AGAR DLS PER ML) L673)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	HARD- NESS NONCARB DISSOLV FLD. AS CACO3 (MG/L) (00904)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	SODIUM PERCENT (00932)	SODIUM AD- SORP- TION RATIO (00931)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	
					l tra e	a state a							
	NOV	1100		31	25	2	7.7	1.3	5.0	29	0.4	2.0	
	JAN	0945		1000	22	7	6.7	1.3	3.7	25	0.3	1.2	
	JUN	0945				2	6.0	16	A G	32	0.5	1.1	
	. 09 JUL	1045		21	22	3	0.0	1.0	1.7			1.0	
	12.	1225		39	22	8	6.3	1.6	3.8	20	0.4	1.0	
	DATE	TIME	A LII WA TO F MG C (0	LKA- NITY T DIS T FET IELD /L AS ACO3 0418)	CAR- BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L ÀS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	
		27			$= e^{i \pi i t} f^{i} e^{i \pi i t}$								
	NOV			~~	0	20		73	5 5	<0.10	58	51	
	17. JAN	1100		22	U .	28	23	1.3	J.J	NO.10	5.0		
	20.	0945		16	0	18	15	6.9	4.8	<0.10	7.4	.44	
	09.	1045		19	0	23	19	6.0	5.7	<0.10	4.0	42	
	JUL 12.	1225		15	0	18	15	5.2	3.3	<0.10	4.6	45	
							· ·	-	. ÷				
	DATE	TIME	SO SU CO TU S (7	LIDS, M OF NSTI- ENTS, DIS- OLVED MG/L) 0301)	SOLIDS, DIS- SOLVED (TONS PER DAY) (70302)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N) (00605)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	
				n de la composition de la comp									
	NOV	1100		40	266	0.07	0 140	0 020	0 160	<0.010	0.20	0.20	
	17. JAN 20	0945		49	1250	0.06	0.130	0.020	0.150	0.040	0.26	0.30	J
	JUN	1045		14	471	1 06		<0 010	0-150	0.050		<0.20	j
	JUL	1040	· •	44	101	0.00		-0.010	0.000	0 020	<u></u>	<0.20	'n
	12.	1225		35	199	0.06		-0.010	0.088	0.020		-0.20	

-23-RED RIVER BASIN

07362000 OUACHITA RIVER AT CAMDEN-CONTINUED

WATER-QUALITY DATA, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993

		PHOS- PHORUS TOTAL	PHOS- PHORUS DIS- SOLVED	PHOS- PHORUS ORTHO, DIS- SOLVED	ALUM- INUM, DIS- SOLVED	BARIUM, DIS- SOLVED	COBALT, DIS- SOLVED	IRON, DIS-	LITHIUM DIS-	MANGA- NESE, DIS-
DATE	TIME	(MG/L AS P) (00665)	(MG/L AS P) (00666)	(MG/L AS P) (00671)	(UG/L AS AL) (01106)	(UG/L AS BA) (01005)	(UG/L AS CO) (01035)	(UG/L AS FE) (01046)	(UG/L AS L1) (01130)	(UG/I, AS MN) (01056)
NOV	2 A 19					an a				
17. JAN	1100	0.050	0.040	0.020	30	24	<3	220	<4	23
20. JUN	0945	0.030	0.010	<0.010	70	21	<3	180	<4	58
09. JUL	1045	0.030	0.020	<0.010	10	24	<3	190	<4	47
12.	1225	0.020	<0.010	<0.010	<10	24	<3	130	<4	96
	•								CEDT	CRD
DATE	TIME	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060)	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	SILVER, DIS- SOLVED (UG/L AS AG) (01075)	STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080)	VANA- DIUM, DIS- SOLVED (UG/L AS V) (01085)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	SED. SUSP. SIEVE DIAM. & FINER THAN .062 MM (70331)
NOV							1 A 1			
17. JAN	1100	<10	1	<1	<1.0	53	8	33	172	70
20. JUN	0945	<10	2	<1	<1.0	51	<6	49	1390	98
09. JUL	1045	<10	1	<1	<1.0	50	< 6	42	431	73
12.	1225	<10	<1	<1	<1.0	42	11	442	1850	78
						. ¹⁶				

-24-**RED RIVER BASIN**

07362100 SMACKOVER CREEK NEAR SMACKOVER

LOCATION.--Lat 33°22'33", long 92°46'37", in NW1/4SE1/4 sec.32, T.15 S., R.16 W., Union County, Hydrologic Unit 08040201, near right bank on downstream side of bridge on State Highway 7, 0.1 mi downstream from Camp Creek, 3.3 mi northwest of Smackover, and at mile 22.0.

DRAINAGE AREA .-- 385 mi2.

PERIOD OF RECORD. -October 1961 to current year. Gage-height records collected and occasional discharge measurements made by U.S. Army Corps of Engineers at this site since September 1938. Daily stages 1940 to date and results of discharge measurements 1947 to 1960 are published in reports of U.S. Army Corps of Engineers.

REVISED RECORDS .-- WRD Ark. 1967: 1965. WRD Ark. 1979: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 97.56 ft above National Geodetic Vertical Datum of 1929 (levels by U.S. Army Corps of Engineers.) Prior to Mar. 1, 1989, water-stage recorder at site 100 ft downstream at same datum. Mar. 1, 1989 to Sept. 4, 1991, non-recording gage at same site and datum.

REMARKS .-- Records good, except for estimated daily discharges which are fair.

EXTREMES OUTSIDE PERIOD OF RECORD .-- Maximum stage since at least 1938, that of June 8, 1974.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993 DAILY MEAN VALUES

								MAY.	TIM	TIT	AUG	SEP
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAI	JUN	001	AUG	551
1.5		• •	63	140	217	e1000	307	163	59	96	14	7.8
· 1	10	39	55	149	202	e1300	285	166	51	78	14	8.8
2	8.9	10	50	142	1 00	a1 600	238	324	46	63	18	5.9
3	8.0	68	53	137	-190	01900	218	217	39	53	60	5.6
4	7.9	79	5/	187	e130	e1900	262	158	34	45	102	4.7
5	7.0	70	5/	549	ervo	6330	2.02	100				
6	63	54	54	736	e160	332	347	126	30	39	75	4.4
2	6 1	35	69	649	e150	245	441	106	26	33	77	4.1
~	6.1	21	77	610	e140	205	1960	92	25	29	68	4.0
	0.2	25	107	516	e140	181	2760	80	23	26	73	3.9
10	0.3	21	196	587	e150	161	2690	245	25	23	43	3.6
10	5.7	•										2 6
i 1	5.6	20	249	710	e170	144	2020	594	20	21	32	3.0
12	5.9	30	218	651	e140	136	1530	/12	. 19	19	20	3.0
13	5.9	49	153	533	e200	141	. 977	838	20	20	10	3.5
14	5.7	67	116	402	e260	146	587	867	40	21	19	4.7
15	5.5	72	417	302	e340	139	1/10	596	30	21	10	
	F 0	5.2	1010	243	e500	355	2080	220	33	20	13	5.4
16	5.9	32	1220	213	6800	1060	1810	149	29	17	12	5.2
17	6.9	30	1150	511	A1200	1410	1300	124	24	15	11	4.9
18	8.4	27	1120	1280	e1100	1320	927	174	21	14	9.3	4.9
19	7.9	23	980	1790	0680	1210	527	177	83	13	8.2	4.7
20	7.6	14/	8/6	1/80	6000	1210	527					
21	2.7	538	725	1980	e400	1350	356	120	2140	12	7.3	4.5
21	7.6	653	604	1840	e340	1440	323	88	4340	11	6.6	4.3
22	7.0	560	564	1510	e350	1290	259	73	3480	10	5.9	4.4
2.3	7.3	456	510	1330	e370	1110	202	83	2570	9.7	5.1	4.5
2.4	/ 1	208	365	1240	e400	948	202	348	1950	9.3	4.5	4.4
23	0.0	308	305	12.10	••••					1.1	2.12	
26	6.4	177	262	1080	e450	943	355	420	1440	8.7	4.5	19
27	7.8	129	214	838	e550	955	399 -	261	689	8.2	4.4	44
29	10	101	186	540	e800	782	316	147	261	7.8	4.1	26
20	10	83	168	359		584	213	104	166	8.6	3.9	21
27	17	71	157	291		388	174	85	123	18	3.9	16
30	29		153	246		317		71		25	4.8	
							05335	2020	17044	701 3	765 5	245 2
TOTAL	254.4	4091	11096	22142	10749	23642	25//5	1920	505	25 6	24 7	8.17
MEAN	8.21	136	358	714	384	/63	839	250	4340	23.0	102	44
MAX	29	653	1230	1980	1200	1900	2700	71	10	78	3 9	3.5
MIN	5.5	20	. 53	137	140	130	1/4	15720	25200	1580	1520	486
AC-FT	505	8110	22010	43920	21320	46890	2 22	13/30	1 54	07	06	.02
CFSM	.02	.35	. 93	1.86	1.00	1.98	2.23	.00	1 72	08	07	02
IN.	.02	.40	1.07	2.14	1.04	2.28	2.49		1.72	.00	• • • •	1225
	TCC OF M		N DATA F	OR WATER	YEARS 1962	- 1993	BY WATER	YEAR (WY)				
STATIS	TICS OF M	OWINDI MER	in Dhin i	••••								100
MEAN	117	269	569	605	822	812	748	551	465	135	46.2	106
MAY	1784	1143	1998	1980	2365	2467	4078	1701	2864	1949	346	2174
IWVI	1985	1975	1983	1962	1990	1990	1991	1966	1974	1989	1971	1974
MIN	1.66	111	33.5	55.9	80.4	112	90.6	58.2	8.91	1.81	1.78	1.58
(WY)	1984	1968	1982	1981	1964	1967	1971	1988	1972	1964	1969	1969
										MATED VE	ADC 1962	- 1993
SUMMAR	Y STATIST	ICS	FOR	1992 CALE	NDAR YEAR		FOR 1993 WA	TER YEAR		WATER IL.	AK5 1902	- 1995
			100	100015 0			125326 4			1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		
ANNUAL	TOTAL	1.1.1		138215.0			3/3			434		
ANNUAL	MEAN	.	3	3/0				3		1074		1974
HIGHES	T ANNUAL	MEAN								94.4		1963
LOWEST	ANNUAL M	IEAN		6070	Non 11		4340	Jun 22		33100	Jun	9 1974
HIGHES	T DAILY M	IEAN		69/0	Mai II			Sen 13		0	Aug	24 1978
LOWEST	DAILY ME	AN		5.5	Oct 15		2.7	Sen 8		.05	Aud	22 1978
ANNUAL	SEVEN-DA	Y MINIMUM		5./	000 10		4470	Jun 22		a52700	Jun	8 1974
INSTAN	TANEOUS P	EAK FLOW					16.14	Tun 22		24 97	Jun	8 1974
INSTAN	TANEOUS P	PEAK STAGE					10.10	Son 14		00	DAUC	9 1964
INSTAN	TANEOUS I	LOW FLOW		074100			248600	266 14		314800		
ANNUAL	RUNOFF ((AC-FT)		2/4100	9		240000	1 - 1 - ¹ - 1		1.13		
ANNUAL	RUNOFF	(CFSM)		1.2.2	5		12 11	•		15.33		
ANNUAL	RUNOFF	(INCHES)		13.3			1090			1220		
10 PER	CENT EXCE	EDS		972			107			95		
50 PER	CENT EXCE	EDS		110			ιυ, 5 α			6_0		
90 PER	CENT EXCE	SEDS		· 1 1			5.9					

à

^a From rating curve extended above 31,000 ft³/s.

^b No flow part of day. Also Aug. 24-27, 1978.

e Estimated

07363500 SALINE RIVER NEAR RYE

LOCATION.--Lat 33°42'03", long 92°01'33", in SW1/4NW1/4 sec.3, T.12 S., R.9 W., Bradley County, Hydrologic Unit 08040204, near left bank on downstream side of bridge on State Highway 15, 3.6 mi southwest of Rye, 5.8 mi upstream from Hudgin Creek, and at mile 71.0. DRAINAGE AREA .-- 2,102 mi2.

PERIOD OF RECORD .-- August 1937 to current year.

REVISED RECORDS .-- WRD Ark. 1979: Drainage area.

GAGE,--Water-stage recorder. Datum of gage is 97.06 ft above National Geodetic Vertical datum of 1929. Prior to May 30, 1939, nonrecording gage at present site and datum.

REMARKS .-- Records fair. Satellite telemeter at station.

EXTREMES OUTSIDE PERIOD OF RECORD .-- Flood of April 1927 reached a stage of 30.5 ft, discharge, about 73,000 ft³/s.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993 DAILY MEAN VALUES

				and the second					1			
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	184	76	989	1280	4280	2620	1800	2840	670	450	-	
2	160	74	812	1120	4180	3180	1550	3840	6/8	457	- 80	64
3	142	74	689	1050	3460	3100	1300	4260	622	385	74	52
ă ·	129	99	601	1040	2210	3090	1390	4 / 90	548	332	69	49
ŝ	116	96	541	1040	2210	4280	1290	5250	502	289	71	45
5	110	00	541	1280	1520	4530	1380	5630	462	254	69	46
67	109	82	499	1490	1270	4630	1570	5930	430	224	111	46
8	95	93	428	2350	1020	4030	1590	6110	395	199	128	49
.9	89	102	425	2330	1030	4010	4610	6150	362	182	135	45
10	86	101	423	2160	970	4580	6890	6130	335	166	189	44
			451	3100	910	4000	/320	6090	311	152	598	40
11	/9	. 93	445	3540	979	4300	6830	5880	287	145	882	38
12	/5	98	464	3910	1030	3470	60,70	5410	268	140	787	42
13	73	97	. /4/	4260	1030	2220	5210	4560	254	125	515	e42
14	70	94	1200	4560	1370	1490	4360	3830	453	117	319	42
12		94	1320	4610	1860	1230	5220	3550	1220	113	238	41
16	71	117	1180	4270	2620	1160	5840	3630	1650	109	182	39
10	/0	249	1130	3510	3370	1440	5680	3890	1640	105	152	39
18	/1	305	1520	2620	2910	1530	5550	4290	1210	98	131	39
19	62	276	1930	2420	2670	1810	5270	4780	e910	94	121	37
20	58	238	2010	2630	2660	2380	5060	4960	e917	92	116	37
21	57	206	3140	2960	2710	3180	5030	4150	e812	91	107	36
22	57	195	3590	3190	2550	3360	5390	3080	636	87	88	34
23	57	189	4360	3240	2090	3550	5980	2380	543	87	80	13
24	58	620	5290	3520	1740	3710	6420	2320	482	85	69	104
25	58	1320	6000	4120	1650	3510	6600	2040	530	80	80	125
26	58	e1640	6410	4180	1770	3340	6580	1510	549	77	74	145
27	72	e1910	6360	4120	1850	3230	6070	1150	839	78	74	143
28	70	e1950	5910	4060	2180	3110	5040	982	867	84	73	127
29	66	1770	5030	4040		2900	4080	885	665	108	65	133
30	64	1350	3360	4040		2370	3780	797	545	106	59	137
31	64	· · · · · ·	1780	4160		1950		721		91	62	
TOTAL	2597	13678	69059	95360	57997	96760	139450	118975	19922	4752	5798	1012
MEAN	63.8	456	2228	3076	2071	3121	4648	3838	664	153	197	1913
MAX	184	1950	6410	4610	4280	4650	7320	6150	1650	155	107	03.0
MIN	57	74	425	1040	918	1160	1290	721	254	-137	50	143
AC-FT	5150	27130	137000	189100	115000	191900	276600	236000	39520	9430	11500	2700
CFSM	04	.22	1.06	1.46	. 99	1.48	2.21	1.83	33320	9430	11500	3790
IN.	.05	.24	1.22	1.69	1.03	1.71	2.47	2.11	.35	.08	.10	.03
STATIST	ICS OF M	ONTHLY M	AN DATA	FOR WATER	YEARS 193	8 - 1993	. BY WATER	YEAR (WY)				1.1.1
MFAN	513	1218	2991	2965	61 70	5 2 4 2					21	
MAX	10570	9690	12281	14930	51/9	5301	5453	4935	1539	600	289	362
(WY)	1095	1050	1074	14030	10/10	13920	16340	21470	11950	8191	1573	4511
MTN	15.4	1930	1 1 1 1	1946	1950	1945	1973	1958	1974	1989	1971	1950
/WY)	1010	1940	1010	143	223	706	640	, 352	80.5	32.5	10.6	4.95
23.5	1333	1940	1940	1936	1963	1940	1972	1992	1972	1954	1954	1954
SUMMARY	STATIST	ICS	FOR	1992 CALE	NDAR YEAR		FOR 1993 W	ATER YEAR		WATER YE	ARS 1938	- 1993
ANNUAL	TOTAL			572069			626261	ala sa Antonio K				
ANNUAL	MEAN			1563			1716			2665		
HIGHEST	ANNUAL 1	ME'AN								5436		1070
LOWEST	ANNUAL M	EAN								704		19/3
HIGHEST	DAILY M	EAN		11600	Mar 19		7320	Apr 10		72500	Marr 1	19/2
LOWEST	DAILY ME	AN		57	Oct 21		34	Sep 22		72500	Fay 1	6 1960
ANNUAL	SEVEN-DAY	Y MINIMUM		5.8	Oct 20		37	Sen 16		4.0	Sep 1	6 1954
INSTANT.	ANEOUS PI	EAK FLOW			2		7390	Apr 10		74500	Sep 1	9 1000
INSTANT.	ANEOUS PI	EAK STAGE					a19 3	0 Apr 10		73300	May 1	0 1968
INSTANT	ANEOUS LO	OW FLOW					33	bSen 22		31.40	coar 1	0 1968
ANNUAL	RUNOFF (A	AC-FT)		1135000			1242000	P 22		1931000	sep 2	1 1954
ANNUAL	RUNOFF (C	CFSM)		.74	l .			2		1.00		
ANNUAL	RUNOFF (1	INCHES)		10.12	2		11 0	8		17.00		
10 PERC	ENT EXCEP	EDS		4800			4780			1/.22	· · .	
50 PERCI	ENT EXCEP	EDS		697			839	· .		1000		
90 PERCI	ENT EXCEP	EDS		.94			22			668		
ty states	والمعادين والم	9.1.1								65		

a From graph based on partial gage-height record.
 b Also Sept. 23.
 c Also Sept. 28, 1954.

e Estimated

-26-

RED RIVER BASIN

07369680 BAYOU MACON AT EUDORA

LOCATION.--Lat 33°06'09", long 91°15'08", in SE1/4SE1/4 sec.25, T.18 S., R.2 W., Chicot County, Hydrologic Unit 08030100, near left bank on downstream side of bridge on U.S. Highway 65, 0.6 mi south of Eudora.

DRAINAGE AREA -- 500 mi².

PERIOD OF RECORD.--October 1988 to current year. Gage-height record and results of discharge measurements since January 1938, are contained in reports of the U.S. Army Corps of Engineers.

GAGE .-- Water-stage recorder. Datum of gage is 80.92 ft above National Geodetic Vertical Datum of 1929. Satellite telemeter at station.

REMARKS .-- No estimated daily discharges. Records good. Satellite telemeter at station.

COOPERATION .-- Gage-height record provided by the U.S. Army Corps of Engineers.

EXTREMES OUTSIDE PERIOD OF RECORD .-- Maximum stage since at least 1938, 27.43 ft May 10, 22, 1958.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
ï	57	85	59	99	89	76	163	931	124	157	135	85
2	56	88	55	93	86	247	123	1030	118	119	141	97
3	56	53	52	87	83	232	113	817	114	100	143	102
4	56	53	59	96	81	162	98	515	103	85	125	. 96
5	56	54	69	162	78	140	94	244	99	83	130	92
6	55	58	73	114	76	113	80	180	85	84	165	91
7	55	53	69	103	76	101	215	151	85	. 86	266	88
8	55	49	62	175	76	94	1830	125	85	84	205	87
9	55	48	123	148	/5	8/	2510	201	64	72	155	82
10	55	46	209	130	. /9	82	2040	201	0.5	12	100	02
11	55	44	151	215	⁶ 93	72	1210	200	90	64	131	81
12	54	52	112	220	94	75	663	174	108	137	112	83
13	54	57	95	171	96	75	473	253	106	311	98	84
14	54	52	86	150	95	68	387	199	101	420	96	88
15	53	50	141	124	135	64	748	122	99	288	90	09
16	53	49	248	109	519	63	552	86	108	361	98	73
17	53	49	162	99	320	61	357	/3	108	104	100	70
10	52	48	114	121	1//	59	201	115	99	117	112	68
19	52	47	. 99	409	133	57	243	60	128	107	104	67
20	50	116	202	576	109	57	215	00	110			
21	46	227	485	718	101	56	297	44	511	112	99	64
22	46	303	279	487	92	55	183	42	1470	339	99	63
23	45	302	334	302	86	67	143	41	1790	357	100	50
24	47	354	438	230	88	/6	120	41.	762	239	100	58
25	47	337	272	181	90	90	142	10	102	175	100	50
26	49	180	213	144	88	74	328	61	504	136	103	56
27	52	112	171	124	81	60	233	75	352	112	105	54
28	46	. 85	138	115	77	54	164	70	280	109	98	53
29	44	71	120	108		49	138	134	229	109	93	51
30	46	64	113	100		/4	203	141	100	121	91	
31	45		107	94		400		141		121	87	
TOTAL	1601	3186	5290	6006	3273	3040	14295	6538	9416	4956	3787	2246
MEAN	51.6	106	171	194	117	98.1	476	211	314	160	122	74.9
MAX	57	354	582	718	519	400	2510	1030	1790	420	266	102
MIN	- 44	44	52	87	75	49	80	41	83	64	87	1450
AC-FT	3180	6320	10490	11910	6490	6030	28350	12970	18680	9830	7510	4450
STATIS	rics of	MONTHLY MEA	N DATA H	FOR WATER	YEARS 1988	- 1993	, BY WATE	ER YEAR (WY)				
	01 1	120	227	430	574	346	405	465	217	261	156	85.6
MEAN	91.1	218	651	759	1173	625	1053	1510	330	782	368	95.3
(WY)	1992	1992	1991	1990	1991	1990	1991	1991	1989	1989	1992	1990
MIN	51.6	89.3	139	165	117	98.1	91.1	72.0	135	96.7	89.3	74.9
(WY)	1993	1991	1990	1992	1993	1993	1992	1992	1992	1990	1989	1993
SUMMAR	Y STATIS	STICS	FOR	1992 CALE	NDAR YEAR		FOR 1993	WATER YEAR		WATER	YEARS 1989	- 1993
ANNUAL	TOTAL			58522			63634					
ANNUAL	MEAN			160			1.74			290		
HIGHES	T ANNUAI	MEAN								493		1002
LOWEST	ANNUAL	MEAN					2520	3		2200	Anr	1001
HIGHES	T DAILY	MEAN		1450	reb 15		2010	May 22		3200	7 Sen	23 1.988
LOWEST	DAILY	ALAN		44	Oct 29		- 41 - A7	nay 23 Oct 25		34	. Sep	28 1988
ANNUAL	SEVEN-L	DEAK PLOW		. 41/	001 25		2520	Anr 9		3200	Apr	29 1991
INSTAN	TANEOUS	PEAK FLOW			•		16	08 Apr 9		24	41 Apr	29 1991
INSTAN	TANEOUS	TOW FLOW					41	a May 22		41	^a Mav	22 1993
ANNUAT	DUNOFF	(AC-FT)		116100			126200			210100	· · · · · · · · · · · · · · · · · · ·	
10 PFD	CENT FY	TEEDS		324			335			643	1.1	
50 PFR	CENT EXC	CEEDS		10.8			99			111		
90 PER	CENT EXC	CEEDS		53			53			64		
07364150 BAYOU BARTHOLOMEW NEAR MCGEHEE

LOCATION.--Lat 33°37'40", long 91°26'45", in NE1/4SW1/4 sec.30, T.12 S., R.3 W., Desha County, Hydrologic Unit 08050001, near center of stream on downstream side of bridge on State Highway 4, 2.7 mi west of McGehee, 17.5 mi downstream from Ables Creek, at mile 200.5.

DRAINAGE AREA .-- 576 mi²

PERIOD OF RECORD.-October 1938 to September 1942, October 1945 to current year. Gage-height records collected and occasional discharge measurements made by U.S. Army Corps of Engineers at this site since August 1938. Daily stages 1940 to date and results of discharge measurements 1938, 1947 to date are published in reports of U.S. Army Corps of Engineers.

REVISED RECORDS.--WRD Ark. 1979: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 120.48 ft above National Geodetic Vertical Datum of 1929, supplementary adjustment of 1941. Prior to Sept. 7, 1949, nonrecording gage at same site. October 1938 to June 6, 1972, at datum 1.00 ft higher. Since Jan. 20, 1971, auxiliary water-stage recorder 14 mi upstream.

REMARKS -- Records good, except for estimated daily discharges which are fair.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1930, that of May 11, 1958. Flood in 1932 reached a stage of 23.4 ft, present datum, from floodmarks.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993 DAILY MEAN VALUES

	1										+	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	26	15	22	482	e1000	387	391	1180	206	115		. 74
2	27	15	18	441	e990	372	401	1230	205	100	.49	. 70
3	27	16	15	402	878	406	400	1290	187	87	48	71
4	26	18	14	361	821	431	392	1320	164	76	52	73
5	26	18	13	336	762	468	379	1350	146	66	63	74
6 7	25	17	12	308	700	472	361	1380	133	59	110	73
8	23	15	14	251	584	474	347	1380	125	53	183	. 70
9	22	15	18	238	557	475	e750	1300	119	40	250	68
10	21	15	25	250	472	469	e1000	1250	108	32	357	70
11	21	15	34	293	417	460	e1400	1170	107	28	439	70
12	20	15	41	355	377	449	e1800	1090	105	50	528	69
14	18	15	47	401	335	438	e2400	1000	102	60	600	67
15	18	15	74	403	282	407	2720	841	87	55	671	87
16	18	15	109	402	307	386	2760	773	79	42	658	107
17	18	14	137	398	383	374	2740	715	76	33	617	121
18	17	14	148	425	461	356	2720	666	73	27	559	129
19	17	13	145	545	495	346	2700	618	67	30	488	133
20	16	13	200	e600	517	342	2650	571	64	46	417	135
21	16	14	283	e650	529	347	2560	524	69	59	364	135
22	15	18	356	e700	534	357	2450	475	74	63	305	133
23	15	58	417	e750 e800	219	388	2290	422	77	58	e250	128
25	15	71	516	e850	460	430	1960	361	87	59	e220 e200	122
26	15	68	565	e900	434	436	1810	298	87	63	0180	120
27	16	58	619	e950	420	425	1670	259	91	62	e160	140
28	16	45	509	e1000	407	412	1520	229	102	62	e140	127
29	16	36	512	e1100		401	1380	205	124	64	e120	119
31	15		509	e1100 e1000		389	1270	188	126	63	e100	111
			501	erooo		302		192		59	80	
MEDN	598	729	6420	17360	15075	12790	48371	24929	3279	1777	9221	2964
MAX	27	24.3	619	1100	1000	413	1612	804	109	57.3	297	98.8
MIN	15	13	12	238	282	342	2/60	1380	206	115	671	140
AC-FT	1190	1450	12730	34430	29900	25370	95940	49450	6500	3520	19200	5000
CFSM	.03	.04	.36	.97	. 93	.72	2.80	1.40	.19	-10	52	17
IN.	.04	.05	.41	1.12	. 97	.83	3.12	1.61	.21	.11	.60	.19
STATIST	ICS OF M	ONTHLY MEA	AN DATA I	FOR WATER Y	EARS 1939	- 1993,	BY WATER	YEAR (WY)			1. E.S. 1. J.	
MEAN	183	366	741	1034	1417	1356	1241	1119	485	221	158	164
MAX	1491	2240	2835	3900	5085	3099	3127	5972	2575	3688	1032	1792
(WY)	1985	1958	1973	1946	1990	1948	1991	1958	1974	1989	1989	1974
(WY)	1989	1968	1982	39.3 1966	98.6 1963	189	82.8	73.0	22.1	6.03	.44	18.7
CIMMADY	CTATION 1			1000 00000		1554	1900	1905	1972	1954	1920	1956
SUMMARI	STATISTI	LCS	FOR	1992 CALEN	DAR YEAR	F	OR 1993 WA	ATER YEAR		WATER YEA	ARS 1939	- 1993
ANNUAL	TOTAL			194175			143513					
HIGHEST	ANNIIAT. N	FAN		231			393			703		
LOWEST	ANNUAL ME	CAN						•		1488		1973
HIGHEST	DAILY ME	CAN		3730	Mar 14		2760	Apr 16		.149		1972
LOWEST	DAILY MEA	N.		12	Dec 6		12	Dec 6		20	May Aug	11 1958
ANNUAL	SEVEN-DAY	MINIMUM		14	Dec 2		14	Dec 2		.20	Aug	15 1956
INSTANT	ANEOUS PE	AK FLOW		5			2760	Apr 16		6870	May	11 1958
INSTANT	ANEOUS LO	W FLOW					16.19	Apr 16		25.49	_May 1	11 1958
ANNUAL	RUNOFF (A	C-FT)		385100			284700	Dec 6		.20	"Aug	15 1956
ANNUAL	RUNOFF (C	FSM)		.92			201100	1		309500		
ANNUAL	RUNOFF (I	NCHES)		12.54			9.27			16 50		
10 PERC	ENT EXCEE	DS		1520			1000			2040		
SU PERC	ENT EXCEE	DS		282			188			253		
SO PERC	ENT EXCEE	5		17			17			32		
	영화 가슴 영습을 수	e Maria de Carlos de										

^a Also Dec. 7. ^b Also Aug. 16-23, 1956. ^e Estimated

DAILY STAGES FOR 1993

35285

RED RIVER AT SHREVEPORT, LA

STATION NO. R- 4

LOCATION. LAT. 32-30-55, LONG. 93-44-25. ILLINOIS CENTRAL RAILROAD BRIDGE AT MILE 277.4.

GAGE. SATELLITE.

DISCHARGE RANGE. U. S. HIGHWAY 80 BRIDGE AT MILE 277.7.

GENERAL INFORMATION

DRAINAGE AREA, 70,613 SQUARE MILES (54,677, SURFACE RUNOFF).

BANKFULL STAGE 30 FEET. MEAN HIGH WATER STAGE, 25.0 FEET, AND MEAN LOW WATER STAGE, 4.6 FEET (1938-1970). FLOW PARTLY REGULATED BY DENSION, TEXARKANA, AND FERRELLS BRIDGE DAMS.

RECORDS AVAILABLE. STAGE, MAY 1873 TO DADE. ZERO GAGE PRIOR TO 1926 WAS TEN FEET HIGHER THAN PRESENT DATUM. DISCHARGE, 1872 INTERMITTENTLY TO 1905 AND AUG. 1929 TO DATE. COMPUTED DAILY SINCE JULY 31, 1928. ALSO IN REPORTS OF U. S. GEOLOGICAL SURVEY.

EXTREMES. HIGHEST, 45.9 FEET (PRESENT DATUM) FROM WATERMARK IN AUG. 1849 (AFFECTED BY HUGHE LOG RAFT). LOWEST, 0.2 FOOT ON NOV. 8 AND 9, 1939. MAXIMUM, 303,000 CFS OBSERVED ON APR. 5, 1945 MINIMUM, 690 CFS COMPUTED FOR OCT. 30, 1956 (STAGE, 2.72).

DAILY EIGHT A.M. STAGE IN FEET

GAGE ZERO, 131.48 FEET, NVGD (1929-41 ADJ.)

		2 No. 27	and the second second				1 C C		the second second	1. S.		
DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
	16 50	11 00	16 30	13 30	10.00	15.80	8.10	5.00	3.50	4.50	11.20	8.00
· · I 2	16.30	10 80	16 30	11.80	11.90	15.90	8.00	5.20	3,50	4.60	10.40	8.00
2	16.30	10.80	16.30	11.00	12 80	15.80	8.00	5.20	3.70	4.70	10.10	8.30
	16.20	10.00	16.30	11.20	13 10	15.00	7.80	5.40	3.60	4.70	9.30	13.10
- " -	14.60	10.40	15.60	11.50	12 10	14.90	7.40	5.70	3.50	4.60	9.30	16.00
2	14.00	9.00	13.00	11.50	12.10						· 4	12000
6	14 00	9.80	15.00	11.60	11.80	14.80	7.00	5.70	3.40	4.70	9.20	18.00
7	14:40	9.80	15 60	11.90	11.30	14.80	6.50	6.30	3.30	5.00	9.20	18.50
· 0	14.40	10.20	17.30	12.80	11.30	14.00	5.00	6.30	3.30	5.20	9.00	17.80
٥ ٥	14.40	10.10	19.70	9.80	12,90	14.70	6.10	6.00	3.40	5.30	8.80	17.70
10	14.70	9.50	18.00	13.00	13.30	14.00	5.80	5.60	3.50	5.30	8.20	17.20
10	11.70		10.00					· •				1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -
i i	14 40	9.40	17.60	13.40	14.80	14.00	5.40	5.30	3.20	5.00	8.00	17.70
12	13 70	9:00	15.60	13.70	16.40	14.00	5.40	5.20	3.10	5.00	7.50	18.00
13	13.50	9.70	15:30	13,90	19.60	14.10	5.00	5.20	3.20	5.40	7.70	18.00
1.1.4	13:60	9.20	15.40	15.20	18.60	13.90	4.70	5.20	3.20	5.70	7.60	17.10
15	13.60	9.60	15.00	15.40	17.00	13.80	8.80	5.10	3.20	5.90	7.60	16.10
A J	15.00											1.1.1
16	13.60	10.00	14.20	14.00	16.00	13.80	3.80	4.80	3.20	6.20	7.70	15.60
17	13.30	11.00	13.00	13.10	16.00	12.60	3.50	4.60	3.20	6.40	8.30	15.20
18	13.30	.15.00	13.60	13.10	16.90	11.00	3.80	4.40	3.30	6.70	9.00	15.40
19	13.50	15.40	13.70	13.50	17.40	11.50	4.00	4.20	3.50	7.30	10.20	15.00
20	13.60	15.00	16.00	14.20	18:70	13.30	4.30	4.00	3.80	8.90	11.50	14.00
20	13100										1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	
21	13.70	15.10	16.30	14.50	18.00	13.40	4.50	4.00	4.40	12.80	11.30	13.20
22	13.40	15.40	16.70	14.60	⁴ 17.60	10.20	4.40	3.90	5.10	15.40	11.20	12.90
23	13.40	15.20	16.90	15.90	17.60	10.30	4.20	3.80	5.10	17.00	10.80	12.10
24	14.50	15.20	16.90	14.30	17.00	10.20	4.00	3.70	5.10	16.40	10.50	11.00
25	14.30	15.20	17.00	15.80	16.90	9.30	3.60	3.70	4.80	15.30	9.60	10.10
-			14.		+							
26	14.20	15.40	15.80	14.20	16.60	9.40	3.50	3.60	5.40	15.30	9.20	9.70
27	14.60	16.00	15.00	13.00	16.00	8.10	3.40	3.50	5.40	14.50	8.90	9.30
28	13.90	16.20	15.00	12.80	15.90	8.20	3.80	3.40	5.60	14.20	8.50	9.00
29	13.50	. <u> </u>	14.80	10.80	16.00	8.10	4.70	3.50	5.00	13.90	8.20	9.00
30	12.80	<u></u>	14.40	10.80	15.70	8.10	4.70	3.70	4.60	12.10	8.20	9.20
31	11.60		14.30		15.90		4.80	3.60		11.90	· · ·	8.60
					· .							
THE FO	LLOWING RE	FER TO RE	ADINGS IN	THE TABL	E ABOVE							
	gente d'Arrag				1.1.1							
MAX	16.50	16.20	19.70	15.90	19.60	15.90	8.10	6.30	5.60	17.00	11.50	18.50
MIN	11.60	9.00	13.00	9.80	10.00	8.10	3.40	3.40	3.10	4.50	7.50	8.00
			- 10 50	A7 BB6 10	<u>.</u>							

HIGHEST STAGE WAS 18.50 07 DEC 1993 LOWEST STAGE WAS 3.10 12 SEP 1993

DAILY STAGES FOR 1993 RED RIVER AT ALEXANDRIA, LA.

.29-

35325

LOCATION. LAT. 31-18-46, LONG. 92-26-34. U. S. HIGHWAY 165 BRIDGE AT MILE 104.9.

GAGE. AUTOMATIC RECORDER AND WIRE WEIGHT.

