W1125.7 In 80 H 75

# INTENSIVE SURVEY OF THE COLORADO RIVER BELOW AUSTIN SEGMENT 1428 December 10-12, 1984





**IS-75** 

TEXAS DEPARTMENT OF WATER RESOURCES

**JULY 1985** 

INTENSIVE SURVEY OF THE COLORADO RIVER BELOW AUSTIN SEGMENT 1428 December 10-12, 1984

> Field Measurements, Water Chemistry, Biology

Prepared By Fred B. Werkenthin, Jr.

IS-75

Texas Department of Water Resources

July 1985

#### **TEXAS DEPARTMENT OF WATER RESOURCES**

Charles E. Nemir, Executive Director

#### **TEXAS WATER DEVELOPMENT BOARD**

Louis A. Beecherl, Jr., Chairman Glen E. Roney Lonnie A. "Bo" Pilgrim George W. McCleskey, Vice Chairman Louie Welch Stuart S. Coleman

#### **TEXAS WATER COMMISSION**

Paul Hopkins, Chairman

Lee B. M. Biggart, Commissioner Ralph Roming, Commissioner

Authorization for use or reproduction of any original material contained in this publication, i.e., not obtained from other sources, is freely granted. The Department would appreciate acknowledgement.

Published and distributed by the Texas Department of Water Resources Post Office Box 13087 Austin, Texas 78711

#### ABSTRACT

An intensive survey was conducted by the Texas Department of Water Resources on Segment 1428 of the Colorado River. The segment receives the City of Austin's wastewater. It was found that the dissolved oxygen levels were less than the criterion in a reach comprising 20 percent of the segment. Carbonaceous oxygen-demanding materials and ammonia nitrogen associated with the treated wastewater were factors causing the low oxygen condition. A nuisance growth of macrophytes was observed and attributed to nutrient loading from the City of Austin wastewater treatment facilities.



## TABLE OF CONTENTS

| P | 9 | ge |
|---|---|----|
| * | c | 50 |

| INTI | RODU | CTIO  | Ν.  | •  | • | •  | •        | • |    | • | •  | •  | • | •  | • | • |    | • | •  | • | •  | •  | • | • | • | • | • | • | • | • |   | 1   |
|------|------|-------|-----|----|---|----|----------|---|----|---|----|----|---|----|---|---|----|---|----|---|----|----|---|---|---|---|---|---|---|---|---|-----|
|      | DIRE | CTIV  | Έ   |    |   | •  | •        |   | •  |   | •  | •  | • | •  | • | • | •  | • | •  | • | •  | •  | • | • | • | • | • | • | • |   |   | 1   |
|      | PUR  | POSE  | •   | ,  |   | •  | •        | • | •  | • | •  | •  | • | •  | • | • | •  | • | •  | • | •  | •  | • | • | • |   |   | • | • | • |   | 1   |
| MET  | HODS | • • • | ••• |    | • | •  | •        | • |    | • | •  | •  | • | •  |   | • | •  | • | •  | • | •  | •  | • | • | • | • | • | • | • | • |   | 2   |
| RES  | ULTS | AND   | DI  | sc | U | SS | 10       | N | •  | • | •  | •  | • | •  | • | • |    | • | •  | • | •  | •  | • | • | • | • |   |   | • | • |   | 3   |
| CON  | CLUS | IONS  | •   | •  | • | •  |          | • | •  | • | •  | •  | • | •  | • | · | •  | • | •  | • | •  | •  | • | • | • |   | • | · | • | • |   | 6   |
| PRE  | SENT | ATIO  | N C | F  | D | AJ | <b>A</b> | • | •  | • | •  | •  | • | •  | • | • | •  |   | •  | • | •  | •  | • | • |   |   | • | • |   | • |   | 7   |
| REF  | EREN | CES ( | CIT | ED |   | •  | •        |   | •  |   |    |    | • | •  |   | • | •  | • | •  | • | •  | •  |   | • | • |   | • | • |   |   |   | 25  |
| APP  | ENDI | XA.   | FI  | EL | D | A  | NI       | C | LÆ | B | 01 | RA | T | OR | Y | P | RC | C | EI | U | RI | ES | • | • | • | • | • | • | • | • | ŀ | 4-1 |

## TABLES

| 1. | Descriptions and Locations of Sampling Stations                         |
|----|-------------------------------------------------------------------------|
| 2. | Field Data                                                              |
| 3. | Laboratory Analyses                                                     |
| 4. | Fecal Coliform Data                                                     |
| 5. | Total Phosphorus (TP) and Total Nitrogen (TN) Loading 18                |
| 6. | Benthic Macroinvertebrate Community Indices and<br>Checklist of Species |
| 7. | Additional Benthic Macroinvertebrate Community Indices 24               |

### TABLE OF CONTENTS CONTINUED

## Page

#### FIGURES

| 1. | Map of the Study | Area       |      |       | • | • | • | • • | • | • | • | • | • | • | • | 8  |
|----|------------------|------------|------|-------|---|---|---|-----|---|---|---|---|---|---|---|----|
| 2. | Dissolved Oxygen | Ranges and | Diel | Means | • |   |   |     | • | • | • | • | • |   |   | 14 |

#### INTENSIVE SURVEY OF

COLORADO RIVER

SEGMENT 1428

## INTRODUCTION

#### Directive

This intensive survey was accomplished in accordance with the Texas Water Quality Act, Section 26.127, as amended in 1977. The report is to be used in developing and maintaining the State Water Quality Strategy published in 40 CFR 35.1511-2 pursuant to Section 303(e) of the Federal Clean Water Act of 1977.

#### Purpose

The purpose of this intensive survey was to provide the Texas Department of Water Resources with a valid information source:

- 1. to determine quantitative cause and effect relationships of water quality;
- 2. to obtain data for updating water quality management plans, setting effluent limits, and where appropriate, verifying the classifications of segments;
- 3. to set priorities for establishing or improving pollution controls; and
- 4. to determine any additional water quality management actions required.

#### METHODS

Field and laboratory procedures used during this survey are described in Appendix A. Methods used to analyze biological data not included in Appendix A are described in detail in Twidwell and Davis (1984). The data were collected December 10-12, 1984 by Texas Department of Water Resources Water Quality Assessment Unit personnel. Laboratory analyses of water samples were conducted by Texas Department of Health Chemistry Laboratory. Bacteriological analyses were conducted by Water Quality Assessment Unit personnel. Parametric coverages, sampling frequencies and spatial relationships of sampling stations are consistent with the objectives of the the survey and with known or suspected forms and variabilities of pollutants entering the river.

#### RESULTS AND DISCUSSION

An intensive survey of Segment 1428 of the Colorado River was conducted by the Texas Department of Water Resources (TDWR) December 10-12, 1984. The study area consisted of 64 km (40 miles) of the Colorado River downstream of Austin, Texas and tributaries receiving wastewater treatment plant effluent (Figure 1, Table 1).

Segment 1428 of the Colorado River extends from Longhorn Dam in Austin to the State Highway 95 bridge at Smithville. The segment drains the east and south portions of Austin, and is the receiving stream for 45.5 million gallons per day (MGD) of Austin's 51.5 MGD permitted wastewater discharge. The remaining 6 MGD is permitted for discharge into Williamson Creek which flows into Onion Creek, a tributary to Segment 1428. Of the 46 MGD permitted for the segment, 21.2 MGD is discharged from the City of Austin Govalle sewage treatment plant (STP) between Stations A and B, 1.3 MGD is discharged from the City of Austin Hornsby Bend STP between Stations E and F, and 23 MGD is discharged from the City of Austin Walnut Creek, STP into Walnut Creek, which flows into the segment. The existing effluent quality parameters are 20  $mg/L BOD_5$  and 20 mg/L TSS (monthly average). Segment 1428 is also the receiving stream for wastewater treatment plant effluent from the Cities of Bastrop (0.353 MGD) and Smithville (0.310 MGD).

The designated uses for Segment 1428 are contact recreation, high quality aquatic life habitat and public raw water supply. Criteria established to support these uses are: annual average chloride, sulfate and total dissolved solids not to exceed 105, 55, and 425 mg/L, respectively; dissolved oxygen concentration not less than 5 mg/L; pH range 6.5 to 9.0, fecal coliform thirty-day geometric mean not to exceed 200 colonies/100 mL; and temperature not to exceed 95°F.

The Austin area is experiencing a rapid population increase. In 1984, the number of people for which the City of Austin treated wastewater was 415,000. This number is expected to increase to 660,000 by 1990 and to 843,000 by 2000. Industrial activities occurring in the Austin area that could impact Segment 1428 are: manufacturing of semiconductors, residential and commerical construction, and sand and gravel mining. Extensive areas in the flood plain of Colorado River are being mined for sand and gravel.

A flow of  $3.66 \text{ m}^3/\text{s}$  (129.3 ft<sup>3</sup>/s) was measured at Station A during the survey. Since the seven-day two-year low flow at this station is  $1.65 \text{ m}^3/\text{s}$  (58.4 ft<sup>3</sup>/s), problems related to STP effluents were probably somewhat masked by the moderate headwater flow.

Dissolved oxygen (DO) concentrations were not compliant with the segment DO criterion (5 mg/L) from Station D to Station I (Table 2, Figure 2). This reach is 26.8 km (16.6 miles) and represents about 20 percent of the segment. Factors causing the DO sag were oxidation of carbonaceous biochemical oxygen-demanding (CBOD) substances, nitrification, and respiration of algae and macrophytes. Most of the CBOD is exerted in the reach from Station B to Station D (Table 3). The highest nitrification

occurs in the reach from Station E to Station H. Noncompliance of the DO criterion at Station I was attributed to algal and macrophyte respiration. Water quality problems would likely become more severe under lower flow conditions.

Chlorophyll a levels were low throughout the study area indicating phytoplankton densities were low. Although not measured, visual inspection of macrophyte beds revealed dense periphyton growth covering the macrophytes. Macrophyte densities were moderate at Station A, and non-existent at Stations B and C. Densities increased from Stations D to G. At Stations G to K a nuisance condition existed due to extremely dense macrophyte growths.

Elevated levels of ammonia nitrogen  $(NH_3-N)$  were being discharged from the City of Austin Govalle STP (Table 3). Consequently, instream  $NH_3-N$  concentrations were high at Stations B - G. High  $NH_3-N$  concentrations can be harmful to the stream in three ways. Under the right combinations of pH and temperature, high concentrations of  $NH_3-N$  are toxic to aquatic organisms. Ammonia is also a DO sink; bacteria, consuming oxygen, convert  $NH_3$  to nitrate  $(NO_3)$ . Ammonia and  $NO_3$  are also macronutrients for algae and macrophytes and high concentrations ear cause proliferation of aquatic plants. Ammonia nitrogen concentrations exceeding the EPA Red Book criterion for chronic toxicity  $(0.0164 \text{ mg/L unionized } NH_3-N)$  were found at Stations B, C, and E and the concentration of  $NH_3-N$  in the Govalle STP effluent exceeded the Red Book acute toxicity criterion  $(0.164 \text{ mg/L unionized } NH_3-N)$ .

All chloride (Cl<sup>-</sup>) and total dissolved solids (TDS) were less than the Segment 1428 criteria. Sulfate (SO<sub>4</sub>) levels exceeded the criterion at Stations D thru K. Since the SO<sub>4</sub> concentration increased down river, the values in excess of the criterion were probably from natural causes.

Fecal coliform bacteria levels were low throughout the survey area with the exception of Station G6a (Table 4). The source of the contamination at this station is unknown.

Nitrogen and phosphorus levels showed a downstream decreasing trend except between Stations A and B and Stations C and D. The downstream decrease of N and P was attributed to the assimilation of the nutrients by biota and also sedimentation. The measured increases can be attributed to point source discharges.

To evaluate biological health in the study reach, benthic macroinvertebrates were collected at nine stations. Riffle (erosional) habitats were sampled if available; in the absence of riffles, deeper-water (depositional) habitats were utilized. To provide controls for both types of samples, separate samples were collected near Station A, one from riffles and another from deeper water. One hundred and sixteen benthic macroinvertebrate species were collected, a high total which reflects the physically diverse nature of the study reach and the general prevalence of favorable environmental conditions. Each station was assigned a macrobenthic health rating on the basis of 11 different biological indices (Tables 6 and 7). Six stations were rated good-to-excellent (A depositional, D, G, H, I, K), reflecting relatively unimpacted water quality and healthy environmental conditions. Two stations

were rated good (A erosional, J), with characteristics slightly less favorable than the best expected situation due to slightly depressed diversity and trophic structure imbalance. At the Station A erosional site, this resulted from dominance by the periphyton-grazing microcaddisfly, <u>Hydroptila</u> sp. (which is, however, a clean-water indicative species). Its abundance was a response to dense periphyton supported by high water clarity and full sunlight penetration resulting from the sediment-removal effects of Town Lake upstream. At Station J, the filter-feeding clam, <u>Corbicula flumines</u>, occurred in dominant numbers, indicating an increase in the amount of fine suspended solids on which it feeds. These solids were apparently mainly in the form of phytoplankton, as indicated by slightly elevated chlorophyll <u>a</u> levels, with increased primary productivity attributed to nutrient inputs from the City of Austin sewage treatment plants.

Station B received a rating of poor due to depressed diversity and imbalanced trophic structure resulting from dominant numbers of pollution-tolerant species. In addition, a degree of toxicity appeared to exist, perhaps due to elevated ammonia levels observed at the site. Organic enrichment in the absence of toxicity normally causes a reduction in the number of species and an increase in the standing crop. However, in this case both the number of species and the standing crop were reduced. Macrobenthic health at Station C was rated very poor due to depressed diversity and extreme trophic structure imbalance, with pollution-tolerant species assuming almost total dominance. The percentage composition of tubificid oligochaetes (77.8% of the community) was near the range generally associated with severe organic pollution (i.e., 80-100%; Goodnight and Whitley, 1960). Water quality degradation at Stations B and C is attributable to the effects of the Govalle STP discharge.

In summary, the biological data indicate that macrobenthic communities are relatively healthy through most of the study reach, with the exception of the subreach from the Govalle STP to an undetermined point downstream from Station C. A high degree of recovery was evident at Station D. Evidently, adverse biological impacts from wastewater sources other than the Govalle STP are minimal at the present time. However, the dissolved oxygen minima observed at Stations D-I were very near critical levels for many aquatic organisms. Therefore, minor changes from conditions existing during this survey, such as decreased streamflow, increased temperature, and/or increased waste loading, could produce critically low dissolved oxygen levels that would begin to eliminate sensitive species and cause appreciable deterioration of the aquatic community.

#### CONCLUSIONS

Segment 1428 of the Colorado River was found to have water quality problems related to wastewater treatment plant discharges. High levels of cabonaceous oxygen demanding materials and ammonia nitrogen caused the dissolved oxygen level to be less than the dissolved oxygen criterion in a reach comprising 20 percent of the segment. This condition may be alleviated by ongoing STP construction and rehabilitation by the City of Austin. A waste load evaluation is being conducted by TDWR to determine whether advanced treatment will be needed to attain the designated uses of the segment.

A nuisance growth of macrophytes was also observed and attributed to the high nitrogen and phosphorus loadings from the City of Austin STPs. Reducing the nutrient loading may require nutrient limitations to be added to treatment requirements.