GENERAL INFORMATION. DRAINAGE AREA, 67,500 SQUARE MILES (61,564, SURFACE RUNOFF). BANKFULL STAGE, 34 FEET. MEAN HIGH WATER STAGE, 32.6 FEET, AND MEAN LOW WATER STAGE, 0.2 FOOT (1938-1970).

RECORDS AVAILABLE. STAGE, 1872 TO DATE. DISCHARGE, 1858 AND 1879 INTERMITTENTLY TO DATE. COMPUTED DAILY, 1928 TO DATE. OCT. 1928 TO DATE IN REPORTS OF U.S. GEOLOGICAL SURVEY.

EXTREMES. HIGHEST, 45.2 FEET FROM APR. 16 TO 18, 1945. LOWEST, MINUS 3.7 FEET ON SEP. 29, 1881. MAXIMUM, 233,000 CFS OBSERVED ON APR. 17, 1945. MINIMUM, 873 CFS COMPUTED FOR OCT. 30, 1956 (MINUS 3.01). DISCHARGE NOT DETERMINED FOR LOW STAGE.

DAILY EIGHT A.M. STAGE IN FEET

GAGE ZERO, 44.26 FEET, NGVD

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	007	NOV	DRC
										0,01	NOV	DEC
1	25.30	23.50	24.40	24.60	21.30	23.40	22.00	20.10	20.10	20.30	21.90	20.70
2	25.30	23.30	24.60	24.50	21.40	23.40	21.60	20.00	20.10	20.20	· 21.90	20.60
3	24.30	22.60	24.70	24.40	21.40	23.30	21.40	20.10	20.20	20.10	21.80	20.50
4	24.30	22.40	24.80	23.60	21.60	23.20	21.30	20.10	20.10	20.10	21.70	20.40
· 5 ·	24.30	22.30	25.00	23.30	21.80	23.20	21.00	20.20	19.80	20.00	21.60	20 60
	Alexandra de la composición de la compo						•					20100
6	23.90	22.00	25.60	23.30	22.40	23.00	20.70	20.10	. 19.70	20.10	20,90	20.90
7	23.70	21.80	25.80	22.80	22.60	22.80	20.60	20.40	19.80	20.20	20.70	22 30
8	23.60	21.70	25.80	22.70	22.30	22.70	20.50	20.40	19.70	20.40	20.70	22.80
9	23.50	21.70	25.70	23.80	22.10	22.70	20.40	20.50	19.70	20.50	20.60	23.50
10	23.30	21.60	25.70	25.10	22.00	22.90	20.30	20.40	19.80	20.90	20.60	23.60
												23100
11	23.20	21.70	25.70	25.40	22.20	23.10	20.30	20.30	20.20	20.90	20 50	24 50
12	23.50	21.70	25.70	25.30	22.30	22.80	20.30	20.30	20.10	20.80	20.30	24.50
13	23.60	21.60	25.50	25.20	22.70	22.70	20.20	20.20	20.20	20.80	20.40	24.30
14	23.70	21.60	25.50	24.90	23.90	22.60	20.20	20.40	20.20	20.60	20.40	24.40
15	23.70	21.50	25.40	24.30	25.10	22.60	20.30	20.40	20 10	20.00	20.40	24.40
14									20110	20.40	20.00	24.70
16	23.60	21.40	25.40	24.00	25.10	22.50	20.30	20.40	20 20	20 30	20 50	24 60
17	23.50	21.60	25.20	23.30	24.70	22.50	20.10	20.30	20.20	20.30	20.50	24.60
18	23.40	21.80	24.90	23.30	23.90	22.40	20.10	20 30	20.20	20.40	20.00	24.40
19	23.40	22.40	24.60	22.70	23.90	21.90	20.10	20.20	20.20	20.40	20.70	24.10
20	23.40	23.90	24.50	22.90	24.10	21 80	20.10	20.20	20.20	20.40	20.80	23.90
		1. State -					20.10	20.20	20.20	20.30	21.00	23.70
21	24.20	24.20	24.40	23.30	24.30	21 80	20.10	20.20	20.20	20.40		
22	24.30	24.40	24.40	23.40	24.30	22.10	20.00	20.20	20.20	20.40	21.20	23.50
23	24.30	24.40	24.60	24.30	24.50	22 50	20.10	20.10	20.20	20.40	21.40	23.10
24	24.30	24.30	24.90	24.30	24:40	22 90	20.10	20.10	20.30	21.20	21.40	22.80
25	24.40	24.10	25.30	24.30	24 40	22.50	20.20	20.10	20.30	21.20	21.50	22.70
	the second	2012		2	24.40	23.10	20.10	20.10	20.30	22.30	21.40	22.60
26	24.30	24.20	25.60	23.90	24 30	22 40	20.20	20.10				
27	24.30	24.30	25.60	23 60	24.50	22.40	20.20	20.10	20.40	22.80	21.40	22.40
28	24.20	24.40	25.20	22 80	24.60	22.40	20.20	20.10	20.40	23.20	21.30	22.10
29	24.20	. ·	25 20	22.00	24.00	22.30	20.20	20.10	20.40	23.10	21.30	21.80
30	24.10		25 20	22.30	23.80	22.20	20.20	19.80	20.40	22.80	21.20	21.70
31	23.80		24 80	22.30	23.60	22.20	20.10	19.70	20.40	22.60	20.80	21.50
			24.00		23.50	- <u></u> -	20.10	20.10		22.40	,	21.30
YAX	25.30	24 40	25 80	25 40	AC 14			Set of the				
ITN	23.20	21.40	24 40	20.40	25.10	23.40	22.00	20.50	20.40	23.20	21.90	24.70
		21.10	44.40	22.30	21.30	21.80	20.00	19.70	19.70	20.00	20.40	20.40
	HICHEST	STACE MAG	36 00 07							a fa da s		
	n roueal	STAGE WAS	23.80 07-	-08 MAR 1	993							

LOWEST STAGE WAS 19.70 30 AUG; 06, 08-09 SEP 1993

1. 1. 1.

07348000 TWELVEMILE BAYOU NEAR DIXIE, LA

LOCATION .-- Lat 32°38'45", long 93°52'40", in NW 1/4 NW 1/4 sec. 14, T. 19 N., R. 15 W., Caddo Parish, Hydrologic Unit 11140304, near right bank on downstream side of pier of bridge on State Highway 173, 0.1 mi downstream from Cottonwood Bayou, 4.2 mi southwest of Dixie, 5.5 mi downstream from Caddo Lake, and 17.3 mi upstream from mouth.

DRAINAGE AREA.--3,137 mi².

PERIOD OF RECORD .-- August 1942 to current year.

REVISED RECORDS .-- WSP 1211: Drainage area.

GAGE .-- Water-stage recorder. Datum of gage is 136.12 ft above sea level. Prior to Sept. 5, 1947, nonrecording gage and Sept. 5, 1947 to June 26, 1978, water-stage recorder at present site. Oct. 1, 1950, to June 26, 1978, at datum 3.88 ft higher and prior to Oct. 1, 1950, at datum 5.88 ft

Nonrecording gage for Twelvemile Bayou near Mooringsport (station 07347950) used as supplementary gage June 27, 1978, to May 7, 1981. Datum of supplementary gage, 140.00 ft above sea level (levels by Corps of Engineers).

Water-stage recorder for Twelvernile Bayou below Dixie (station 07348010) used as auxiliary gage for this station. Prior to May 7, 1981, nonrecording gage for Red River at Shreveport (station 07348500) used as auxiliary gage.

REMARKS.--Estimated daily discharges. Indefinite stage-discharge relationship: Sept. 8-16. No base gage height: July 17 to Aug. 4. Records fair. Flow regulated by three reservoirs (combined usable capacity, 1,033,700 acre-ft of which 587,0200 acre-ft are available for storage) since August 1957. Several measurements of water temperature were made during the year.

AVERAGE DISCHARGE .-- 51 years, 3,310 ft³/s, 1,914,000 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD .-- Maximum discharge, 38,400 ft³/s, May 5, 1958; maximum daily reverse flow, 50 ft³/s, Aug. 5, 1975 (backwater from Red River); maximum gage height, 41.53 ft, Apr. 5, 1945, and May 5, 1958, present datum; minimum discharge (unaffected by backwater), 0.08 ft³/s, Aug. 24, 1972.

EXTREMES FOR CURRENT YEAR .-- Maximum daily discharge, 10,800 ft³/s, Jan. 21; minimum daily discharge, 11 ft³/s, Sept. 12, 16.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993

		1	en al constant dat			MEAN VAL	UES			11 11	ALIC	SEP
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	
DAT	· · · ·			a de la composition		1710	7240	2130	899	5080	e60	21
1	1630	487	3150	6220	7800	6700	7340	2070	800	4470	e85	17
÷.	1710	652	3250	5940	7260	8240	6260	2070	947	3840	e117	14
2	1690	605	3100	5720	6990	8290	5410	1990	047	2200	-250	13
2	1600	605	3300	6500	6740	8070	5090	1600	843	3290	194	15
4	1080	004	2140	7300	6470	7880	4810	1530	804	2850	100	15
5	1590	010	3140	1570	••			201				14
			a . a a	7010	6270	7660	4060	1560	802	2410	152	14
6	1380	531	3420	7040	5090	7520	3500	1560	800	2050	230	e14
. 7	1160	538	3300	0/10	5760	7100	4840	1400	803	1720	520	e13
8	1120	540	2990	6940	5760	7190	4800	1300	777	1400	612	e13
9	823	537	2910	7200	2220	7020	4050	1500	743	1120	571	e12
10	688	584	2830	8560	5440	0680	4290	1550	1 15			
17							1000	1220	718	1020	509	e12
11	508	609	2430	8840	5680	6460	4090	1000	710	959	467	e11
10	\$20	026	2040	9350	5830	6630	3860	1320	./ 34	600	422	e12
12	421	952	1790	9670	5420	7590	3710	1340	/09	001	272	e13
13	451	017	1750	0600	5300	6810	3760	1370	680	564	272	a12
14	336	81/	6120	0510	5250	5950	4830	1280	673	454	. 222	CIL
.15	268	113	5150	9310	5250				n de la composición de	14.14		
	1.			0270	7000	6880	4450	1150	660	399	287	e11
16	389	749	7540	9370	7220	0000	4120	1110	596	e350	240	- 12
17	280	741	7460	9110	7550	9000	2020	1130	581	e300	187	14
18	299	757	7520	9200	/120	8890	2720	1160	553	e250	159	15
10	258	755	8150	10100	6860	8370	3720	1150	1070	e200	137	14
20	239	930	9060	10600	6980	8520	3/30	1170	10/0	0200		
								11/0	1700	e150	94	13
01	210	1080	9890	10800	7270	9630	3560	1100	2/00	-110	69	17
21	101	1040	10400	10800	6750	9940	3360	1140	3010	-00	50	22
22	191	1940	10600	10600	6440	9880	3310	1110	4190	∴c90	 	10
23	103	1000	10000	10400	6030	9380	3310	1100	4750	e80	45	17
24	156	1840	10500	0060	6420	9270	3330	1090	5460	e70	36	15
25	143	2320	9750	9900	0420	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		de la companya de la			191	
				0/00	7420	0120	3310	1060	6950	c65	32	48
26	130	2380	9030	9680	7450	9470	3050	1030	7180	e60	26	43
27	119	2490	8400	9370	/120	0070	2840	070	6810	e55	22	44
28	86	2620	7810	9050	7010	8360	2040	062	6250	e50	20	38
20	- 75	2780	7310	8740		8050	2050	902	5600	e45	20	- 29
20	279	3120	6910	8440	·	7570	2450	930	2030	045	19	
21	229		6660	8190		7770		917		647	••	
21	340						1. State 1997	1997 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 -	1 - F - F			
				a	101740	249610	121860	40545	68772	34132	6339	560
TOTA	L 18968	36053	181320	269660	181/40	240010	1047	1308	2292	1101	204	18.7
MEA	N 612	1202	5849	8699	0491	8020	72 40	2120	7180	5080	612	- 48
MAX	1710	3120	10600	10800	7800	9940	7540	017	553	45	-19	11
MIN	75	487	1750	5720	5250	5950	2430	90400	126400	67700	12570	1110
	т 37620	71510	359600	534900	360500) 493100	241700	80420	120400	07700		
C					2			·		1 C 1 C 1 C		

CAL YR 1992 TOTAL 1176466 MEAN 3214 MAX 10600 MIN 75 AC-FT 2334000 WTR YR 1993 TOTAL 1208559 MEAN 3311 MAX 10800 MIN 11 AC-FT 2397000

e Estimated

-31-

07348000 TWELVEMILE BAYOU NEAR DIXIE, LA--Continued

GAGE HEIGHT (FEET ABOVE DATUM), WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993 MEAN VALUES

DAY	ОСТ	NOV	DEC	JAÑ	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	10.11	6.31	13.81	20.06	19.78	20.76	19.91	12.03	13.96	15.61		4.65
2	10.07	6.87	13.80	19.61	18.98	22.62	18.38	12.24	13.83	14.70		4.63
3	9.97	6.68	13.52	19.13	18.58	22.87	17.01	12.32	13.49	13.78		4.62
4	9.84	6.96	13.71	19.54	18.19	23.10	16.24	12.41	13.32	12.86		4.61
5	9.48	6.73	13.37	20.56	17.78	22.98	16.00	12.52	13.08	12.02	5.22	4.62
6	8.96	6.44	13.54	20.00	17.47	22.38	15.43	12.09	12.87	11.24	5.09	4.61
7	8.38	6.45	13.28	19.96	17.07	22.03	15.19	11.50	12.97	10.55	5.40	4.54
8	8.28	6.46	12.68	20.11	16.77	21.93	17.34	11.06	13.01	9.82	6.39	4.18
9	7.41	6.45	12.40	20.13	16.54	21.91	17,57	11.19	12.80	9.03	6.73	3.85
10	6.96	6.60	12.12	21.96	16.42	21.51	17.05	12.54	12.35	8.31	6.60	3.83
11	6.67	6.69	11.32	22.08	16.73	20.50	16.19	13.31	12.08	8.01	6.39	3.98
12	6.40	7.68	10.66	22.77	16.82	20.60	15.50	15.70	12.11	7.53	6.25	4.10
13	6.13	7.51	10.29	23.12	16.19	21.02	14.89	17.24	12.06	6.94	6.11	4.23
14	5.81	7.39	10.29	22.98	16.02	19.78	14.57	17.37	11.87	6.50	5.95	4.38
.15	5.58	7.25	15.90	22.86	16.34	18.85	15.96	15.53	11.92	6.14	5.81	4.52
16	5.98	7.17	19.86	22.70	19.28	20.42	15.13	14.62	11.75	5.94	5.66	4.58
17	5.62	7.14	21.09	22.22	19.25	23.02	14.85	14.62	10.97		5.49	4.60
18	5.68	7.19	21.95	22.31	19.60	22.18	15.48	15.06	10.72		5.30	4.61
19	5.54	7.19	22.93	23.81	19.98	21.82	16.19	15.70	10.29		5.19	4.62
20	5.47	7.72	24.08	24.62	20.19	22.49	16.78	16.10	11.03	·	5.09	4.62
21	5.40	8.14	24.93	24.90	20.34	23.93	16.98	16.22	14.96		4.95	4.61
22	5.30	10.26	25.64	24.78	19.65	24.38	17.06	15.96	16.07		4.85	4.64
23	5.19	9.99	26.13	24.47	19.33	24.45	16.80	15.47	16.06		4.81	4.66
24	5.15	10.05	25.84	24.31	19.00	24.01	16.13	15.32	16.14		4.75	4.66
25	5.09	11.01	25.23	23.73	19.68	23.64	15.21	15.25	16.61		4.72	4.64
26	5.03	11.24	24.40	23.31	20.71	23.10	14.26	15.07	18.48		4.70	4.78
27	5.00	11.84	23.58	22.72	20.63	22.55	13.20	14.59	18.81		4.68	4.76
28	4.91	12.62	22.69	22.20	20.75	22.07	12.42	14.20	18.17		4.66	4.77
29	4.86	13.22	21.79	21.68		21.43	11.93	14.19	17.34	<u> </u>	4.65	4.75
30	5.61	13.86	21.08	21.07		20.88	11.81	14.10	16.51		4.65	4.72
31	5.78	 	20.66	20.48		20.87		13.95			4.64	
MAX	10.11	13.86	26.13	24.90	20.75	24.45	19.91	17 37	18 81			1 79
MIN	4.86	6.31	10.29	19.13	16.02	18.85	11.81	11.06	10.29			3.83
		12.00										

07348000 TWELVEMILE BAYOU NEAR DIXIE, LA -- Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1944, 1953-55, 1958-60, 1969-70, 1978 to current year.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: April 1978 to September 1981. WATER TEMPERATURES: April 1978 to September 1981.

EXTREMES FOR PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: Maximum daily, 3,970 micromhos Oct. 20, 1980; minimum daily, 76 micromhos Feb. 12, 1980. WATER TEMPERATURES: Maximum daily, 36.0 °C June 27, 1978; minimum daily, 4.0 °C Jan. 14, Feb. 7, 1979.

EXTREMES OUTSIDE PERIOD OF DAILY RECORD .-- A water temperature of 1.5 °C was observed Jan. 19, 1984.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993

		DIS- CHARGE,	SPE-	PH WATER					OXYGEN DEMAND, BIO-	COLI- FORM, FECAL.	STREP- TOCOCCI FECAL,	HARD- NESS
		IN	CIFIC	WHOLE	TEMPED	DIAT	TT IR.	OXYGEN	CHEM-	0.7	KF AGAR	TOTAL
		CUBIC	CON-	FIELD	IEMPER-	INT IM	RID.	DIS-	ICAL	UM-MF	(COLS.	(MG/L
		FEEF	DUCT	(STAND-	ALOKE	COPAT	BD- TTV	SOLVED	5 DAY	(COLS./	PER	ÀS
DATE	TIME	PER SECOND	ANCE (US/CM)	ARD UNITS)	(DEG C)	UNITS)	(NTU)	(MG/L)	(MG/L)	100 ML)	100 ML)	CACO3)
OCT 1992 29	0655	75	333	7.38	20.0	5	3.3	8.5	2.1	K14	220	79
JAN 1993 15	0830	9510	110	6.66	8.5	50	13	11.0	3.1	K33	K48	21
APR 14	0900	3760	139	7.19	19.0	40	12	9.1	2.1	K40	K200	31
JUL 22	1445	e 110	501	7.01	33.0	5	4.8	7.0	0.6	К3	K160	130
					ATKA.					SOLIDS,	SOLIDS,	
		MACINE		POTAS.	LINITY		CHLO-	FLUO-	SILICA,	RESIDUE	SUM OF	NITRO-
	CALCIUM	MAGNE-	SODIUM	SILIM	WAT WH	SULFATE	RIDE.	RIDE,	DIS-	AT 180	CONSTI-	GEN,
	CALCIUM	DIS	DIS-	DIS.	TOT FET	DIS-	DIS-	DIS-	SOLVED	DEG. C	TUENTS,	NITRITE
			SOLVED	SOLVED	FIFLD	SOLVED	SOLVED	SOLVED	(MG/L	DIS-	DIS-	TOTAL
TO AVETT	SOLVED	JOLVED	MGA	MGA	MG/LAS	(MG/L	(MG/L	(MG/L	AS	SOLVED	SOLVED	(MG/L
DALE		AS MG)	AS NA)	AS K)	CACO3	AS SO4)	ÀS CL)	AS F)	SIO2)	(MG/L)	(MG/L)	AS N)
OCT 1992	- nu chý	110 110)		,							105	0.01
29	16	9.5	32	3.1	51	28	57	<0.1	8.0	196	185	0.01
IAN 1993										00	45	
15	4.2	2.5	9.9	3.0	12	14	15	<0.1	11	80	65	
APR										05	75	
14	7.1	3.3	13	2.1	19	13	21	<0.1	4.2	. 95	15	
JUL					1.					202	265	
22	27	15	46	2.7	65	50	75	0.1	11	295	205	
					NETRO	NITTRO			PHOS-			
	NIIRO-		NIIRO-	NETDO	CEN	GEN AM		PHOS-	PHORUS	ALUM-		
	GEN,	NITRO-	GEN,	NITRO-	A MANAONINA		PHOS.	PHORUS	ORTHO.	INUM.	BARIUM,	COBALT,
	NITRITE	GEN,	NU2+NU3	GEN,	DIS	OPCANIC	PHORUS	DIS-	DIS-	DIS-	DIS-	DIS-
	DIS-	NO2+NO3	DIS-	AMMONIA	SOLVED	TOTAL	TOTAL	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED
	SOLVED	TUTAL	SOLVED	IUIAL	SOLVED	MGI	MGA	MGI	(MG/L	(UG/L	(UG/L	(UG/L
DATE	(MG/L	(MG/L	(MG/L			(MO/L		AS P)	AS P)	ÀS AL)	AS BA)	AS CO)
	AS N)	AS N)	AS N)	AS N)	AS N)	AS N)	, AUT)	1101)				
OCT 1992	0.01	-0.05	-0.05	0.03	0.02	07	0.05	<0.01	< 0.01	<10	73	<3
29	<0.01	<0.05	<0.05	0.05	0.02	0.1	0105					200
JAN 1993	-0.01		0.06		0.03	0.5	0.05	0.02	<0.01	40	41	<3
15	<0.01		0.00		0.05	0.0	2.22					12
APK	<0.01		<0.05		0.03	0.5	0.03	0.01	<0.01	60	54	<3
14	<0.01	·	<0.0J		0.05	0.0						
JUL	0.01		<0.05		0.02	0.8	0.03	<0.01	<0.01	10	96	<3
Like	0.01		~0.00				-					

< Actual value is known to be less than the value shown. K Results based on colony count outside the acceptable range (non-ideal colony count).

e Estimated

07348000 TWELVEMILE BAYOU NEAR DIXIE, LA--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993

DATE OCT 1992	IRON, DIS- SOLVED (UG/L AS FE)	LITHIUM DIS- SOLVED (UG/L AS LI)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO)	NICKEL, DIS- SOLVED (UG/L AS NI)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER, DIS- SOLVED (UG/L AS AG)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	VANA- DIUM, DIS- SOLVED (UG/L AS V)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM
29	4	7	60	<10	1	<1	<1	260	<6	22	4.5	83
15 APR	280	5	24	<10	2	<1	<1	69	<6	42	1100	54
14	570	6	17	<10	2	<1	<1	110	<6	22	220	. 92
22	43	8	93	<10	<1	<1	<1	360	<6	• • • • • • • • • • • • • • • • • • •	,	

< Actual value is known to be less than the value shown.

07344410 RED RIVER ABOVE SHREVEPORT, LA (CE 04225)

LOCATION.--Lat 32°32'57", long 93°45'51", in lot 14, T. 18 N., R. 14 W., Caddo Parish, Hydrologic Unit 11140202, near right bank, 2.7 mi northeast of Shreveport Courthouse, 4.9 mi upstream from mouth of Cross Bayou, 5.4 mi upstream from gaging station at Illinois Central Railroad bridge at Shreveport (Station 07348500), and at mile 282.5.

DRAINAGE AREA.--57,100 mi², approximately, of which 5,936 mi² above Denison Dam is noncontributing.

PERIOD OF RECORD .-- Water years 1974-84, 1986 to current year.

REMARKS .-- Water-quality samples are non-integrated.

PERIOD OF DAILY RECORD .--

SPECIFIC CONDUCTANCE: October 1974 to September 1975, October 1976 to September 1977. WATER TEMPERATURES: October 1974 to September 1975, October 1976 to September 1977.

EXTREMES FOR PERIOD OF DAILY RECORD .--

SPECIFIC CONDUCTANCE: Maximum daily, 1,880 micromhos June 5, 6, 1977; minimum daily, 163 micromhos Mar. 17, 1977. WATER TEMPERATURES: Maximum daily, 32.0 °C July 25, 1977; minimum daily, 4.5 °C Jan. 19, 1977.

EXTREMES OUTSIDE PERIOD OF DAILY RECORD .-- A water temperature of 2.5 °C was observed Jan. 15, 1976.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)
OCT 1992	1620	991	7 90	20.5	15	4.9	10.2	29	3.1	440
28 NOV	1030	690	8.14	15.0	20	18	10.4	27	3.2	-
DEC	1110	255	8 1 2	8.5	40	140	10.0	25	3.5	7600
JAN 1993	1000	420	7.40	85	40	55	11.6	27	3.5	5000
14 FEB	1220	430	7.91	0.5	15	40	12.0	25	'	2600
17 MAR	1100	782	7.01	12.0	40	120	10.8	15	1.6	2600
APR	1200	104 644	7.90	17.0	30	85	9.1	24	1.9	K1300
14 MAY	0705	044	7.90	21.0	5	85	8.5	22	1.3	K230
11 JUN	1050	677	7.51	28.0	10	110	7.0	22	1.1	2300
24 JUL	1100	020	8.00	32.0	10	2.0	8.4	59	3.5	K25
22 AUG	1330	800	0.00	33.0	5	7.0	7.6	20	2.1	K40
18 SEP	1300	885	0.32 8.32	21.5	10	9.0	7.0	20	1.5	K150
16	1145	951	0.22	L.1.2						

K Results based on colony count outside the acceptable range (non-ideal colony count).

-34-

07344410 RED RIVER ABOVE SHREVEPORT, LA (CE.04225) -- Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993

DATE	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY WAT WH TOT FET FIELD MG/L AS CACO3	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
OCT 1992			an di Angela. Ngan							
28	K62	K34	260	71	20	84	4.3	166	100	120
NOV 19 DEC	120	К25	200	55	15	63	4.0	144	.73	85
18	1400	2100	91	26	6.4	30	3.1	62	40	43
JAN 1993 14 FEB	K120	K110	100	29	7.8	42	2.8	61	56	58
17	K220	K150	160	45	12	60	3.3	93	79	87
MAR 16 APR	K100	K86	200	52	16	75	3.1	106	110	110
14	K330	<20	180	48	14	61	3.2	107	89	89
MAY 11 IUN		K160	230	61	20	84	3.3	120	130	130
24	·	K60	180	49	14	52	3.5	115	86	78
JUL 22 AUG	K10	K16	260	78	16	71	4.1	191	110	92
18	K5	K10	270	71	23	78	3.9	165	130	100
SEP 16	K10	420	290	75	24	80	4.3	192	120	110
					· •		- 3			

DATE	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	TOTAL AT 105 DEG. C, SUS- PENDED (MG/L)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS ORTHO TOTAL (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)
OCT 1992							e.	an the second	
28 NOV	510	34	<0.01	<0.02	0.80	0.80	0.09	0.04	8.0
19 DEC	406	106	0.01	<0.02	0.74	0.74	0.06	0.04	'
18 IAN 1993	202	290	0.03	0.17	0.88	1.0	0.27	0.19	6.9
14 FEB	254	62	0.01	0.24	0.46	0.70	0.16	0.06	6.1
17 MAR	372	122	0.02	0.34	0.58	0.92	0.05	0.04	7.0
16	444	88	0.02	0.41	0.85	1.3	0.26	0.06	7.8
14 MAY	390	114	0.01	0.33	0.35	0.68	0.12	0.05	7.8
11 П IN	528	270	0.01	0.39	0.57	0.96	0.10	0.05	6.7
24 ПП	382	240	0.03	0.40	0.73	1.1	0.22	0.22	8.0
22 AUG	510	4	<0.01	<0.02	0.80	0.80	0.05	0.03	8.3
18 SEP	534	44	<0.01	<0.02	0.80	0.80	0.07	0.02	5.9
16	566	36	0.01	<0.02	0.92	0.92	0.06	0.04	9.3

K Results based on colony count outside the acceptable range (non-ideal colony count). < Actual value is known to be less than the value shown.

07344410 RED RIVER ABOVE SHREVEPORT, LA (CE 04225)--Continued

WATER-QUALITY DATA, WATER YEAR OG	CTOBER 1992 TO SEPTEMBER 199
-----------------------------------	------------------------------

	DAT	Al T E A	RSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV ERABLI (UG/L AS BE)	CADMIU TOTAL RECOV E ERABLI (UG/L AS CD	CHRC M MIUM TOTA RECO E ERABI (UG/) AS CI)- 1. COPPE 1. TOTA V- RECO 1. ERABL L. (UG/I R) AS CU	R, IRON, L TOTAL V. RECOV E ERABL (UG/L I) AS FE	LEAD, TOTAI RECOV E ERABL (UG/L) AS PB	MANGA NESE, TOTAL RECOV E ERABL (UG/L) AS MN	. . .
	OCT 1	992	far system a	~1	c 1	2	6	720	1	140	
	28 JAN 1	993	1	2	 ∠1	4	9	1900	2	61	
	APR			~1	<1	5	6	3900	3	160	
	14 JUL		1	<10	<1	· <1	1	230	2	150	•
	<i></i>	DAI	M F E E	ERCURY 1 FOTAL ECOV- 1 RABLE 1 (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	CYANIDE TOTAL F (MG/L AS CN)	PHENOLS TOTAL (UG/L)	OIL AND GREASE, TOTAL RECOV. GRAVI- METRIC (MG/L)	
		OCT	1992	1 - 14 -				0.01	-1	-1 -1	
		28 JAN 1	993	0.1	3	<1	10	0.01			
		14 APR	•	<0.1	3	<1	10	<0.01	-1	<1	
		14 JUL		<0.1	7	<1	,20 -10	<0.01	21	2	
		22	•	<0.1	<1	<1	<10	CO.01	~	-	
DATI	PCE TOT/ (UG/	1 1, C 1, 1 1, 1 1, 1 1, 1	NAPH- THA- LENES, POLY- CHLOR. FOTAL (UG/L)	ALDRIN TOTAL (UG/L)	CHLOR I, DANE, TOTAL (UG/L)	DDI TOTA (UG)	D, DDE AL TOTA (L) (UG/L	DDT, L TOTAL .) (UG/L)	DI- AZINC . TOTA) (UG/I	DI- DN, ELDRII L TOTAL L) (UG/L)	ENDO- N SULFAN, TOTAL) (UG/L)
OCT 19	92		<0.1	<0.01	<0.01	<0.0	01 <0.01	<0.01	<0.0	1 <0.01	<0.01
DEC	<0.1		<0.1	<0.01	<0.01	<0.	01 <0.0	<0.01	<0.0	1 <0.01	<0.01
FEB	<0.1		<0.1	<0.01	<0.01	<0.	01 <0.0	<0.01	<0.0	1 <0.01	<0.01
APR 14	<0.	l	<0.1	<0.01	<0.01	<0.	01 <0.0	1 <0.01	<0.0	1 <0.01	<0.01
JUN 24	<0.	ł	<0.1	<0.01	<0.01	<0.	01 <0.0	1 <0.01	<0.0	01 <0.01	<0.01
	DATE	ENDR TOTA (UG/	IN, E 11 1 L) (I THION, C OTAL UG/L)	HEPTA- (CHILOR, E TOTAL ((UG/L)	HEPTA- CHLOR POXIDE TOTAL (UG/L)	LINDANE TOTAL (UG/L)	MALA- THION, TOTAL (UG/L)	METH- OXY- CHLOR, TOTAL (UG/L)	METHYL N PÀRA- THION, TOTAL (UG/L)	METHYL TRI- THION, TOTAL (UG/L)
	OCT 1992	~0.0	1	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
	20 DEC 18	<0.0	n 11	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
	FEB	<0.0)1	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
	APR	~0.0	51	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
	JUN 24	<00	01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
	·							a di kara di			

< Actual value is known to be less than the value shown.

07344410 RED RIVER ABOVE SHREVEPORT, LA (CE 04225) -- Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993

DATE	MIREX, TOTAL (UG/L)	PARA- THION, TOTAL (UG/L)	PER- THANE TOTAL (UG/L)	TOX- APHENE, TOTAL (UG/L)	TOTAL TRI- THION (UG/L)	2,4-D, TOTAL (UG/L)	2, 4-DP TOTAL (UG/L)	2,4,5-T TOTAL (UG/L)	SILVEX, TOTAL (UG/L)
OCT 1992	en an trainneachadh an t		a de la composición d						
28	<0.01	<0.01	<0.01	<0.5	<0.01	<0.5	<0.5	<0.5	<0.5
DEC 18	<0.01	<0.01	<0.01	<0.5	<0.01	<0.5	<0.5	<0.5	<0.5
FEB 17	<0.01	<0.01	<0.01	<0.5	<0.01	<0.5	<0.5	<0.5	<0.5
APR 14	<0.01	<0.01	<0.01	<0.0	<0.01	<0.5	<0.5	<0.5	<0.5
JUN 24	<0.01	<0.01	<0.01	<0.5	<0.01	1.0	<0.5	<0.5	1.0

< Actual value is known to be less than the value shown.

07350500 RED RIVER AT COUSHATTA, LA

LOCATION.--Lat 32°00'45", long 93°21'10", in lot 23, T. 12 N., R. 10 W., Red River Parish, Hydrologic Unit 08040301 at bridge on U.S. Highway 84 at Coushatta, 11.0 mi downstream from Coushatta Bayou, and at mile 242.4.

DRAINAGE AREA.--63,362 mi².

PERIOD OF RECORD .-- Water years 1970-1976, 1987 to current year.

REMARKS .-- Water-quality samples are non-integrated and collected from center span of bridge.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)
							19 A.			
OCT 1992 28	1500	886	8.03		20	12	9.9	33	2.7	220
NOV 19	1100	547	8.14	15.0	20	12	10.3	29	3.1	
DEC 18	0955	388	8.03	8.0	50	150	10.0	31	3.2	4500
JAN 1993 14	1045	343	7.47	8.0	40	100	11.3	29	3.4	2200
17	1020	496	7.67	10.0	65	30	11.5	35		6600
16	1010	697	8.06	12.0	30	100	10.8	15	1.6	K1600
13	1450	575	7.92	19.5	50	100	8.6	29	1.2	1200
МАТ 11	0855	747	7.74	21.0	20	70	8.3	36	1.2	K2200
24	0910	446	7.65	26.0	5	80	6.9	24	1.7	K1900
22	1100	843	8.05	32.0	5	2.5	7.6	31	3.6	K45
18	1030	800	7.99	32.5	10	6.0	6.9	25	1.1	K10
3EP 16	1000	902	8.17	22.5	5	11	6.5	<10	1.5	K110
DATE	COLI- FORM, FECAL, 0:7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY WAT WH TOT FET FIELD MG/L AS CACO3	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
OCT 1992	¥75	K74	270	73	21	82	4.3	186	95	110
NOV	K160	100	160	43	13	44	3.6	136	46	57
DEC	920	2200	94	26	7.1	34	3.2	70	44	48
JAN 1993	K220	К75	83	23	6.2	31	2.6	50	42	44
FEB 17	880	980	120	34	9.5	46	3.0	71	60	67
MAR 16	·	K190	170	46	14	67	3.1	97	96	96
APR 13	1000	K20	150	42	12	55	3.0	93	79	81
MAY 11		K 20	200	54	16	70	3.1	110	110	110
JUN 24		420	130	35	10	37	3.0	84	57	56
JUL 22	K30	K15	290	79	23	67	4.2	201	98	88
AUG 18	K27	K55	240	65	20	67	3.6	153	110	90
SEP 16	K160	340	290	75	24	78	4.2	187	120	100
							10 A			

< Actual value is known to be less than the value shown.

K Results based on colony count outside the acceptable range (non-ideal colony count).

ζ.