## PRESENTATION OF DATA



#### Table 1

#### Descriptions and Locations of Sampling Stations

| Map<br>Code | SMN<br>Number | River<br>Kilometer | Description                                              |
|-------------|---------------|--------------------|----------------------------------------------------------|
|             |               |                    |                                                          |
| Α           | 1402.0750     | 465.3              | Colorado River at US 183                                 |
| В           | 1402.0740     | 465.2              | Colorado River at Capitol Aggregates Bridge              |
| C           | 1402.0730     | 461.6              | Colorado River below Boggy Creek                         |
| D           | 1402.0720     | 458.6              | Colorado River below Walnut Creek                        |
| E           | 1402.0710     | 456.0              | Colorado River above Carson Creek                        |
| F           | 1402.0700     | 449.9              | Colorado River at FM 973                                 |
| G           | 1402.0690     | 441.4              | Colorado River above Onion Creek                         |
| H           | 1402.0680     | 433.9              | Colorado River below Gulliland Creek                     |
| Ι           | 1402.0670     | 431.6              | Colorado River at Webberville                            |
| J           | 1402.0660     | 422.5              | Colorado River below Webberville                         |
| K           | 1402.0640     | 400.8              | Colorado River at FM 969                                 |
| C2          | 1400.2320     | 4.4 <sup>1</sup>   | Walnut Creek at FM 969                                   |
| C1          | 1400.2310     | 2.01               | Wølnut Creek øt Southern Pøcific RR Bridge               |
| G6a         | 1400.1152     | 4.62               | Williamson Creek at Nuckols Crossing Road                |
| G6          | 1427.0080     | 25.22              | Onion Creek at Nuckols Crossing Road                     |
| G2          | 1427.0060     | 11.73              | Onion Creek at FM 973                                    |
| G1          | 1427.0005     | 0.12               | Onion Creek above Colorado River                         |
| 1A          | 1400.9001     | 463.8              | City of Austin Govelle STP; Plents A, B, & C<br>effluent |
| 1B          | 1400.9002     | 463.8              | City of Austin Govalle STP; Plant D effluent             |
| 2           | 1400.9003     | 4.0 <sup>1</sup>   | City of Austin Walnut Creek STP                          |
| 3           | 1400.9004     | 3.5 <sup>2</sup>   | City of Austin Williamson Creek STP                      |

Kilometers up Walnut Creek, which enters the Colorado at kilometer 459.9 Kilometers up Williamson Creek, which enters Onion Creek at kilometer 20.8 Kilometers up Onion Creek, which enters the Colorado at kilometer 441.2 1 -2 -

3 -

| т | 8 | b | le | 2 |
|---|---|---|----|---|
|---|---|---|----|---|

Field Data

|     | Station<br>Number                                                                                                       | Time | Temp.<br>°C | рН      | Dissolved<br>Oxygen<br>mg/L | Conductivity<br>µmhos/cm |     |  |  |  |
|-----|-------------------------------------------------------------------------------------------------------------------------|------|-------------|---------|-----------------------------|--------------------------|-----|--|--|--|
|     | Station<br>Number<br>A<br>$\bar{x}d^1$<br>B<br>$\bar{x}d$<br>C<br>$\bar{x}d$<br>D<br>$\bar{x}d$<br>D<br>$\bar{x}d$<br>E |      |             |         |                             |                          |     |  |  |  |
|     | ۵                                                                                                                       | 0925 | 17 3        | 7 0     | 78                          |                          | 606 |  |  |  |
|     | A                                                                                                                       | 1320 | 10 /        | 8.2     | 12 6                        |                          | 586 |  |  |  |
|     |                                                                                                                         | 1605 | 20.2        | 83      | 14 5                        |                          | 580 |  |  |  |
|     |                                                                                                                         | 0549 | 17 4        | 8.0     | 7 0                         |                          | 606 |  |  |  |
|     | $\bar{\mathbf{v}}_{d}^{1}$                                                                                              | 0345 | 10 6        | 0.0     | 10.5                        |                          | 594 |  |  |  |
|     | λά                                                                                                                      |      | 10.0        | 0.0     | 10.5                        |                          | 334 |  |  |  |
|     | 1.                                                                                                                      |      | 4           | 199 - C |                             |                          |     |  |  |  |
|     | B                                                                                                                       | 1018 | 18.4        | 7.1     | 6.3                         |                          | 665 |  |  |  |
|     |                                                                                                                         | 1350 | 19.7        | 7.8     | 8.2                         |                          | 667 |  |  |  |
|     |                                                                                                                         | 1626 | 20.3        | 7.7     | 10.8                        |                          | 669 |  |  |  |
|     |                                                                                                                         | 0607 | 18.7        | 7.7     | 6.1                         |                          | 669 |  |  |  |
|     |                                                                                                                         | 0747 | 18.6        | 7.7     | 5.8                         |                          | 669 |  |  |  |
|     | Χđ                                                                                                                      |      | 19.3        | 7.6     | 8.0                         |                          | 668 |  |  |  |
|     | C                                                                                                                       | 1915 | 19.2        | 78      | 6.8                         |                          | 669 |  |  |  |
|     | U                                                                                                                       | 1455 | 10.2        | 7 7     | 5.9                         |                          | 666 |  |  |  |
|     |                                                                                                                         | 1797 | 10.0        | 7 7     | 5.8                         |                          | 664 |  |  |  |
|     |                                                                                                                         | 0624 | 10.0        | 7 7     | 7 9                         |                          | 664 |  |  |  |
|     |                                                                                                                         | 0024 | 19.0        | 7 7     | 7 1                         |                          | 677 |  |  |  |
|     | $\overline{\mathbf{v}}$ ,                                                                                               | 0007 | 19.0        | 7.7     | 6.5                         |                          | 666 |  |  |  |
|     | Χά                                                                                                                      |      | 19.1        | 1.1     | 0.0                         |                          | 000 |  |  |  |
| 2.1 | D                                                                                                                       | 1030 | 18.6        | 7.1     | 3.7                         |                          | 705 |  |  |  |
|     |                                                                                                                         | 1350 | 20.1        | 6.9     | 5.3                         |                          | 698 |  |  |  |
|     |                                                                                                                         | 1700 | 20.2        | 7.2     | 5.4                         |                          | 695 |  |  |  |
|     |                                                                                                                         | 0645 | 18.6        | 7.1     | 2.8                         |                          | 718 |  |  |  |
|     | Χd                                                                                                                      | 0010 | 19.4        | 7.1     | 4.2                         |                          | 705 |  |  |  |
|     |                                                                                                                         |      |             |         |                             |                          |     |  |  |  |
|     | E                                                                                                                       | 1010 | 18.1        | 7.2     | 4.2                         |                          | 685 |  |  |  |
|     |                                                                                                                         | 1330 | 19.7        | 7.3     | 7.2                         |                          | 686 |  |  |  |
|     |                                                                                                                         | 1645 | 19.8        | 7.3     | 6.5                         |                          | 688 |  |  |  |
|     |                                                                                                                         | 0830 | 18.2        | 7.3     | 3.4                         |                          | 699 |  |  |  |
|     | Χd                                                                                                                      |      | 19.0        | 7.3     | 5.2                         |                          | 691 |  |  |  |