07350500 RED RIVER AT COUSHATTA, LA -- Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993

DATE	SOLIDS RESIDU AT 180 DEG. C DIS- SOLVEI (MG/L)	RESIDUE TOTAL AT 105 DEG. C, SUS- PENDED (MG/L)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO GEN, TOTAL (MG/L AS N)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS ORTHO TOTAL (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)
OCT 1992	520	22	<0.01	0.02	0.70	0.72	0.10	0.04	8.7
NOV	300	52	0.01	<0.02	0.79	0.79	0.09	0.05	8.3
DEC	200	606	0.03	0.18	0.85	1.0	0.35	0.19	7.1
IAN 1993	106	142	0.03	0.10	0.40	0.59	0.06	0.07	7.3
T4 FEB	190	142	0.01	0.15	0.70	0.95	0.05	0.05	82
17 MAR	284	138	0.02	0.25	0.70	1.0	0.05	0.05	8.4
16 APR	396	312	0.02	0,34	0.84	1.2	0.22	0.07	P.0
13 MAY	346	232	<0.01	0.14	0.45	0.59	0.10	0.02	8.9
11 IUN	446	186	0.01	0.34	0.51	0.85	0.16	0.06	8.1
24 IUL	270	156	0.02	0.36	1.2	1.6	0.07	0.09	9.6
22	490	16	0.01	<0.02	0.83	0.83	0.06	0.04	7.8
18 SEP	486	20	<0.01	<0.02	0.67	0.67	0.08	0.03	7.4
16	566	<1	0.01	0.07	0.94	1.0	0.06	0.04	8.8
DAT	ARS TC E (U AS	BER TO SENIC REC MAL ERA G/L (UC SAS) AS	YL- JM, CADN FAL TOT OV- REC BLE ERA G/L (UC BE) AS (CHR AIUM MIU CAL TOT. OV- RECO BLE ERAH G/L (UG CD) AS C	O- M, COPP AL TOTA OV- RECO BLE ERAE (L (UG, CR) AS C	ER, IRO AL TOT DV- RECO BLE ERAI /L (UG U) AS F	N, LEAD AL TOTA OV- RECO BLE ERABI /L (UG/I TE) AS PE	MAN A NES L TOT V- RECO LE ERAI L (UC AS M	GÅ- E, AL OV- 3LE /L IN)
OCT	1992	1 <1	<1	2	7	530	2	170	
JAN 1	993	2 3	<1	5	5	2500	10	82	
APR 13		3 <1	<1	<1	6	3900	4	160	
JUL 22	2 ¹	1 <10	<1	<1	2	280	1	170	1997 - 19
	,				94 19		C	IL AND	
	DATE	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	CYANIDE TOTAL (MG/L AS CN)	HENOLS (TOTAL M (UG/L)	GREASE, TOTAL RECOV. GRAVI- METRIC (MG/L)	
	OCT 1992	-01	3	-1	2 2	0.01	~1	~1	,
	JÁN 1993	NU.1			0	0.01	~		• •

<0.01

<0.01

<0.01

3

<1

1

<1

<1

<1

< Actual value is known to be less than the value shown.

<0.1

<0.1

<0.1

3

6

2

<1

<1

<1

30 20

<10

14... APR 13... JUL 22...

07351930 RED RIVER AT GRAND ECORE, LA

LOCATION.--Lat 31°49'05", long 93°05'05" in NE 1/4 sec.51, T. 10 N., R.7 W., Natchitoches Parish, Hydrologic Unit 1114027, at bridge on State Highway 6 at Grand Ecore, and 4.0 mi north of Natchitoches.

DRAINAGE AREA.--64,575 mi², of which 5,936 mi² above Denison Dam is noncontributing.

PERIOD OF RECORD .-- Water years 1988 to current year.

REMARKS .-- Water-quality samples are non-integrated and collected from center span of bridge.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)
								ta di ta di ta		
OCT 1992	1400	908	7.99		15	15	9.6	33	2.8	K81
NOV			0 17	145	20	26	9.8	29	3.0	
19 DEC	0950	599	8.17	14.5	20	20			2.4	4500
18	0855	423	7.90	7.0	60	140	9.9	35	3.4	4300
JAN 1993	0945	309	7.51	8.0	40	65	11.0	33	3.3	3900
FEB	0245		7.0	10.0	20	55	10.4	29		3800
17 Map	0925	478	1.62	10.0	20		10.1		A 1	2200
16	0745	660	8.00	11.0	30	100	11.0	17	2.1	2200
APR	1315	535	7.74	19.0	50	85	8.5	28	1.2	K700
MAY	111	555		~ ~~~	10	70	83	20	1.3	K530
11	0725	600	7.71	20.0	10	10	0.5	1		
24	0730	417	7.75	26.0	10	75	6.6	33	1.6	2300
JUL	0040	835	7 89	32.0	5	4.0	7.4	30	2.7	
AUG	0940	666			-	50	80	28	2.9	<3
18	0915	788	7.89	32.0	2	5.0	0.7	20		
3EP 16	0810	954	8.20	22.5	10	10	6.2	19	1.4	44
DATE	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY WAT WH TOT FET FIELD MG/L AS CACO3	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
ОСТ 1992	and the state						4.2	203	94	110
28	K10	K50	280	76	22	84	4.5	205		
NOV 19	120	160	180	49	14	51	4.2	150	53	66
DEC	1100	2800	100	28	8.0	39	3.2	69	50	55
JAN 1993	1100	2000	100		<i>c</i> 0	00	26	40	37	39
14	K260	K200	76	21	5.8	28	2.0	77		
гев 17	700	1200	120	33	9.4	44	3.0	75	57	01
MAR	K020	K 57	160	44	13	62	3.0	93	91	90
APR	K250					50	20	86	74	74
13	K130	<20	140	37	11	52	2.9	00		
11		K300	160	45	12	55	2.9	98	82	80
JUN	s 	480	120	33	9.5	33	3.2	78	52	50
JUL		-100			00	60	4.1	: 200	94	88
22	K58	K25	280	/0	43	00	7.1	and to		0.0
18	K10	K15	240	64	20	67	3.6	156	110	88
SEP	<10	K100	300	77	25	80	4.4	208	120	110

< Actual value is known to be less than the value shown. K Results based on colony count outside the acceptable range (non-ideal colony count).

07351930 RED RIVER AT GRAND ECORE, LA--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993

DATE	SOL REST AT DEC DI SOL (MC	IDS, RESI DUE TO 180 AT 3. C DEC S- SU VED PEN G/L) (MC	IDUE FAL NI 105 (3. C, NF US- T(DED (1 G/L) A	TRO JEN, IRITE I DTAL MG/L S N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS PHORUS ORTHO TOTAL (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)
OCT 1002										
28 NOV	528	54		:0.01	<0.02	0.75	0.75	0.13	0.04	8.1
19 DEC	340	68	•	0.01	0.06	0.93	0.99	0.13	0.07	8.4
18	238	336		0.03	0.18	0.67	0.85	0.34	0.19	8.7
JAN 1993 14	191	98		0.02	0.19	0.45	0.64	0.07	0.08	7.5
FEB 17	274	214		0.02	0.23	0.72	0.95	0.06	0.05	4.4
MAR 16	382	240		0.01	0.33	0.85	1.2	0.19	0.06	7.0
APR 13	328	144		0.01	0.28	0.55	0.83	012	0.04	80
MAY	274	140		0.01	0.20	0.55	0.05	0.12	0.04	0.7
JUN	574	142	·	0.01	0.32	0.53	0.85	0.09	0.06	1.3
24 JUL	252	188		0.02	0.38	0.92	1.3	0.11	0.10	8.4
22 AUG	484	20	<	0.01	<0.02	0.72	0.72	0.09	0.03	8.7
18 SEP	478	10	. <	0.01	<0.02	0.75	0.75	0.07	0.03	7.5
16	570	12		0.01	0.02	1.0	1.0	0.06	0.04	8.9
DA	ſE	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	CADM TOTA RECO ERAE (UG AS C	CHR MIUM MIU AL TOT OV- RECO BLE ERAH (L (UG D) AS C	O- M, COPP AL TOT OV- RECO BLE ERAN /L (UG CR) AS C	ER, IRC AL TOT DV- REC BLE ERAJ (L (UC U) AS I	N, LEAD AL TOTA OV- RECO BLE ERABI G/L (UG/I FE) AS PE	MAN), NE L TOI V- REC LE ERA L (UC b) AS N	IGA- SE, CAL OV- BLE G/L MN)
OCT	1992									
28 IA N	1003	2	<1	<1	2	5	710	4	230	
14		2	3	<1	4	4	2200	6	71	z = f
APR 13		2	<1	<1	4	6	2400	4	89	
JUL 22		1	<10	<1	<1	2	290	2	180	
		MERC TOT	CURY NIC	CKEL, DTAL	SELE-	ZINC, TOTAL		C C	OIL AND GREASE, TOTAL	

DATE	TOTAL RECOV- ERABLE (UG/L AS HG)	TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	TOTAL RECOV- ERABLE (UG/L AS ZN)	CYANIDE TOTAL (MG/L AS CN)	PHENOLS TOTAL (UG/L)	GREASE, TOTAL RECOV. GRAVI- METRIC (MG/L)
OCT 1992				the second se		2	
28	<0.1	2	<1	9	0.01	4	<1
JAN 1993 14	<0.1	3	<1	20	<0.01	2	~1
APR		2		20	-0.01	2	~1
13	<0.1	4	<1	10	<0.01	<1	<1
JUL							
.22	<0.1	<1	<1	<10	< 0.01	<1	2

< Actual value is known to be less than the value shown.

07355130 RED RIVER AT BOYCE, LA

LOCATION.--Lat 31°23'38", long 92°40'02", T. 5 N., R. 3 W., Grant-Rapides Parish line, Hydrologic Unit 11140207, near center of span on downstream side of bridge on State Highway 8, 0.2 mi east of Boyce, and at mile 135.0.

DRAINAGE AREA.--66,998 mi², of which 5,936 mi², above Denison Dam is noncontributing.

PERIOD OF RECORD .-- Water years 1973-84, 1986 to current year.

REMARKS .-- Water-quality samples are non-integrated.

2

WATER-QUALITY DATA, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)
			1997 - 19							
OCT 1992 27	1500	676	8.14	21.0	15	4.4	8.4	29	1.6	K27
18	1030	728	8.24	10.0	10	16	7.4	27	0.2	
17	1015	414	7.71	9.5	40	100	9.8	29	2.6	3000
14 EER	0720	312	7.37	8.5	50	65	10.8	37	3.2	K6500
16 MAR	1015	497	7.56	11.0	20	40	10.4	23		K430
15 APR	1540	558	7.96	11.0	30	100	11.2	16		2100
12 MAY	1100	469	7.71	16.0	50	95	9.2	20		2500
10 11 N	1630	352	7.54	23.0	15	60	7.8	19	0.9	K1000
23	1500	427	7.39	26.0	10	120	6.0	26	1.1	3300
22	0730	754	7.90	31.0	5	4.5	6.5		1.0	K80
18 SEP.	0730	545	7.62	32.0	5	6.0	5.9	14	1.2	K15
15	1425	982	8.31	27.0	5	4.0	6.0	15	1.5	K20
DATE	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY WAT WH TOT FET FIELD MG/L AS CACO3	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
OCT 1992	2 K6	150	260	71						
NOV 18			200	/1	19	47	3.8	220	48	58
DEC	170	92	230	61	19 18	47 70	3.8 4.5	220 167	48 74	58 91
17	170 980	92 1800	230 98	61 26	19 18 8.0	47 70 39	3.8 4.5 3.3	220 167 60	48 74 49	58 91 55
17 JAN 1993 14	170 980 K210	92 1800 K180	230 98 79	61 26 22	19 18 8.0 5.8	47 70 39 28	3.8 4.5 3.3 2.5	220 167 60 48	48 74 49 37	58 91 55 40
17 JAN 1993 14 FEB 16	170 980 K210 <20	92 1800 K180 K20	230 98 79 130	71 61 26 22 35	19 18 8.0 5.8 9.6	47 70 39 28 44	3.8 4.5 3.3 2.5 3.2	220 167 60 48 79	48 74 49 37 60	58 91 55 40 62
17 JAN 1993 14 FEB 16 MAR 15	170 980 K210 <20 K1000	92 1800 K180 K20	230 98 79 130 140	61 26 22 35 38	19 18 8.0 5.8 9.6 11	47 70 39 28 44 51	3.8 4.5 3.3 2.5 3.2 2.8	220 167 60 48 79 82	48 74 49 37 60 74	58 91 55 40 62 73
17 JAN 1993 14 FEB 16 MAR 15 APR 12	170 980 K210 <20 K1000 K130	92 1800 K180 K20 K71	230 98 79 130 140 120	71 61 26 22 35 38 38 34	19 18 8.0 5.8 9.6 11 9.7	47 70 39 28 44 51 45	3.8 4.5 3.3 2.5 3.2 2.8 2.8	220 167 60 48 79 82 78	48 74 49 37 60 74 65	58 91 55 40 62 73 65
17 JAN 1993 14 FEB 16 MAR 15 APR 12 MAY 10	170 980 K210 <20 K1000 K130	92 1800 K180 K20 K71 K20	230 98 79 130 140 120 100	71 61 26 22 35 38 34 28	19 18 8.0 5.8 9.6 11 9.7 7.4	47 70 39 28 44 51 45 29	3.8 4.5 3.3 2.5 3.2 2.8 2.8 2.8 2.3	220 167 60 48 79 82 78 75	48 74 49 37 60 74 65 43	58 91 55 40 62 73 65 40
JAN 1993 14 FEB 16 MAR 15 APR 12 MAY 10 JUN 23 PH	170 980 K210 <20 K1000 K130	92 1800 K180 K20 K71 K20 1000	230 98 79 130 140 120 100 130	71 61 26 22 35 38 34 28 35	19 18 8.0 5.8 9.6 11 9.7 7.4 10	47 70 39 28 44 51 45 29 33	3.8 4.5 3.3 2.5 3.2 2.8 2.8 2.8 2.8 2.3 3.0	220 167 60 48 79 82 78 75 82	48 74 49 37 60 74 65 43 51	58 91 55 40 62 73 65 40 49
JAN 1993 14 FEB 16 MAR 15 APR 12 MAY 10 JUN 23 JUL 22 ALC	170 980 <20 K1000 K130 K30	92 1800 K180 K20 K71 K20 1000 250	230 98 79 130 140 120 100 130 250	71 61 26 22 35 38 34 28 35 67	19 18 8.0 5.8 9.6 11 9.7 7.4 10 20	47 70 39 28 44 51 45 29 33 62	3.8 4.5 3.3 2.5 3.2 2.8 2.8 2.3 3.0 3.8	220 167 60 48 79 82 78 75 82 171	48 74 49 37 60 74 65 43 51 88	58 91 55 40 62 73 65 40 49 83
JAN 1993 14 FEB 16 MAR 15 APR 12 MAY 10 JUN 23 JUL 22 AUG 18 SED	170 980 K210 <20 K1000 K130 	92 1800 K180 K20 K71 K20 1000 250 K10	230 98 79 130 140 120 100 130 250 160	71 61 26 22 35 38 34 28 35 67 44	19 18 8.0 5.8 9.6 11 9.7 7.4 10 20 13	47 70 39 28 44 51 45 29 33 62 44	3.8 4.5 3.3 2.5 3.2 2.8 2.8 2.8 2.3 3.0 3.8 2.9	220 167 60 48 79 82 78 75 82 171 111	48 74 49 37 60 74 65 43 51 88 70	58 91 55 40 62 73 65 40 49 83 58

< Actual value is known to be less than the value shown. K Results based on colony count outside the acceptable range (non-ideal colony count).

-43-

07355130 RED RIVER AT BOYCE, LA--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993

DATE	RESI AT 1 DEC DI SOLV (MG	S(DUE 1 180 / G.C D S- /ED PE /L) (1	OLIDS, F OTAL AT 105 DEG. C, 1 SUS- ENDED MG/L)	RESIDUE NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS ORTHO TOTAL (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)
OCT 1992										an an taon an Taon an taon an
27 NOV	394		4.	<0.01	0.10	0.62	0.72	0.08	0.03	7.5
18	430		14	0.01	0.03	0.60	0.63	0.14	0.05	7.2
17	228	1	76	0.02	0.23	0.58	0.81	0.22	0.14	5.9
JAN 1993 14	172		72	0.02	0.17	0.41	0.58	0.15	0.07	7.5
FEB 16	286		60	0.01	0.24	0.46	0.70	0.09	0.10	7.2
MAR 15	316	1	64	0.02	0.27	0.82	1.1	0.18	0.08	7.4
APR 12	290	1	16	0.02	0.25	0.80	1.0	0.20	0.05	8.2
MAY 10	218		60	0.02	0.25	0.71	0.96	0.13	0.10	7.2
JUN 23	256	2	64	0.03	0.41	0.87	13	0.27	0.27	03
JUL	420	20	10	0.05	0.41	0.07	1.5	0.27	0.27	9.J
AUG	432			<0.01	0.02	0.48	0.50	0.04	0.03	0.5
18 SEP	320		16	0.02	0.05	0.40	0.45	0.05	0.04	6.3
15	529		8	0.01	0.06	0.80	0.86	0.04	0.03	6.5
DATI	A	RSENIC TOTAL (UG/L AS AS)	BERYL LIUM, TOTAL RECOV ERABL (UG/L AS BE)	- CADM - TOTA - RECC E ERAB (UG/ AS C	CHRO IUM MIUM IL TOTA IV- RECO LE ERABI L (UG/I D) AS CI	D- L COPPE L TOTA V- RECO LE ERABI L (UG/A R) AS CU	ER, IRON L TOTA V- RECO LE ERABI L (UG/I J) AS FE	I, LEAD, L TOTAL V- RECOV LE ERABLI L (UG/L E) AS PB)	MANG NES TOTA RECC E ERAB (UG/ AS M	GA- E, AL OV- ELE L N)
0.000			a de part							
OCT 1 27	992	1	<1	<1	1	4	270	2	120	
JAN 19 14	993	2	3	<1	3	4	2500	3	77	
APR 12		<1	<1	<1	<1	4	90	· <1	7	
JUL 22		1	<10	<1	<1	2	290	1	100	
										ş
		MER TO	CURY NI TAL T	CKEL, OTAL	SELE-	ZINC, FOTAL	• • •	OI GR TC	L AND EASE, DTAL	

DATE	TOTAL RECOV- ERABLE (UG/L AS HG)	TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	TOTAL RECOV- ERABLE (UG/L AS ZN)	CYANIDE TOTAL (MG/L AS CN)	PHENOLS TOTAL (UG/L)	TOTAL RECOV. GRAVI- METRIC (MG/L)
OCT 1992 27	<0.1	3	<1	10	0.01	2	<1
JAN 1993 14	<0.1	3	<1	10	<0.01	3	<1
12	<0.1	4	<1	5	<0.01		<1
22	<0.1	2	<1	<10	<0.01	<1	3

< Actual value is known to be less than the value shown.

07355500 RED RIVER AT ALEXANDRIA, LA

LOCATION .-- Lat 31º18'46", long 92º26'34", in SE 1/4 sec. 10, T. 4 N., R. 1 W., Rapides Parish, Hydrologic Unit 08040301, near center of span on downstream side of Murray Street bridge between Alexandria and Pineville, and 1.7 mi downstream from Bayou Rigolette. Water-quality sampling site at center of channel 0.3 mi downstream.

DRAINAGE AREA.--67,500 mi², of which 5,936 mi² above Denison Dam is noncontributing.

PERIOD OF RECORD .-- Water years 1947, 1952-62, 1969, 1973 to current year.

PERIOD OF DAILY RECORD .--

SPECIFIC CONDUCTANCE: October 1952 to September 1963, June 1973 to September 1981. WATER TEMPERATURES: October 1952 to September 1963, June 1973 to September 1984.

CHLORIDE: October 1974 to September 1984. SUSPENDED-SEDIMENT DISCHARGE: October 1972 to September 1982.

REMARKS .-- Discharge data will be entered into the water-quality file when made available by the Army Corps of Engineers. Water-quality samples are non-integrated on all dates except Oct. 27, Jan. 13, April 13, and July 21.

EXTREMES FOR PERIOD OF DAILY RECORD .--

REMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum daily, 2,020 micromhos Oct.8, 1956; minimum daily, 133 micromhos June 24, 1953. WATER TEMPERATURES: Maximum daily, 34.0 °C Aug. 2, 8, 10, 1956; minimum daily, 0.0 °C Dec. 24, 25, 1983. CHLORIDE: Maximum daily, 420 mg/L Oct. 12, 1978; minimum daily, 8.6 mg/L Apr. 7, 1977. SUSPENDED-SEDIMENT DISCHARGE: Maximum daily, 1,495,000 tons Dec. 9, 1973; minimum daily, 1,000 tons Oct. 10-22, 1972, Oct. 1 to Nov. 7, 1978, Sept. 27-30, Oct. 1-4, 1980, Jan. 30-31, Apr. 24-25, Oct. 1-6, 1981.

WATER-OUALITY DATA, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993

TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)
									050
1300	548	8.30	21.0	15	2.1	8.7	2.0	27	250
0730	753	8.25	14.5	15	7.7	9.4	2.0	25	
		5.25		- 1		10.0	20	25	2000
1110	444	7.97	9.5	30	120	10.2	2.9	23	2900
1545	319	7.48	11.0	30	91	11.2	3.3	31	4400
				- *		10.0		25	12 920
1150	489	8.06	12.0	50	50	10.8		33	V020
1400	551	7.80	11.0	40	100	11.2		18	1800
								05	1000
0730	455	7.84	18.0	60	89	8.2	1.1	20	1000
1115	350	7.53	22.5	15	60	7.7	0.7	22	K1200
									0000
1330	471	7.49	26.0	15	120	6.4	1.0	30	2200
1345	661	7 89	33 5	5	2.5	6.9	1.0	19	220
1,7,7,7	001	1.05	55.5						
1500	678	7.99	27.5	5	6.0	6.3	0.7	19	K 30
1050	052	8 43	27 5	5	3.0	64	1.1	15	K60
1200	515	0.43	د. ۱.2	5	5.0	••••			
	TIME 1300 0730 1110 1545 1150 1400 0730 1115 1330 1345 1500 1250	SPE- CIFIC CON- DUCT- ANCE (US/CM)130054807307531110444154531911504891400551073045511153501330471134566115006781250953	PH WATER CIFIC CON- DUCT- ANCE (US/CM)PH WATER WHOLE FIELD (STAND- ARD UNITS)13005488.3007307538.2511104447.9715453197.4811504898.0614005517.8007304557.8411153507.5313304717.4913456617.8915006787.9912509538.43	SPE- CIFIC CON- DUCT- AND UNITS)PH WATER WHOLE FIELD CISTAND- ATURE (US/CM)TEMPER- ATURE (UNITS)13005488.3021.007307538.2514.511104447.979.515453197.4811.011504898.0612.014005517.8011.007304557.8418.011153507.5322.513304717.4926.013456617.8933.515006787.9927.512509538.4327.5	SPE- CIFIC CON- DUCT- ANCE US/CM)PH WATER STAND- ARD UNITS)TEMPER- ATURE WATER (DEG C)COLOR (PLAT- INUM- COBALT UNITS)13005488.3021.01513005488.3021.01513005488.3021.01507307538.2514.51511104447.979.53015453197.4811.03011504898.0612.05014005517.8011.04007304557.8418.06011153507.5322.51513304717.4926.01513456617.8933.5515006787.9927.5512509538.4327.55	SPE- CIFIC CON- DUCT- ANCEWATER WHOLE FIELD UNITS)COLOR TEMPER- ATURE WATER WATER TURE WATER COBALT UNITS)TUR- BID- TURE OBALT UNITS)13005488.3021.0152.113005488.3021.0152.107307538.2514.5157.711104447.979.53012015453197.4811.0309111504898.0612.0505014005517.8011.04010007304557.8418.0608911153507.5322.5156013304717.4926.01512013456617.8933.552.515006787.9927.556.012509538.4327.553.0	PH WATER WHOLE CON- DUCT- AND AND UNTS)TEMPER- ATURE ARD UNTS)COLOR (PLAT- INUM- COBALT UNITS)TUR- BD- DIS- SOLVED (MG/L)13005488.3021.0152.18.713005488.3021.0152.18.707307538.2514.5157.79.411104447.979.53012010.215453197.4811.0309111.211504898.0612.0505010.814005517.8011.04010011.207304557.8418.060898.211153507.5322.515607.713304717.4926.0151206.413456617.8933.552.56.915006787.9927.556.06.312509538.4327.553.06.4	SPE- CIFIC CON- DUCT- ANCE (US/CM) PH WATER WHOLE (STAND- ARD COLOR ATURE ARD COLOR (PLAT- INUM- INU	PH CIFIC CON- DUCT- ANCE (US/CM) PH WATER WIOLE STAND- ARD COLOR ATURE ARD COLOR TEMPER- MATER TUR- INUM- COBALT OXYGEN DEMAND, BD- INUM- COBALT OXYGEN DEMAND, BIO- CHEM- ICAL (HIGH 1300 548 8.30 21.0 15 2.1 8.7 2.0 27 1300 548 8.30 21.0 15 2.1 8.7 2.0 27 0730 753 8.25 14.5 15 7.7 9.4 2.0 25 1110 444 7.97 9.5 30 120 10.2 2.9 25 1150 489 8.06 12.0 50 50 10.8 35 1400 551 7.84 18.0 60 89 8.2 1.1 25 1115 350 7.53 22.5 15 60 7.7 0.7 22 1330 471 7.49 26.0 15 120 6.4 1.0 30 13350 661

K Results based on colony count outside the acceptable range (non-ideal colony count).

-45-

07355500 RED RIVER AT ALEXANDRIA, LA--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993

DATE	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY WAT WH TOT FET FIELD MG/L AS CACO3	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
OCT 1992						1. E	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -		1997 - 1997 -	
27	K40	350	190	51	14	35	2.9	183	36	42
19	K50	140	220	59	18	68	4.5	165	74	92
17	1300	1500	100	27	8.1	42	3.4	64	53	60
13	K380	420	80	22	6.1	2 8	2.5	51	39	41
16	K20	K40	130	36	9.6	44	3.2	82	59	61
15	K470		140	37	11	50	2.8	83	73	72
13	K290	K40	130	35	9.8	40	2.5	75	60	65
10		K20	100	28	7.3	29	2.3	74	43	40
23		370	140	38	11	37	2.9	87	58	53
10L 21	K65	K10	210	57	16	51	3.5	145	76	70
17	K13	K5	200	52	16	55	3.3	114	91	74
SEP 15	K80	<10	290	75	25	80	5.1	198	120	110
and the second sec										

			SOLIDS,	SOLIDS,	RESIDUE		NITRO-		NITRO-	
,	HLUO-	SILICA,	RESIDUÉ	SUM OF	TOTAL	NITRO-	GEN,	NITRO-	GEN.	
	RIDE,	DIS-	AT 180	CONSTI-	AT 105	GEN.	NITRITE	GEN.	NO2+NO3	
	DIS-	SOLVED	DEG. C	TUENTS,	DEG. C.	NITRITE	DIS-	NO2+NO3	DIS-	
	SOLVED	(MG/L	DIS-	DIS-	SUS-	TOTAL	SOLVED	TOTAL	SOLVED	
DATE	(MG/L	AS	SOLVED	SOLVED	PENDED	(MG/L	(MG/L	(MG/L	(MG/L	
	AS F)	SIO2)	(MG/L)	(MG/L)	(MG/L)	AS N)	AS N)	AS N)	AS N)	
OCT 1002		a de la compañía de l								
27	0.2	47	210	200	-	0.01		0.07	0.05	
NOV	0.2	4.7	516	290	2	0.01	<0.01	0.06	<0.05	,
19	0.2	•••	442	415	8	0.01		0.02		
DEC					Ū	0.01		0.02		
17	0.1		254	232	136	0.02		0.22		
JAN 1993										
13	0.1	6.9	197	177	205		0.02		0.20	
FEB	<u> </u>									
10	0.1		288	262	82	0.02		0.28		
15	0.1		208	206	104	0.00		0.04		
APR	0.1		200	290	184	0.02	· · ·	0.34		
13	0.1	6.0	270	261	471		<0.01	. <u>.</u>	0.26	
MAY			1.1				-0.01		0.20	
10	0.1		222	194	104	0.02		0.29		
JUN	1944 - C									
23	0.1		282	252	378	0.03		0.37	, · . ·	
JUL.										
21 AUG	0.3	0.56	372	358	16		0.01		<0.05	
17	0.2	1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -	200	260		0.01				
SEP	0.2		270	000	34	0.01	'	0.03		
15	0.2		578	534	8	0.01		0.03		1
No.	an gi Talan a	1.1.1			0	0.01		0.05		

< Actual value is known to be less than the value shown. K Results based on colony count outside the acceptable range (non-ideal colony count).

07355500 RED RIVER AT ALEXANDRIA, LA -- Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993

DATE	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS DIS- SOLVED (MG/L AS P)	PHOS- PHORUS ORTHO TOTAL (MG/L AS P)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)
OCT 1002								
27	0.01	<0.01	0.50	0.07	0.01	0.01	<0.01	6.8
NOV	2.01		0.60	0.04		0.03		70
19 DEC	0.01		0.02	0.04		0.05		7.0
17	0.05	· ·	0.61	0.19		0.13		7.0
JAN 1993					0.04		0.02	7 0
13 EED		0.04	0.50	0.13	0.04		0.03	1.0
16	0.04		0.54	0.12	'	0.07		8.0
MAR						0.00		00
15	0.02		0.84	0.17		0.09		0.0
APK		0.04	0.70	0.18	0.03		0.02	8.1
MAY								
10	0.03		0.81	0.10		0.11		7.9
JUN 23	0.05		0.85	0.28		0.23	<i></i>	8.6
JUL	0.05		0.05	0.20				<u></u>
21	'	0.03	0.60	0.03	0.02		<0.01	6.8
AUG	0.02		0.55	0.05		0.04		6.3
SEP	0.02		0.55	0.05		5.01		
15	0.05		0.74	0.04		0.03		6.9

DATE	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BARIUM, DIS- SOLVED (UG/L AS BA)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COBALT, DIS- SOLVED (UG/L AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)
007 1002									
27 14 N 1992	<10	<1	110	1	<1	<1	<3	3	180
13	50	2	59	3	<1	6	<3	5	4600
APR	50	•	20	-1	-1		-3	5	3400
13 NH	50	.	0 0	<1			~~		2.00
21	10	1	130	<10	<1	<1	<3	2	330
DATE	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LITHIUM DIS- SOLVED (UG/L AS LI)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, DIS- SOLVED (UG/L AS NI)
OCT 1992 27	4	4	6	80	<1	<0.1	<10	2	<1
JAN 1993 13	91	5	4	140	10	<0.1	10	7	1
APR 13	97	4	7	150	5	<0.1	<10	5	1
JUL 21	10	3	7	90	2	<0.1	<10	1	<1

< Actual value is known to be less than the value shown.

가슴, 제품 바이 등 집에 들었다. 지수가 모두 날에 가 나 주 것이?

-46-

07355500 RED RIVER AT ALEXANDRIA, LA--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993

DA	SE NII TO TE (U AS	SE LIA- NIT UM, D TAL SOL G/L (U SE) AS	LE- UM, SIL' IS- D VED SOL G/L (U SE) AS	STR(VER, TIU IS- DI: VED SOLN G/L (UC AG) AS S	ON- VA M, DII S- D /ED SOL S/L (U SR) AS	NA- ZIN UM, TOT IS- REC VED ERA G/L (UC S V) AS 2	IC, AL, OV- CYA BLE TO GL (M ZN) AS	NIDE FAL PHE G/L TC CN) (U	OIL GRE TO REC NOLS GR VTAL ME G/L) (MO	AND EASE, TAL COV. AVI- TRIC G/L)
OCT	1992									1
27	. <1	<1	1 - 1	43	0 <6	5 10	0	.02	<1	<1
JAN	1993			10	n -4	20	-0	01	1	-1
13 ADD	•	· · · · ·	<	19	N <0	5 50	<0	.01	1	
APK 13	<1	<1	<1	30	0 <6	5 20	<0	.01	<1	<1
IUI.									11111	1. A.
21	. <1	<1	<1	47	0 <6	5 20	<0	.01	<1	<1
		ALPHA, COUNT, 2 SIGMA	ALPHA COUNT, 2 SIGMA	BETA, 2 SIGMA WATER,	BETA, 2 SIGMA WATER.	URANIUM NATURAL	RA-226	ALPHA, 2 SIGMA SED SUS	BETA, 2 SIGMA SED,	a An I A
5.7		WAT DIS	WAT DIS	DISS,	DISS,	2 SIGMA	2 SIGMA	TOT DRY	SUSP,	
		AS	AS	AS SR90	AS	WATER,	WATER,	AS	TOT DRY	
· · · · · ·	DATE	NATU	TH-230	/Y90	CS-137	DISS,	DISS,	TH-230	SR90Y90	
		(UG/L)	(PC1/L)	(PCI/L	(PCI/L)	(UG/L)	(PCI/L)	(PC1/L)	(PC1/L)	
	OCT 1002	•			· · · ·					
	27	1.7	1.1	0.96	1.3	<1.0	0.02	0.44	0.61	
	JAN 1993						1.1.1	a sa ang sa		• •
	13	0.62	0.46	0.68	1.0	<1.0	0.14	5.9	2.1	
	APR	1 7	1.0	10		<10	0.03	5.0	2.0	
	15	1.7	1.0	1.0	1.1	C1.0	0.05	5.9	2.0	
· · · · ·		GROSS	GROSS	GROSS	GROSS	GROSS	GROSS	RADIUM		
		ALPHA,	ALPHA,	BETA,	BETA,	BETA,	BETA,	226,	URANIUM	[
		DIS-	SUSP.	DIS-	SUSP:	DIS-	SUSP.	DIS-	NATURAL	•
		SOLVED	TOTAL	SOLVED	TOTAL	SOLVED	TOTAL OCH	SOLVED,	DIS-	
	DATE			AS	AS	AS SR/	AS SR/	METHOD	UGL	
	DAIL	U-NAT)	U-NAT)	CS-137)	CS-137)	YT-90)	YT-90)	(PCI/L)	AS U)	
	OCT 1992							0.00	0.02	
	27	1.5	0.6	5.5	0.9	4.2	0.8	0.09	0.93	
	JAN 1995	<0.6	12	32	79	24	7.1	0.80	0.43	
	APR	20.0	•-	5.2						
	13	2.1	13	3.3	8.8	2.4	8.0	0.16	1.0	
	4	NAPH- THA-							¢	19 - 19 ⁴ - 1
		LENES,						DL	DI	ENDO
	PCP	CHIOR	AI DRIN	DANE	מממ	DDF	DDT	AZINON	ELDRIN	SULFAN
DATE	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL
	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)
OCT 1992	-01	<01	<0 01	<0.01	~ 0.01	<0.01	0.01	<0.01	c 0.01	<0.01
27 DFC	<u.1< td=""><td>SU.1</td><td>0.01</td><td>\U.UI</td><td>20.01</td><td>NU.UI</td><td>-U.UI</td><td>~0.01</td><td>~0.01</td><td>~0.01</td></u.1<>	SU.1	0.01	\U.UI	20.01	NU.UI	-U.UI	~0.01	~0.01	~0.01
17	<0.1	<0.1	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
FEB	_									
16	<0.1	<0.1	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
23.	<0.1	<0.1	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
<i></i>										

< Actual value is known to be less than the value shown.

07355500 RED RIVER AT ALEXANDRIA, LA -- Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 1992 TO SERTEMBER 1993

DATE	ENDRIN, TOTAL (UG/L)	ETHION, TOTAL (UG/L)	HEPTA- CHILOR, TOTAL (UG/L)	HEPTA- CHLOR EPOXIDE TOTAL (UG/L)	LINDANE TOTAL (UG/L)	MALA- THION, TOTAL (UG/L)	METH- OXY- CHLOR, TQTAL (UG/L)	METHYL PARA- THION, TOTAL (UG/L)	METHYL TRI- THION, TOTAL (UG/L)
OCT 1992 27	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
DEC	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
FEB	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
JUN 23	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
DATE	MIREX, TOTAL (UG/L)	PARA- THION, TOTAL (UG/L)	PER- THANE TOTAL (UG/L)	TOX- APHENE, TOTAL (UG/L)	TOTAL TRI- THION (UG/L)	2,4-D, TOTAL (UG/L)	2, 4-DP TOTAL (UG/L)	2,4,5-T TOTAL (UG/L)	SILVEX, TOTAL (UG/L)
OCT 1992 27	<0.01	<0.01	<0.01	<0.5	<0.01	<0.5	<0.5	<0.5	<0.5
DEC	<0.01	<0.01	₹0.01	<0.5	<0.01	<0.5	<0.5	<0.5	<0.5
FEB	<0.01	<0.01	<0.01	<0.5	<0.01	<0.5	<0.5	<0.5	<0.5
JUN 23	<0.01	<0.01	<0.01	<0.5	<0.01	<0.5	<0.5	<0.5	<0.5
			6	- 1	S	ED.			1.12

	SEDI- MENT, SUS-	SUSP. SIEVE DIAM. % FINER
DATE	PENDED (MG/L)	THAN .062 MM
OCT 1992 27	16	80
JAN 1993 13	458	64
APR 13	364	76
JUL. 21	17	91

< Actual value is known to be less than the value shown.

07355600 RED RIVER AT MONCLA, LA (CE 04657)

LOCATION.--Lat 31°12'10", long 92°08'30", T.3 N., R.3 W., Avoyelles Parish, Hydrologic Unit 08040301, near center of span on downstream side of bridge on State Highway 115, 1.4 mi west of Moncla, and at mile 74.0.

DRAINAGE AREA. -- 67,625 mi², of which 5,936 mi² above Denison Dam is noncontributing.

PERIOD OF RECORD .-- Water years 1971, 1973, 1984, 1986 to current year.

REMARKS .-- Water-quality samples are non-integrated.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND CHEM- ICAL (HIGH LEVEL) (MG/L)	OXYGEN , DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)
OCT 100	ว					1.1				
28 NOV	0715	429	7.89	21.0	15	7.6	7.5	25	1.0	
18 DEC	1440	657	8.10	16.0	15	7.2	7.3	21	0	
17 IAN 1993	1448	483	7.72	9.0	30	90	10.2	29	2.7	1300
13	1140	324	7.41	9.5	70	65	11.0	23	3.7	2800
16	1415	494	8.11	12.0	30	50	11.0	23		K330
MAR 15	0930	561	8.10	10.0	30	100	10.8	<10		1700
APR 12	1550	528	7.85	17.0	50	80	9.1	24		1100
МАҮ 10	1450	342	7.53	22.5	20	50	7.7	35	0.8	K140
23	0850	508	7.66	26.0	10	120	6.8	24	0.9	1800
JUL 21	1215	626	7.78	32.0	5	15	6.0	24	0.4	K320
AUG 17	1230	755	7.93	31.5	5	5.0	6.7	33	0.8	80
SEP 15	0830	859	8.44	26.0	5	5.0	6.3	15	0.7	K33
	COLI- FORM, FECAL, 0.7 UM-MF	STREP- TOCOCCI FECAL, KF AGAR (COLS.	HARD- NESS TOTAL (MG/L	CALCIUM DIS- SOLVED	MAGNE- SIUM, DIS- SOLVED	SODIUM, DIS- SOLVED	POTAS- SIUM, DIS- SOLVED	ALKA- LINITY WAT WH TOT FET FIELD	SULFATE DIS- SOLVED	CHLO- RIDE, DIS- SOLVED
DATE	(COLS./ 100 ML)	PER 100 ML)	AS CACO3)	(MG/L AS CA)	(MG/L AS MG)	(MG/L AS NA)	(MG/L AS K)	MG/L AS CACO3	(MG/L AS SO4)	(MG/L AS CL)
OCT 1992							an a			
28 NOV	310	170	150	42	11	30	3.4	144	29	34
18 DEC	140	K35	200	52	16	60	4.5	149	63	79
17	720	880	110	29	9.4	47	3.6	64	60	66
13 FEB	580	K440	83	23	6.2	29	2.6	52	39	42
16 MAR	K60	<20	130	36	9.6	44	3.2	80	60	62
15 APR	K300		140	39	11	52	2.8	86	74	74
12 MAY	K210	K150	130	36	10	48	2.8	83	69	70
10 П IN		<20	97	27	7.2	28	2.3	74	41	. 38
23 NJI		260	150	41	12	41	3.0	96	65	60
21 AUG	K17	5	200	52	16	50	3.4	130	73	68
17	K20	K7	230	59	19	64	3.5	130	100	85
15	250	<10	240	63	21	69	4.0	189	100	92

< Actual value is known to be less than the value shown. K Results based on colony count outside the acceptable range (non-ideal colony count).

-50-

07355600 RED RIVER AT MONCLA, LA (CE 04657) -- Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993

	SOLIDS,	RESIDUE	anta da sera Contra	e e la sue e e Na strata de se	NITRO-			DUGG	
	RESIDUE	TOTAL	NITRO-	NITRO-	GEN, AM-			PHOS-	CARRON
	AT 180	AT 105	GEN,	GEN,	MONIA +	NITRO-	PHOS-	PHORUS	CARBON,
	DEG. C	DEG. C,	NITRITE	NO2+NO3	ORGANIC	GEN,	PHORUS	OKIHO	ORGANIC
	DIS-	SUS-	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL
DATE	SOLVED	PENDED	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L
	(MG/L)	(MG/L)	AS N)	AS N)	AS N)	AS N)	AS P)	AS P)	AS C)
OCT 1007									
28	252	8	< 0.01	0.11	0.27	0.38	0.07	0.04	5.8
NOV			•				0.05	0.00	60
18	378	4	0.01	0.07	0.48	0.55	0.05	0.05	0.9
DEC 17	276	152	0.02	0.21	0.46	0.67	0.23	0.12	5.8
JAN 1993			0.00	0.16	0.59	074	0.08	0.08	8.0
13	199	196	0.02	0.10	0.58	0.74	0.08	0.00	0.0
гев 16	282	74	0.02	0.27	0.49	0.76	0.09	0.10	7.5
MAR 15	322	234	0.02	0.29	0.81	1.1	0.21	0.09	
APR							0.17	0.05	
12	314	174	0.02	0.31	0.35	0.00	0.17	0.05	0.5
MAY 10	218	126	0.03	0.32	0.81	1.1	0.14	0.13	8.0
JUN			0.04		0.94	1 2	0 31	0.18	96
23	300	188	0.04	0.38	0.80	1.2	0.51	0.10	2.0
JUL. 21	354	<1	0.01	0.04	0.57	0.61	0.06	0.06	6.7
AUG	351					· · · · ·		0.04	()
17	444	24	0.01	0.05	0.43	0.48	0.05	0.04	0.3
SEP	400	14	0.02	0.06	0.53	0.59	0.04	0.03	6.8
15	480	14	0.02	0.00	0.55	0.59	0.01		
4 - 1 M - M -					· · ·			÷	

		BERYL-		CHRO-				MANGA-
		LIUM.	CADMIUM	MIUM,	COPPER,	IRON,	LEÀD,	NESE,
		TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL
	ARSENIC	RECOV-	RECOV-	RECOV-	RECOV-	RECOV-	RECOV-	RECOV-
	TOTAL	ERABLE	ERABLE	ERABLE	ERABLE	ERABLE	ERABLE	ERABLE
DATE	UGA.	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L
	AS AS)	AS BE)	AS CD)	AS CR)	AS CU)	AS FE)	AS PB)	AS MN)
·* ·*								
ОСТ 1992	·		_		-	100	50	50
28	1	1	<1	- 1	/	180	52	00
JAN 1993	2	3	<1	3	4	2900	5	87
APR	-	-		-		1.111	_	
12	3	<1	<1	6	5	3600	5	140
JUL		-10	-1	-1	3	500	27	90
21	1	<10	< <u>1</u>	N	5		, ,	

DATE	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS ND	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	CYANIDE TOTAL (MG/L AS CN)	PHENOLS TOTAL (UG/L)	OIL AND GREASE, TOTAL RECOV. GRAVI- METRIC (MG/L)
	A3 110)	AS MJ	10000)			(
OCT 1992 28	<0.1	2	<1	10	0.01	1	<1
JAN 1993 13	<0.1	4	<1	10	<0.01	1	<1
APR 12	<0.1	7	<1	20	<0.01		<1
JUL 21	<0.1	3	<1	10	<0.01	1	<1
				N			

< Actual value is known to be less than the value shown.

07355603 RED RIVER (ABOVE LOCK AND DAM 1) NEAR VICK, LA

LOCATION.--Lat 31°15'01", long 91°56'17", in SW 1/4 sec. 11, T. 3 N., R. 5 E., Avoyelles Parish, Hydrologic Unit 08040301, near right bank, 10.1 mi east of Vick, and at mile 50.0.

DRAINAGE AREA.--67,700 mi², approximately, of which 5,936 mi² above Denison Dam is noncontributing.

PERIOD OF RECORD, -- Water years 1988 to current year.

REMARKS.--Water-quality samples are non-integrated and collected from upstream side of lock.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH WATER WHOLE FIELD (STAND ARD UNITS)	TEMPER- ATURE WATER (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MGAL)	OXYGEN DEMAND CHEM- ICAL (HIGH LEVEL) (MG/L)	OXYGEN , DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)
	na Arriera La constante			(,	,	()	(((
OCT 1992 28	2° 0820	383	7.85	21.0	15	5.4	7.6	21	1.1	K60
18 DEC	1340	623	8.02	18.0	20	9.5	6.7	23		
17 17	1400	540	7.80	9.0	20	65	10.6	15	2.6	680
13 FEB	1240	325	7.58	9.5	60	85	11.0	25	3.9	3100 ,
16 MAR	1320	524	7.80	12.0	30	40	11.0	33		K600
15 APR	1025	560	7.84	9.5	60	120	11.2	16		4500
12 MAY	1420	517	7.76	16.0	50	80	9.0	27		2100
10 JUN	1315	346	7.66	23.0	20	75	7.6	24	0.6	K340
23 JUL	1130	508	7.43	26.0	10	140	6.9	24	1.0	1200
21 AUG	1345	624	7.74	33.0	5	7.5	6.4	- 24	0.1	210
17 SEP	1130	711	7.69	30.0	5	2.0	7.1	15	0.6	K50
15	1030	852	8.51	28.0	5	5.0	6.4	15	0.8	K400
DATE	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS, PER 100 ML)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY WAT WH TOT FET FIELD MG/L AS CACO3	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
OCT 1992 28	K32	130	130	36	92	28	34	120	28	32
NOV 18	92	K40	190	51	15	54	4.5	150	56	71
DEC 17	K180	380	120	32	9.9	53	3.7	68	67	75
JAN 1993 13	K400	400	83	23	6.2	28	2.5	51	39	42
гер 16 Мар	K100	K30	140	38	10	48	3.2	80	65	68
15	K800		150	41	11	52	3.0	82	74	74
12 MAY	K180	K88	140	37	11	48	2.8	80	69	70
10 JUN		K220	110	31	8.3	28	2.3	79	42	37
23 JUL		270	150	41	12	41	3.0	97	66	60
21 AUG	K15	<্য	190	52	15	49	3.3	128	70	66
17 SEP	<3	<3	210	56	18	58	3.4	126	94	79
15	K60	<10	250	65	22	72	4.4	176	110	98

< Actual value is known to be less than the value shown.

K Results based on colony count outside the acceptable range (non-ideal colony count).

07355603 RED RIVER (ABOVE LOCK AND DAM 1) NEAR VICK, LA -- Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993

DATE	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	RESIDUE TOTAL AT 105 DEG. C, SUS- PENDED (MG/L)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS ORTHO TOTAL (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)
OCT 1992		an a	· · · ·	0.09	0.05	0 22	0.07	0.04	5.2
28	222	<1	<0.01	0.08	0.25	0.33	0.07	0.04	5.2
18	348	4 ·	0.01	0.12	0.54	0.66	0.06	0.07	7.0
DEC	206	136	0.01	0.21	0.69	0.90	0.12	0.09	6.9
TAN 1993	500	150	0.01					1.2.2. 1	
13	188	104	0.02	0.16	0.49	0.65	0.16	0.08	7.9
FEB	302	58	0.01	0.27	0.45	0.72	0.08	0.09	7.4
MAR	216	284	0.02	0.29	0.85	1.1	0.26	0.10	9.4
A DD	510	204	0.02	0.27	0.00				
12	316	180	0.02	0.27	0.49	0.76	0.14	0.06	8.2
MAY	202	136	0.03	0.34	0.58	0.92	0.14	0.12	7.7
JUN	202						0.40	0.00	0 /
23	300	352	0.02	0.45	1.2	1.7	0.40	0.20	0.4
JUL 21	344	<1	0.01	<0.02	0.43	0.43	0.04	0.05	6.6
AUG						0.56	0.24	0.03	5.6
17	418	16	<0.01	0.04	0.52	0.30	0.24	0.05	5.0
SEP 15	482	16	<0.01	<0.02	0.68	0.68	0.02	0.02	6.9
			1		DO			МА	NGA.

DATE	ARSENI TOTAL (UG/L AS AS	BERY LIUM TOTA IC RECO ERAB (UG/) AS B	L- I, CADMI L TOTA V- RECC LE ERAB L (UG/ E) AS C	CHR IUM MIU IL TOT IV- RECO LE ERAI L (UC D) AS (CO- M, COP AL TOT OV- REC BLE ERA JL (UC CR) AS	PER, IRC TAL TOT OV- REC BLE ERAJ G/L (UC CU) AS D	N, LEA AL TOTA OV- RECO BLE ERAE G/L (UG FE) AS P	MANG D, NESE AL TOTA V- RECO' ILE ERABI JL (UG/J B) AS MI	A- L V- LE N)
OCT 1992 28	1	1	<1	<1	4	90	2	25	
JAN 1993	2	3	2	3	4	2900	3	93	
APR 12	2	<1	<1	3	6	2700	3	100	
JUL 21	1	<10	<1	<1	2	400	5	80	
D/	M I ATE	ERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	CYANIDE TOTAL (MG/L AS CN)	PHENOLS TOTAL (UG/L)	OIL AND GREASE, TOTAL RECOV. GRAVI- METRIC (MG/L)	
OC1 28	Г 1992	<0.1	2	<1	ব	0.01	1	<1	
JAN 13	1993	<0.1	5	<1	10	<0.01	· 1	<1	
APF 12	R	<0.1	6	<1	10	<0.01	<1	<1	
21		<0.1	2	<1	<10	<0.01	1	1	

< Actual value is known to be less than the value shown.

07344400 RED RIVER NEAR HOSSTON, LA

LOCATION .-- Lat 32°53'35", long 93°49'20", in SW 1/4 sec. 16, T.22 N., R.14 W., Bossier-Caddo Parish line, Hydrologic Unit 11140202, near left bank on downstream side of bridge on State Highway 2, 1.8 mi downstream from Dry Bayou, and 3.2 mi east of Hosston.

DRAINAGE AREA .-- 57,041 mi², of which 5,936 mi² above Denison Dam is noncontributing.

PERIOD OF RECORD.--October 1957 to September 1968. October 1968 to current year (daily gage heights and discharges below 5,000 ft³/s only).

GAGE .-- Nonrecording gage read once daily. Datum of gage is 161.56 ft above sea level (levels by Corps of Engineers). Prior to Feb. 20, 1962, water-stage recorder at same site and datum.

REMARKS .-- No daily discharges published above 5,000 ft³/s. No estimated daily discharges. Regulation since July 1942 by Lake Texoma (capacity, 5,392,000 acre-ft), since July 1953 by Texarkana Reservoir (capacity, 2,654,300 acre-ft), and since August 1966 by Millwood Lake (capacity, 1,854,900 acre-ft). Several measurements of water temperature were made during the year.

AVERAGE DISCHARGE .-- 11 years (water years 1958-68), 17,920 ft³/s, 12,980,000 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD .-- Maximum discharge, 214,000 ft³/s, May 7, 1958; maximum gage height, 30.70 ft, May 15, 1990; minimum daily, 803 ft³/s, Sept. 16, 17, 1972.

EXTREMES FOR CURRENT YEAR .-- Maximum gage height, 17.80 ft, June 13; minimum daily discharge, 3,220 ft³/s, Sept. 8.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993 MEAN VALUES

DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1				9 - A								e di M
3								· .		· . · ·		
5		4550								v		<u>ي</u> .
6	, • , •	4340	•					- <u>1</u>	· ·	18-16 19		t
8		4260 4220				r i			. ÷	an An Al-S	and	3840
.9 10		4030 3870							*			3460
11 12		3870 4260		* *		<i>.</i>	· .	4	-	•		3780
13 14		4930				1.			an a	.*	20 41 6 	4010
15				т.,		*			с. у. У. Ц.		24 8 23 8	3970
16 17 18	e e e e e e e e e e e e e e e e e e e								4 - 1 1 1			4010 4290
19 20												4550
21 22												
23 24												
25												
26 27	4630 4680											
28 29	4880 4860											
30 31			÷									
TOTAL	, 	<u></u>										
MEAN												
MAA			 									
AC-FT												

07344400 RED RIVER NEAR HOSSTON, LA--Continued

GAGE HEIGHT (FEET ABOVE DATUM), WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993 MEAN VALUES

DAY	oct	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
	0 10	1 56	10.58	15 20	9.50	14.88	11.20	10.10	14.32	4.20	1.94	.10
1	0.40	1.50	10.35	14 75	9.40	14.65	10.59	10.59	14.19	4.06	2.04	.15
2	7.10	1.02	10.33	13.08	9.08	15.30	9.60	11.15	13.90	4.09	2.28	.20
<u> </u>	0.00	1.30	10.20	13 42	8 59	16.64	8.92	11.41	13.60	3.88	2.67	.50
4	4.90	1.29	0.55	13.42	8 20	17.00	9.20	11.32	13.35	3.64	2.99	.40
2	4.54	1.05	9.55	13.74	0.20	1					1.1	
	4 50	04	0.02	13 50	8.05	16.70	10.30	10.80	13.41	3.65	3.20	.18
õ	4.58	.94	9.02	13.40	8 10	16.25	11.20	10.30	13.50	3.52	3.40	52
1	4.80	.90	9.79	13 18	8 35	16 50	11.80	10.40	13.36	3.10	3.42	85
8	4.80	.00	0.20	13.15	8 48	16.82	12.55	11.02	13.08	2.73	3.29	72
9	3.80	./8	7.00	12.05	8 45	16 30	12.20	12.00	12.60	2.60	2.85	68
10	2.75	.70	1.30	12.75	0.45	10.50		 				1
		70	7 45	12.80	8 28	15.00	11.86	13.85	12.36	2.45	2.50	55
11	2.10	.70	7.03	12.00	7 01	14 35	11.22	15.50	12.40	2.20	2.26	52
12	1.71	.90	0 20	12.35	7.70	13 45	10.44	17.44	12.35	1.76	2.00	43
13	1.65	1.25	0.20	12.13	7 78	13 10	9.43	16.70	12.44	1.47	1.71	62
14	1.59	1.55	9.10	12.12	8.00	12.68	8.65	15.00	12.37	1.33	1.40	45
15	1,51	1./5	11.00	12.10	0.00	12.00	0.00				the second second	1.1
5. 21.		1 20	12 65	12 15	8 90	12.22	8.90	14.97	11.90	1.10	1.20	43
16	1.58	1.38	15.05	12.15	11 15	11 72	9.80	15.02	11.20	.99	1.00	28
17	1.45	1.48	16.05	12.10	13.00	12.28	12.00	15.50	10.78	.82	.90	14
18	1.36	1.55	16.23	12.10	14 20	13.58	13.00	16.12	10.20	.80	.68	.13
19	1.28	1.65	10.02	12.10	14.05	14.65	13.65	16.52	9.35	.78	.54	.78
20	1.50	1.75	10.72	12.52	14.05	11.00						
		1 00	16.95	12.22	13 70	15.09	14.09	16.61	9.08	.72	.69	1.58
21	1.78	1.60	10.05	12.22	13.60	15 00	14.40	16.29	8.60	.64	.97	2.20
22	2.12	1.98	17.54	11.95	13.50	15 30	13.80	15.96	7.71	.61	1.05	2.42
23	1.98	2.68	17.55	12.19	13.30	15.00	12.20	15.61	6.90	.64		2.25
24	1.66	4.00	17.05	12.10	13.50	14 38	11.30	15.39	6.35		.58	2.00
25	1.30	7.15	17.49	12.00	13.30	14.50	11.20					
an a		0.40	17.20	12.00	14 08	14 15	9.98	14.90	5.88	.53	.25	2.20
26	1.09	8.40	16.00	12.50	14.00	14.30	8.70	14.60	5.50	.47	.15	2.60
27	1.12	9.40	16.90	12.00	15.00	13.90	8.31	14.54	5.22	.42	.12	3.00
28	1.22	10.40	10.48	12.00	15.00	13 20	8.31	14.45	5.00	1.00	.28	2.42
29	1.21	10.90	16.02	11.00		12 42	9.30	14.33	4.70	1.42	.33	1.95
30	1.38	10.80	15.50	10.05		11.65		14.32		1.71	.20	·
31	1.42		15.35	10.05		11.05						
		10.00	17 45	15 20	15.00	17.00	14.40	17.44	14.32	4.20	3.42	3.00
MAX	8.28	10.90	17.05	10.05	7 70	11.65	8.31	10.10	4.70	.42	.12	85
MIN	1.09		1.38	10.02	1.10	11.05					5 S.	

07300500 SALT FORK RED RIVER AT MANGUM, OK

LOCATION.--Lat 34°51'30", long 99°30'30", in SW 1/4 SE 1/4 sec.34. T.5 N, R.22 W., Greer County, Hydrologic Unit 11120202, near left bank on downstream side of pier of bridge on State Highway

34, 0.5 mi south of Mangum, 13.0 mi downstream from Fish Creek, and at mile 35.5. DRAINAGE AREA.--1,566 mi², of which 209 mi² is probably noncontributing.

PERIOD OF RECORD. -- April 1905 to June 1906, October 1937 to current year. Monthly discharge only for some periods, published in WSP 1311.

REVISED RECORDS. -- WSP 1211: Drainage area. WSP 1241: 1938.

GAGE.--Water-stage recorder. Datum of gage is 1,490.87 ft above sea level (levels by U.S. Bureau of Reclamation). Apr. 11, 1905 to June 30, 1906, nonrecording gage at site 0.2 mi upstream

at different datum. Oct. 1, 1937 to Nov. 8, 1938, nonrecording gage at present site and datum. REMARKS.--Records fair.

PEAK DISCHARGES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 6,000 ft³/s:

Date	Time	Discharge	Gage Height	Date	Time	Discharge	Gage Height
		(ft ³ /s)	(ft)			(ft^3/s)	(ft)
Apr. 28	2330	11,700	11.61	July 7	1700	17,300	13.53
May 9	0400	11,500	11.52	-			

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993 DAILY MEAN VALUES

									1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -			
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1.2	9	.5 64	82	82	92	119	95	94	70	1999 (J. 1997) 1997 - 1997 (J. 1997)	47
2	1.1	9	8 60	97	86	108	01	Å25	97	185	20	47
Э	1.2	11	57	134	. 89	132	83	477	77	131	106	40
4	1.1	11	55	167	90	118	159	366	75	105	97	20
5	1.1	- 11	58	138	90	101	94	239	70	89	67	27
									· ·		an a Milana	
6	1.1	11	60	110	88	91	.73`	191	68	77	52	23
7	1.1	11	66	102	87	89	68	169	65	8710	46	23
8	. 9	8 12	69	101	85	86	72	2500	63	1640	45	26
9	1.0	13	93	123	82	84	62	3210	58	419	40	25
10	1.2	1.3	. 92	126	112	84	56	e350	56	143	35	23
	·											
11	1.2	25	86	132	110	83	52	e240	55	99	31	22
12	1.2	23	81	105	105	78	50	e190	53	77	26	20
13	1.3	17	82	99	99	79	47	e170	51	66	23	23
14	1.2	16	101	101	101	81	129	e150	48	508	20	23
15	1.4	16	103	111	152	83	132	e140	45	679	15	22
		- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1										
16	1.6	16	109	99	166	85	125	e250	43	293	14	19
17	1.8	16	103	100	169	84	119	e200	40	136	16	18
18	2.1	19	109	90	167	82	94	e170	39	86	16	17
19	2.6	39	119	100	146	89	78	148	60	69	13	18
20	3.2	38	119	112	126	84	66	137	94	58	12	16
	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1											
21	4.1	139	114	115	120	84	61	122	123	57	11	20
22	4.8	188	107	112	116	100	55	111	118	59	8.7	19
23	5.4	180	88	131	94	92	50	116	96	55	7.5	15
24	5.9	201	86	119	84	98	49	415	83	50	7.8	14
25	6.6	185	81	104	84	94	47	302	76	40	8.4	14
		1.1.1										
26	7.0	108	75	96	83	83	45	190	73	37	8.0	14
27	7.8	82	· 74	67	8.3	76	42	140	[~] 74	32	7.0	14
28	8.1	76	74	87	86	72	769	122	80	30	6.5	13
29	8.2	73	74	93		77	1300	112	71	31	6.3	12
30	8.7	68	77	93		111	203	104	67	40	8.3	12
.31	9.3		76	85		105		103		39	29	
TOTAL	104.58	1637.3	2612	3351	2982	2805	4390	11654	2099	14110	871 5	67 1
MEAN	3.37	54.6	84.3	108	106	90.5	146	376	70.0	455	26.8	. 22 4
MAX	9.3	201	119	167	169	132	1 300	3210	123	8710	106	66.4
MIN	. 98	9.5	55	82	82	72	42	9210	30	30	6 3	10
AC-FT	207	3250	5180	6650	5910	5560	8710	23120	4160	27000	1650	1220
1.1.2							0.10	23120	4100	21330	1030	1330
e Far	Instad	and the second			19							- <u>(</u>

e Latimated

46

07300500 SALT FORK RED RIVER AT MANGUM, OK--Continued

							1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -		1			-	-	16701	
	STATIST	ICS OF	MONTHI	LY MEAN D	ATA F	ORW	ATER	EARS	1938	- 1993,	BI WA	TER	ILAR	(#1)	
	OCT	NOV	DEC	JAN	FEB	ŀ	AR	APR	MAY	JUN	יין אין אין אין	۱	AUG	!	SEP
		~~ ~	14 A A	AE 6	51 0		9.3	86.4	277	238	64	.1	31.8	3	45.2
MEAN	80.4	28.2	35.4	43.6	100		0.5	400	1 2 8	9 160	2 57	15	301		315
MAX	919	196	148	199	190	-	.03	190	130	7 104	1 10	153	1965		1986
(WY)	1961	1987	1992	1960	1949	1	.969	19/3	192	, 134		200	000	, ,	000
MIN	.000	.000	.000	.000	.000	•	12	.000	.00			100		,	1020
(WY)	1941	1940	1940	1940	1953	1	.971	1955	195	3 195	2 19	103	1943	,	1939
CU10(3 D)	CTATIC'	TICS	1992	CALENDAR	YEAR		1993	WATE	ER YEA	LR .	WATI	ER YE	ARS	1938-	-93
SUMMARI	SIAIIS	1100								- -					6 N 2 10
AMMILL	TOTAL	•	33181	. 28			17247.3	8				•			
ANNUAL	MEAN		g	0.7			12	29			86.1				
ANNUAL		MEAN									277	19	41		
HIGHEST	ANNUAL	TEAN .									12.3	19	40		
LOWEST	ANNUAL	TEAN		630	7.10	6	871	0	Jul	7	22600	Ma	y 28	1978	
HIGHEST	C DAILY N	LEAN	4	.550	0	Š			Oct	в	*:00	0c	t 2	1937	
LOWEST	DAILY ME	EAN		. 98	000	2	• •	,	000	2	00	Au	a 14	1938	
ANNUAL	SEVEN-D/	AY MINI	MUM	1.1	OCL	3			71	, ,	72000	Ma	y 16	1957	
INSTAN	TANEOUS	PEAK FL	OW.				1/30	50	201	.'	12000	- 11G	16	1079	
INSTAN	TANEOUS	PEAK ST	AGE				13.	53	Jul	<u>/</u>	14.70	50	n 10	1330	
ANNUAL	RUNOFF	(AC-FT)	65	5820			937	20	11		62350				
10 PER	CENT EXC	EEDS		171			1	62			120				
50 PER	CENT EXC	EEDS		63				רר			16				
90 PER	CENT EXC	EEDS		3.6			8	. 4			.00				
	1 - C C C.			1. S.											

"No flow at times in most years.

.

47

in the second

07301420 SWEETWATER CREEK NEAR SWEETWATER, OK

LOCATION.-+Lat 35°25′20″, long 99°58′08″, in NW 1/4 NE 1/4 sec.20, T.11 N, R.26 W., Roger Mills-Beckham County line, Hydrologic Unit 11120302, on right bank downstream bridge piling of State Highway 152, 0.4 mi downstream from Freezeout Creek, 3.3 mi west of Sweetwater, and at mile 16.0.

DRAINAGE AREA. -- 424 mi², of which 20 mi² is probably noncontributing.

PERIOD OF RECORD. -- April 1986 to current year.

54

GAGE.--Water-stage recorder. Datum of gage is 2,087.76 ft above sea level.

REMARKS. -- Records good, except for ice effected winter periods, which are poor. U.S. Bureau of Reclamations' satellite telemeter at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993 DAILY MEAN VALUES

٠.

s as i

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
											1	
- 1	.24	4.4	18	20	24	- 31	36	41	18	19	1.3	57
2	. 25	5 5.4	18	21	24	39	32	62	17	14	1 4	P &
3	.26	5 5.6	18	24	24	45	30	107	16	12	38	34
4	. 23	6.2	17	28	23	37	33	79	16	11	11	25
5	.24	6.4	16	25	23	32	37	59	15		6	16
								•••				•••
- 6	. 30	6.4	19	23	23	30	35	50	15	8	7	12
7	. 30	7.2	19	23	23	29	34	43	15	11		34
8	.25	7.3	21	23	23	28	33	48	14	11	e0.0	1 7
9	.29	7.0	21	25	23	27	30	55	13		5 017	1.1
10	. 45	6.8	22	e21	27	26	29	51	13		5 4 0	2.3
						20	23	51	.13	0.	3 4.0	1.9
11	. 67	7.6	20	e25	32	25	27		15		7 70	
12	. 8 4		19	26	20	23	26	41	1.4		2.9	1.3
13	89	์ ส.ก.	20		23	23	20	20	19	<u>.</u>	2 2.0	1.1
14	89	85	23	027	33	25	20	35	12	4.	/ 1.3 0 1 0	
15	. 97	8.4	22	27	35	25		22	12		9 1.2	./3
		••••			50	20	. 42	32	12	у.		. 15
16	1.0	8.4	24	25	e35	25	19	29	12	: a	1 7	7 71
17	1.1	8.5	23	26	e27	24	33	31	11	8	3 5	9 - <u>65</u>
18	1.2	9.1	23	26	e31	24	30	72	10	3.	0 4	8 50
19	1.6	11	23	25	e35	34	28	64	20	6	1 4	
20	2.0	13	23	26	44	49	26	46	- 10	5. 5		
21	2.2	14	22	27	Ś1	41	24	38	33	5	7 2	5 64
22	2.3	18	21	32	40	46	24	34	24	6	0 20	5 57
23	2.3	19	21	32	33	62	24	34	20	5	5 2	1 46
24	2.4	18	20	29	30	51	23	31	17	5	0 21	5 54
25	2.5	e17	20	27	30	43	23	28	15	4	0 10	60
											• • • •	
26	2.5	e16	20	26	28	37	22	26	18	7	3 1	
27	2.6	e15	20	26	28	34	22	24	16	2	R 1	
28	3.1	e17	20	25	29	32	22	23	15	2	1 1.) <u>65</u>
29	3.5	e19	20	24		31	31	21	13	2	2 11	
30	4.0	18	20	24		40	48	20	12	2.		
31	4.4		20	54		43		10		2.1	7 .00	
5		1.2				13		19		1.		,
TOTAL.	45 77	323 9	677	705	070	10.65	0.07	1.226				
MEAN	1 48	10 8	20 4	25 2	30 0	1002	30 0	1320	493	231.5	100.09	23.04
MAX	4 4	10	20.4	23.3	30.0	34.4	29.9	42.8	16.4	1.47	3.23	. 77
MTN	27	4 4	16	32	. 51	62	. 48 .	107	-39	19	38	2.3
AC-FT	.23	4.4	100	20	23	24	22	19	10	1.7	.08	.12
nu=r1	71	042	1200	1200	1660	2110	1780	2630	978	459 ·	199	46
	1.41										1997 (B. 1997) 1997 - 1997 (B. 1997)	

Estimated

- Arad

07301420 SWEETWATER CREEK NEAR SWEETWATER, OK--Continued

5	STATIST	CS OF	MONTHL	Y MEAN	DATA FOR	WATER	YEARS	1986 -	1993, BY	WATER	YEAR	(WY)
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
			a di second				1977 - 1977 -	and a start			1. A	
MEAN	18.2	22.9	25.8	29.9	31.9	39.0	32.0	33.1	31.2	10.7	4.61	12.0
MAX	72.2	61.1	37.9	41.1	51.3	73.0	45.0	47.9	65.6	17.4	18.2	51.6
(WY)	1987	1987	1987	1987	1987	1987	1988	1987	1989	1989	1989	1968
MIN	1.48	10.8	15.2	19.9	18.6	17.9	16.2	18.1	16.4	3.72	.61	. 77
(WY)	1993	1993	1991	1991	1991	1991	1991	1991	1993	1990	1986	1993
4 - A						2 J			and the second sec			1.0
SUMMARY	STATIS	FICS	1992	CALENDA	R YEAR	19	93 WAT	ER YEAR	1	NATER Y	TEARS 1	986-93
					2011 1			den de la composition de la composition La composition de la c				et a start de la composition de la comp Nota
ANNUAL	TOTAL		7092	. 37		6762	.30					
ANNUAL	MEAN		1	9.4		1	8.5		24.	. 5		
HIGHEST	ANNUAL	MEAN							41.	.4 1	.987	
LOWEST	ANNUAL M	IEAN							14.	.51	991	
HIGHEST	DAILY M	IEAN		83	May 29		107	May 3	31	10 J	lun 14 1	.989
LOWEST	DAILY ME	AN		. 23	Sep 26		.08	Aug 30	. (A 80	ug 30 1	993
ANNUAL	SEVEN-DA	Y MINI	MUM	. 24	Sep 26		.15	Aug 24		15 A	ug 24 1	993
INSTANT	ANEOUS P	EAK FL	OW	100	a da Ar		118	May 3	. 54	15 J	lun 14 1	989
INSTANT	ANEOUS P	EAK ST	AGE			9	.83	May 3	12.0	30 J	lun 14 1	989
ANNUAL	RUNOFF	AC-FT)	del 14	070		13	410		177:	30 .		
10 PERC	ENT EXCE	EDS		37			37			45		
50 PERC	ENT EXCE	EDS		19			19			20		
90 PERC	ENT EXCE	EDS		1.10			. 59		2	. 5		

55

07301500 NORTH FORK RED RIVER NEAR CARTER, OK

LOCATION. -- Lat 35°10'05", long 99°30'25", in NW 1/4 SE 1/4 sec.15, T.8 N., R.22 W., Beckham County, Hydrologic Unit 11120302, on left bank on downstream side of roadway on State Highway 34, 3.0

mi south of Carter, 10.8 mi downstream from Timber Creek, and at mile 110.5. DRAINAGE AREA. -- 2,337 mi², of which 399 mi² is probably noncontributing.

PERIOD OF RECORD. -- October 1944 to September 1962. Annual maximum and occasional low-flow measurements, water years 1963-64. August 1964 to current year. REVISED RECORDS.--WSP 1211: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 1,673.71 ft above sea level.

REMARKS. -- Records fair. U.S. Army Corps of Engineers' satellite telemeter at station.