| F         0930         18.1         7.1         3.1         687           1320         19.7         7.4         5.7         682           1630         19.2         7.3         4.8         687 $\bar{X}$ 0615         18.4         7.2         2.6         697 $\bar{X}$ 18.8         7.2         3.9         690           G         1120         18.0         7.2         4.2         703           1450         19.0         7.8         8.4         680 $\bar{X}$ 0730         18.5         7.5         1.6         676 $\bar{X}$ 1735         19.3         7.8         8.4         680 $\bar{Y}$ 0730         18.5         7.5         1.6         676 $\bar{X}$ 18.8         7.6         5.0         683           H         1000         17.5         7.5         6.4         687 $\bar{X}$ 18.5         7.7         7.6         685 $\bar{X}$ 18.5         7.7         10.4         685 $\bar{X}$ 18.4         7.7         10.2         689 <th>Station<br/>Number</th> <th>Time</th> <th>Temp.<br/>°C</th> <th>υH</th> <th>Dissolved<br/>Oxygen<br/>mg/L</th> <th>Conductivity</th>                                                                                                                                                              | Station<br>Number                       | Time | Temp.<br>°C | υH  | Dissolved<br>Oxygen<br>mg/L | Conductivity |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------|-------------|-----|-----------------------------|--------------|
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |      |             | P   |                             |              |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |      |             |     |                             |              |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | F                                       | 0930 | 18.1        | 7.1 | 3.1                         | 687          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         | 1320 | 19.7        | 7.4 | 5.7                         | 682          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         | 1630 | 19.2        | 7.3 | 4.8                         | 687          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 210                                     | 0615 | 18.4        | 7.2 | 2.6                         | 697          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | X                                       |      | 18.8        | 7.2 | 3.9                         | 690          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | G                                       | 1120 | 18 0        | 7 2 | 4 2                         | 703          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         | 1450 | 19.0        | 7 8 | 6.9                         | 687          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         | 1735 | 19 3        | 7 8 | 8 4                         | 680          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         | 0730 | 18 5        | 7 5 | 1.6                         | 676          |
| A         13.0         7.0         3.0         683           H         1000         17.5         7.5         6.4         687           1415         19.1         8.0         9.6         684           1656         19.3         8.0         10.2         685 $\overline{X}$ 18.5         7.7         7.6         687           I         1050         16.9         7.4         7.3         688           1410         18.5         7.7         10.4         685           1720         18.4         7.7         10.2         689           0705         17.4         7.3         4.0         707 $\overline{X}$ 17.8         7.5         7.5         695           J         1105         16.8         7.5         7.6         686           1425         18.0         7.8         10.8         684           1745         18.3         7.1         12.0         683           0730         17.1         7.5         6.0         697 $\overline{X}$ 17.6         7.4         9.0         687           K         1125         16.4         7.9<                                                                                                                                                                                                           | $\bar{\mathbf{v}}$                      | 0100 | 18 9        | 7 6 | 5.0                         | 602          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Λ                                       |      | 10.0        | 1.0 | 5.0                         | 083          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | н                                       | 1000 | 17.5        | 7.5 | 6.4                         | 687          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         | 1415 | 19.1        | 8.0 | 9.6                         | 684          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         | 1656 | 19.3        | 8.0 | 10.2                        | 685          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         | 0654 | 17.8        | 7.5 | 4.7                         | 690          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | x                                       |      | 18.5        | 7.7 | 7.6                         | 687          |
| I         10.50         10.5         7.4         7.3         685           1410         18.5         7.7         10.4         685           1720         18.4         7.7         10.2         689           0705         17.4         7.3         4.0         707 $\bar{X}$ 17.8         7.5         7.5         695           J         1105         16.8         7.5         7.6         686           1425         18.0         7.8         10.8         684           1745         18.3         7.1         12.0         683           0730         17.1         7.5         6.0         697 $\bar{X}$ 17.6         7.4         9.0         687 $\bar{X}$ 1125         16.4         7.9         11.0         673 $\bar{X}$ 1125         16.4         7.9         11.0         673 $\bar{X}$ 1125         16.4         7.9         11.0         673 $\bar{X}$ 17.3         8.2         12.7         667 $1810$ 17.2         7.0         12.1         674 $075$                                                                                                                                                                                                                                                                                         | T                                       | 1050 | 16 0        | 7 4 | 7 9                         | 699          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                       | 1410 | 10.9        | 1.4 | 10.4                        | 000          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         | 1410 | 10.0        | 1.1 | 10.4                        | 000          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         | 1720 | 10.4        | 1.1 | 10.2                        | 009          |
| $X$ $11.0$ $1.0$ $1.0$ $1.0$ $0.00$ J $1105$ $16.8$ $7.5$ $7.6$ $686$ $1425$ $18.0$ $7.8$ $10.8$ $684$ $1745$ $18.3$ $7.1$ $12.0$ $683$ $0730$ $17.1$ $7.5$ $6.0$ $697$ $\overline{X}$ $17.6$ $7.4$ $9.0$ $687$ K $1125$ $16.4$ $7.9$ $11.0$ $673$ K $1125$ $16.4$ $7.9$ $11.0$ $673$ Image: Matrix of the state of the s | x                                       | 0705 | 17.4        | 7.5 | 4.0                         | 695          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |      | 11.0        | 1.5 | 1.5                         |              |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | J                                       | 1105 | 16.8        | 7.5 | 7.6                         | 686          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         | 1425 | 18.0        | 7.8 | 10.8                        | 684          |
| $\bar{X} = \begin{bmatrix} 0730 & 17.1 & 7.5 & 6.0 & 697 \\ 17.6 & 7.4 & 9.0 & 687 \end{bmatrix}$<br>K = 1125 = 16.4 = 7.9 = 11.0 = 673<br>= 1445 = 17.3 = 8.2 = 12.7 = 667<br>= 1810 = 17.2 = 7.0 = 12.1 = 674<br>= 0750 = 16.8 = 7.8 = 7.5 = 687 \end{bmatrix}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         | 1745 | 18.3        | 7.1 | 12.0                        | 683          |
| X         17.6         7.4         9.0         687           K         1125         16.4         7.9         11.0         673           I445         17.3         8.2         12.7         667           1810         17.2         7.0         12.1         674           0750         16.8         7.8         7.5         687                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         | 0730 | 17.1        | 7.5 | 6.0                         | 697          |
| K         1125         16.4         7.9         11.0         673           1445         17.3         8.2         12.7         667           1810         17.2         7.0         12.1         674           0750         16.8         7.8         7.5         687                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | x                                       |      | 17.6        | 7.4 | 9.0                         | 687          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | к                                       | 1125 | 16.4        | 7.9 | 11.0                        | 673          |
| 1810         17.2         7.0         12.1         674           0750         16.8         7.8         7.5         687                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 100                                     | 1445 | 17.3        | 8.2 | 12.7                        | 667          |
| 0750 16.8 7.8 7.5 687                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         | 1810 | 17.2        | 7.0 | 12.1                        | 674          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         | 0750 | 16.8        | 7.8 | 7.5                         | 687          |
| X 17.0 7.6 10.4 678                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\bar{\mathbf{x}}$                      |      | 17.0        | 7.6 | 10.4                        | 678          |

## Table 2 Continued

| Station            |      | Temp. |     | Dissolved<br>Oxygen | Conductivity |
|--------------------|------|-------|-----|---------------------|--------------|
| Number             | Time | °C    | рН  | mg/L                | µmhos/cm     |
| <b>C</b> 2         | 1059 | 15 0  | 7 9 | 10.9                | 717          |
| 02                 | 1409 | 16.0  | 1.0 | 10.2                | 706          |
|                    | 1404 | 10.9  | 0.1 | 10.0                | 700          |
|                    | 1030 | 17.0  | 0.4 | 10.3                | 701          |
| $\bar{\mathbf{v}}$ | 0008 | 15.0  | 0.1 | 0.1                 | 710          |
| Λ                  |      | 15.9  | 0.1 | 9.1                 | 101          |
| C1                 | 1128 | 20.0  | 7.6 | 7.6                 | 797          |
|                    | 1430 | 21.0  | 7.5 | 7.9                 | 793          |
|                    | 1705 | 20.8  | 7.6 | 7.8                 | 799          |
|                    | 0645 | 20.1  | 7.6 | 7.3                 | 915          |
| x                  |      | 20.4  | 7.6 | 7.6                 | 842          |
| G6a                | 1223 | 16.8  | 7.5 | 8.3                 | 725          |
| GUD                | 1548 | 17 1  | 8.0 | 13.5                | 734          |
|                    | 1837 | 16 7  | 7 9 | 11.1                | 738          |
|                    | 0840 | 15 6  | 7 6 | 6.0                 | 767          |
| x                  |      | 16.4  | 7.7 | 9.1                 | 746          |
| C6                 | 1915 | 14 6  | 77  | 8.8                 | 650          |
| Go                 | 1535 | 16 4  | 7 9 | 9.5                 | 638          |
|                    | 1897 | 15.9  | 7 9 | 9.3                 | 638          |
|                    | 0820 | 14 8  | 7 8 | 7 3                 | 648          |
| x                  | 0025 | 15.1  | 7.8 | 8.5                 | 644          |
| <u> </u>           | 1150 | 15 1  | 77  | 8 9                 | 703          |
| 04                 | 1515 | 15.5  | 8 0 | 8.2                 | 694          |
|                    | 1803 | 15.3  | 8.0 | 8.0                 | 696          |
|                    | 0800 | 15.1  | 7.8 | 7.3                 | 702          |
| $\bar{\mathbf{X}}$ |      | 15.2  | 7.9 | 7.9                 | 644          |
| G1                 | 1445 | 14 4  | 78  | 9.2                 | 713          |
| u                  | 1455 | 15 2  | 8.0 | 9.2                 | 703          |
|                    | 1740 | 15.3  | 8.0 | 9.3                 | 700          |
|                    | 0736 | 15 0  | 7.9 | 6.7                 | 702          |
| -                  | 0100 | 15 0  |     | 0 0                 | 700          |