PEAK DISCHARGES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 3,200 ft³/s:

Date	Time	Dienham		ta ett.	
1.1.1		DISCUALGO	Gage Height	Date	Time Discharge Gage Height
		(ft ³ /s)	(ft)		(f+3/a)
May 8	2000	3,960	8.48	Na	(IL /S) (IL)
				NO Other	peak greater than base discharge.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FE:	B MJ	AR AP	R MAY	JUN	JUL	AUG	SEP
1	2.2	7.	3 81	97	101		<u>.</u>		· · · · · ·			1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -
2	2.4	7.	5 79	. 80	102	4 13	9 325	289	216	81	20	18
3	2.0	7.	5 74	05	101	10 I O	1 261	957	e150	123	28	13
4	1.8	7.	7 71	131	101	20	6 233	992	e134	111	465	10
5	1.7	8.0	66	122	104	21	1 221	612	e120	81	312	8.4
				100	101	18	3 207	491	9. e111	66	211	6.9
6	1.7	. 8.5	5 65	114	0.0				, 11	$F^* = M_{\rm eff}$		
7	1.5	9.1	64	103		10	218	387	e105	58	146	5.7
8	i.5	9.8	71	103	99	15	223	334	e102	178	e103	5.8
9	1.7	11	96	115	94	152	214	1850	e99	90	e75	11
10	2.0	12	102	113	56	145	> 198	2920	e93	63	e62	11
			102	121	115	137	185	1230	e84	60	e48	9.0
11	1.9	14	96									
12	1.9	15	80	121	131	126	169	543	e80	50	38	7 1
13	2.0	15	. 00	102	127	117	158	377	e78	46	30	5 4
14	2.0	14	50	100	122	114	147	294	e76	51	25	5 4
15	2.0	15	. 98	102	127	115	161	286	e73	57	21	5.4
	ş. •	13	410	. 98	158	116	180	285	e71	70	18	4.2
16	2 0	16		,				Υ			10	4.2
17	2.3	16	114	111	e180	118	225	294	69	171	15	A 1
18	2 9	10	117	112	e150	118	224	282	65	152	13	3.0
19	3.6	. 13	117	121	e100	118	210	283	64	127	11	3.5
20	4 6	24	132	132	113	147	196	286	91	100	9.6	3.0
		74	123	122	157	186	175	320	359	79	9.6	3.0
21	4 9	5.2	115				4				5.0	2.9
22	5 0	23	115	121	. 258	249	153	295	294	70	7 9	2.0
23	5.0	90	104	135	197	244	135	260	270	63	7.0	2.9
24	5.0	100	100	170	160	304	124	533	201	53	6.0	2.5
25	5.1	106	94	144	134	379	118	599	150	46	0.2	2.7
	J.2	145	94	129	129	282	109	454	124	42	3.4	2.3
26	5 3	100							'	74	4.8	2.6
27	. J.J	122	90	124	125	239	106	348	121	39		• •
28	3.3	92	88	121	12.9	208	105	288	154	20	9.2	2.2
20	5.9	82	85	119	134	192	120	255	121	32	3.9	2.5
29	6.1	76	84	114		182	357	230	141	28	3.4	2.1
21	6.1	74	85	109		405	313	250		26	2.9	1.8
21	6.7	· • ·	84	103		390		203	19	24	25	1.2
								313		21	38	
TOTAL	104.5 1	218.4	2866	3607	3644	6002	6770		<u></u>			
MEAN	3.37	40.6	92.5	116	120	0003	5770	1/150	3852	2257	1768.8	166.2
IAX	6.7	:145	132	170	130	194	192	553	128	72.8	57.1	5.54
IIN	1.5	7.1	64	. 170	228	405	357	2920	359	178	465	1.0
C-FT	207	2420	5600	87	93	114	105	230	64	21	2 9	1 2
		2420	2080	7150	7230	11910	11440	34020	7640	4480	2.3	1.2
										1100	2210	330

Estimated

56

-60-

07301500 NORTH FORK RED RIVER NEAR CARTER, OK--Continued

	STATIST	ICS OF	MONTH	LY MEAN	DATA FOR	WATER	YEARS	1945 -	1993, 1	BY WATER	YEAR	(WY)
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	94.8	51.8	58.5	71.3	94.3	101	127	423	268	73.2	37:5	49
MAX	1195	360	271	319	365	465	683	2713	1246	828	431	368
(WY)	1987	1987	1960	1960	1960	1987	1973	1977	1951	1950	1950	1962
MIN	.000	.000	. 000	.000	.000	. 000	.079	.000	. 60	.000	000	-000
(WY)	1946	1946	1953	1953	1953	1955	1971	1971	1966	1954	1952	1945
SUMMARY	STATIS	TICS	1992	CALENDAR	YEAR	199	3 WAT	ER YEAR		WATER Y	EARS 1	945-93
ANNUAL	TOTAL		3453	35.6	•	48406	5.9				in the second	
ANNUAL	MEAN		5 A. 9	94.4		. 1	33		,	21		
HIGHEST	ANNUAL	MEAN							-	156 10	187	
LOWEST	ANNUAL M	EAN					r		12	0.9 10	101 181	
HIGHEST	DAILY N	EAN		583	Jul 15	29	20	May 9	207	100 Ma	v 26.1	959
LOWEST	DAILY ME	AN		1.5	Oct 7	2	.2	Sep 30		00 mc	st vel	irs:
ANNUAL	SEVEN-DA	Y MINIM	ÌUM	1.7	Oct 3	1	.7	Oct 3		00 mc	st vez	irs.
INSTANT	ANEOUS P	EAK FLO	W			39	60	May 8	534	00 Mz	v 26 1	959
INSTANT	ANEOUS P	EAK STA	GE			8.	48	May 8	14.	98 Ma	v 17 1	977
ANNUAL	RUNOFF (AC-FT)	68	3500		960	20		877	90		1. T
10 PERC	ENT EXCE	EDS	1. J. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	206		2	84		2	04		
50 PERC	ENT EXCE	EDS		84		1	00		,	33		
90 PERC	ENT EXCE	EDS		5.0		4	.0			00		

57

Ľ.

07316500 WASHITA RIVER NEAR CHEYENNE, OK

LOCATION.--Lat 35°37'35", long 99°40'05", in SE 1/4 sec.5, T.13 N., R.23 W., Roger Mills County,

-61-

Hydrologic Unit 11130301, on left bank on downstream side of bridge on U.S. Highway 283, 0.5 mi downstream from Sergeant Major Creek, 1.0 mi north of Cheyenne, 5.2 mi upstream from Dead Indian Creek, and at mile 543.9.

DRAINAGE AREA .-- 794 m12.

PERIOD OF RECORD. -- October 1937 to current year. Monthly discharge only for some periods, published in WSP 1311.

REVISED RECORDS .-- WSP 1211: Drainage area.

GAGE. --Water-stage recorder. Datum of gage is 1,900.98 ft above sea level. May 1, 1938, to Nov. 16, 1946, and Oct. 1, 1947, to Jan. 11, 1948, nonrecording gage at site 50 ft upstream and datum 5.00 ft higher. Jan. 12, 1948 to Dec. 31, 1976, at site 50 ft upstream and datum 5.00

a (1946) e

ft higher. Jan. 1, 1977, to Dec. 20, 1979, at site 50 ft upstream at same datum. REMARKS. -- Records fair. Flow regulated since 1961 by numerous flood-retarding structures. U.S. Army Corps of Engineers' satellite telemeter at site.

EXTREMES OUTSIDE PERIOD OF RECORD. -- Flood of Apr. 3, 1934, reached a stage of 1.0 ft lower than that in 1954, at site on upstream side of highway fill (at old bridge site).

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	TAN	FFD	MAD						
				Unit	r E.D	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.00	.02	6.4	14	20	34	43	61			·	
2	.00	.04	6.7	15	20	10	40	150	21	11	2.8	2.2
3	.00	.04	6.6	18	20	40	40	139	31	42	2.8	1.8
4	.00	.02	6.4	.18	20	10	40	121		30	4.3	1.3
5	.00	.02	6.0	17	19	36		115	25	22	3.9	1.1
						50	40	100	: 23	., 17 ., .	3.5	.70
6	.00	.02	7.0	17	19	34	42	84	54	a si gun i		
7	.00	.04	6.8	16	19	34	42	70	24	14	3.7	.56
8	.00	.07	7.1	17	19	33	<u>41</u>	95	27	14	3.6	.74
9	.00	.12	9.0	21	19	33	42	80	21	12	3.5	1.2
10	.00	.13	8.2	e15	20	31	40	74	10	11	3.3	1.2
2 A.						51	-10	/4	19	8.8	3.2	1.0
-11	.00	.13	7.6	e14	22	31		71	40			
12 ·	. 00	.15	8.2	e15	22	.31	39	<i>4</i> 0	42	7.4	2.6	. 62
13	.00	.17	11	e13	24	31	30	63	25	22	2.4	. 43
14	.00	.28	13	e13	24	31	45	61	21	1/	2.2	. 31
15	.00	.34	11	e15	30	31	10	56	10	21	2.0	.37
1 v					••	.	4 F	20	17	20	1.8	. 49
16	.00	.29	11	23	e26	31	46	52	16	10		
17	.00	. 42	14	22	e20	30	47	50	10	10	1.4	.46
18	.00	.71	15	21	e21	30	40	100	15	13	. 91	.37
19	.00	2.4	15	20	e28	35	. 40	110	101		. 47	. 30
20	.00	2.0	15	21	38	35	30	110	101	9.1	.12	. 35
							29	02	11	8.0	.00	.16
21	.00	4.1	15	23	39	15	36	74				
22	:00	6.2	15	26	38	44	26	74	50	7.6	.00	.16
23	.00	5.4	15	24	36	45	20	65	98	7.4	. 02	.10
24	.00	6.4	14	23	35	46	30	59	48	6.5	.10	.00
25	.01	7.5	14	23	35	40	30	53 .	32	5.8	.14	.03
					55	44	CC.	47	23	5.2	.00	. 59
26	.02	6.7	14	22	22	*7	24		2.2			
27	.02	5.6	14	22	22	43	34	44	36	4.7	.00	. 45
28	.02	6.0	15	22	32	41	34	41	43	4.0	.00	. 52
29	.02	6.5	15	21	32	40	37	37	28	3.6	. 00	.34
30	.02	6.4	15	20		42	.74	34	21	3.4	. 00	.25
31	.02		14	20		49	55	32	19	3.2	.00	.23
		4		20		46		30		2.9	1.1	
TOTAL	0.13	68.21 3	51.0	501	710							
MEAN	.004	2.27	11 7	10 1	130	1144	1250	2298	989	440.6	49.86	18.33
MAX	.02	7.5	15	19.1	40.1	36.9	41.7	74.1	33.0	14.2	1.61	. 61
MIN	.00	. 02	6.0	120		49	74	198	101	71	4.3	2.2
AC-FT	.3	1 15	696	1120	19	30	34	. 30	15	2.9	.00	.00
		***	330	11.0	1450	2270	2480	4560	1960	874	.99	36

Estimated

E

		073	16500	WASHT	TA RIVER	NFAD	CUEVE		KCont			
			10000		AR NIVER	N HOAR	CHEI	ENNE, O	ncont	inued		
	STATIST	ICS OF	MONTH	LY MEAN	DATA FOR	WATER	YEARS	1962 -	1993, B	Y WATER	YEAR	(WY)
· ·	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	7.41	7.76	9.29	12.4	16.7	22.1	27.5	46.5	36.5	6.97	2.82	4.08
MAX	72.9	64.3	33.8	46.8	46.5	74.8	131	348	203	61.7	14.8	35.3
(WY)	1987	1987	1987	1987	1987	1987	1990	1977	1982	1982	1977	1962
MIN	.000	.000	.000	.026	1,50	2.22	1.08	.000	.005	.000	.000	.000
(WY)	1964	1964	1964	1973	1973	1967	1971	1971	1970	1964	1963	1964
SUMMARY	STATIS	TICS	1992	CALENDA	r year	199	93 WATE	ER YEAR	1	VATER YE	LARS 1	962-93
ANNUAL	TOTAL		4231	. 77		7930.	.13			, e î e e		
ANNUAL	MEAN		1	1.6		21	1.7		* 16.	6		
HIGHEST	ANNUAL	MEAN	1						57.	1 19	82	
LOWEST	ANNUAL M	EAN							2.0	50 19	72	
HIGHEST	DAILY M	EAN		82	May 23	. i	198	May 18	150	50 Ap	r 23 1	990
LOWEST	DAILY ME	AN		.00	Sep 15		.00	at times	()0 mo	st yea	rs
ANNUAL	SEVEN-DA	Y MININ	IUM	.00	Sep 15		.00	Oct 1		o oc	t 1 19	61
INSTANT	ANEOUS P	EAK FLO	W	· .	$X \to 0$		263	Jun 22	b725	50 Ap	r 22 1	990
INSTANT	ANEOUS P	EAK ST	GE	i		9.	.08	Jun 22	16.0	50 Ap	r 22 1	990
ANNUAL	RUNOFF (AC-FT)	B	390		157	730		1205	50 · -		the second
10 PERC	ENT EXCE	EDS		23			46			4	۰.	
50 PERC	ENT EXCE	EDS		11			15		[°] 5.	8		
90 PERC	ENT EXCE	EDS		.00			.02		. (0		

-62-

^aPrior to regulation, water years 1938-60, 41.7 ft³/s.

Maximum discharge for period of record 69,800 ft³/s, Apr. 29, 1954, from rating curve extended above 27,000 ft³/s on basis of contracted opening.

105
RED RIVER BASIN

07316000 RED RIVER MEAR GAINESVILLE, TX

IDCALIUN.--Lat 33°43'40", long 97°09'35", in SW 1/4 sec.36, I.9 S., R.1 E., Love County, OK, Hydrologic Unit 11130201, on downstream right bank at end of bridge on Interstate 35, 0.2 mi downstream from Gulf, Colorado, and Santa Fe Railway Cu. bridge, 5.0 mi downstream from Fish Creek, 4.5 mi southwest of Thackerville, OK, 7.0 mi north of Gainesville, and at mile 791.5.

DRAINAGE AREA. -- 30,782 mi* of which 5,936 mi* probably is noncontributing.

PERIOD OF RECORD. -- May 1936 to current year. Monthly discharge only for some periods, published in WSP 1311.

REVISED RECORDS. -- WSP 1211: Drainage area.

GAGL:--Waler-Stage recorder. Datum of gage is 627.91 ft above National Geodetic Vertical Datum of 1929. Prior to Jan. 17, 1939, and Feb. 13, 1965 to Nov. 14, 1966, nonrecording gage at same site and datum.

RIMARKS.--Records poor. How slightly regulated by take Kemp (station 0/312000 in Texas), since 1943 by take Altus (station 0/302500 in Oklahoma), since 1946 by take Kickapoo (station 0/314000 in Texas), since 1967 by take Arrowhead (station 0/314800 in Texas), and since 1968 by Moss take (station 0/315950 in Texas). U.S. Army Corps of Engineers satellite telemeter at station.

4.0

PLAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 24,000 fl³/s:

Date	Time	Discharge (ft'/s)	Gage height (ft)	Date		lime	Discharge (ft³/s)	Gage height (ft)
Nov. 23 Dec. 16	1800 1100	24,300	18.21 19.35	Apr. Mav	1 4	0900 0400	33,400	20.09 18.27
Feb. 17 Mar. 3	1600 0800	33,100 25,000	20.03 18.41	May	11	1100	117,000	30.99

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993 DAILY MEAN VALUES

		and the second second										
DAY	001	NÜV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	563	390	e5300	2920	2430	11600	29100	11000	6590	4080	e1040	746
2	536	613	e5000	2930	2330	20300	14200	15900	6050	3320	e968	218
3	524	623	e4600	2860	2280	23900	10200	19100	6000	e2440	e961	744
4	512	456	e4050	2720	e2260	17100	e9000	23100	5850	e2200	e968	731
5	500	423	e3700	27,40	e2400	12000	e8000	18500	5170	e2030	1030	728
6	486	408	e3100	2590	e2380	8430	e7200	15700	4790	e1950	e1060	271
1	472	391	e2800	2340	e2350	8020	e6600	15200	4270	e1920	e1210	948
· 8	504	377	2060	e2000	e2300	8340	e6300	14600	4260	e1920	e1740	920
.9	491	3//	2110	2520	e2050	7870	e6000	43700	4900	e1940	e2570	984
10	4/5	3/5	2730	3000	e2080	110	e5600	87700	8120	e1980	1780	1050
11	461	387	2860	2900	e2200	6760	e5300	114000	8140	e2220	2200	1010
12	449	460	//50	2880	e2400	6420	e5000	102000	9130	2750	1750	887
13	435	484	9350	3180	e2/00	6100	4760	79100	7130	4430	1460	864
14	412	8010	13100	3040	e3500	5410	4920	62800	6100	3370	1280	1890
12	410	7420	21300	4000	4780	4850	5010	32100	4680	e2350	1150	3620
16	402	4310	28100	4020	19600	4620	9640	24600	4020	e2080	1030	5810
17	400	2770	20800	3460	31300	4420	16200	20200	3450	e2040	958	4250
18	394	2160	13900	2870	22700	4290	14700	17400	2910	e2300	904	2650
19	3/9	2080	8500	2600	14300	4180	11000	14900	2650	3520	855	1460
20	3/3	2140	0000	2950	8780	3800	8960	12300	e2400	5320	826	1070
21	374	4320	6030	3830	7450	3560	7960	11300	e2240	3460	810	1/60
22	375	13900	5790	4400	7260	4070	7070	10100	e2160	e2400	790	2020
23	3//	20400	5670	7360	6810	5210	5860	8340	3060	e2050	767	1500
24	3/0	21100	5060	6260	6830	6460	4880	10700	7360	e1790	877	1020
25	3//	14200	4380	5340	8510	5570	4300	13/00	7110	e1650	782	821
26	3/5	10200	3760	4880	11000	5610	4230	10700	4370	e1570	773	762
- 27	375	11100	3440	4220	12200	5920	4210	12400	3370	e1420	746	735
28	375	10900	3290	3770	10200	5110	4250	13600	4020	e1180	718.	876
29	3/1	e/200	3170	3390		4450	5060	9500	7120	e1190	697	881
30	3/1	66100	3080	2870		4060	6020	8210	5800	e1160	716	653
31	3/1		2980	2580		19200		7500		e1100	798	
TUTAL	13295	154074	214420	108020	205380	244740	241530	859950	153220	73130	34214	42873
MLAN	429	5136	6917	3485	7335	7895	8051	27740	5107	2359	1104	1,429
MAX	563	21100	28100	7360	31300	23900	29100	114000	9130	5320	2570	5810
MIN	3/1	3/5	2060	2000	2050	3560	4210	7500	2160	1100	697	653
AL-FI	26370	305600	425300	214300	407400	485400	479100	1706000	303900	145100	67860	85040
e ts	timated				· .				17 A. A.			
STATIST	ICS OF M	ION THEY MI	EAN DATA	FOR WATER	YEARS 19	37 - 1993	, BY WATE	R YEAR (W	Y.)		n.	
MEAN	3970	1964	1500	1200	1697	2600	3440	9201	. 0170	0100	1000	
MAX	31080	14020	14990	7152	9984	14600	27400	47790	42610	2129	1290	233/
(WY)	1942	1942	1992	1985	1987	1987	1900	1057	10/1	1050	12940	1000
MIN	119	137	125	82.4	151	90.5	153	204	640	1950	1950	100
(WY)	1953	1955	1940	1940	1953	1940	1971	1971	1966	1964	1970	1956
SUMMARY	STATIST	ics	FOR	1992 CAL	ENDAR YEAR	a peri	OR 1993	WATER YEA	R 1975	WATER	YEARS 1937	- 1993
ANNUAL	INTAL			2130070			2244946					

			201000			
ANNUAL MEAN	5847		6424	1	3227	÷
HIGHEST ANNUAL MEAN					11900	1007
LOWEST ANNUAL MEAN					661	1007
HIGHEST, DATLY MEAN	63400	gun 19	114000	May 11	232000	May 31 1987
LOWCOL DATEL WEAN	3/1	UCT 29	. 371	0ef 29	28	136 19 1070
ANNUAL SEVEN-DAY MINIMUM	374	Oct 25	374	0ct 25	48	Jan 18 1940
INSTANTANEOUS PEAK FLOW			117000	May 11	265000	May 31 1087
INSTANTANEOUS PEAK STAGE		10 A.	30.99	May 11	40.08	May 31 1097
ANNUAL RUNOFF (AC-FT)	4245000		4651000		2338000	May 31 1907
10 PERCENT EXCEEDS	14000		14000		2330000	
50 PERCENT EXCEEDS	3730		2450		/120	
OD PERCENT EXCEEDS	3730		3450		/9/	
So TENCENT EXCLEPS	49/		490		210	

RED RIVER BASIN

07331500 TAKE TEXOMA NEAR DENISON, TX

IOCATION.--Lat 33"49'05", long 96"34'20", in NET/4 sec.33, 1.8 S., R./ t., Bryan County, OK, Hydrologic Unit 11130210, in control tower of Denison Dam on Red River, 1.2 mi upstream from Shawnee Creek, 1.8 mi upstream from Sand Creek, 4.0 mi northwest of Denison, 6.0 mi southwest of Colbert, and at mile 725.9.

DRAINAGE AREA. -- 39,719 mif, of which 5,936 mif is probably noncontributing

PENIOD OF RECORD. -- July 1942 to current year. Monthend contents only for some periods, published in WSP 1311.

REVISED RECORDS. -- WSP 1211: Drainage area.

GAGE. Mater-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929. Prior to Mar. 30, 1944, non-recording gage at same site and datum. Prior to Oct. 1, 1948, supplementary nonrecording gage in Lumberland pool at the same datum.

RIMARKS.---ihe lake is formed by a rolled earthfill dam. The controlled outlet consists of eight 20-foot-diameter cunduits and the uncontrolled outlet is a concrete, ogge-type weir spillway. Flow was diverted through conduits July 27, 1942; regulated storage began Oct. 31, 1943; power pool was first filled March 15, 1945. Capacity, based on 1969 survey, 5,312,000 acre-ft at elevation 640.0 ft, crest of spillway. 2,643,600 acre-ft at elevation 617.0 ft maximum power pool; 1,031,000 acre-ft at elevation 590.0 ft, minimum power pool, in Denison pool. Dead storage 11,000 acre-ft at elevation 610.0 ft in Cumberland pool. When contents are below 2,105,000 acre-ft, the reservoir is divided into two pools by protective levees around the Cumberland oil field on the Mashita River arm with bottom outlet channel for the upper pool (known as Cumberland pool) at elevation 610 ft. At higher elevations the two pools are considered as being at a common level, contents being computed from gage in Denison pool. Figures given herein represent total contents of both pools. Lake is used principally for flood control and power development. Revised (apacity table, based on survey in 1969, used since Oct. 1, 1977. U.S. Army Corps of Engineers' satellite telemeter at station.

COUPERALION .-- Records provided by U.S. Army Corps of Engineers.

EXIMIMES FOR PERIOD OF RECORD.--Maximum contents, 6,028,000 acre-ft May 6, 1990 (elevation, 644.76 ft); minimum since puwer pool was first filled, 1,565,100 acre-ft Sept. 16, 1964; minimum elevation, 599.96 ft Mar. 1, 2, 1957.

EXIREMES FOR CURRENT YEAR.---Maximum contents, 4,427,000 acre-ft, May 16 (elevation, 633.49 ft); minimum, 2,496,000 acre-ft Nov. 8 (elevation, 615.24 ft).

Capacity table (elevation, in feet, and contents, in acre-ft)

614.0	2,399,000	626.0 632.0	3.538.000 4,240,000	638.0 645.0	5,029,000 6,066,000
					10 C 1

RESERVOIR STORAGE (ACRE-FEE1), WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993 DAILY OBSERVATION AT 24:00 VALUES

												660
DAV	001	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	51.P
1 2 3 4	2569000 2569000 2571000 2572000	2510000 2505000 2513000 2504000	2816000 2797000 2783000 2775000	2828000 2817000 2810000 2802000	2637000 2624000 2618000 2615000	2903000 2959000 3015000 3033000	2679000 2704000 2700000 2703000	2623000 2649000 2659000 2679000	3484000 3428000 3366000 3307000	2831000 2828000 2822000 2817000 2813000	2720000 2715000 2700000 2689000 2685000	2539000 2538000 2539000 2536000 2536000
5	2573000	2501000	2763000	2 790 000	2606000	3016000	2694000	2692000	3240000	2013000	2003000	2333000
6 7 8 9 10	2570000 2576000 2565000 2562000 2561000	2498000 2499000 2500000 2501000 2499000	2757000 2759000 2752000 2757000 2754000	2778000 2767000 2751000 2753000 2736000	2597000 2591000 2585000 2577000 2574000	2975000 2925000 2879000 2842000 2804000	2672000 2668000 2653000 2647000 2645000	2706000 2704000 2711000 3040000 3315000	3175000 3109000 3065000 3017000 3008000	2805000 2802000 2797000 2797000 2797000 2798000	2668000 2657000 2648000 2643000 2643000 2640000	2532000 2525000 2531000 2531000 2527000
11 12 13 14 15	2560000 2556000 2553000 2550000 2538000	2506000 2512000 2520000 2533000 2552000	2/47000 2742000 2771000 2903000 2992000	2730000 2728000 2721000 2711000 2708000	2570000 2558000 2550000 2547000 2603000	2767000 2749000 2724000 2703000 2688000	2641000 2636000 2631000 2657000 2660000	3656000 3986000 4219000 4374000 4421000	3020000 3008000 2991000 2971000 2943000	2/99000 2799000 2799000 2804000 2807000	2639000 2636000 2633000 2626000 2619000	2520000 2515000 2525000 2564000 2593000
16 17 18 19 20	2533000 2533000 2533000 2528000 2527000	2565000 2577000 2584000 2602000 2608000	3095000 3167000 3202000 3205000 3186000	2700000 2694000 2687000 2681000 2690000	2669000 2758000 2840000 2879000 2884000	2682000 2666000 2646000 2643000 2642000	2650000 2655000 2655000 2659000 2646000	4421000 4399000 4361000 4300000 4232000	2921000 2903000 2888000 2875000 2860000	2807000 2806000 2805000 2806000 2813000	2614000 2607000 2601000 2595000 2589000	2616000 2635000 2646000 2653000 2664000
21 22 23 24 25	2525000 2524000 2522000 2517000 2516000	2631000 2650000 2693000 2771000 2814000	3160000 3123000 3083000 3043000 3013000	2689000 2687000 2696000 2689000 2689000 2690000	2877000 2859000 2835000 2826000 2872000	2639000 2647000 2641000 2643000 2642000	2639000 2638000 2636000 2635000 2635000	4158000 4085000 4030000 3967000 3912000	2848000 2838000 2827000 2823000 2823000 2823000	2815000 2814000 2809000 2800000 2790000	2582000 2573000 2562000 2577000 2564000	2665000 2665000 2667000 2666000 2669000
26 27 28 29 30 31	2517000 2513000 2510000 2509000 2507000 2507000 2504000	2824000 2830000 2840000 2844000 2828000	2978000 2943000 2905000 2879000 2854000 2840000	2686000 2682000 2678000 2669000 2660000 2649000	2885000 2877000 2862000	2638000 2635000 2634000 2631000 2625000 2635000	2623000 2614000 2610000 2618000 2616000	3852000 3789000 3738000 3684000 3621000 3556000	2829000 2828000 2830000 2834000 2834000	2782000 2772000 2763000 2748000 2738000 2728000	2552000 2559000 2554000 2551000 2549000 2543000	2670000 2664000 2659000 2657000 2652000
MAX MIN (†)	2576000 2504000 615.34 -65000	2844000 2498000 619.03 +324000	3205000 2742000 619.15 +12000	2828000 2649000 617.06 -191000	2885000 2547000 619.38 +213000	3033000 2625000 616.91 -227000	2704000 2610000 616.68 -19000	4421000 2623000 626.16 +940000	3484000 2823000 619.09 -722000	2831000 2728000 617.94 -106000	2720000 2543000 615.83 -185000	2670000 2515000 617.10 +109000
CAI WIR	YR 1992 YR 1993	MAX 382 MAX 442	0000 MIN 1000 MIN	2498000 2498000	(\$)	+1041 83000						· ·

tlevation, in feet, at end of month. Change in contents, in acre-feet. (1)

-65-

RED RIVER BASIN

07335500 RED RIVER AT ARTHUR CITY, TX

IOCATION.--Lat 33"52'30", long 95"30'06", in NW 1/4 sec.11.F.8 S., R.17 E., Chuctaw County. OK, Hydrologic Unit 1140101, on right downstream bank of bridge on U.S. Highway 271 at Arthur City, 10.6 mi downstream from Muddy Boggy River, 26.0 mi upstream from Kiamichi River, and at mile 633.1.

DRAINAGE AREA.--44,531 mi*; of which 5,936 mi* probably is noncontributing.

PERIOD OF RECORD. -- January to September 1905 (gage heights and discharge measurements only). October 1905 to December 1911, July 1936 to current year. Monthly discharge only for some periods, published in WSP 1311. Gage-height records collected at some site since 1891 are contained in reports of the National Weather Service.

REVISED RECORDS.-- WSP 1241: Drainage area. WSP 1311: 1906-11.

GAGE.-- Water-stage recorder. Datum of gage is 380.07 ft above National Geodetic Vertical Datum of 1929. From 1905-11 nonrecording gage at St. Louis-San Francisco Railway Co. bridge 200 ft upstream at same datum. July 1, 1936, to Mar, 24, 1940, nonrecording gage at present site and datum.

REMARKS.--Records fair. Flow regulated since October 1943 by Lake Texoma (station 07331500), 92.8 mi upstream from station. U.S. Army Corps of Engineers satellite telemeter at station.

AVERAGE DISCHARGE FOR PERIOD PRIOR TO REGULATION.--13 years (water years 1906-11, 1937-43) prior to regulation by take Texoma, 9,266 ft³/s (6,713,000 acre-ft/yr).

EXIREMES FOR PERIOD PRIOR TO REGULATION (WATER YEARS, 1906-11, 1937-43).--Maximum discharge, 400,000 ft³/s May 28, 1908 (gage height, 43.2 ft), on basis of records for later years.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993 DATLY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	API	₹ МАУ	JUN	JUL	AUG	SEP
1 2 3 4 5	2030 1830 1740 2040 2040	2150 2170 2000 1680 1870	15200 15400 15400 13900 11900	20900 15100 13500 13300 13200	11800 11600 11500 12000 14900	37900 48200 41200 38600 40500	21700 30400 29700 29100 32300) 24000) 19800) 16400) 16100) 27200	48900 47900 44300 44100 43600	10200 11400 9900 9150 8910	7100 7150 7200 7410 7370	3970 3500 3730 3640 3410
6 7 8 9 10	1660 1490 1970 2390 2720	2080 2560 1970 1700 1060	10700 9430 8080 6790 8560	13200 13000 12800 12900 13000	14900 13200 12100 10600 10600	42400 43900 42500 39100 35800	34700 33700 e32900 31700 28000) 32900) 36100) 41100) 48500) 87600	43100 42700 42500 43000 44900	8790 8190 7390 6800 6400	7350 7150 7120 6590 6220	3400 3260 3230 3480 3150
11 12 13 14 15	2740 2270 1640 2190 2630	1040 1610 2040 2670 3920	12600 15400 16000 16900 29100	13300 13800 13900 14000 13900	14700 18700 18000 16500 16800	33800 31800 27100 22300 21300	19100 16900 15800 15600 24200	65300 45400 43500 48300 51600	46300 51400 44800 37100 32900	e6220 e6050 e5870 e5700 e5520	5900 5720 4770 4860 4900	2800 3040 4170 3920 4910
16 17 18 19 20	2440 5250 3560 2070 1440	3160 1540 1090 1730 1930	35100 36000 34600 33400 38300	13200 12600 12300 12100 13600	33800 33700 30200 31,300 32700	25400 29800 23900 20200 28000	27800 33100 38100 39400 38100	57700 60800 59400 57200 56700	28200 25800 21400 20400 17900	e5460 e5390 e5330 e5270 5250	4970 5070 4830 4680 4600	7010 8260 7970 8010 6620
21 22 23 24 25	1430 2150 2200 2180 2170	2050 2970 5300 8370 11300	38000 37400 37700 36700 33200	20600 22800 20600 20200 17300	36400 35400 34100 32100 33700	32800 25100 22500 28500 26300	32700 27200 18700 15500 14400	55700 53500 53500 54100 56900	1700ð 15900 14100 13600 13300	5080 5060 5200 6260 6660	4580 4580 4230 4790 4900	5940 7500 8630 7020 5230
26 27 28 29 30 31	2680 2670 1910 2080 2080 2080	15100 19600 19800 17100 15600	28700 27900 27700 27800 26600 23200	14300 13200 12700 12500 12200 11900	37500 34700 34500	20800 19800 16300 14900 14500 14500	14600 16200 16100 16900 24600	58200 56300 54200 52800 49400 49600	14000 15000 12900 11200 10200	6960 7120 6840 e7060 7190 7140	4430 4790 4580 4180 4070	4640 4910 5160 5370 4910
TUTAI MEAN MAX MIN AC-FI	89770 2251 5250 1430 138400	157160 5239 19800 1040 311700	727660 23470 38300 6790 1443000	451900 14580 22800 11900 896300	648000 23140 37500 10600 1285000	909900 29350 - 48200 14500 1805000	769200 25640 39400 14400 1526000	1490800 48090 87600 16100 2957000	908400 30280 51400 10200 1802000	213760 6895 11400 5060 424000	170130 5488 7410 4040 337500	150790 5026 8630 2800 299100
e L	stimated	())										
MEAN	7122		LAN DATA	FOR WATER	YEARS 194	15 - 1993	₩, BY WAT	TER YEAR (1	YY)			
MAX (WY) MIN (WY)	40240 1982 263 1957	37170 19/5 242 1957	32340 1992 894 1957	39930 1992 1126 1964	8252 24200 1946 1138 1959	10060 38610 1987 1118 1967	11420 55500 1990 1343 1956	17010 103900 1990 2837 1980	18600 83820 1957 2074 1956	7777 27700 1989 1586 1956	4589 34840 1950 1108 1972	4687 19010 1950 859
SUMMARY	STATIST	ICS	FOR	1992 CAL	ENDAR YEAR		FOR 1993	WATER YEAR	1	WATER Y	EARS 1945	1903 <i>4</i>
ANNUAL ANNUAL HIGHEST IOWEST IOWEST ANNUAI INSTANT ANNUAL IO PERC 90 PERC	TUTAL MEAN ANNUAL M DAILY ME SEVEN-DA' ANEQUS P RUNOFF (/ ENT EXCEI ENT EXCEI	MEAN EAN AN Y MINIMUM EAK FIOW FAK STAGE AC-FT) EDS EDS EDS	· · · · · · · · · · · · · · · · · · ·	6721680 18370 62800 1040 1710 3330000 39700 15100 2190	Jun 9 Nov 11 Nov 7		6667470 18270 87600 1040 1710 95100 22 13220000 1322000 13300 2190	May 10 Nov 11 Nov 7 Nov 7 May 10 53 May 10		9158 23290 2754 269000 134 134 275000 23900 23900 4120 1310	May a/Dec Dec May May	1990 1964 4 1990 11 1956 11 1956 4 1990 4 1990

Period of regulated streamflow.
Also occurred Dec. 12, 1956.

-66-

RED RIVER BASIN

07336820 RED RIVER NEAR DE KALB, 1X

LOCATION .--Lat 33"40'59", long 94"41'39", Bowie County, Hydrologic Unit 11140106, on right bank at downstream side of bridge on U.S. Highway 259, 4.8 mi upstream from North Mill Creek, 13 mi north of De Kalb, and at mile 556.9.

DRAINAGE AREA.--47,348 mi4, of which 5,936 mi4 probably is noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--December 1967 to current year.

.....

GAUL .-- Water-stage recorder. Datum of gage is 302.92 ft above National Geodetic Vertical Datum of 1929.

REMARKS,--No estimated daily discharges. Records good. At times, flood peaks may be affected by take lexoma (station 0/331500) located approximately 169 mi upstream, and low flows may be affected by releases for the generation of electric power. Storage and/or releases from take Hugo on the Kiamichi River, a tributary to the Red River about 45 mi upstream, may also affect flows. Gage-height telemeter at station.

EXIRIMIS OUTSIDE PERIOD OF RECORD.--Maximum discharge since 1957, 205,000 ft³/s June 1957 (gage height, 32.2 ft), from rating curve extended above 186,500 ft³/s. The greatest flood since 1936 occurred in February 1938, stage unknown.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1992 10 SEPTEMBER 1993 DAILY MEAN VALUES

c	л у	001	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
	1 2 3 4	3520 3550 3100 2690 2530	2820 2850 2860 2820 2640	24000 21200 20100 19400 17300	28900 25700 21300 23500 25100	15500 15200 14900 16400 17800	45100 60700 65000 52400 52100	14300 19500 26100 27500 27700	27600 28700 23900 19600 17700	57000 56700 55300 55100 56800	10600 10100 11200 10500 9160	7410 7440 7500 9860 12300	3870 3860 3660 3320 3620
	5 7 8 9	2750 2710 2430 2370 2750	2490 2600 2870 2990 2700	15000 13400 11700 11400 12700	24600 26000 25600 22100 20200	19100 19400 17600 16000 14800	59000 61100 60700 53000 42800	31100 35800 36700 36400 31500	22800 26900 30800 37100 81200	56800 56100 53000 51800 52700	8860 8680 8520 7730 6770	9390 6930 6650 6580 6190	3280 3240 3170 3080 3050
	10 12 13 14	3140 3350 3330 2850 2500	2550 2270 2380 2670 2940	16800 21300 23800 29400 49700	19700 20400 21400 21400 21200	15100 18600 22000 22000 21300	35400 33800 32000 26800 22800	26800 19900 17000 16100 19300	113000 82400 53200 48100 52100	52200 51000 53700 49500 45600	6500 6220 5950 5650 5470	5700 5550 5280 4790 4390	3290 2810 2550 3130 4110
	16 17 18 19	3020 3200 3890 4950 3570	3490 4030 3200 2450 3060	64100 66600 64100 62800 66800	19600 17900 17200 16900 17600	28900 43300 41600 39600 42000	21500 27700 31800 26900 26900	28500 37500 44000 48700 51400	57000 60800 63400 61700 58400	44200 39400 34700 28700 25800	5560 5530 5470 5320 5350	4480 4560 4670 4560 4400	4010 5680 7370 7880 7780
	21 22 23 24	2720 2320 2330 2760	3800 7720 8560 11400	71100 68300 64800 61900 57200	22100 30800 32700 32300 31500	44400 47100 45600 42900 42700	33800 35500 29000 28700 33300	45700 37600 30100 20500 17000	57100 58100 57200 58200 56600	23000 19700 17100 15100 14200	5370 5270 5170 5200 5850	4320 4240 4220 4160 4210	7270 5880 6580 8040 7790
	25 26 27 28 29 30	2810 2830 3330 3090 2760	24400 29100 29500 27600 25300	48600 41800 40900 40800 39200 34900	28500 23400 19400 17500 16500 16000	46700 48100 46100	31800 26600 24800 22200 17400 14800	15800 19100 23100 22400 22300	56700 59000 57900 57800 59000 57600	13900 14300 15400 14400 12400	6820 7100 7350 7400 7430 7420	4560 4490 4100 4250 4170 3880	6180 4860 4780 4930 5240
	TOTAL MEAN MAX MIN AC-F1	92690 2990 4950 2320 183900	243460 8115 29500 2270 482900	1201100 38750 71100 11400 2382000	707000 22810 32700 16000 1402000	824700 29450 48100 14800 1636000	1135400 36630 65000 14800 2252000	849400 28310 51400 14300 1685000	1601600 51660 113000 17700 3177000	1135600 37850 57000 12400 2252000	219520 7081 11200 5170 435400	175230 5653 12300 3880 347600	144310 4810 8040 2550 286200
	STALLS	LICS OF	MONTHE Ý M	EAN DATA I	OR WATER	YEARS 19	68 - 1993	B. BY WATE	R YEAR (W	I¥)			
	MEAN MAX (WY) MIN (WY)	9195 39980 1982 1783 1979	13990 53170 1975 2105 1980	13830 45440 1972 1608 1978	114/0 49500 1992 1699 1981	14/80 31000 1969 2876 1976	19800 48590 1987 2492 1980	18970 62330 1990 3005 1981	25200 125500 1990 4707 1972	27200 67360 1987 2909 1988	9416 35030 1982 2598 1972	5072 14250 1992 1418 1972	5612 24010 1974 1368 1988
	SUMMAR	AV STATIS	TICS	FOR	1992 CAL	ENDAR YE	AR	FOR 1993	WATER YE	AR	WATER	YEARS 1968	- 1993
	ANNUAI ANNUAI HIGHES LOWES NNUAI TNSTAI INSTAI NNSTAI ANNUA 10 PE 50 PE	TOTAL MEAN SI ANNUAL SI ANNUAL SI DATLY T DATLY T DATLY I SEVEN-I NIANEOUS NIANEOUS NIANEOUS NIANEOUS NIANEOUS RIANEOF RCENT EX RCENT EX	MEAN MEAN MEAN MEAN PEAK FLO PEAK STA LOW FLOW (AC-FT) CEEDS CEEDS CEEDS	UM W GE	8962520 24490 73600 2270 2600 17780000 52300 21000 3080	Jun Nov Oct	10 12 4	8330010 22820 113000 2270 2600 114000 27 2150 16520000 56700 17600 3010	May Nôv Oct May .94 May Oct	11 12 4 11 11 23	14460 30100 278000 278000 279000 279000 34 213 10470000 40100 6740 2100	May Nov Aug May .42 May Nov	1990 1980 7 1990 29 1979 31 1972 6 1990 6 1990 30 1979
					1					1.			

RED RIVER BASIN

0/300000 SALT FORK RED RIVER NEAR WELLINGTON, TX

IOCAIION.--Iat 34"57'27", long 100"13'14", Collingsworth County, Hydrologic Unit 11120202, near center of stream at downstream side of bridge on U.S. Highway 83, 4 mi downstream from Fort Worth and Denver (Burlington) Railway Co. bridge, 4.5 mi south of Lutie, and 7.2 mi north of Wellington.

DRAINAGE AREA. -- 1,222 mi?, of which 209 mi? probably is noncontributing.

WATER-DISCHARGE RECORDS

11.01

PERIOD OF RECORD. -- June 1952 to current year.

114.14

......

GAGE.--Water-stage recorder. Datum of gage is 1,941.41 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Records fair. There are several small diversions upstream from gage for irrigation. There is some regu-lation for municipal use by Greenbelt Lake (station 07299840) capacity 59,10 acre-ft, 42 mi upstream.

AVIRAGE DISCHARGE FOR PERIOD PRIOR TO REGULATION.--14 years (water years 1953-66) prior to completion of Greenbelt lake, 72.6 ft³/s (52,600 acre-ft/yr).

EXIREMES FOR PERIOD PRIOR TO REGULATION (WATER YEARS 1953-66).--Maximum discharge, 146,000 ft³/s May 16, 1957 (gage height, 19.00 ft), from rating curve extended above 11,000 ft³/s on basis of slope-area measurement of 63,400 ft³/s; minimum, 0.1 ft³/s June 19, 1952.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993 DAILY MEAN VALUES

DAT	UCI	NUV	UEC	JAN	FE8	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	9.1 9.1 9.4 9.1 9.0	14 14 15 15 15	28 28 28 25 22	63 119 173 113 86	53 53 51 44 42	77 115 56 30 25	33 23 23 23 23 22	27 167 120 54 32	18 15 12 9.9 9.0	151 48 68 33 20	4.5 5.1 13 11 11	10 7.0 5.8 6.0 6.0
6 7 8 9 10	9.4 9.3 9.4 8.5	15 13 13 13 13	21 47 44 52 42	87 95 93 139 72	42 44 43 43 59	25 29 31 29 31	28 33 29 27 26	23 64 1210 486 246	11 8.2 6.2 5.9 7.5	1020 3030 87 21 8.2	12 11 9.8 9.8 9.8	6.2 6.3 6.9 7.4 7.1
11 12 13 14 15	8.1 8.4 8.5 8.8 9.9	14 14 14 15 15	34 35 41 62 63	59 84 80 77 93	61 49 47 43 93	30 31 34 38 42	23 22 20 64 138	130 86 62 45 37	7.5 6.8 6.2 6.2 6.8	6.2 5.6 5.6 155 30	8.2 6.7 6.3 5.6 5.4	6.6 6.3 6.7 6.4 6.4
16 17 18 19 20	9.9 10 12 12 12	14 13 15 26 18	65 71 79 70 59	81 82 83 79 86	92 29 17 47 90	42 37 39 51 58	56 40 30 19 12	28 35 60 49 41	6.8 7.5 8.3 46 44	13 9.1 8.6 8.2 6.1	5.3 4.6 4.6 5.0 5.2	6.2 6.2 6.6 16 6.6
21 22 23 24 25	11 12 11 11 12	83 91 50 59 45	53 57 53 48 50	157 115 83 68 58	52 45 38 34 33	50 66 75 51 41	9.6 9.9 11 13 13	45 36 549 164 54	23 20 25 11 6.2	7.3 6.3 5.7 6.1 5.6	5.5 6.8 8.0 6.8 6.1	5.1 4.5 4.3 4.7 5.2
26 27 28 29 30 31	12 13 14 14 14 15	37 32 31 30 31	51 52 55 57 60 52	52 54 61 56 56	30 28 41	34 34 38 39 108 66	13 13 24 139 37	33 17 11 12 17 13	8.8 21 8.8 4.8 153	5.0 4.6 11 13 5.6 4.8	5.5 5.6 6.2 6.7 13 15	5.2 5.1 5.2 5.1
TUTAL MEAN MAX MIN AC-FT	330.2 10.7 15 8.1 655	787 26.2 91 13 1560	1504 48.5 79 21 2980	2665 86.0 173 52 5290	1343 48.0 93 17 2660	1452 46.8 115 25 2880	973.5 32.4 139 9.6 1930	3953 128 1210 11 7840	530.4 17.7 153 4.8 1050	4808.6 155 3030 4.6 9540	239.1 7.71 15 4.5 474	192.2 6.41 16 4.3 381
STATIST	ICS OF M	NUNTHEY MEAN	DATA FO	R WATER Y	EARS 1967	- 1993#	, BY WATER	YEAR (WY) .			
MEAN MAX (WY) MIN (WY)	279 1987 4.28 1981	28.6 213 1987 8.03 1981	26.2 92.4 1992 3.59 1984	30.2 86.0 1993 10.5 1971	34.4 64.5 1988 10.9 1967	40.7 127 1979 8.15 1972	61.3 505 1977 6.10 1971	121 468 1977 2.61 1971	131 962 1989 8.17 1970	28.3 155 1993 2.65 1970	28.1 301 1968 1.68 1970	31.4 113 1981 2.22 1984
SUMMARY	STATIST	1CS	FOR 19	92 CALEN	DAR YEAR	F	DR 1993 WA	TER YEAR		WATER YE	ARS 1967	- 1993#
ANNUAL ANNUAL HIGHEST LOWEST HIGHEST LOWEST	TOTAL MEAN ANNUAL ANNUAL M DATLY ME DATLY ME	MEAN IEAN IEAN AN		22415.9 61.2 1420 6.8	Jun 5 Aug 10		18778.0 51.4 3030 4.3	Jul 7 Seo 23		49.5 115 10.5 14200	Jun 1	1989 1971 13 1989
INSTANT INSTANT INSTANT ANNUAL 10. PERCI 50. PERCI	SEVEN-DA ANEOUS P ANEOUS P ANEOUS L RUNOFF (ENT EXCE	T MINIMUM EAK FLOW EAK STAGE OW FLOW AC-FT) EDS EDS		7.9 44460 91	Sep 4		4.9 16600 9.17 3.4 37250 83	Sep 21 Jul 7 Jul 7 Aug 16		.40 .73 62100 13.80 .33 35870 65	Jun May 2 Apr 2 Apr 2 Sep 2	2 1985 27 1985 20 1977 20 1977 22 1980
90 PERC	ENT EXCE	EDS		30 9.0			23 6.1			16 4.3		

Period of regulated streamflow.

-68-RED RIVER BASIN

07301410 SWEETWATER CREEK NEAR KELTON, TX

LULAIIUN.--lat 35"28'23", long 100"07'14", Wheeler County, Hydrologic Unit 11120302, near center of stream at downstream side of bridge on Farm Road 592, 5 mi north of Kelton, 8 mi upstream from Texas-Oklahoma State line, and 8.5 mi northeast of Wheeler.

DRAINAGE AREA.--287 mi4, of which 20 mi2 probably is noncontributing.

PERIOD OF RECORD.--November 1961 to current year. Water-quality records.--Chemical analyses: October 1969 to June 1985.

GAGE. - Water-stage recorder. Elevation of gage is 2,230 ft above National Geodetic Vertical Datum of 1929, from topographic map.

KIMARKS. Records good except those for estimated daily discharges, which are fair. There are many small diversions upstream from station for ranch use. Gage-height telemeter at station via Sutron data collection platform.

height

EXIREMES OUTSIDE PERIOD OF RECORD. -- Maximum stage since at least 1882, about 20 ft May 16, 1957.

PEAK DISCHARGES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 500 ft'/s:

Date	Time	Discharge (ft ¹ /s)	Gage height (ft)	Date Tir	ne Discharge (ft ³ /s)	(ft)
May 2	2100	110	8.74	No peak gre	ater than base discharge	•

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1992 10 SEPTEMBER 1993 DAILY MEAN VALUES

SEP JUL ALIG MAY JUN APR 001 NOV DEC JAN FEB MAR DAY 2.2 2.3 3.5 3.0 1.4 9.5 5.8 21 29 27 25 21 1.4 1.2 1.2 1.1 10 .85 2 5 9.1 5.4 20 65 73 13 2.6 iī 13 16 .85 2 13 20 3 .85 3.1 10 39 32 8.8 4.5 15 14 23 12 23 10 4 .84 4.Ŏ 2.7 12 20 23 5 .85 3.2 10 2.5 2.4 2.2 1.0 4.3 5.4 4.2 27 23 29 29 29 9.1 19 22 22 13 11 13 1.0 2.0 1.5 1.2 3.3 .87 67 8.5 8.0 13 13 17 13 13 19 88 3.4 11 18 17 21 19 .94 3.6 12 8 3.6 7.9 2 1 13 18 13 12 9 10 1.0 3.7 1.8 i7 18 3.8 17 1.0 1.6 22 8.0 3.4 16 16 15 15 17 18 4.0 11 3.4 3.5 3.7 4.2 11 1.1 7.6 7.2 6.9 7.1 1.4 1.2 1.1 .92 21 4.0 4.2 4.3 4.5 18 17 17 1.1 1.2 1.2 12 11 .92 16 18 12 20 13 14 15 .88 19 23 21 25 17 15 18 14 15 . 99 15 18 i.2 4.1 .94 .92 6.7 24 22 22 21 14 1.2 1.3 1.4 1.6 4.6 5.1 5.3 6.7 14 14 14 14 14 14 14 14 14 14 17 .83 16 3.6 3.5 3.3 3.2 18 32 6.4 6.6 17 19 18 16 17 28 28 17 .77 .72 18 .79 17 19 24 33 19 24 .64 16 15 20 1.7 6.9 3.0 3.0 3.5 3.2 3.0 .66 .62 .58 .62 .57 .50 .47 14 14 14 27 21 19 23 34 15 14 14 21 22 23 14 13 13 13 13 16 7.6 10 8.5 7.5 7.2 8.9 8.3 8.9 17 1.7 35 15 13 88 14 13 15 14 18 1.8 24 25 1.6 . 62 iğ 23 12 8.4 2.8 2.7 2.6 2.5 2.4 2.3 . 58 . 58 1.6 7.4 12 12 21 12 12 12 12 12 11 18 26 27 28 2.0 7.7 14 14 1.5 1.4 1.4 1.3 1.7 11 18 20 2.0 2.1 2.2 2.5 .50 6.5 18 žŎ 14 10 14 14 14 14 10 .45 .39 e9.8 ----21 27 31 29 10 33 e9.7 5.4 10 11 11 30 31 ---24 ---e9.6 -------2.5 27.35 .91 2.0 .39 678 21.9 35 16 112.6 47.84 263.4 515 18.4 33 12 690.1 378 12.2 15 452 566 IOTAL 44.13 171.7 1.54 3.5 .47 95 18.9 33 12 22.3 8.78 24 3.63 5.8 2.3 223 5.72 10 2.5 14.6 17 11 897 MEAN MAX MIN 1.42 2.5 .84 73 9.6 5.4 iõ 5.4 1370 1020 1340 1120 88 341 250 .00 AC-FT . 10 .04 .02 .01 .08 .05 .06 .07 .09 11. e Lstimated STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1963 - 1993, BY WATER YEAR (WY) 5.22 32.3 1967 4.87 42.7 1963 .000 7.00 16.1 29.6 1987 7.25 1981 20.6 25.4 20.1 18.3 13.0 8.57 42.1 1987 10.7 11.8 MEAN MAX 40.9 74.6 196 86.3 1965 24.3 1987 5.87 34.5 19.3 1977 1988 1992 (WY) MIN .027 9.09 8.72 3.38 2.80 .44 1.05 . 30 3.11 1974 1966 1964 1984 1984 1984 (WY) 1985 WATER YEARS 1963 - 1993 FOR 1993 WATER YEAR FOR 1992 CALENDAR YEAR SUMMARY STATISTICS 3946.12 4168.48 ANNUAL TUTAL 10.8 13.4 ANNUAL MEAN LITCHEST ANNUAL MEAN LOWEST ANNUAL MEAN 11.4 26.8 1977 1984 4.89 May 21 1977 Jul 29 1964 Jul 29 1964 May 20 1977 May 20 1977 Jul 29 1964 LOWEST ANNUAL MEAN HIGHESI DALLY MEAN LOWEST DALLY MEAN INSTANIANEOUS PEAK FLOM-INSTANIANEOUS PEAK FLOM-INSIANIANEOUS PEAK STAGE INSIANIANEOUS DEAK STAGE ANNUAL RUNOFF (AC-FT) ANNUAL RUNOFF (AC-FT) ANNUAL RUNOFF (INCHES) 10. PERCENT EXCEEDS 50 PIRCENT EXCEEDS 90 PIRCENT EXCEEDS May 3 Sep 30 Sep 24 May 2 1820 May 23 Oct 4 Oct 1 73 .00 . 39 .84 .53 .00 .86 2890 110 15.73 8.74 May Sep 30 9730 7830 8270 22 10 .68 .58 21 10 22 10 .88 .97 1.2

RED RIVER BASIN

07308500 RED RIVER NEAR BURKBURNETT, TX

IOCAIION.--tat 34°06'36", long 98°31'53", Cotton County, Okla., Hydrologic Unit 11130102, on left bank at downstream side of bridge on U.S. Highways 277 and 281, 2.5 mi northeast of Burkburnett, and at mile 933. DRAINAGE AREA.--20,5/0 mi*, of which 5,936 mi² probably is noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- July 1924 to August 1925 (monthly discharge only), December 1959 to current year.

GAGE.--Water-stage recorder. Datum of gage is 952.57 ft above National Geodetic Vertical Datum of 1929. July 11, 1924, to Aug. 31, 1925, nonrecording gage at site 1,000 ft downstream at same datum. Dec. 16, 1959, to Jan. 11, 1960, non-recording gage at present site and datum.

REMARKS.--No estimated daily discharges. Records fair. There are many small diversions upstream from station for irrigation, but total amounts are unknown.

EXIREMES DUISIDE PERIOD OF RECORD.--Flood of June 3, 1957, reached a stage of 13.54 ft, from levels to floodmarks. According to local residents, higher stages occurred in 1891 and June 1941.

PEAK DISCHARGES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 9,000 ft'/s:

Date	Time	Discharge (ft'/s)	Gage height (ft)	Date	lime	Discharge (ft'/s)	Gage height (ft)
Nov. 22 Dec. 15 Feb. 16	1400 0400 0300	17,100 12,700 12,500	9.46 8.99 8.97	May 1 May 3 May 12	0200 0200 1230	10,300 19,500 55,000	8.54 9.39 11.57
Mar. 30 Apr. 29	1500	13,000	8.82	July 10 July 17	0530	9,960	7.83

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1992 10 SEPIEMBER 1993 DAILY MEAN VALUES

							· · · · ·					
DAY	001	NUV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
ា	245	245	1500	1490	1120	3760	3280	8500	3120	912	483	4/0
2	252	249	1310	1380	1130	4760	2660	9790	2320	889	506	827
-3	251	245	1170	1270	1110	2940	2490	15100	2100	745	588	790
4	248	249	998	1190	1070	2300	2540	9630	1950	672	796	615
5	247	254	912	1440	1010	2440	1920	4800	1890	620	2160	742
6	250	256	880	1810	977	2620	1710	3610	1740	676	5750	581
1	242	252	919	1870	967	2380	2180	2800	1710	626	2780	437
8	237	268	897	1600	970	2190	1880	2630	1790	587	1730	392
9	225	279	1110	1520	974	2200	1560	17700	3310	1310	1230	392
10	218	289	1860	1420	1020	2130	1370	40200	1780	8370	1020	403
31	212	2230	2550	1500	1080	2040	1050	41600	1550	3720	850	564
12	217	3100	21/0	1990	1500	1940	940	51100	1370	2590	712	675
13	220	1500	-1930	1830	1670	1900	965	26200	1310	2070	618	528
14	213	911	4920	1640	1550	1830	3250	6440	1280	1/90	611	524
12	203	780	10200	1520	5050	1790	6620	3530	1060	2200	299	416
16	189	632	5830	1430	11000	1770	4990	2570	904	5190	610	409
17	189	440	3710	1410	5330	1600	4330	2070	715	8280	611	385
18	195	383	2480	1340	3190	1500	2620	1760	633	3790	603	357
19	205	3/40	1960	1300	21/0	1510	24/0	3160	5/6	24/0	5/1	303
20	224	2790	1/10	1/40	1810	1520	2060	2510	623	16/0	53/	290
21	232	1410	1710	1860	1740	1580	1800	1850	3730	1300	520	284
22	251	13900	1800	2230	1860	1740	1680	1480	2950	1070	494	248
23	250	14000	1760	2480	1870	2400	1520	1500	1800	939	461	225
24	254	6130	1620	2220	1970	2530	1320	1550	1260	838	477	213
25	252	5230	1560	1810	2620	2760	1070	3380	993	761	451	195
26	246	7930	1590	1590	2630	3110	948	4890	3740	737	581	183
27	246	4980	2780	1500	2250	2880	843	3460	4170	689	482	257
28	257	3400	1630	1420	2180	2630	937	3030	2670	610	440	304
29	240	2670	1660	1280		2650	8350	2380	1440	564	421	240
30	244	1980	1/30	1230		13500	8680	2010	962	548	402	203
31	258		1620	1170		6800		2580		508	415	
TOTAL	7212	80728	68476	49480	62418	87700	78033	283810	55446	57741	28509	12452
MEAN	233	2691	2209	1596	2229	2829	2601	9155	1848	1863	920	415
MAX	258	14000	10200	2480	11000	13500	8680	51100	4170	8370	5750	827
MIN : AC : E 1	109	160100	136000	11/0	122000	124000	164000	1480	5/6	508	402	183
nu-r i	14310	100100	135800	90140	123800	174000	154800	502900	110000	114500	50550	24/00

-70-RED RIVER BASIN

07308500 RED REVER NEAR BURKBURNEIT, TX--Continued

STATISTICS OF	MONTHLY HEAN	DATA I	OR WATER	YEARS 1961	- 1993	, BY WATE	R YEAR (WY)		*		
MIAN 1667 MAX 14900 (WY) 1987 MIN 21.9 (WY) 1971	692 4960 1987 .96 1971	526 4435 1992 2.98 1971	454 2040 1992 5.53 1971	522 3024 1987 8.37 1971	716 3552 1987 7.97 1971	829 5987 1973 .15 1971	2385 12470 1977 11.4 1971	3091 13480 1991 148 1970	817 5947 1975 .058 1970	544 2107 1979 1.29 1964	1213 4244 1965 32.2 1983
SUMMARY STATIS	1105	FOR	1992 CAL	ENDAR YEAR		FOR 1993	WATER YEAR		WATER	YEARS 1961	- 1993
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL HIGHEST ANNUAL HIGHEST DALLY I OWEST DALLY I OWEST DALLY I NSTANIANEOUS INSTANIANEOUS ANNUAL RUNOFF INSTANIANEOUS ANNUAL RUNOFF 50 PLRCENT EXC 90 PLRCENT EXC	MEAN MEAN MEAN MEAN JAY MINIMUM PEAK FLOW PEAK STAGE LOW FLOW (AC-FI) CEEDS CEEDS CEEDS		631616 1726 23000 189 202 1253000 3530 1190 251	Jun 8 Oct 16 Oct 13		872005 2389 51100 183 202 55000 11 169 1730000 4230 1500 251	May 12 Sep 26 Oct 13 May 12 .57 May 12 Sep 26		1122 4424 178 121000 166000 16. 813000 2220 278 47	0ct 00 Ju1 00 Ju1 0ct 90 Oct 00 Ju1	1987 1964 22 1983 19 1964 19 1964 21 1983 21 1983 21 1983 19 1964

..

et es

RED RIVER BASIN

07315500 RED RIVER NEAR TERRAL, OK

10CATION.--Lat 33°52'43", long 97°56'03", Jefferson County, Hydrologic-Unit 11130201, on left bank at downstream side of bridge abutment on U.S. Highway 81, 0.5 mi downstream from Chicago, Rock Island, and Railroad Co. bridge, 1.2 mi south of Terral, 3.6 mi downstream from Little Wichita River, and at mile 872.

DRAINAGE AREA. -- 28,723 mif, of which 5,936 mif probably is noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--January 1938 to current year. Monthly discharge only for some periods, published in WSP 1311. REVISED RECORDS.--WSP 1211: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 770.31 ft above National Geodetic Vertical Datum of 1929. Prior to Jan. 12, 1939, nonrecording gage at same site and datum.

REMARKS.--No estimated daily discharges. Records good. There are many small diversions upstream from station for irrigation, oil field operations, and for municipal uses. Gage-height telemeter at station.

EXIREMLS OUISIDE PERIOD OF RECORD.--Flood of May 19, 1935, reached a stage of 27.2 ft, although floods in 1891 and on May 1, 1908, are reported to have reached about the same stage.

PEAK DISCHARGES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 21,000 ft²/s.

Date	1 ime	Discharge (ft ³ /s)	Gage height (ft)	Date	lime	Discharge (ft³/s)	Gage height (ft)
Nov. 23 Dec. 15 Feb. 16 Mar. 2 Mar. 31	0200 1500 2400 1400 0700	33,700 33,600 37,700 27,300 46,200	16.47 16.46 16.52 15.31 17.43	Apr. 16 May 3 May 10 May 13	0600 0900 2300 0800	29,700 35,000 84,100 71,700	15.59 16.82 21.14 20.00

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1992 10 SEPTEMBER 1993 DATLY MEAN VALUES

DAY	001	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	5/2	506	3560	2840	2290	10800	14600	12900	5630	3080	743	514
2	561	509	3070	2600	2200	26100	11200	16400	5880	2290	736	519
3	554	497	2890	2600	2120	21600	9950	28500	5390	1870	202	556
4	553	465	2600	2450	2200	15000	8610	23700	5090	1590	737	742
5	544	442	2230	2220	2380	10600	2900	17800	4730	1300	600	824
							1500		1730	1350	000	027
6	535	446	1940	1950	2310	9920	7200	10400	4450	1270	966	759
	510	440	1750	2300	2020	9790	6450	7270	4370	1150	3400	874
8 N	505	445	1660	2920	1930	8110	5970	5970	4200	1100	3270	927
9	497	440	1730	2740	1790	6770	5610	38800	4200	1010	2440	836
10	484	451	3280	2580	1690	6230	4420	74500	5300	949	1800	706
11	464	447	7920	2850	2000	5840	1890	76600	6130	4020	1260	612
12	458	3760	7500	3410	2170	5160	3600	60000	5050	4000	1100	620
13	460	11500	5340	3780	2350	4730	3330	66100	4070	2060	1100	- 020
14	462	6050	10400	4060	2850	4450	2900	20200	49/0	2000	914	2210
15	259	3030	30500	3530	8770	4300	12700	22100	4310	2430	001	-3310
		3030	30300	5350	0//0	4350	13/00	22100	2400	21/0	121	2980
16	435	2310	23700	2910	32000	4280	27700	15400	3330	2000	690	1020
17	427	2150	13700	2500	32100	4050	23800	12600	2030	2070	663	1060
18	427	2010	8690	2350	20600	3760	11500	10600	2720	6160	612	750
19	439	2000	6180	2300	11400	3440	6820	10000	2420	20100	013	- / 38
20	452	2890	5360	2550	10200	3520	6610	9770	2420	3910	605	002
	1.00		5500	2330	10200	3320	2010	6770	2040	2330	292	552
21	449	12400	5060	4730	9120	3620	4600	7390	2410	2310	570	580
22	442	18300	4670	6470	7250	4200	3930	6410	6190	1850	559	593
23	438	29800	4110	5050	6730	4420	3440	6/20	ñõñë	1570	548	596
24	446	20000	3560	4950	6640	5020	3080	7260	5100	1200	643	106
25	447	14100	3200	4350	7920	587Ŏ	2830	7150	3520	1090	547	445
26	420	14000	2020	20.20	10000	6540			2001	1.14		<u>, s</u>
20	430	14000	3020	3830	10600	5360	2640	9170	3510	964	540	470
27	437	15200	2970	3030	8100	4/60	2550	10200	6090	900	532	566
20	440	1220	2930	3070	6/80	4320	2310	7760	7120	867	610	431
23	434	4480	2840	2600		4160	2340	7490	4480	839	578	417
30	430	3/30	2760	24/0	·	20900	11200	6680	3880	816	530	412
31	493		2790	2360		39300		6270		771	522	
TOTAL	14702	185024	181910	99050	208510	270470	223670	638030	138330	63466	20722	26 402
MEAN	474	6167	5868	3195	7447	8725	7456	20580	4611	2047	23/22	20403
MAX	572	29800	30500	6470	32100	30300	27700	76600	9000	6160	300	049
MIN	427	440	1660	1950	1690	3440	2310	5070	2040	0100	- 3400	3310
AC-FT	29160	367000	360800	196500	413600	536500	443600	1266000	274400	125000	522	41Z
						330300	143000	1200000	274400	17 3300	20220	20220
						and the second second						

-72-RED RIVER BASIN

07315500 RED RIVER NEAR TERRAL, UK -- Cuntinued

STATISTICS UF MU MIAN 3186 MAX 23900 (WY) 1987 MIN 108 (WY) 1953	NIHIY MLA 1508 9713 1987 102 1940	N DATA H 1127 11810 1992 91.2 1939	UR WATER 902 5306 1992 76.5 1940	YEARS 1939 1258 9320 1987 136 1953	- 1993 1809 12560 1990 66.1 1940	. BY WAILI 2519 18080 1990 142 1971	K YLAR (WY) 6760 43580 1957 134 1971	6071 37460 1941 517 1966	1687 8077 1950 158 1964	1110 9267 1950 155 1970	2020 9653 1986 109 1956
SUMMARY STATIST	CS	FOR	1992 CAL	ENDAR YEAR		FOR 1993	WATER YEAR		WATER YE	ARS 1939	- 1993
ANNUAL TUTAL ANNUAL MEAN TUGHEST ANNUAL M TUGHEST ANNUAL M HIGHEST DATLY ME ANNUAL SEVEN-DA' INSTANTANEOUS T INSTANTANEOUS T ANNUAL RUMOFF TO PERCENT EXCE 50 PERCENT EXCE 90 PERCENT EXCE	AEAN AN AN Y MINIMUM EAK FLOW EAK STAGE DW FLOW AC-FT) EDS EDS EDS		1854921 5068 65500 427 439 3679000 10900 3000 529	Jun 9 Oct 17 Oct 16		2078357 5694 76600 412 439 84100 21 , 412 4122000 11900 2970 497	May 11 Sep 30 Oct 16 May 10 .14 May 10 Sep 30		2500 8925 523 211000 46 47 225000 33.6 43 1811000 5390 572 170	May 3 Mar 2 Mar 1 May 3 O Oct 2 Mar 1	1987 1953 30 1987 20 1940 18 1940 30 1987 22 1983 15 1939

...

RED RIVER COMPACT ARKANSAS - LOUISIANA - OKLAHOMA - TEXAS

-73-

APPROVED BY THE RED RIVER COMPACT COMMISSION

MAY 12, 1978

PREAMBLE

-74-

The States of Arkansas, Louisiana, Oklahoma, and Texas, pursuant to the acts of their respective Governors or legislatures, or both, being moved by considerations of interstate comity, have resolved to compact with respect to the water of the Red River and its tributaries. By Act of Congress, Public Law No. 346 (84th Congress, First Session), the consent of the United States has been granted for said states to negotiate and enter into a compact providing for an equitable apportionment of such water; and pursuant to that Act the President has designated the representative of the United States.

Further, the consent of Congress has been given for two or more states to negotiate and enter into agreements relating to water pollution control by the provisions of the Federal Water Pollution Control Act (P. L. 92-500, 33 U.S.C. § 1251 et seq.).

The Signatory States acting through their duly authorized Compact Commissioners, after several years of negotiations, have agreed to an equitable apportionment of the water of the Red River and its tributaries and do hereby submit and recommend that this compact be adopted by the respective legislatures and approved by Congress as hereinafter set forth:

ARTICLE I

PURPOSES

SECTION 1.01. The principal purposes of this Compact are:

- (a) To promote interstate comity and remove causes of controversy between each of the affected states by governing the use, control and distribution of the interstate water of the Red River and its tributaries;
- (b) To provide an equitable apportionment among the Signatory States of the water of the Red River and its tributaries;
- (c) To promote an active program for the control and alleviation of natural deterioration and pollution of the water of the Red River Basin and to provide for enforcement of the laws related thereto;
- (d) To provide the means for an active program for the conservation of water, protection of lives and property from floods, improvement of water quality, development of navigation and regulation of flows in the Red River Basin; and
- (e) To provide a basis for state or joint state planning and action by ascertaining and identifying each state's share in the interstate water of the Red River Basin and the apportionment thereof.

ARTICLE II

GENERAL PROVISIONS

SECTION 2.01. Each Signatory State may use the water allocated to it by this Compact in any manner deemed beneficial by that state. Each state may freely administer water rights and uses in accordance with the laws of that state, but such uses shall be subject to the availability of water in accordance with the apportionments made by this Compact.

SECTION 2.02. The use of water by the United States in connection with any individual Federal project shall be in accordance with the Act of Congress authorizing the project and the water shall be charged to the state or states receiving the benefit therefrom.

SECTION 2.03. Any Signatory State using the channel of Red River or its tributaries to convey stored water shall be subject to an appropriate reduction in the amount which may be withdrawn at the point of removal to account for transmission losses.

SECTION 2.04. The failure of any state to use any portion of the water allocated to it shall not constitute relinquishment or forfeiture of the right to such use.

SECTION 2.05. Each Signatory State shall have the right to:

- (a) Construct conservation storage capacity for the impoundment of water allocated by this Compact;
- (b) Replace within the same area any storage capacity recognized or authorized by this Compact made unusable by any cause, including losses due to sediment storage;
- (c) Construct reservoir storage capacity for the purposes of flood and sediment control as well as storage of water which is either imported or is to be exported if such storage does not adversely affect the delivery of water apportioned to any other Signatory State; and
- (d) Use the bed and banks of the Red River and its tributaries to convey stored water, imported or exported water, and water apportioned according to this Compact.

SECTION 2.06. Signatory States may cooperate to obtain construction of facilities of joint benefits to such states.

SECTION 2.07. Nothing in this Compact shall be deemed to impair or affect the powers, rights, or obligations of the United States, or those claiming under its authority, in, over and to water of the Red River Basin.

SECTION 2.08. Nothing in this Compact shall be construed to include within the water apportioned by this Compact any water consumed in each state by livestock or for domestic purposes; provided, however, the storage of such water is in accordance with the laws of the respective states but any such impoundment shall not exceed 200 acre-feet, or such smaller quantity as may be provided for by the laws of each state.

SECTION 2.09. In the event any state shall import water into the Red River Basin from any other river basin, the Signatory State making the importation shall have the use of such imported water.

SECTION 2.10. Nothing in this Compact shall be deemed to:

- (a) Interfere with or impair the right or power of any Signatory State to regulate within its boundaries the appropriation, use, and control of water, or quality of water, not inconsistent with its obligations under this Compact;
- (b) Repeal or prevent the enactment of any legislation or the enforcement of any requirement by any Signatory State imposing any additional conditions or restrictions to further lessen or prevent the pollution or natural deterioration of water within its jurisdiction; provided nothing contained in this paragraph shall alter any provision of this Compact dealing with the apportionment of water or the rights thereto; or
- (c) Waive any state's immunity under the Eleventh Amendment of the Constitution of the United States, or as constituting the consent of any state to be sued by its own citizens.

SECTION 2.11. Accounting for apportionment purposes on interstate streams shall not be mandatory under the terms of the Compact until one or more affected states deem the accounting necessary. SECTION 2.12. For the purposes of apportionment of the water among the Signatory States, the Red River is hereby divided into the following major subdivisions:

- (a) Reach I the Red River and tributaries from the New Mexico-Texas State boundary to Denison Dam;
- (b) Reach II the Red River from Denison Dam to the point where it crosses the Arkansas-Louisiana state boundary and all tributaries which contribute to the flow of the River within this reach;
- (c) Reach III the tributaries west of the Red River which cross the Texas-Louisiana state boundary, the Arkansas-Louisiana state boundary, and those which cross both the Texas-Arkansas state boundary and the Arkansas-Louisiana state boundary.
- (d) Reach IV the tributaries east of the Red River in Arkansas which cross the Arkansas-Louisiana state boundary; and
- (e) Reach V that portion of the Red River and tributaries in Louisiana not included in Reach III or in Reach IV.

SECTION 2.13. If any part or application of this Compact shall be declared invalid by a court of competent jurisdiction, all other severable provisions and applications of this Compact shall remain in full force and effect.

SECTION 2.14. Subject to the availability of water in accordance with this Compact, nothing in this Compact shall be held or construed to alter, impair, or increase, validate, or prejudice any existing water right or right of water use that is legally recognized on the effective date of this Compact by either statutes or courts of the Signatory State within which it is located.

ARTICLE III

DEFINITIONS

SECTION 3.01. In this Compact:

- (a) The States of Arkansas, Louisiana, Oklahoma, and Texas are referred to as "Arkansas," "Louisiana," "Oklahoma," and "Texas," respectively, or individually as "State" or "Signatory State," or collectively as "States" or "Signatory States."
- (b) The term "Red River" means the stream below the crossing of the Texas-Oklahoma state boundary at longitude 100 degrees west.
- (c) The term "Red River Basin" means all of the natural drainage area of the Red River and its tributaries east of the New Mexico-Texas state boundary and above its junction with Atchafalaya and Old Rivers.
- (d) The term "water of the Red River Basin" means the water originating in any part of the Red River Basin and flowing to or in the Red River or any of its tributaries.
- (e) The term "tributary" means any stream which contributes to the flow of the Red River.
- (f) The term "interstate tributary" means a tributary of the Red River, the drainage area of which includes portions of two or more Signatory States.
- (g) The term "intrastate tributary" means a tributary of the Red River, the drainage area of which is entirely within a single Signatory State.
- (h) The term "Commission" means the agency created by Article IX of this Compact for the administration thereof.
- (i) The term "pollution" means the alteration of the physical, chemical, or biological characteristics of water by the acts or instrumentalities of man which create or are likely to result in a material and adverse effect upon human beings, domestic or wild animals, fish and other aquatic life, or adversely affect any other lawful use of such water; provided, that for the purposes of this Compact,

"pollution" shall not mean or include "natural deterioration."