## Table 2 Continued

•

| Station<br>Number | Time | Temp.<br>°C | рН  | Dissolved<br>Oxygen<br>mg/L | Conductivity<br>µmhos/cm | Chlorine<br>Residuø<br>mg/L |
|-------------------|------|-------------|-----|-----------------------------|--------------------------|-----------------------------|
|                   |      |             |     |                             |                          |                             |
| 1A                | 1000 | 21.6        | 7.0 | 5.6                         | 843                      | 1.7                         |
|                   | 1340 | 22.3        | 7.5 | 5.0                         | 843                      | 0.8                         |
|                   | 1618 | 22.4        | 7.2 | 4.7                         | 879                      | 2.0                         |
|                   | 0734 | 22.1        | 7.3 | 5.8                         | 872                      | 2.0                         |
| X                 |      | 22.2        | 7.3 | 5.3                         | 867                      |                             |
| 18                | 0950 | 20.9        | 7 2 | 6.8                         | 820                      | 2 0                         |
|                   | 1335 | 22.2        | 7 4 | 6.8                         | 811                      | 2.0                         |
|                   | 1615 | 22.2        | 7 5 | 6.8                         | 812                      | 1 0                         |
|                   | 0729 | 21 9        | 7 5 | 6.7                         | 808                      | 1.0                         |
| x                 | 0120 | 21.9        | 7.4 | 6.8                         | 867                      | 1.4                         |
| 0                 | 1020 | 00.0        |     |                             | 000                      |                             |
| 2                 | 1030 | 22.0        | 6.6 | 5.5                         | 822                      | 0.4                         |
|                   | 1408 | 22.4        | 7.6 | 6.5                         | 824                      | 1.0                         |
|                   | 1646 | 22.4        | 7.4 | 5.9                         | 834                      | 0.8                         |
| - 10 m            | 0710 | 22.4        | 7.2 | 5.9                         | 973                      | 0.8                         |
| X                 |      | 22.3        | 7.2 | 5.9                         | 882                      |                             |
| 3                 | 1304 | 21.8        | 8.0 | 8.1                         | 698                      | 1.0                         |
|                   |      |             |     |                             |                          |                             |
| -                 | 0845 | 22.2        | 7.2 | 7.7                         | 702                      | 1.6                         |
| X                 |      | 22.0        | 7.6 | 7.9                         | 700                      |                             |

| Table 2 Contin |
|----------------|
|----------------|

 $1\ \bar{X}d$  is the time-weighted diel mean



FIGURE 2

DISSOLVED OXYGEN RANGES AND DIEL MEANS

TABLE 3

Laboratory Analyses

| Station<br>Number | BOD5<br>N-Supp.<br>mg/l | Filt., BOD5<br>N-Supp.<br>mg/l | BOD <sub>20</sub><br>N-Supp.<br>mg/l | Filt., BOD20<br>N-Supp.<br>mg/l | TSS<br>mg/l | VSS<br>mg/l | Filt.<br>TOC<br>mg/l | Kjel-N<br>mg/l as N | Org. N<br>mg/l as N | NH <sub>3</sub> -N<br>mg/l as N | NO2-N<br>mg/l as N | NO <sub>3</sub> -N<br>mg/l as N | NO2-N +<br>NO3-N<br>mg/l as N | T-N<br>mg/l as N | 0-P<br>mg/l as P | T-P<br>mg∕l as P | chi. a<br>µg/1 | Pheo. <u>a</u><br>µg/l as P | c1<br>mg/1 | S04<br>mg/1 | TDS<br>mg/1 | T-Alk.<br>mg/l as<br>CaCO3 | Cond.<br>µmhos/cm | Hď  |
|-------------------|-------------------------|--------------------------------|--------------------------------------|---------------------------------|-------------|-------------|----------------------|---------------------|---------------------|---------------------------------|--------------------|---------------------------------|-------------------------------|------------------|------------------|------------------|----------------|-----------------------------|------------|-------------|-------------|----------------------------|-------------------|-----|
| A<br>1402.0750    | 1                       | 1                              | 2                                    | 2                               | <10         | <10         | 3                    | 3.0                 | 0                   | 0.03                            | 0.02               | 0.53                            | 0.55                          | 0.85             | <0.01            | 0.02             | <2             | <2                          | 45         | 42          | 376         | 197                        | 635               | 8.3 |
| B<br>1402.0740    | 9                       | 6                              | 17                                   | 12                              | 14          | 7           | 4                    | 6.1                 | 1.94                | 4.16                            | 0.03               | 0.37                            | 0.40                          | 6.50             | 1.46             | 1.76             | 2              | <2                          | 54         | 52          | 374         | 190                        | 695               | 8.1 |
| C<br>1402.0730    | 6                       | 3.5                            | 12                                   | 10                              | 11          | 3           | 4                    | 5.8                 | 1.48                | 4.32                            | 0.04               | 0.34                            | 0.38                          | 6.18             | 1.61             | 1.90             | 3              | <2                          | 55         | 52          | 380         | 190                        | 693               | 8.2 |
| D<br>1402.0720    | .3                      | 2                              | 8                                    | 6                               | <10         | <10         | 1                    | 4.4                 | 1.23                | 3.17                            | 0.15               | 2.60                            | 2.75                          | 7.15             | 2.33             | 2.51             | 2              | <2                          | 62         | 59          | 408         | 174                        | 740               | 8.2 |
| E<br>1402.0710    | 2.5                     | 2                              | 7                                    | 6                               | <10         | <10         | 2                    | 4.6                 | 1.16                | 3.44                            | 0.21               | 2.25                            | 2.45                          | 7.05             | 2.23             | 2.29             | 2              | 2                           | 60         | 57          | 400         | 174                        | 725               | 8.2 |
| F<br>1402.0700    | 2.5                     | 1.5                            | 5.5                                  | 5                               | 10          | 2           | 3                    | 3.6                 | 1.09                | 2.51                            | 0.34               | 2.24                            | 2.58                          | 6.18             | 2.17             | 2.31             | <2             | <2                          | 59         | 58          | 386         | 168                        | 710               | 7.9 |
| G<br>1402.0690    | 1.5                     | 1.5                            | 5                                    | 4                               | <10         | <10         | 1                    | 1.9                 | 0.87                | 1.03                            | 0.38               | 3.15                            | 3.53                          | 5.43             | 2.04             | 2.13             | <2             | <2                          | 61         | 58          | 408         | 169                        | 725               | 8.1 |
| H<br>1402.0680    | 1.5                     | 1.5                            | 4.5                                  | 4                               | 14          | 2           | 1                    | 1.1                 | 0.76                | 0.34                            | 0.25               | 3.71                            | 3.96                          | 5.06             | 1.63             | 1.84             | <2             | <2                          | 60         | 60          | 412         | 174                        | 735               | 8.3 |
| I<br>1402.0670    | 1.5                     | 1.5                            | 4                                    | 4                               | 10          | 2           | 3                    | 1.1                 | 0.73                | 0.37                            | 0.23               | 3.63                            | 3.86                          | 4.96             | 1.62             | 1.76             | 4              | .<2                         | 59         | 58          | 406         | 177                        | 730               | 8.3 |
| J<br>1402.0660    | 1                       | 1                              | 3.5                                  | 3                               | <10         | <10         | 2                    | 0.9                 | 0.72                | 0.18                            | 0.19               | 3.67                            | 3.86                          | 4.76             | 1.50             | 1.61             | 5              | <2                          | 58         | 58          | 416         | 178                        | 725               | 8.3 |
| 1402.0650         | 1                       | 1                              | 3                                    | 2.5                             | 13          | 1           | 3                    | 0.8                 | 0.75                | 0.05                            | 0.10               | 3.42                            | 3.52                          | 4.32             | 1.24             | 1.38             | 3              | 2                           | 55         | 57          | 408         | 179                        | 725               | 8.4 |
| C2<br>1400.2320   | 1                       | 1                              | 2                                    | 2                               | <10         | <10         | <1                   | 0.4                 | <0.38               | <0.02                           | 0.01               | 1.23                            | 1.24                          | 1.64             | 0.03             | 0.05             | <2             | <2                          | 49         | 62          | 418         | 208                        | 750               | 8.3 |
| C1<br>1400.2310   | 2                       | 1.5                            | 5                                    | 4                               | <10         | <10         | 4                    | 1.4                 | 1.23                | 0.17                            | 0.12               | 8.72                            | 8.84                          | 10.24            | 4.62             | 5.06             | <2             | <2                          | 91         | 88          | 500         | 121                        | 870               | 8.1 |
| G6a<br>1400.1152  | 1                       | 1                              | 2                                    | 2                               | 13          | 5           | 2                    | 0.4                 | <0.38               | <0.02                           | <0.01              | 0.15                            | 0.16                          | <0.56            | 0.56             | 0.02             | 2              | <2                          | 46         | 67          | 394         | 195                        | 700               | 7.9 |
| G6<br>1427.0080   | 2                       | 1.5                            | 4                                    | 3                               | <10         | <10         | <1                   | 0.5                 | <0.48               | <0.02                           | <0.01              | 0.28                            | <0.29                         | <0.79            | 0.01             | 0.03             | 2              | <2                          | 31         | 63          | 378         | 194                        | 645               | 8.0 |

| TABLE 3 |  |
|---------|--|
|---------|--|

Laboratory Analyses Continued

| Station<br>Number | BOD5<br>N-Supp.<br>mg/l | Filt., BOD5<br>N-Supp.<br>mg/1 | BOD20<br>N-Supp.<br>mg/l | Filt., BOD20<br>N-Supp.<br>mg/1 | TSS<br>mg/l | VSS<br>1/pm | Filt.<br>TOC<br>mg/l | Kjel-N<br>mg/l as N | Org. N<br>mg/l as N | NH <sub>3</sub> -N<br>mg/l as N | NO2-N<br>mg∕l as N | NO <sub>3</sub> -N<br>mg/l as N | N02-N +<br>N03-N<br>mg/l as N | T-N<br>mg/l as N | 0-P<br>mg/l as P | T-P<br>mg/l as P | chi. <u>a</u><br>µg/1 | Pheo. <u>a</u><br>µg/l as P | c1<br>mg/1 | S04<br>mg/1 | TDS<br>mg/l | T-Alk.<br>mg/l as<br>CaCO3 | Cond.<br>µmhos/cm | • Hď |
|-------------------|-------------------------|--------------------------------|--------------------------|---------------------------------|-------------|-------------|----------------------|---------------------|---------------------|---------------------------------|--------------------|---------------------------------|-------------------------------|------------------|------------------|------------------|-----------------------|-----------------------------|------------|-------------|-------------|----------------------------|-------------------|------|
| G2<br>1427.0060   | 1                       | 1                              | 2.5                      | 2                               | 15          | 2           | 1                    | 0.6                 | <0.58               | <0.02                           | 0.05               | 0.66                            | 0.71                          | 0.31             | 0.65             | 0.69             | 2                     | <2                          | 49         | 63          | 400         | 216                        | 745               | 8.5  |
| G1<br>1427.0005   | 1.5                     | 1                              | 3                        | 2.5                             | 18          | 4           | 1                    | 0.7                 | 0.66                | 0.04                            | 0.02               | 0.92                            | 0.94                          | 1.64             | 0.39             | 0.44             | <2                    | <2                          | 47         | 68          | 408         | 217                        | 760               | 8.4  |
| 1A<br>1400.9001   | 16                      | 8                              | 60                       | 30                              | 32          | 24          | 6                    | 20.6                | 3.35                | 17.25                           | 0.02               | <0.01                           | <0.03                         | <20.60           | 5.81             | 6.51             | 3                     | 2                           | 81         | 82          | 476         | 176                        | 900               | 8.0  |
| 1B<br>1400.9002   | 9                       | 6                              | 25                       | 18                              | 15          | 5           | 4                    | 16.0                | 1.83                | 14.17                           | 0.09               | 0.04                            | 0.13                          | 16.13            | 3.55             | 3.99             | <2                    | 3                           | 88         | 77          | 432         | 156                        | 810               | 8.1  |
| 2<br>1400.9003    | 2.5                     | 1.5                            | 8                        | 4.5                             | 11          | 3           | 3                    | 1.7                 | 1.41                | 0.29                            | 0.13               | 11.53                           | 11.66                         | 13.36            | 6.34             | 6.61             | <2                    | <2                          | 106        | 97          | 518         | 84                         | 906               | 7.8  |
| 3<br>1400.9004    | 1                       | <1                             | 2.5                      | 1.5                             | 11          | 3           | 4                    | 1.3                 | 1.05                | 0.25                            | <0.01              | 7.64                            | 7.65                          | 8.95             | 5.00             | 5.88             | <2                    | <2                          | 74         | 85          | 422         | 95                         | 740               | 8.0  |
|                   |                         |                                |                          |                                 |             |             |                      |                     |                     | 1.1                             | 1                  |                                 |                               |                  |                  |                  |                       |                             | 11         | -           |             |                            |                   |      |
| 17                | 1.                      | 19 J. 19                       |                          |                                 |             |             |                      |                     |                     |                                 |                    |                                 |                               |                  |                  |                  |                       |                             |            |             |             |                            |                   | 1    |
| 1.                |                         |                                |                          |                                 |             |             |                      |                     | 100                 |                                 |                    |                                 |                               |                  |                  |                  |                       |                             |            |             |             |                            |                   |      |
|                   |                         |                                |                          |                                 |             |             |                      |                     |                     |                                 |                    |                                 |                               |                  |                  |                  |                       | 4.1                         | 1.1.1.2    |             |             |                            |                   |      |
|                   |                         |                                |                          |                                 |             |             | 1.1                  | Ξ.                  | 1. 1.               |                                 |                    | 1                               |                               |                  |                  |                  |                       |                             |            |             |             |                            | -                 |      |
|                   |                         |                                |                          |                                 |             |             |                      |                     |                     |                                 |                    | 1                               |                               |                  |                  |                  |                       |                             |            |             |             |                            |                   |      |
|                   |                         |                                |                          | 1                               |             |             |                      |                     |                     |                                 |                    |                                 |                               |                  |                  |                  |                       |                             |            |             |             |                            |                   |      |
| 5                 |                         |                                |                          |                                 |             |             |                      |                     |                     |                                 |                    |                                 |                               |                  |                  |                  |                       |                             |            |             |             |                            |                   |      |
|                   |                         |                                |                          |                                 |             |             |                      |                     |                     |                                 |                    |                                 |                               |                  |                  |                  |                       |                             |            |             |             |                            |                   | 1.0  |

| Table 4 |  |
|---------|--|
|---------|--|

| F | ecal | Col | lifor | m D | ətə |
|---|------|-----|-------|-----|-----|
|   |      |     |       |     |     |

| Station | Fecal Coliform<br>#/100 mL |
|---------|----------------------------|
|         |                            |
| Α       | 15                         |
| В       | 50                         |
| C       | 170                        |
| D       | 30                         |
| E       | 5                          |
| F       | 50                         |
| G       | 0                          |
| H       | 10                         |
| Ι       | 16                         |
| J       | 16                         |
| K       | 4                          |
| C2      | 105                        |
| C1      | 30                         |
| G6ə     | 235                        |
| G6      | 30                         |
| G2      | 20                         |
| G1      | 15                         |
| 1A      | 10                         |
| 1B      | 10                         |
| 2       | 0                          |
| 3       | 0                          |