- (j) The term "natural deterioration" means the material reduction in the quality of water resulting from the leaching of solubles from the soils and rocks through or over which the water flows naturally.
- (k) The term "designated water" means water released from storage, paid for by non-Federal interests, for delivery to a specific point of use or diversion.
- (1) The term "undesignated water" means all water released from storage other than "designated water."
- (m) The term "conservation storage capacity" means that portion of the active capacity of reservoirs available for the storage of water for subsequent beneficial use, and it excludes any portion of the capacity of reservoirs allocated solely to flood control and sediment control, or either of them.
- (n) The term "runoff" means both the portion of precipitation which runs off the surface of a drainage area and that portion of the precipitation that enters the streams after passing through the portions of the earth.

ARTICLE IV

APPORTIONMENT OF WATER - REACH I

OKLAHOMA - TEXAS

Subdivison of Reach I and apportionment of water therein.

Reach I of the Red River is divided into topographical subbasins, with the water therein allocated as follows:

SECTION 4.01. Subbasin 1 - Interstate streams - Texas.

- (a) This includes the Texas portion of Buck Creek, Sand (Lebos) Creek, Salt Fork Red River, Elm Creek, North Fork Red River, Sweetwater Creek, and Washita River, together with all their tributaries in Texas which lie west of the 100th Meridian.
- (b) The annual flow within this subbasin is hereby apportioned sixty (60) percent to Texas and forty (40) percent to Oklahoma.

SECTION 4.02. Subbasin 2 - Intrastate and Interstate streams - Oklahoma.

- (a) This subbasin is composed of all tributaries of the Red River in Oklahoma and portions thereof upstream to the Texas-Oklahoma state boundary at longitude 100 degrees west, beginning from Denison Dam and upstream to and including Buck Creek.
- (b) The State of Oklahoma shall have free and unrestricted use of the water of this subbasin.

SECTION 4.03. Subbasin 3 - Intrastate streams - Texas.

- (a) This includes the tributaries of the Red River in Texas, beginning from Denison Dam and upstream to and including Prairie Dog Town Fork Red River.
- (b) The State of Texas shall have free and unrestricted use of the water in this subbasin.

SECTION 4.04. Subbasin 4 - Mainstem of the Red River and Lake Texoma.

(a) This subbasin includes all of Lake Texoma and the Red River beginning at Denison Dam and continuing upstream to the Texas-Oklahoma state boundary at longitude 100 degrees west.

- (b) The storage of Lake Texoma and flow from the mainstem of the Red River into Lake Texoma is apportioned as follows:
 - Oklahoma 200,000 acre-feet and Texas 200,000 acre-feet, which quantities shall include existing allocations and uses; and
 - (2) Additional quantities in a ratio of fifty (50) percent to Oklahoma and fifty (50) percent to Texas.

SECTION 4.05. Special Provisions.

- (a) Texas and Oklahoma may construct, jointly or in cooperation with the United States, storage or other facilities for the conservation and use of water; provided that any facilities constructed on the Red River boundary between the two states shall not be inconsistent with the Federal legislation authorizing Denison Dam and Reservoir project.
- (b) Texas shall not accept for filing, or grant a permit, for the construction of a dam to impound water solely for irrigation, flood control, soil conservation, mining and recovery of minerals, hydroelectric power, navigation, recreation and pleasure, or for any other purpose other than for domestic, municipal, and industrial water supply, on the mainstem of the North Fork Red River or any of its tributaries within Texas above Lugert-Altus Reservoir until the date that imported water, sufficient to meet the municipal and irrigation needs of Western Oklahoma is provided, or until January 1, 2000, which ever occurs first.

ARTICLE V

APPORTIONMENT OF WATER - REACH II

ARKANSAS, OKLAHOMA, TEXAS AND LOUISIANA

Subdivision of Reach II and allocation of water therein.

Reach II of the Red River is divided into topographic subbasins, and the water therein is allocated as follows:

SECTION 5.01. Subbasin 1 - Intrastate streams - Oklahoma.

(a) This subbasin includes those streams and their tributaries above existing, authorized or proposed last downstream major damsites, wholly in Oklahoma and flowing into Red River below Denison Dam and above the Oklahoma-Arkansas state boundary. These streams and their tributaries with existing, authorized or proposed last downstream major damsites are as follows:

Stream	Site	<u>Ac-ft</u>	Location Latitude Longitude		
Island-Bayou	Albany	85,200	33 ⁰ 51.5'N	96 [°] 11.4'W	
Blue River	Durant	147,000	33 ⁰ 55.5'N	96 [°] 04.2'W	
Boggy River	Boswell	1,243,800	34 ⁰ 01.6'N	95°45.0'W	
Kiamichi River	Hugo	240,700	34 [°] 01.0'N	95 ⁰ 22.6'W	

(b) Oklahoma is apportioned the water of this subbasin and shall have unrestricted use thereof.

SECTION 5.02. Subbasin 2 - Intrastate streams - Texas.

(a) This subbasin includes those streams and their tributaries above existing authorized or proposed last downstream major damsites, wholly in Texas and flowing into Red River below Denison Dam and above the Texas-Arkansas state boundary. These streams and their tributaries with existing, authorized or proposed last downstream major damsites are as follows: 4.799

			Location		
Stream	Site	<u>Ac-ft</u>	Latitude	Longitude	
Shawnee Creek	Randall Lake	5,400	33 ⁰ 48.1'N	96 [°] 34.8'W	
Brushy Creek	Valley Lake	15,000	33 ⁰ 38.7'N	96 [°] 21.5'W	
Bois d'Arc Creek	New Bonham Reservoir	130,600	33 [°] 42.9'N	95 [°] 58.2'W	
Coffee Mill Creek	Coffee Mill Lake	8,000	33 ⁰ 44.1'N	95 [°] 58.0'W	
Sandy Creek	Lake Crockett	3,900	33 ⁰ 44.5'N	95°55.5'W	
Sanders Creek	Pat Mayse	124,500	33 ⁰ 51.2'N	95 [°] 32.9'W	
Pine Creek	Lake Crook	11,011	33 ⁰ 43.7'N	95 [°] 34.0'W	
Big Pine Creek	Big Pine Lake	138,600	33 ⁰ 52.0'N	95 ⁰ 11.7'W	
Pacan Bayou	Pecan Bayou	625,000	33 [°] 41.1'N	94 ⁰ 58.7'W	
Mud Creek	Liberty Hill	97,700	33 [°] 33.0'N	94 [°] 29.3'W	
Mud Creek	KVW Ranch Lakes (3)	3,440	33 ⁰ 34.8'N	94 ⁰ 27.3'W	

(b) Texas is apportioned the water of this subbasin and shall have unrestricted use thereof.

SECTION 5.03. Subbasin 3 - Interstate Streams - Oklahoma and Arkansas.

- (a) This subbasin includes Little River and its tributaries above Millwood Dam.
- (b) The States of Oklahoma and Arkansas shall have free and unrestricted use of the water of this subbasin within their respective states, subject, however, to the limitation that Oklahoma shall allow a quantity of water equal to 40 percent of the total runoff originating below the following existing, authorized or proposed last downstream major damsites in Oklahoma to flow into Arkansas:

Stream	Site	<u>Ac-ft</u>	Latitude	Longitude		
Little River	Pine Creek	70,500	34 ⁰ 06.8'N	95 ⁰ 04.9'W		
Clover Creek	Lukfata	258,600	34 [°] 08.5'N	94 [°] 55.4'W		
Mountain Fork River	Broken Bow	470,100	34 ⁰ 08.9'N	94 [°] 41.2'W		

Location

(c) Accounting will be on an annual basis unless otherwise deemed necessary by the States of Arkansas and Oklahoma.

-84-

SECTION 5.04. Subbasin 4 - Interstate streams - Texas and Arkansas.

-85-

(a) This subbasin shall consist of those streams and their tributaries above existing, authorized or proposed last downstream major damsites, originating in Texas and crossing the Texas-Arkansas state boundary before flowing into the Red River in Arkansas. These streams and their tributaries with existing, authorized or proposed last downstream major damsites are as follows:

			Location		
Stream	Site	<u>Ac-ft</u>	Latitude	Longitude	
McKinney Bayou Trib.	Bringle Lake	3,052	33 ⁰ 30.6'N	94 ⁰ 06.2'W	
Barkman Creek	Barkman Reservoir	15,900	33 [°] 29.7'N	94 [°] 10.3'W	
Sulphur River	Texarkana	386,900	33°18.3'N	94 ⁰ 09.6'W	

(b) The State of Texas shall have the free and unrestricted use of the water of this subbasin.

SECTION 5.05. Subbasin 5 - Mainstem of the Red River and tributaries.

(a) This subbasin includes that portion of the Red River, together with its tributaries, from Denison Dam down to the Arkansas-Louisiana state boundary, excluding all tributaries included in the other four subbasins of Reach II.

(b) Water within this subbasin is allocated as follows:

- (1) The Signatory States shall have equal rights to the use of runoff originating in subbasin 5 and undesignated water flowing into subbasin 5, so long as the flow of the Red River at the Arkansas-Louisiana state boundary is 3,000 cubic feet per second or more, provided no state is entitled to more than 25 percent of the water in excess of 3,000 cubic feet per second.
- (2) Whenever the flow of the Red River at the Arkansas-Louisiana state boundary is less than 3,000 cubic feet per second, but more than 1,000 cubic feet per second, the States of Arkansas, Oklahoma, and Texas shall

allow to flow into the Red River for delivery to the State of Louisiana a quantity of water equ 1 to 40 percent of the total weekly r noff originating in subbasin 5 and 40 ercent of undesignated water flowing i to subbasin 5; provided, however, that this requirement shall not be interpre ed to require any state to release stored water.

- (3) Whenever the flow of the Red River at the Arkansas-Louisiana state boundary falls below 1,000 cubic feet per second, the States of Arkansas, Oklahoma, and Texas shall allow a quantity of water equal to all the weekly runoff originating in subbasin 5 and all undesignated water flowing into subbasin 5 within their respective states to flow into the Red River as required to maintain a 1,000 cubic foot per second flow a: the Arkansas-Louisiana state boundary.
- (c) Whenever the flow at Index, Arkansas, is less than 526 c.f.s., the states of Oklahoma and Texas shall each allow a quantity of water equal to 40 percent of the total weekly runoff originating in subbasin 5 within their respective states to flow into the Red River; provided however, this provision shall be invoked only at the request of Arkansas, only after Arkansas has ceased all diversions from the Red River itself in Arkansas above Index, and only if the provisions of Sub-sections 5.05 (b) (2) and (3) have not caused a limitation of diversions in subbasin 5.
- (d) No state guarantees to maintain a minimum low flow to a downstream state.

SECTION 5.06. Special Provisions.

(a) Reservoirs within the limits of Reach II, subbasin 5, with a conservation storage capacity of 1,000 acre feet or less in existence or authorized on the date of the Compact pursuant to the rights and privileges granted by a Signatory State authorizing such reservoirs, shall be exempt from the provisions of Section 5.05; provided, if any right to store water in, or use water from, an existing exempt reservoir expires or is cancelled after the effective date of the Compact the exemption for such rights provided by this section shall be lost.

- (b) A Signatory State may authorize a change in the purpose or place of use of water from a reservoir exempted by subparagraph (a) of this section without losing that exemption, if the quantity of authorized use and storage is not increased.
- (c) Additionally, exemptions from the provisions of Section 5.05 shall not apply to direct diversions from Red River to off-channel reservoirs or lands.

ARTICLE VI

APPORTIONMENT OF WATER - REACH III

ARKANSAS, LOUISIANA, AND TEXAS

Subdivision of Reach III and allocation of water therein.

Reach III of the Red River is divided into topographic subbasins, and the water therein allocated, as follows:

SECTION 6.01. Subbasin 1 - Interstate streams - Arkansas and Texas.

- (a) This subbasin includes the Texas portion of those streams crossing the Arkansas-Texas state boundary one or more times and flowing through Arkansas into Cypress Creek-Twelve Mile Bayou watershed in Louisiana.
- (b) Texas is apportioned sixty (60) percent of the runoff of this subbasin and shall have unrestricted use thereof; Arkansas is entitled to forty (40) percent of the runoff of this subbasin.

SECTION 6.02. Subbasin 2 - Interstate streams - Arkansas and Louisiana.

- (a) This subbasin includes the Arkansas portion of those streams flowing from Subbasin 1 into Arkansas, as well as other streams in Arkansas which cross the Arkansas-Louisiana state boundary one or more times and flow into Cypress Creek-Twelve Mile Bayou watershed in Louisiana.
- (b) Arkansas is apportioned sixty (60) percent of the runoff of this subbasin and shall have unrestricted use thereof; Louisiana is entitled to forty (40) percent of the runoff of this subbasin.

SECTION 6.03. Subbasin 3 - Interstate streams - Texas and Louisiana.

- (a) This subbasin includes the Texas portion of all tributaries crossing the Texas-Louisiana state boundary one or more times and flowing into Caddo Lake, Cypress Creek-Twelve Mile Bayou or Cross Lake, as well as the Louisiana portion of such tributaries.
- (b) Texas and Louisiana within their respective boundaries shall each have the unrestricted use

-88-

of the water of this subbasin subject to the following allocation:

- (1) Texas shall have the unrestricted right to all water above Marshall, Lake O' the Pines, and Black Cypress damsites; however, Texas shall not cause runoff to be depleted to a quantity less than that which would have occurred with the full operation of Franklin County, Titus County, Ellison Creek, Johnson Creek, Lake O' the Pines, Marshall, and Black Cypress Reservoirs constructed, and those other impoundments and diversions existing on the effective date of this Compact. Any depletions of runoff in excess of the depletions described above shall be charged against Texas' apportionment of the water in Caddo Reservoir.
- (2) Texas and Louisiana shall each have the unrestricted right to use fifty (50) percent of the conservation storage capacity in the present Caddo Lake for the impoundment of water for state use, subject to the provision that supplies for existing uses of water from Caddo Lake, on date of Compact, are not reduced.
- (3) Texas and Louisiana shall each have the unrestricted right to fifty (50) percent of the conservation storage capacity of any future enlargement of Caddo Lake, provided, the two states may negotiate for the release of each state's share of the storage space on terms mutually agreed upon by the two states after the effective date of this Compact.
- (4) Inflow to Caddo Lake from its drainage area downstream from Marshall, Lake O' the Pines, and Black Cypress damsites and downstream from other last downstream dams in existence on the date of the signing of the Compact document by the Compact Commissioners, will be allowed to continue flowing into Caddo Lake except that any manmade depletions to this inflow by Texas will be subtracted from the Texas share of the water in Caddo Lake.

- (c) In regard to the water of interstate streams which do not contribute to the inflow to Cross Lake or Caddo Lake, Texas shall have the unrestricted right to divert and use this water on the basis of a division of runoff above the state boundary of sixty (60) percent to Texas and forty (40) percent to Louisiana.
- (d) Texas and Louisiana will not construct improvements on the Cross Lake watershed in either state that will affect the yield of Cross Lake; provided, however, this subsection shall be subject to the provisions of Section 2.08.

SECTION 6.04. Subbasin 4 - Intrastate streams - Louisiana.

- (a) This subbasin includes that area of Louisiana in Reach III not included within any other subbasin.
- (b) Louisiana shall have free and unrestricted use of the water of this subbasin.

ARTICLE VII

APPORTIONMENT OF WATER - REACH IV

ARKANSAS AND LOUISIANA

Subdivision of Reach IV and allocation of water therein.

Reach IV of the Red River is divided into topographic subbasins, and the water therein allocated as follows:

SECTION 7.01. Subbasin 1 - Intrastate streams - Arkansas.

(a) This subbasin includes those streams and their tributaries above last downstream major damsites originating in Arkansas and crossing the Arkansas-Louisiana state boundary before flowing into the Red River in Louisiana. Those major last downstream damsites are as follows:

		•	Location		
Stream	<u>Site</u>	<u>Ac-ft</u>	Latitude	Longitude	
Ouachita River	Lake Catherine	19,000	34 [°] 26.6'N	93 ⁰ 01.6'W	
Caddo River	DeGray Lake	1,377,000	34 [°] 13.2'N	93 ⁰ 06.6'W	
Little Missouri River	Lake Greeson	600,000	34 [°] 08.9'N	93 [°] 42.9'W	
Alum Fork, Saline					
River	Lake Winona	63,264	32 [°] 47.8'N	92 ⁰ 51.0'W	
(b) A set of the se					

(b) Arkansas is apportioned the waters of this subbasin and shall have unrestricted use thereof.

SECTION 7.02. Subbasin 2 - Interstate Streams - Arkansas and Louisiana.

(a) This subbasin shall consist of Reach IV less subbasin 1 as defined in Section 7.01 (a) above.

(b) The State of Arkansas shall have free and unrestricted use of the water of this reach subject to the limitation that Arkansas shall allow a quantity of water equal to forty (40) percent of the weekly runoff originating below or flowing from the last downstream major damsite to flow into Louisiana. Where there are no designated last downstream damsites, Arkansas shall allow a quantity of water equal to forty (40) percent of the total weekly runoff originating above the state boundary to flow into Louisiana. Use of water in this subbasin is subject to low flow provisions of subparagraph 7.02(b).

SECTION 7.03. Special Provisions.

- (a) Arkansas may use the beds and banks of segments of Reach IV for the purpose of conveying its share of water to designated downstream diversions.
- (b) The State of Arkansas does not guarantee to maintain a minimum low flow for Louisiana in Reach IV. However, on the following streams when the use of water in Arkansas reduces the flow at the Arkansas-Louisiana state boundary to the following amounts:
 - (1) Ouachita 780 cfs
 - (2) Bayou Bartholomew 80 cfs
 - (3) Boeuf River 40 cfs
 - (4) Bayou Macon 40 cfs

the State of Arkansas pledges to take affirmative steps to regulate the diversions of runoff originating or flowing into Reach IV in such a manner as to permit an equitable apportionment of the runoff as set out herein to flow into the State of Louisiana. In its control and regulation of the water of Reach IV any adjudication or order rendered by the State of Arkansas or any of its instrumentalities or agencies affecting the terms of this Compact shall not be effective against the State of Louisiana nor any of its citizens or inhabitants until approved by the Commission.

ARTICLE VIII

APPORTIONMENT OF WATER - REACH V

SECTION 8.01. Reach V of the Red River consists of the mainstem Red River and all of its tributaries lying wholly within the State of Louisiana. The State of Louisiana shall have free and unrestricted use of the water of this subbasin.

ARTICLE IX

ADMINISTRATION OF THE COMPACT

SECTION 9.01. There is hereby created an interstate administrative agency to be known as the "Red River Compact Commission," hereinafter called the "Commission." The Commission shall be composed of two representatives from each Signatory State who shall be designated or appointed in accordance with the laws of each state, and one Commissioner representing the United States, who shall be appointed by the President. The Federal Commissioner shall be the Chairman of the Commission but shall not have the right to vote. The failure of the President to appoint a Federal Commissioner will not prevent the operation or effect of this Compact, and the eight representatives from the Signatory States will elect a Chairman for the Commission.

SECTION 9.02. The Commission shall meet and organize within 60 days after the effective date of this Compact. Thereafter, meetings shall be held at such times and places as the Commission shall decide.

SECTION 9.03. Each of the two Commissioners from each state shall have one vote; provided, however, that if only one representative from a state attends he is authorized to vote on behalf of the absent Commissioner from that state. Representatives from three states shall constitute a quorum. Any action concerned with administration of this Compact or any action requiring compliance with specific terms of this Compact shall require six concurring votes. If a proposed action of the Commission affects existing water rights in a state, and that action is not expressly provided for in this Compact, eight concurring votes shall be required.

SECTION 9.04.

- (a) The salaries and personal expenses of each state's representative shall be paid by the government that it represents, and the salaries and personal expenses of the Federal Commissioner will be paid for by the United States.
 - (b) The Commission's expenses for any additional stream flow gauging stations shall be equitably apportioned among the states involved in the reach in which the stream flow gaging stations are located.
 - (c) All other expenses incurred by the Commission shall be borne equally by the Signatory States and shall be paid by the Commission out of the "Red River

Compact Commission Fund." Such Fund shall be initiated and maintained by equal payments of each state into the fund. Disbursement shall be made from the fund in such manner as may be authorized by the Commission. Such fund shall not be subject to audit and accounting procedures of the state; however, all receipts and disbursements of the fund by the Commission shall be audited by a qualified independent public accountant at regular intervals, and the report of such audits shall be included in and become a part of the annual report of the Commission. Each state shall have the right to make its own audit of the accounts of the Commission at any reasonable time.

ARTICLE X

POWERS AND DUTIES OF THE COMMISSION

SECTION 10.01. The Commission shall have the power to:

- (a) Adopt rules and regulations governing its operation and enforcement of the terms of the Compact;
- (b) Establish and maintain an office for the conduct of its affairs and, if desirable, from time to time, change its location;
- (c) Employ or contract with such engineering, legal, clerical and other personnel as it may determine necessary for the exercise of its functions under this Compact without regard to the Civil Service Laws of any Signatory State; provided that such employees shall be paid by and be responsible to the Commission and shall not be considered employees of any Signatory State;
- (d) Acquire, use and dispose of such real and personal property as it may consider necessary;
- (e) Enter into contracts with appropriate State or Federal agencies for the collection, correlation and presentation of factual data, for the maintenance of records and for the preparation of reports;
- (f) Secure from the head of any department or agency of the Federal or State government such information as it may need or deem to be useful for carrying out its functions and as may be available to or procurable by the department or agency to which the request is addressed; provided such information is not privileged and the department or agency is not precluded by law from releasing same.
- (g) Make findings, recommendations or reports in connection with carrying out the purposes of this Compact, including, but not limited to, a finding that a Signatory State is or is not in violation of any of the provisions of this Compact. The Commission is authorized to make

such investigations and studies, and to hold such hearings as it may deem necessary for said purposes. It is authorized to make and file official certified copies of any of its findings, recommendations or reports with such officers or agencies of any Signatory State, or the United States, as may have any interest in or jurisdiction over the subject matter. The making of findings, recommendations, or reports by the Commission shall not be a condition precedent to the instituting or maintaining of any action or proceeding of any kind by a Signatory State in any court or tribunal, or before any agency or officer, for the protection of any right under this Compact or for the enforcement of any of its provisions; and

(h) Print or otherwise reproduce and distribute its proceedings and reports.

SECTION 10.02. The Commission shall:

- (a) Cause to be established, maintained, and operated such stream, reservoir and other gaging stations as are necessary for the proper administration of the Compact;
- (b) Cause to be collected, analyzed and reported such information on stream flows, water quality, water storage and such other data as are necessary for the proper administration of the Compact;
- (c) Perform all other functions required of it by the Compact and do all things necessary, proper and convenient in the performance of its duties thereunder;
- (d) Prepare and submit to the governor of each of the Signatory States a budget covering the anticipated expenses of the Commission for the following fiscal biennium;
- (e) Prepare and submit an annual report to the governor of each Signatory State and to the President of the United States covering the activities of the Commission for the preceding fiscal year, together with an accounting of all funds received and expended by it in the conduct of its work;

- (f) Make available to the governor or to any official agency of a Signatory State or to any authorized representative of the United States, upon request, any information within its possession;
- (g) Not incur any obligation in excess of the unencumbered balance of its funds, nor pledge the credit of any of the Signatory States; and
- (h) Make available to a Signatory State or the United States in any action arising under this Compact, without subpoena, the testimony of any officer or employee of the Commission having knowledge of any relevant facts.
ARTICLE (I

POLLUTION

SECTION 11.01. The Signatory States recognize that the increase in population and the growth of industrial, agricultural, mining and other activities combined with natural pollution sources may lead to a diminution of the quality of water in the Red River Basin which may render the water harmful or injurious to the health and welfare of the people and impair the usefulness or public enjoyment of the water for beneficial purposes, thereby resulting in adverse social, economic, and environmental impacts.

SECTION 11.02. Although affirming the primary duty and responsibility of each Signatory State to take appropriate action under its own laws to prevent, diminish, and regulate all pollution sources within its boundaries which adversely affect the water of the Red River Basin, the states recognize that the control and abatement of the naturally-occurring salinity sources as well as, under certain circumstances, the maintenance and enhancement of the quality of water in the Red River Basin may require the cooperative action of all states.

SECTION 11.03. The Signatory States agree to cooperate with agencies of the United States to devise and effectuate means of alleviating the natural deterioration of the water of the Red River Basin.

SECTION 11.04. The Commission shall have the power to cooperate with the United States, the Signatory States and other entities in programs for abating and controlling pollution and natural deterioration of the water of the Red River Basin, and to recommend reasonable water quality objectives to the states.

SECTION 11.05. Each Signatory State agrees to maintain current records of waste discharges into the Red River Basin and the type and quality of such discharges, which records shall be furnished to the Commission upon request.

SECTION 11.06. Upon receipt of a complaint from the governor of a Signatory State that the interstate water of the Red River Basin in which it has an interest are being materially and adversely affected by pollution and that the state in which the pollution originates has failed after reasonable notice to take appropriate abatement measures, the Commission shall make such findings as are appropriate and thereafter provide such findings to the governor of the state in which such pollution originates and request appropriate corrective action. The Commission, however, shall not take any action with respect to pollution which adversely affects only the state in which such pollution originates. SECTION 11.07. In addition to its other powers set forth under this Article, the Commission shall have the authority, upon receipt of six concurring votes, to utilize applicable Federal statutes to institute legal action in its own name against the person or entity responsible for interstate pollution problems; provided, however, sixty (60) days before initiating legal action the Commission shall notify the Governor of the state in which the pollution source is located to allow that state an opportunity to initiate action in its own name.

SECTION 11.08. Without prejudice to any other remedy available to the Commission, or any Signatory State, any state which is materially and adversely affected by the pollution of the water of the Red River Basin by pollution originating in another Signatory State may institute a suit against any individual, corporation, partnership, or association, or against any Signatory State or political or governmental subdivision thereof, or against any officer, agency, department, bureau, district or instrumentality of or in any Signatory State contributing to such pollution in accordance with applicable Federal statutes. Nothing herein shall be construed as depriving any persons of any rights of action relating to pollution which such person would have if this Compact had not been made.

ARTICLE XII

TERMINATION AND AMENDMENT OF COMPACT

SECTION 12.01. This Compact may be terminated at any time by appropriate action of the legislatures of all of the four Signatory States. In the event of such termination, all rights established under it shall continue unimpaired.

SECTION 12.02. This Compact may be amended at any time by appropriate action of the legislatures of all Signatory States that are affected by such amendment. The consent of the United States Congress must be obtained before any such amendment is effective.

ARTICLE XIII

RATIFICATION AND EFFECTIVE DATE OF COMPACT

SECTION 13.01. Notice of ratificaton of this Compact by the legislature of each Signatory State shall be given by the governor thereof to the governors of each of the other Signatory States and to the President of the United States. The President is hereby requested to give notice to the governors of each of the Signatory States of the consent to this Compact by the Congress of the United States.

SECTION 13.02. This Compact shall become effective, binding and obligatory when, and only when:

- (a) It has been duly ratified by each of the Signatory
 - States; and

(b) It has been consented to by an Act of the Congress of the United States, which Act provides that:

> Any other statute of the United States to the contrary notwithstanding, in any case or controversy:

> > which involves the construction or application of this Compact;

in which one or more of the Signatory States to this Compact is a plaintiff or plaintiffs; and

which is within the judicial power of the United States as set forth in the Constitution of the United States;

and without any requirement, limitation or regard as to the sum or value of the matter in controversy, or of the place of residence or citizenship of, or of the nature, character or legal status of, any of the other proper parties plaintiff or defendant in such case or controversy:

> The consent of Congress is given to name and join the United States as a party defendant or otherwise in any such case or controversy in the Supreme Court of the United States if the United States is an indispensable party thereto.

SECTION 13.03. The United States District Courts shall have original jurisdiction (concurrent with that of the Supreme Court of the United States, and concurrent with that of any other Federal or state court, in matters in which the Supreme Court, or other court has original jurisdiction) of any case or controversy involving the application or construction of this Compact; that said jurisdiction shall include, but not be limited to, suits between Signatory States; and that the venue of such case or controversy may be brought in any judicial district in which the acts complained of (or any portion thereof) occur.

SIGNED AND APPROVED on the 12th day of May 1978 at Denison Dam.

Saxton, Commissioner

John P. Saxton, Commissioner State of Arkansas

Arthur R. Theis, Commissioner State of Louisiana

Jocuden

Orville B. Saunders, Commissioner State of Oklahoma

Futher

Fred Parkey, Commissioner State of Texas

R. C. MARSHALL, Major General Representative United States of America

RULES FOR THE INTERNAL ORGANIZATION of the RED RIVER COMPACT COMMISSION

(As Amended April 25, 1984, April 30, 1991, and May 4, 1993)

<u>ARTICLE I</u> THE COMMISSION

1.1 The Commission is the "Red River Compact Commission," which is referred to in Article X of the Red River Compact.

1.2 The credentials of each Commissioner shall be filed with both the Chairman and the secretary of the Commission. When the credentials of a new Commissioner are received, the Secretary shall promptly notify each of the other Commissioners of the name and address of the new Commissioner.

1.3 Each Commissioner shall advise in writing the office of the Commission as to his address at which all official notices and other communications of the Commission shall be sent to him. Any change of address shall be promptly communicated in writing to the office of the Commission.

1.4 Persons designated to substitute for duly appointed Commissioners at meetings of the Compact Commission shall present the Commission with credentials of authority by letter, or other form of appointment acceptable to the Commission, which states the scope or limitations of the appointment, together with a copy of the state or federal law or Attorney General's opinion which authorizes the appointment.

ARTICLE II OFFICERS

2.1 The officers of the Commission shall be a Chairman, a Vice-Chairman, Secretary and a Treasurer.

2.2 The Commissioner representing the United States shall be the Chairman of the Commission. The Chairman or the designated representative of the Chairman, shall preside at meetings of the Commission. His duties shall be those usually imposed upon such officers and as may be assigned by these rules or by the Commission from time to time.

2.3 The Vice-Chairman shall be elected at the annual meeting from the Commissioners of the host state for the coming year as reflected by the minutes, and shall hold office for a term of one year, beginning on July 1 following the election, or until a successor is elected. The Vice-Chairman shall serve as Chairman in the event the President of the United States fails to appoint a Federal Commissioner, or in the absence of the Federal Commissioner.

2.4 The Secretary shall be selected at the annual meeting by the Commission from the state designated to host the next annual meeting as reflected in the minutes. The Secretary shall serve for the term of one year, beginning on

Page 2

-106-

July 1 following the selection, and perform the duties as the Commission shall direct. In case of a vacancy in the office of the Secretary, the Commission shall select a new Secretary as expeditiously as possible.

2.5 The Treasurer shall be selected by the Commission for a term of one year, beginning on July 1 following the selection. The Treasurer shall furnish a fidelity bond, the cost of which shall be paid by the Commission. The Treasurer shall receive, hold and disburse all funds which come into the his hands of the Treasurer.

2.6 The Secretary and Treasurer may be members of the Commission, and their offices may be combined by the Commission. Any one person may hold both offices.

2.7 Whenever there is a permanent change in the Commander of the Lower Mississippi Valley Division, Department of the Army Corps of Engineers, or its counterpart in any future reorganization of the Corps, the Vice-Chairman shall immediately request the President to appoint the new Commander as the U.S. Commissioner to the Compact Commission.

ARTICLE III PRINCIPAL OFFICE

3.1 The principal office of the Commission shall be either the office of the Chairman or the Secretary, as the Commission shall direct.

3.2 Official books and records of the Commission shall be kept at the principal office.

ARTICLE IV MEETINGS

4.1 The annual meeting of the Commission shall be held on the last Tuesday of April of each year.

4.2 Special meetings of the Commission may be called by the Chairman at any time. Upon the written request of each of the Commissioners of two states setting forth the matters to be considered at such meeting, the chairman shall call a special meeting.

4.3 Reasonable notice of all special meetings of the Commission shall be sent by the Chairman, to all members of the Commission by ordinary mail at least ten days in advance of each meeting and notice shall state the purpose thereof.

4.4 Emergency meetings of the Commission may be called by the Chairman at any time upon the concurrence of at least two states and such meetings may be conducted by long-distance telephone conference call or other electronic means. Any such long-distance telephone conference call or other electronic communication shall be recorded and made available for public inspection in accordance with the laws of the respective signatory states. Each of the signatory states shall be represented by at least one Commissioner during such an emergency conference and concur in the action.

RRCC RULES FOR INTERNAL ORGANIZATION Page 3

-107-

An emergency is defined as a situation involving an eminent threat of injury to persons or damage to property or eminent financial loss when the time requirements for public notice and travel to a special meeting would make such procedure and travel impractical and increase the likelihood of injury or damage or eminent financial loss.

Notice to the public shall be given of all Commission meetings. Except 4.5 as otherwise provided, the Chairman shall furnish notice of all meetings to the Commissioners of each signatory state, whose responsibility it shall be to give said notice to the public in accordance with the laws of their respective In the event of an emergency meeting held by telephone or other states. electronic communication, no advance notice is required.

All meetings of the Commission shall be held at the principal office unless another place shall be agreed upon by the Commissioners.

Minutes of the Commission shall be preserved in suitable manner. 4.6 Minutes, until approved, shall not be official and shall be furnished only to members of the Commission, its employees and committees.

Commissioners from three of the signatory states shall constitute a 4.7 quorum. However, if an emergency meeting is conducted as provided for in rule 4.4, or if a proposed action of the Commission affects existing water rights in a state, and that actions is not expressly provided for in the Compact, eight concurring votes shall be required. Any other actions concerned with the administration of the Compact or requiring compliance with specific terms of the Compact shall require six concurring votes.

At each regular or annual meeting of the Commission, the order of 4.8 business, unless agreed otherwise, shall be as follows:

> Call to order; Approval of Agenda; Approval of the minutes; Report of Chairman; Report of Secretary; Report of Treasurer; Report of Commissioners; Report of Committees; Unfinished business; New business; Adjournment;

All meetings of the Commission, except executive sessions and except as 4.9 otherwise provided, shall be open to the public. Executive sessions shall be open only to members of the Commission and such advisers as may be designated by each member and employees as permitted by the Commission; provided, however, that the Commission may call witnesses before it when in such The Commission may hold executive sessions only for the purposes of

discussing;

RRCC RULES FOR INTERNAL ORGANIZATION Page 4

(a) The employment, appointment, promotion, demotion, disciplining or resignation of a Commission employee or employees, members, advisers, or committee members.

(b) Pending or contemplated litigation, settlement offers, and matters where the duty of the Commission's counsel to his client, pursuant to the Code of Professional Responsibility, clearly conflicts with the public's right to know.

(c) The report, development, or course of action regarding security, personnel, plans, or devices.

No executive session may be held except on a vote, taken in public by a majority of a quorum of the members present. At least one Commissioner from each of the signatory states must agree to the holding of an executive session.

Any motion or other decision considered or arrived at in executive session shall be voidable unless, following the executive session, the Commission reconvenes in public session and presents and votes on such motion or other decision.

4.10 In the absence of a Chairman and Vice-Chairman, all of the Commissioners from any two (2) states may call an emergency or a special meeting of the Compact Commission.

ARTICLE V COMMITTEES

5.1 There may be the following standing committees:

Engineering Committee; Legal Committee; and Budget Committee.

5.2 The committees shall have the following duties:

(a) The Engineering Committee shall advise the Commission all engineering matters that may be referred to it.

(b) The Legal Committee shall advise the Commission on all legal matters that may be referred to it.

(c) The Budget Committee shall prepare the annual budget and shall advise the commission on all fiscal matters that may be referred to it.

5.3 Commissioners may be members of committees. The number of members of each committee shall be determined from time to time by the Commission. The Commissioners of each state shall designate the member or members on each committee representing the State, and each State shall have one vote.

5.4 The Chairman may appoint a non-voting member of each committee.

RRCC RULES FOR INTERNAL ORGANIZATION Page 5 -109-

5.5 The Chairman of each committee shall be designated by the Commission from members of the committee; however, in the event a Chairman is unable to perform his duties, the committee shall appoint an Interim Chairman.

5.6 The Commission may from time to time create special committees and assign it tasks. The Commission may also determine the composition of the special committees.