| Ta | ble | 5 |
|----|-----|---|
|----|-----|---|

Total Phophorus (TP) and Total Nitrogen (TN) Loading

| <br>Station | 1A    | 18    | 2     | 3   | А    | C2   | G6 & G6a |
|-------------|-------|-------|-------|-----|------|------|----------|
| Flow (MGD)  | 18.26 | 8.45  | 28.7  | 3.2 | 83.4 | 7.74 | 6.45     |
| TP (lb/d)   | 991   | 281   | 1,587 | 157 | 13.9 | 3.2  | 2.7      |
| TN (lb/d)   | 3,137 | 1,136 | 3,201 | 239 | 591  | 106  | 72.6     |

| Benthic Mø                                    | croinvertebr | ate Comr | nunity I | ndices an | d Check   | ist of S  | pecies |       |       |      |
|-----------------------------------------------|--------------|----------|----------|-----------|-----------|-----------|--------|-------|-------|------|
| Station                                       | A*           | A**      | B**      | C**       | D*        | G*        | H*     | I*    | J**   | K*   |
| Number of Individuals/m <sup>2</sup>          | 2,776        | 5,122    | 1,836    | 60,835    | 4,770     | 4,136     | 1,725  | 1,715 | 3,134 | 522  |
| Number of Species                             | 30           | 47       | 12       | 12        | 36        | 40        | 33     | 36    | 32    | 25   |
| Diversity                                     | 3.22         | 4.24     | 2.45     | 2.34      | 4.05      | 4.18      | 4.03   | 4.37  | 3.32  | 3.67 |
| Redundancy                                    | 0.38         | 0.25     | 0.34     | 0.35      | 0.23      | 0.23      | 0.23   | 0.18  | 0.37  | 0.30 |
| Equitability                                  | 0.66         | 0.76     | 0.68     | 0.65      | 0.78      | 0.79      | 0.80   | 0.84  | 0.66  | 0.79 |
| Təxon                                         |              |          |          | Numbe     | er of Inc | lividuəls | s/m²   |       |       | -    |
|                                               |              | - 1      |          |           | 8         | 2         |        |       |       |      |
| COLENTERATA<br>Hydra sp.                      | 4            | 29       |          |           |           |           |        |       | 29    |      |
| TURBELLARIA                                   |              |          |          |           |           |           |        |       |       |      |
| Dugesia tigrina<br>Macrostomum appendiculatum |              | 136      |          |           | 4         | 93        |        |       |       |      |
| NEMERTEA<br>Prostoma rubrum                   | 7            | 786      |          |           |           | 54        |        |       |       | 4    |
| NEMATODA                                      | 72           | 205      | 29       |           | 83        | 14        | 4      |       | 29    | 4    |
| HIRUDINEA                                     |              |          |          |           |           |           |        |       |       |      |
| Helobdella elongata                           |              | 47       | 122      | 233       |           |           |        |       |       |      |
| Helobdella stagnalis                          |              | 29       |          |           |           |           |        |       |       |      |
| Helobdella triserialis                        |              | 4        |          |           |           | M.C.      | 22     |       |       |      |
| Mooreobdella microstoma                       |              | 11       |          |           |           |           |        |       |       |      |

## Table 6

Table 6 Continued

| Təxon                      |     |     |     | Number | of Indiv | iduøls/m | 1 <sup>2</sup> |     |       |     |
|----------------------------|-----|-----|-----|--------|----------|----------|----------------|-----|-------|-----|
|                            |     |     |     |        |          |          |                |     |       |     |
| OLIGOCHAETA                |     |     |     |        |          | 0.0      | 10             | 7   |       | 14  |
| Aeolosoma sp.              |     |     |     |        | 05       | 105      | 10             | 1   |       | 14  |
| Aulodrilus limnobius       |     | 22  |     | 000    | 25       | 105      |                |     |       |     |
| Aulodrilus pigueti         |     |     |     | 886    | 4        |          |                |     | 150   |     |
| Branchiura sowerbyi        | 39  |     |     |        |          |          |                |     | 199   |     |
| Bratislavia unidentata     |     |     | 14  |        |          |          |                |     |       |     |
| Chaetogaster diaphanus     |     |     |     | 230    | 205      | 11       |                |     |       |     |
| Chaetogaster diastrophus   | 4   |     |     |        |          |          |                |     |       | 7   |
| Dero digitata              |     |     |     | 11,073 | 14       |          |                |     |       |     |
| Dero nivea                 |     | 14  |     |        |          |          |                |     |       |     |
| Dero trifida               |     |     | 14  | 1,704  |          | 244      |                |     |       |     |
| Ilvodrilus templetoni      |     |     |     | 12,777 |          |          |                |     |       |     |
| Limnodrilus cervix         |     |     | 183 | 19,515 | 108      |          | 7              |     | 86    |     |
| Limnodrilus hoffmeisteri   | 39  | 165 | 258 | 13,304 | 201      | 111      | 47             | 29  | 61    |     |
| Limpodrilus udekemianus    |     | 104 | 47  |        | 72       | 165      | 32             |     | 111   |     |
| Lumbricidae                | 7   |     |     |        |          |          |                |     |       |     |
| Nais pardalis              |     |     |     |        | 90       | 337      | 7              | 111 | 29    |     |
| Nois variabilis            |     | 14  |     |        | 115      | 276      |                | 36  | 29    |     |
| Pristing acquiseta         |     | 14  |     |        |          |          |                |     |       |     |
| Pristing americana         |     |     | 283 |        | 43       |          |                |     |       |     |
| Pristing laidvi            |     |     |     |        | 4        |          |                |     |       |     |
| Dristing sime              |     | 115 |     |        |          |          |                |     |       |     |
| Rhygoodrilug sodelis       |     |     |     | 850    |          |          | 4              |     |       |     |
| Clauring appondiculate     | 14  |     |     |        |          |          |                |     |       |     |
| Stavina appendiculata      |     |     |     |        |          |          |                |     |       | 4   |
| Sparganopinus tailesis     | 29  |     |     |        |          | 61       |                |     |       |     |
| Stephensoniana trivandrana | 20  |     |     |        |          | -        |                |     |       |     |
| C A STAD ODOD A            |     |     |     |        |          |          |                |     |       |     |
| GASTROPODA                 | 1   | 11  |     |        |          |          |                |     |       |     |
| Biomphalaria obstructus    | 209 | 513 | 14  |        | 301      | 603      | 323            | 197 |       |     |
| Gundlachia radiata         | 290 | 515 | 14  |        | 001      | 000      | 010            | 14  |       |     |
| Helisoma anceps            | 4   | 140 |     |        | 7        | 199      | 7              | 18  |       | 4   |
| Physa virgata              | 4   | 140 |     |        | . * S    | 122      |                | 10  |       | -   |
| PELECYPODA                 |     |     |     |        | F 40     | 790      | 010            | 150 | 1 /00 | 0.2 |
| Corbicule fluminee         | 449 | 771 |     |        | 549      | 730      | 219            | 100 | 1,404 | 00  |
| Pisidium casertanum        |     |     |     |        |          |          |                |     | 29    |     |
| Pisidium compressum        |     |     |     |        |          |          |                |     | 57    |     |