5.7 Formal committee reports shall be made in writing and filed with the Commission.

ARTICLE VI RULES AND REGULATIONS

6.1 So far as is consistent with the Compact, the Commission may adopt rules and regulations and amend them from time to time. Rules and regulations to be adopted shall be presented by resolution and approved by a quorum as set out in Rule 4.7. Copies of proposed resolutions for rule adoption shall be presented in writing to each of the Commissioners at least thirty days before the meeting upon which they are to be voted. However, at its meeting, by unanimous vote, the Commission may waive this notice requirement.

6.2 Rules and regulations of the Commission may be compiled and copies may be prepared for distribution to the public under such terms and conditions as the Commission may prescribe.

ARTICLE VII FISCAL

7.1 All funds of the Commission shall be deposited in a depository or depositories designated by the Commission under the name of the "Red River Compact Commission Fund".

7.2 Disbursement of funds in the hands of the Treasurer, for items included in the approved budget, shall be made by check signed by him and the Vice-Chairman or by such person as may be designated by the Commission. Disbursement of funds for non-budgeted items shall be made by check signed by the Treasurer and Vice-Chairman upon voucher approved by at least six of the Commissioners, four of whom shall be from different signatory states.

7.3 At the annual meeting of each year, the Commission shall adopt a budget covering an estimate of its expenses for the following two fiscal years.

7.4 The payment of expenses of the Commission and of its employees shall not be subject to the audit and accounting procedures of the states.

7.5 All receipts and disbursements of the Commission shall be audited periodically as determined by the Commission by a qualified independent public accountant to be selected by the Commission and the report of the audit shall be included in and become a part of the annual report of the Commission.

7.6 The fiscal year of Commission shall begin July 1, of each year and end June 30 of the next succeeding year.

ARTICLE VIII ANNUAL REPORT

-110-

8.1 The Commission shall make an annual report and transmit it on or before the last day of May to the governors of the signatory states to the Red River Compact and to the President of the United States.

8.2 The annual report shall cover the activities of the Commission for the preceding year, and include, amount other things the following:

- (a) The estimated budget;
- (b) Report of the last audit of Red River Compact Fund;
- (c) All hydrologic data which the Commission deems pertinent;
- (d) Statements as to cooperative studies of water supplies made during the preceding year;
- (e) Such other pertinent matters as the Commission may require.

RED RIVER COMPACT INTERIM RULES AND REGULATIONS To Compute and Enforce Compact Compliance REACH II, SUBBASIN 5

-111-

(Adopted 4/30/87)

1.

2.

c.

These rules and regulations to be used to compute and enforce Compact compliance within Subbasin 5 of Reach II, Red River Compact, are adopted subject to the following conditions and assumptions. a. It is fully understood that these rules and membering the line

a. It is fully understood that these rules and regulations should be modified as new or improved gaging stations are constructed, whenever experience or detailed studies demonstrate the need for modification, and if the Commission should modify its interpretation of Compact provisions relating to this Subbasin.
 b. Definitions:

(1) "Diversion" as used in these rules and regulations, is the net loss to a water source from use by a diverter, and is computed as the diversion from the water source minus the part of the diversion which is returned to the water source. Normally, return flows must be measured to be considered; however, the EAC may consider and recommend exceptions. As used herein, "diversion" is equivalent to "net diversion" from a water source and to "depletion" or "consumptive use" of a water source.

Management of Compact Compliance Computations.

a. Management Using State Centers:

- (1) State EAC representatives will establish State Computation Control Centers
 - (a) State representatives will gather data, exchange data and meet via conference call to check on computation results, if necessary.
 - (b) EAC will determine compliance with Compact.
- b. Management Period for Weekly Flow and Diversions:
 - (1) Next week's State diversions will be allocated based on last week's compliance computations.
 - (2) It is each State's responsibility to limit its total State diversion allocation among its State diverters.
 - (3) The weekly period for use and flow data will start and end at 8:00 a.m. on Tuesday of each week.
 - (4) Data collection and dissemination will be completed on Tuesday of each week.
 - (5) Computation of Compliance will be completed on Wednesday of each week.
 - (6) Each State can request an update at any time.

Management Improvement Studies: The EAC will monitor the effect on accounting management of the following factors and will report thereon to the Commission whenever procedure changes appears desirable.

- (1) Errors caused by travel time.
- (2) Future restrictions computed from past week's data.
- (3) Failure to consider channel loss.

RRCC Interim Rules and Regulations -112-Reach II, Subbasin 5 Page 2

- (4) Failure to consider ungaged return flows.
- (5) Failure to consider flow trends.
- (6) Addition of needed gages.
- 3. Enforcement of Compact Compliance Requirements. Each State will be responsible for insuring that the sum of the diversions by State users does not exceed the total State diversion authorized by the Red River Compact. In this regard, each State will be responsible for establishing clear legal authority within its State for enforcing the restrictions imposed by the Red River Compact.

4. Data Reporting Procedures.

- a. Streamflow Gaging Station Records: The EAC will make arrangements with the Corps of Engineers, the U.S. Geological Survey and with States as required to collect daily and/or weekly data, as needed, and forward to the State Computation and Control Centers.
- b. Diversion Records: Each State will be responsible to collect daily and/or weekly data, as needed, and forward to the State Computation and Control Centers.
- c. Archived Records: Records will be archived by Commission Chairman.

5. General Compliance Requirements of Section 5.05, Red River Compact. a. Section 5.05 (b)(1):

- (1) Compact prescribes: "The Signatory States shall have equal rights to the use of the runoff originating in subbasin 5 and undesignated water flowing into subbasin 5, so long as the flow of the Red River at the Arkansas-Louisiana state boundary is 3,000 cubic feet per second or more, provided no state is entitled to more than 25 percent of the water in excess of 3,000 cubic feet per second."
- (2) In computing the Subbasin 5 water allocation, when the flow of the Red River at the Arkansas-Louisiana State Boundary is 3,000 cfs or more and the total runoff and undesignated flow of Subbasin 5 is greater than or equal to 7,500 cfs but less than or equal to 12,000 cfs, Louisiana's allocation shall be 3,000 cfs and each of the three upstream states will equally share the runoff and undesignated flow in excess of 3,000 cfs.
- (3) When the total runoff and undesignated flow of Subbasin 5 is 12,000 cfs or more, each of the signatory states shall be entitled to 25% of the total runoff and undesignated flow.
- (4) State compliance with section 5.05 (b)(1) does not need to be determined except when specifically requested by a compact State.

b. Section 5.05 (b)(2):

(1) The Compact states: "Whenever the flow of the Red River at the Arkansas-Louisiana state boundary is less than 3,000 cubic feet per second, but more than 1,000 cubic feet per second, the States of Arkansas, Oklahoma, and Texas shall allow to flow into the Red River for delivery to the State of Louisiana a quantity of water equal to 40 percent of the total weekly runoff originating in subbasin 5 and 40 percent RRCC Interim Rules and Regulations Reach II, Subbasin 5 Page 3

-113-

of undesignated water flowing into subbasin 5; provided, however, that this requirement shall not be interpreted to require any state to release stored water."

- In computing the Subbasin 5 water allocation to Louisiana when flow of Red River at the Arkansas-Louisiana State boundary is less than 3,000 cfs but more than 1,000 cfs, the Subbasin 5 runoff for each of the three upstream States and the undesignated water flowing into Subbasin 5 from each upstream State totalled, and the three upstream States should allow to pass to Louisiana 40 percent of the total, or 1,000 cfs, whichever is greater.
- When the Subbasin 5 runoff plus undesignated water totals at least 2,500 cfs and not more than 7,500 cfs, each of the three upstream States are allocated 60 percent of its runoff plus undesignated inflow and the other 40 percent is to be allowed to flow into the Red River for delivery to Louisiana.
- When the Subbasin 5 runoff plus undesignated water totals at least 1,000 cfs but less than 2,500 cfs, the allocation to Louisiana is 1,000 cfs because of Compact Section 5.05 (b)(3). The total Subbasin 5 runoff plus undesignated water is compared to the Louisiana allocation of 1,000 cfs and a percentage is established. Each of the three upstream States will be entitled to divert and use a quantity computed using (100 percent minus the established percentage) times (the total of runoff from its Subbasin 5 areas plus undesignated water flowing into its Subbasin 5 areas).
- (5) This Compact compliance determination should be made whenever the flow of the Red River at the Arkansas-Louisiana State boundary falls below 3,000 cfs and is more than 1,000 cfs.
- c. Section 5.05 (b)(3):
 - (1) The Compact states: "Whenever the flow of the Red River at the Arkansas-Louisiana state boundary falls below 1,000 cubic feet per second, the States of Arkansas, Oklahoma, and Texas shall allow a quantity of water equal to all the weekly runoff originating in subbasin 5 and all undesignated water flowing into subbasin 5 within their respective states to flow into the Red River as required to maintain a 1,000 cubic foot per second flow at the Arkansas-Louisiana state boundary."
 - (2) In computing the Subbasin 5 allocation when the flow of the Red River at the Arkansas-Louisiana State boundary falls below 1,000 cfs, and when the Subbasin 5 runoff and undesignated water flowing into Subbasin 5 total 1,000 cfs or less, all flow must be passed to Louisiana.
 - (3) When the Subbasin 5 runoff and undesignated water flowing into Subbasin 5 total more than 1,000 cfs but less than 2,500 cfs, Louisiana is allocated 1,000 cfs. This 1,000 cfs Louisiana entitlement is compared to the total runoff plus undesignated water and a percentage is established. Each of the three upstream States will be entitled to divert and use

(3)

(4)

(2)

a quantity computed using (100 percent minus the established percentage) times (its total State runoff and undesignated water inflow).

See rules for Compact Section 5.05 (b)(2) when the Subbasin 5 runoff and undesignated water flowing into Subbasin 5 total 2,500 cfs or more up to 7,500 cfs.

-114-

(5) This Compact compliance determination should be made whenever the flow of the Red River at the Arkansas-Louisiana State boundary falls below 1,000 cfs.

d. Section 5.05 (c):

- (1) The Compact states: "Whenever the flow at Index, Arkansas, is less than 526 c.f.s., the states of Oklahoma and Texas shall each allow a quantity of water equal to 40 percent of the total weekly runoff originating in subbasin 5 within their respective states to flow into the Red River; provided however, this provision shall be invoked only at the request of Arkansas, only after Arkansas has ceased all diversions from the Red River itself in Arkansas above Index, and only if the provisions of Sub-sections 5.05 (b)(2) and (3) have not caused a limitation of diversions in subbasin 5."
- (2) In computing the Subbasin 5 allocation when flow of Red River at Index Arkansas is less than 256 cfs, the States of Oklahoma and Texas are to pass 40 percent of weekly runoff from respective Subbasin 5 areas.
- (3) This Compact compliance determination will be made only when requested by Arkansas, only after Arkansas has ceased all diversions from the Red River, and only if the provisions of subsections 5.05 (b)(2) and (3) have not caused a limitation of diversions in Subbasin 5.

Procedures (Disregarding Designated Flows) to Compute State Runoff, Runoff plus Undesignated Inflows, and Flow of Red River at Arkansas-Louisiana State Boundary.

a. Oklahoma.

6.

- (1) Runoff plus Undesignated Inflows of Denison Dam to DeKalb Gage:
 - (a) Kiamichi River near Hugo, OK, Gage flow, plus Muddy Boggy Creek near Unger, OK, Gage flow plus Blue River near Blue, OK Gage flow, plus
 - (b) Fifty percent of (DeKalb Gage flow, plus Texas and Oklahoma diversions, minus gaged flows at Kiamichi River near Hugo, Ok, Muddy Boggy Creek near Unger, OK, Blue River near Blue, OK, and Sanders Creek near Chicota, Texas, streamflow Gages).
- (2) Runoff plus Undesignated Inflows, DeKalb Gage to Oklahoma-Arkansas State line: Fifteen and one-half (15.5) percent of (Index Gage flow, minus DeKalb Gage flow, plus Oklahoma, Texas and Arkansas diversions downstream from DeKalb Gage).
- (3) Runoff only, Denison Dam to Oklahoma-Arkansas State line.
 (a) Fifty percent of (DeKalb Gage flow, minus Red River at Denison Dam Gage flow, plus Texas and Oklahoma diversions upstream from DeKalb Gage, minus Blue River near Blue, OK, Gage flow, minus Muddy Boggy Creek near

RRCC Interim Rules and Regulations Reach II, Subbasin 5 Page 5

-115-

Unger-Okla. Gage flow, minus Kiamichi River near Hugo-Okla. Gage flow minus Gage flow), plus

W. S.S.

- Fifteen and one-half (15.5) percent of (Index Gage (b) flow, minus DeKalb Gage flow, plus Oklahoma, Texas and Arkansas diversions between DeKalb and Index Gages).
- b. Texas.
 - Runoff plus Undesignated Inflows, DeKalb Gage to Index Gage: (1) Sanders Creek near Chicota Gage flow, plus (8)
 - Fifty percent of: (DeKalb Gage flow, plus Texas and (b) Oklahoma diversions, minus gaged flows at Kiamichi River near Hugo, OK, Muddy Boggy Creek near Unger, OK, Blue River near Blue, OK, and Sanders Creek near Chicota, TX, streamflow Gages).
 - Runoff plus Undesignated Inflows, DeKalb Gage to Index Gage: (2) Fifty (50) percent of (Index Gage flow, minus DeKalb Gage flow, plus Oklahoma, Texas and Arkansas diversions downstream from DeKalb Gage).
 - (3) Runoff plus Undesignated Inflows, Sulphur River Gage: One hundred percent of (Sulphur River near Texarkana Gage flow) minus (Texas diversions from river below gage) plus (Texas diversions below Texarkana Dam).
 - Runoff Only, Denison Dam to Index Gage: Fifty percent of (4) (Index Gage flow, minus Red River at Denison Dam Gage flow, plus Oklahoma and Texas and Arkansas diversions upstream from the Index Gage, minus Blue River near Blue, OK, Gage flow, minus Muddy Boggy Creek near Unger-Okla. Gage flow, minus Kiamichi River near Hugo-Okla. flow, minus Sanders Creek near Chicota-Texas Gage flow).
 - Arkansas Runoff plus Undesignated Inflows.
 - Oklahoma-Arkansas State Line to Index Gage: Thirty-four and (1) one-half (34.5) percent of (Index Gage flow, minus DeKalb Gage flow, plus Oklahoma and Texas and Arkansas diversions between DeKalb and Index Gages).
 - (2) Index Gage to Hosston Gage:
 - Hosston Gage flow, plus Louisiana diversions above (a) Hosston Gage, minus Index Gage flow, minus (Sulphur River near Texarkana Gage flow less Texas diversions from river below gage), plus Arkansas diversions downstream from Index Gage.
- Louisiana Streamflow at Arkansas-Louisiana State Boundary. đ.
 - Red River flow at Arkansas-Louisiana State boundary equals (1) (Gage flow) plus (Louisiana diversions from Red River downstream from the State boundary and upstream from gage). Data needed to make interim Louisiana calculations (2)
 - (a)
 - For Red River flows up to 5,000 cfs Hosston Gage flow, plus Louisiana diversions from Red River upstream from Hosston Gage.
 - For Red River flows of 5,000 cfs or larger -(b) Shreveport Gage flow, plus Louisiana diversions from Red River upstream from Shreveport Gage, minus Twelvemile Bayou near Dixie-La Gage flow, plus Louisiana diversions from Twelvemile Bayou below Twelvemile Bayou near Dixie-La Gage.

c.

RRCC Interim Rules and Regulations Reach II, Subbasin 5 Page 6

- (3) Effect of Flow Trends, Scheduled Change of Reservoir Releases, and Other Events Certain to Significantly Change Flow at Arkansas-Louisiana State Boundary During Coming Week. In addition to the Arkansas-Louisiana State boundary flow estimated based on subparagraph (2) (a) or (b) above, the EAC will also advise the Commission of probable significant changes in State boundary flow which should result from flow trends, scheduled change of reservoir releases, and other such known events.
- 7. Procedures (Using Designated Flow Data) to Compute State Runoff plus Undesignated Inflows and Flow of Red River at Arkansas-Louisiana State boundary. Procedures outlined in paragraph 6 above will be followed except that designated inflows, designated outflows and diversion of designated flows will be accounted for whenever appropriate.

-116-

RED RIVER COMPACT RULES AND REGULATIONS To Compute and Enforce Compact Compliance REACH I, SUBBASIN 1

-117-

(Adopted 4/30/87)

- General. These rules and regulations to be used to compute and enforce Compact compliance within Subbasin I of Reach 1, Red River Compact, are adopted subject to the following conditions and assumptions.
 - It is fully understood that these rules and regulations should be modified as new or improved gaging stations are constructed, whenever experience or detailed studies demonstrate the need for modification, and if the Commission should modify its interpretation of Compact provisions relating to this Subbasin.

Management of Compact Compliance Computations.

- Management Using State Centers:
 - Texas and Oklahoma representatives will establish State (1) Computation and Control Centers.
 - State representatives will gather data, exchange data (a) and meet prior to the annual Commission meeting to check on computation results.
 - The EAC will determine compliance with Compact. (b)
- Management Period for Compact Compliance Computations:
 - Computation will be on the calendar year basis. (1)
 - Water data for a calendar year should be exchanged prior to (2) March 15 of the following year.
 - (3) Compact Compliance Computation for a calendar year should be completed by April 15 of the following year.
- Enforcement of Compact Compliance Requirements. Texas will be responsible for insuring that the sum of Texas uses does not exceed the total Texas water use authorized by the Red River Compact, and Texas will be responsible for establishing clear legal authority within Texas for enforcing the restrictions imposed by the Red River Compact.

Data Reporting Procedures.

- Streamflow Gaging Station Records: The EAC will make arrangements a . with federal and State agencies, as required, to collect calendar year data as needed, and forward to the Texas and Oklahoma Computation Control Centers.
- b. Archived Records: Records will be archived by the Commission Chairman.

General Compliance Requirements of Section 4.01 Red River Compact. а.

- SECTION 4.01. Subbasin 1 Interstate Streams Texas:
 - The Compact prescribes: (1)
 - "(a) This includes the Texas portion of Buck Creek, Sand (Lebos) Creek, Salt Fork Red River, Elm Creek, North Fork Red River, Sweetwater Creek and Washita River, together with all their tributaries in Texas which lie west of the 100th Meridian."

2.

3.

4.

5.

1.

a .

8.

b.

(2)

"(b) The annual flow within this subbasin is hereby apportioned sixty (60) percent to Texas and forty (40) percent to Oklahoma."

SECTION 4.01 is modified in part by SECTION 4.05. Special Provisions, as follows:

"(b) Texas shall not accept for filing, or grant a permit, for the construction of a dam to impound water solely for irrigation, flood control, soil conservation, mining and recovery of minerals, hydroelectric power, navigation, recreation and pleasure, or for any other purpose other than for domestic, municipal, and industrial water supply, on the mainstem of the North Fork Red River or any of its tributaries within Texas about Lugert-Altus Reservoir until the date that imported water, sufficient to meet the municipal and irrigation needs of Western Oklahoma is provided, or until January 1, 2000, which ever occurs first."

Pertinent extracts from the Supplemental Interpretive Comments of Legal Advisory Committee, as approved by the Red River Compact Commission on the 19th day of September 1978, are as follows:

Pages 9 and 10 " * * * * * The flow of interstate tributaries is generally divided 60 percent to the upstream State and 40 percent to the downstream State. Because flows in Reach I are primarily from flood flows, an annual basis of accounting was adopted"

* * * * *

"Section 4.05(b) reflects the compromise of a long-standing dispute between Oklahoma and Texas over the water of the North Fork of the Red River and Sweetwater Creek. * * * * *

"Under the Compromise Texas will limit development on North Fork and Sweetwater Creek to projects justified on the basis of municipal, industrial, and domestic needs until the year 2000. However, if sufficient imported water becomes available in Western Oklahoma before 2000, Texas will be free to pursue full development of its 60% of these interstate tributaries. * * * *"

(3)

۲

Until January 1, 2000 (assuming that imported water is not provided prior to that date in sufficient amounts to meet municipal and irrigation needs of Western Oklahoma) special restrictions apply to Texas water use in its North Fork Red River watershed upstream from the Lugert-Altus Reservoir. Therefore, some of the Compact compliance rules for the North Fork Red River watershed upstream from the Lugert-Altus Reservoir (para 5.f.(3) & (4) and g.(3) & (4) below) expire on January 1, 2000, if still in effect at that time. RRCC RULES AND REGULATIONS REACH I, SUBBASIN 1 Page 3

b.

c.

d.

Buck Creek Watershed in Texas: Buck Creek watershed covers about 300 square miles in Texas. There are no existing gaging stations on Buck Creek in Texas or in Oklahoma. Since neither the Texas nor Oklahoma use of flow from Buck Creek is significant at this time, it is not required to make an annual accounting of the flow in Buck Creek. It also appears that establishing gaging stations and channel loss values so that future annual accountings could be made is not economically justified at this time. Annual accounting procedures for this watershed should be developed to provide a 60:40 apportionment whenever requested by either Oklahoma or Texas.

-119-

- Sand (Lebos) Creek Watershed in Texas: Sand Creek watershed covers about 65 square miles in Texas. There are no gaging stations on Sand Creek in Texas or in Oklahoma. Since neither Texas nor Oklahoma makes significant use of flow from Sand Creek, it is not necessary to make an annual accounting of the flow in Sand Creek, and it does not seem to be economically justified at this time to establish gaging stations and determine channel loss values so that future annual accountings could be made. Annual accounting procedures for this watershed should be developed to provide a 60:40 apportionment whenever requested by either Oklahoma or Texas.
- Salt Fork Red River Watershed in Texas: Salt Fork Red River watershed in Texas covers about 1,380 square miles, of which 209 are non-contributing.

The USGS streamflow gage number 07300000, Salt Fork Red River near Wellington, Texas, is about 16 miles upstream from the Oklahoma-Texas State line and measures flow from a 1,222 sq. mi. drainage area, of which 209 is probably non-contributing. The average annual discharge (1953-1966) was 52,600 AF/yr, and the average annual discharge since Greenbelt Reservoir was completed (1967-1977) has been 33,250 AF/yr.

The USGS streamflow gage 07300500, Salt Fork Red River at Mangum, Oklahoma, is about 29 miles downstream from the Oklahoma-Texas State line and measures flow from a 1,566 sq. mile drainage area, of which 209 is probably non-contributing. The average annual discharge (1937-1977) has been 62,450 AF/yr.

- (1) The actual annual delivery at the Oklahoma State line is computed as follows:
 - (a) The annual flow at the Wellington gage,
 - (b) Minus channel losses to Wellington gage flows between gage and State line (until this specific channel loss value is available, the Compact compliance calculations will be made ignoring this channel loss adjustment),
 - (c) Plus Texas' flow between Wellington gage and the State line. (This flow will be computed based on intervening drainage area between Wellington and Mangum gages adjusted for both Texas and Oklahoma manmade depletions.), and

е.

(2) The scheduled annual delivery at the Oklahoma State line is 40 percent of the natural flow at State line without diversions or impoundments, and would be computed as 40 percent of the following:

- (a) The actual annual delivery (para 5.d.(1) above),
- (b) Plus all man-made depletions in Texas, and
- (c) Minus the increased channel losses in Texas which would have incurred had Texas depletions not occurred (until this specific channel loss value is available, the Compact compliance calculations will be made ignoring this channel loss adjustment).
- (3) Compact compliance is achieved as long as actual delivery exceeds scheduled delivery.
- Elm Creek Watershed in Texas: Elm Creek watershed covers about 360 square miles in Texas which includes the North Elm Creek tributary. There is no streamflow gage on Elm Creek in Texas. The USGS gage number 07303400, Elm Fork of North Fork Red River near Carl, Oklahoma, is about 6 miles downstream from the Oklahoma-Texas State line, and was used to measure flow from a 416 square mile drainage area but discharge measurements at this site were discontinued in 1980. The average annual discharge (20 years) was 30,280 AF/yr. No Compact compliance accounts can be made until the Gage near Carl has been reestablished.
 - (1) The actual annual delivery at State line is computed as follows:
 - (a) Flow at the State line. (This flow will be computed based on the drainage area and on the flow measured at Carl gage, adjusted for both Texas and Oklahoma depletions.), and
 - (b) Minus Texas' man-made depletions.
 - (2) The scheduled annual delivery at State line is 40 percent of the natural flow at State line without diversions or impoundments and would be computed as 40 percent of the following:
 - (a) The actual annual delivery (para 5.e.(1) above),
 - (b) Plus man-made depletions in Texas, and
 - (c) Minus the increased channel losses in Texas which would have been incurred if Texas had not depleted the flow (until this specific channel loss value is available, the Compact compliance calculations will be made ignoring this channel loss adjustment).
 - (3) Compact compliance is achieved as long as the actual delivery exceeds the scheduled delivery.
- h. Washita River Watershed in Texas: There is no streamflow gage on the Washita River in Texas. The USGS streamflow gage number 07316500, Washita River near Cheyenne, Oklahoma, is over 21 miles downstream from the Oklahoma-Texas State line, and measures flow from a 794 square mile drainage area, of which about 441 square miles are in Texas. The average annual discharge at the Cheyenne gage (44 years) has been 20,720 AF/yr.

-120-

RRCC RULES AND REGULATIONS REACH I, SUBBASIN 1 Page 5

- (1) The actual annual delivery at Oklahoma State line is computed as follows:
 - (a) The annual flow at the Cheyenne gage,

-121-

- (b) Plus channel losses to the State line flow between the State line and the gage (until this specific channel loss value is available, the Compact compliance calculations will be made ignoring this channel loss adjustment),
- (C) Minus Oklahoma's flow between the State line and Cheyenne gage. (This flow will be computed based on the drainage area upstream from the Cheyenne gage, adjusted for both Texas and Oklahoma man-made depletions.), and
- (d) Minus Texas' man-made depletions.
- The annual scheduled delivery at State line is 40 percent of the natural flow at State line without diversions or impoundments, and would be computed as 40 percent of the following:
 - (a) The actual annual delivery at State line (para 5.h.(1) above),
 - (b) Plus man-made depletions in Texas, and
 - (C) Minus the increased channel losses which would have occurred if Texas had not made any diversions (until this specific channel loss value is available, the Compact compliance calculations will be made ignoring this channel loss adjustment).
- Compact compliance is achieved as long as the actual delivery exceeds the scheduled delivery.
- (3)

(2)

RED RIVER COMPACT RULES AND REGULATIONS TO Compute and Enforce Compact Compliance REACH III, SUBBASIN 3

(as amended 4/25/89)

1.

a .

b.

ь.

These rules and regulations to be used to compute and enforce Compact compliance within Subbasin 3 of Reach III, Red River Compact, are adopted subject to the following conditions and assumptions.

It is fully understood that these rules and regulations should be modified whenever experience or detailed studies demonstrate the need for modification, and if the Commission should modify its interpretation of Compact provisions relating to this Subbasin. Definitions:

- (1) "Diversion", as used in these rules and regulations, is the net loss to a water source from use by a diverter, and is computed as the diversion from the water source minus the part of the diversion which is returned to the water source. Normally, return flows must be measured to be considered; however, the Engineering Committee may consider and recommend exceptions. As used herein, "diversion" is equivalent to "net diversion" from a water source and to "depletion" or "consumptive use" of a water source.
- (2) "Drawdown", as used in these rules and regulations, means that period commencing on the first day water ceases spilling over the existing Caddo Lake spillway (or the raised spillway, if Caddo Lake is enlarged), and continuing so long as the Caddo Lake surface elevation continues to fall, until the day when appreciable inflow reaches Caddo Lake, causing the Caddo Lake surface elevation to rise leading to a spill from Caddo Lake.

2. Management of Compact Compliance Computations.

a. Management Using State Centers:

- (1) State Engineering Committee representatives will establish State Computation Control Centers.
 - (a) State representatives will gather data, exchange data and meet <u>via</u> conference call to check on computation results, if necessary.
 - (b) The Engineering Committee will compute compliance with Compact.
- Management Period for Compact Compliance Computations:
- Next week's State diversions will be allocated based on last week's compliance computations.
- (2) It is each State's responsibility to limit its total State diversion allocation among its State diverters.
- (3) The weekly period for use and flow data will start and end
- at 8:00 a.m. on Tuesday of each week.
- (4) Data collection and dissemination will be completed on Tuesday of each week.
- (5) Computation of Compliance will be completed on Wednesday of each week.
- (6) Each State can request an update at any time.

RRCC RULES AND REGULATIONS REACH III, SUBBASIN 3 Page 2

3.

4.

5.

Management Improvements Studies: The Engineering Committee will C. monitor the effect on accounting management of the following factors and will report thereon to the Commission whenever procedure changes appear desirable. (1)

-123-

- 1311 Khan

- Errors caused by travel time.
- (2) Future restrictions computed from past week's data.
- (3) Failure to consider channel loss.
- (4) Failure to consider ungaged return flows.
- (5) Failure to consider flow trends.
- (6) Addition of needed gages.

Enforcement of Compact Compliance Requirements. Each State will be responsible for insuring that the sum of the diversions by State users does not exceed the total State diversion authorized by the Red River Compact Commission. In this regard, each State will be responsible for establishing clear legal authority within its state for enforcing the restrictions imposed by the Red River Compact.

Data Reporting Procedures.

- Streamflow Gaging Station Records: The Engineering Committee will a. make arrangements with Corps of Engineers, the U.S. Geological Survey and with States as required to collect daily and/or weekly data, as needed, and forward to the State Computation and Control Centers.
- b. Diversion Records: Each State will be responsible to collect weekly data, as needed, and forward to the State Computation and Control Centers. 1. 1
- Archived Records: Records will be archived by the Commission c. Chairman.

General Compliance Requirements of Section 6.03 Red River Compact. a. Section 6.03 (b)(1);

- (1)
 - The Compact states: "Texas shall have the unrestricted right to all water above Marshall, Lake O' the Pines, and Black Cypress damsites; however, Texas shall not cause runoff to be depleted to a quantity less than that which would have occurred with the full operation of Franklin County, Titus County, Ellison Creek, Johnson Creek, Lake O' the Pines, Marshall, and Black Cypress Reservoirs constructed, and those other impoundments and diversions existing on the effective date of this Compact. Any depletions of runoff in excess of the depletions described above shall be charged against Texas' apportionment of the water in Caddo Reservoir."
 - Texas may use the bed and banks of the streams or (2) tributaries available within this Subbasin to convey its developed water downstream from the aforesaid dam sites to specified authorized users. Such water would retain its identity and would not be subject to the Caddo Lake drawdown provisions of Section 5.b. of these rules until passing the designated point of diversion. Appropriate transportation losses will be approved by the Red River Compact Commission. Until both Marshall Reservoir (with an estimated capacity of 782,300 acre-feet and yield of 325,000 acre-feet annually)

(3)

RRCC RULES AND REGULATIONS REACH III, SUBBASIN 3 Page 3

> and Black Cypress Reservoir (with estimated capacity of 824,400 acre-feet and yield and 220,000 acre-feed annually) have been constructed, it will be virtually impossible for Texas to deplete runoff in excess of that authorized. In the future, whenever potential Texas depletions above Marshall, Lake O' the Pines, and Black Cypress damsites become a concern to Louisiana, procedures to compute Texas depletion of runoff in excess of that authorized by Section 6.03 (b)(1) of the Compact should be developed by the Engineering Committee and presented for Commission consideration.

-124-

b. Section 6.03 (b)(2):

- (1) The Compact states: "Texas and Louisiana shall each have the unrestricted right to use fifty (50) percent of the conservation storage capacity in the present Caddo Lake for the impoundment of water for state use, subject to the provision that supplies for existing uses of water from Caddo Lake, on date of Compact, are not reduced."
- (2) Whenever water is spilling over the existing spillway at 168.5 feet above mean sea level, each state may withdraw or divert water from Caddo Lake without restriction.
- (3) Whenever Caddo Lake is not spilling over the existing spillway at 168.5 feet above mean sea level, the total consumptive use by each state shall not exceed 8,400 acrefeet during the drawdown period, provided that neither state shall divert more than 3,600 acre-feet during any one month or 4,800 acre-feet during any two consecutive months.

c. Section 6.03 (b)(3):

- (1) The Compact states: "Texas and Louisiana shall each have the unrestricted right to fifty (50) percent of the conservation storage capacity of any future enlargement of Caddo Lake, provided the two states may negotiate for the release of each state's share of the storage space on terms mutually agreed upon by the two states after the effective date of this Compact."
- (2) This Compact provision requires no separate computation procedures but other rules may be changed if enlargement of Caddo Lake occurs. If enlargement of Caddo Lake is authorized in the future, the Engineering Committee should review and modify as necessary Rule 5 (b) and Rule 6.
- d. Section 6.03 (b)(4):
 - (1) The Compact states: "Inflow to Caddo Lake from its drainage area downstream from Marshall, Lake O' the Pines, and Black Cypress damsites and downstream from other last downstream dams in existence on the date of the signing of the Compact document by the Compact Commissioners, will be allowed to continue flowing into Caddo Lake except that any manmade depletions to this inflow by Texas will be subtracted from the Texas share of the water in Caddo Lake."

(2)

As indicated in paragraph 5 a. (2) above, it is virtually impossible for Texas at the present time to reduce inflow to

RRCC RULES AND REGULATIONS REACH III, SUBBASIN 3 Page 4

(1)

е.

Caddo Lake below that which would occur with both Marshall and Black Cypress Reservoirs constructed and operating. However potential Texas depletions become a concern to Louisiana, procedures to compute excess depletion by Texas of inflow to Caddo Lake should be develop by the Engineering Committee and presented for Commission Consideration.

- Section 6.03 (c);
 - The Compact states: "In regard to the water of interstate streams which do not contribute to the inflow to Cross Lake or Caddo Lake, Texas shall have the unrestricted right to Divert and use this water on the basis of a division of runoff above the state boundary of sixty (60) percent to Texas and forty (40) percent to Louisiana."
 - (2) The Engineering Committee will review known Texas diversion data for the previous year and report to the Commission any Texas non-compliance with Compact Section 6.03 (C).
- f. Section 6.03 (d):
 - (1) The Compact states: "Texas and Louisiana will not construct improvements on the Cross Lake watershed in either state that will affect the yield of Cross Lake; provided, however, this subsection shall be subject to the provisions of Section 2.08."
 - (2) The Engineering Committee will renew any known improvements on the Cross Lake watershed and report to the Commission any non-compliance with Compact Section 6.03 (d).

6. Caddo Lake Content Accounting Procedure During Drawdown Periods.

- Whenever water is spilled from Caddo Lake, both state's accounts are full and no accounting is necessary. Accounting shall start the first day of no-spill following each period of spilling and shall continue until the first day of spill in the next period of spilling. The accounting procedure for computing the quantity of water in Caddo Lake during periods of drawdown belonging to the states of Louisiana and Texas shall be as follows:
 - (1) At the beginning of the drawdown, the Caddo Lake contents belong 50 percent to each state. Otherwise, begin with water ownership on Caddo Lake as shown in the most recent previous report.
 - (2) Each State shall be credited with one-half of the inflow to Caddo Lake since the previous report.
 - (3) Each State's account shall be reduced by its share of Caddo Lake evaporation losses during the period since the previous report.
- (4) Each State's account shall be reduced by its diversions from Caddo Lake since the previous report.
- (5) A State's account shall not exceed 50 percent of the capacity of Caddo Lake. If these accounting procedures result in a greater State content than 50 percent of the total capacity of Caddo Lake, the excess computed quantity shall be "spilled" into the other State's account as needed to bring the other State's account up, but in no case shall

-125-

c.

7.

either State's account exceed 50 percent of the total capacity of Caddo Lake.

b. Using a stage-area-capacity relationship concurred in by both States, the content of Caddo Lake at the end of each accounting period shall be determined and inflow for that period shall be computed as follows:

-126-

- (1) From the present content, as determined above, subtract the content determined at the end of the previous period.
- (2) Add to the figure resulting from Step (1) the total Texas and Louisiana diversions since the end of the previous period.
- (3) Add to the figure resulting from Step (2) the computed gross evaporation since the end of the previous period as determined in c. (2) below. This results in total inflow.

Evaporation will be computed as follows:

- (1) The Weather Bureau's pan evaporation data shall be used to compute gross lake evaporation using a standard conversion coefficient agreed to by the engineer advisors of each state.
- (2) The average lake surface area for the accounting period shall be determined from the stage-area-capacity relationship concurred in by both States and multiplied by the gross lake evaporation as determined in Step (1) to determine the volume of evaporation for the period.

Availability of Diversion Records. Arrangements shall be made for all Texas and Louisiana diverters, during "drawdown" of Caddo Lake, to maintain daily diversion records open for inspection, and to provide weekly use data as required by Rule 2 b. (3).

 \mathbf{n} . ġ. .) •

7 ,