| Table | 6 | Continued  |
|-------|---|------------|
|       | • | •••••••••• |

| Təxon                      | Number of Individuals/m <sup>2</sup>  |     |       |     |     |      |     |       |     |     |  |  |  |
|----------------------------|---------------------------------------|-----|-------|-----|-----|------|-----|-------|-----|-----|--|--|--|
|                            |                                       |     |       |     |     | 17.5 | - 7 | -<br> |     | 1   |  |  |  |
| COPEPODA                   |                                       |     |       |     |     |      |     |       |     |     |  |  |  |
| Cyclops sp.                | 47                                    |     |       |     |     |      |     |       |     |     |  |  |  |
| Harpacticoida              | 4                                     | 118 |       |     |     |      |     |       |     |     |  |  |  |
| AMPHIPODA                  |                                       |     |       |     |     |      |     |       |     |     |  |  |  |
| Hyallela azteca            |                                       | 93  |       |     |     | 29   |     |       |     |     |  |  |  |
| OSTRACODA                  |                                       |     |       |     |     |      |     |       |     |     |  |  |  |
| Candona nr caudata         |                                       |     |       |     |     |      |     |       | 144 |     |  |  |  |
| Eucypris sp.               |                                       | 4   |       |     |     |      |     |       |     |     |  |  |  |
| HYDRACABINA                |                                       |     |       |     |     |      |     |       |     |     |  |  |  |
| Atractides sp.             |                                       |     |       |     | 4   |      |     |       |     |     |  |  |  |
|                            |                                       |     |       |     |     |      |     |       |     |     |  |  |  |
| COLEOPTERA                 |                                       |     |       |     |     |      |     | ٨     |     |     |  |  |  |
| Berosus sp.                |                                       | 4   |       |     |     |      |     | 4     | 4   |     |  |  |  |
| Dubiraphia sp.             |                                       | 4   |       |     |     |      |     |       | 4   |     |  |  |  |
| Hetereimis sp.             |                                       |     |       |     |     |      | 7   |       | т   |     |  |  |  |
| Steneimis Dicarinata       |                                       |     |       |     |     |      | 25  | 25    |     |     |  |  |  |
| Steneimis mexicanus        |                                       |     |       |     | 12  | 14   | 40  | 20    | Δ   |     |  |  |  |
| Stenelmis sp.              |                                       |     |       |     | 43  | 14   |     |       | ч   |     |  |  |  |
|                            |                                       |     |       |     |     |      |     |       |     |     |  |  |  |
| Ablabasmeria annulata      |                                       |     |       |     | 22  |      |     |       |     |     |  |  |  |
| Ablabesmyla annulata       |                                       | 909 |       |     | 44  |      |     |       | 14  | 7   |  |  |  |
| Ablabesmyla mallochi       |                                       | 200 |       |     |     |      |     |       | 14  | •   |  |  |  |
| Abladesmyla parajanta      |                                       | 22  |       |     | 9.9 |      |     |       |     |     |  |  |  |
| Chironomus carus           |                                       |     | 0.9.0 | 955 | 22  |      |     | 176   |     |     |  |  |  |
| Chironomus decorus gr.     |                                       |     | 830   | 299 | 0.9 |      |     | 170   |     |     |  |  |  |
| Chironomus stigmaterus     |                                       |     |       |     | 93  | 0.0  |     | - 4   |     | 7   |  |  |  |
| Cladotanytarus sp. A       | 32                                    |     |       |     |     | 30   | 111 | 54    |     |     |  |  |  |
| Cladotanytarus sp. B       |                                       |     |       |     |     |      |     | 14    | 20  | 22  |  |  |  |
| Conchapelopia sp.          |                                       |     |       |     |     | 0.0  |     | 14    | 29  |     |  |  |  |
| Cricotopus bicinctus       | 316                                   | 61  |       |     | 599 | 36   | 11  | 29    | 14  |     |  |  |  |
| Cricotopus festivellus gr. | 25                                    |     |       |     | 115 |      | 7   |       | 14  |     |  |  |  |
| Cricotopus sp. A           |                                       |     |       |     |     |      |     |       |     | 151 |  |  |  |
| Cricotopus sp. B           |                                       |     |       |     |     |      |     |       |     | 11  |  |  |  |
| Cryptochironomus fulvus    | · · · · · · · · · · · · · · · · · · · |     |       |     | 22  |      | 97  |       | 54  |     |  |  |  |

Table 6 Continued

| Təxon                          |     |     |    |   |     |     |     |     |      |     |
|--------------------------------|-----|-----|----|---|-----|-----|-----|-----|------|-----|
|                                |     |     |    |   |     |     |     |     |      |     |
| DIPTERA CONTINUED              |     |     |    |   |     |     |     |     | 100  |     |
| Dicrotendipes neomodestus      | 32  | 466 |    | 4 | 161 | 90  |     | 111 | 108  | 11  |
| Empididae                      |     |     |    |   | 29  |     |     |     |      | 0.0 |
| Eukiefferiella bavarica gr.    |     |     |    |   |     |     |     |     |      | 29  |
| Goeldichironomus holoprasinus  |     | 22  |    |   |     | 54  |     |     | 1.4  | 11  |
| Lørsiø sp.                     |     |     |    |   | 22  |     |     |     | 14   |     |
| Limnophora sp.                 |     | 4   |    |   |     | 4   |     |     |      |     |
| Micropsectra sp.               |     |     |    |   |     |     |     | 14  |      |     |
| Nanocladius distinctus         |     | 100 |    |   |     | • • |     | 000 | 100  |     |
| Orthocladius sp.               | 25  | 384 |    |   |     | 90  | 36  | 236 | 122  |     |
| Palpomyia tibialis             |     | 7   |    |   |     |     |     |     |      |     |
| Pentaneura sp.                 |     |     |    |   |     | 18  |     |     |      | 0.0 |
| Polypedilum convictum          | 104 | 22  |    |   | 671 | 36  | 219 | 83  | 20   | 22  |
| Polypedilum illinoense         |     | 100 | 18 |   | 761 | 388 | _   | 29  | 29   |     |
| Polypedilum nr sceleenum       |     | 22  |    |   |     | 18  | 7   | 4.0 | 29   |     |
| Pseudochironomus sp.           | 133 |     |    |   | 22  |     | 11  | 43  |      | 7   |
| Simulium nr bivittetum         |     |     |    |   |     |     | -   |     |      | 4   |
| Simulium sp.                   |     |     |    |   |     |     | 7   | 4   |      |     |
| Stictochironomus devinctus     |     | 22  |    |   |     |     |     |     |      |     |
| Tanypus neopunctipennis        |     |     | 18 |   |     |     |     | 0.0 | 14   |     |
| Tanytarsus sp.                 |     | 22  |    |   |     |     |     | 29  | 14   |     |
| Thienemanniella nr xena        | 14  |     |    |   | 115 | 54  | 115 | 14  |      |     |
| EPHEMEROPTERA                  |     |     |    |   |     |     |     |     |      |     |
| Bøetis quilleri                | 18  |     |    |   |     | 4   | 4   |     |      |     |
| Caenis sp.                     |     |     |    | 4 |     | 4   |     |     | 29   |     |
| Hexagenia limbata venusta      |     |     |    |   |     |     |     |     | 122  |     |
| Leptohyphes packeri            | 4   |     |    |   |     | 14  | 47  | 4   |      | 05  |
| Pseudocloeon sp.               |     |     |    |   |     |     |     | 18  |      | 20  |
| Stenonema sp.                  |     |     |    |   |     |     | 11  | 1   |      | 4   |
| Thraulodes gonzalesi           |     |     |    |   | 110 |     | 4   | 14  | E 77 | 20  |
| Tricorythodes albilineatus gr. | 65  | 4   |    |   | 118 | 14  | 29  | 54  | 57   | 49  |

HEMIPTERA Hebrus sp.

| roord o continuou | Table | 6 | Continued |
|-------------------|-------|---|-----------|
|-------------------|-------|---|-----------|

| Təxon                | Number of Individuals/m <sup>2</sup> |           |     |  |  |  |     |          |      |      |    |
|----------------------|--------------------------------------|-----------|-----|--|--|--|-----|----------|------|------|----|
| LEPIDOPTERA          |                                      |           |     |  |  |  |     |          |      |      |    |
| Parargyractis sp.    |                                      | 11        |     |  |  |  |     |          |      |      |    |
| MEGALOPTERA          |                                      |           |     |  |  |  |     |          |      |      |    |
| Corydalus cornutus   |                                      |           |     |  |  |  |     |          |      | 11   |    |
| ODONTA               |                                      |           |     |  |  |  |     |          |      |      |    |
| Argia sp.            |                                      | 18        | 65  |  |  |  | 72  | 68       | 36   | 18   |    |
| Dythemis nigrescens  |                                      |           | 4   |  |  |  |     | 5 - C.A. |      |      |    |
| Enellegme sp.        |                                      |           |     |  |  |  |     | 4        |      |      |    |
| Erpetogomphus sp.    |                                      |           | 4   |  |  |  | 18  | 39       | 29   | 97   | 39 |
| Hetserins sp.        |                                      | 4         |     |  |  |  |     |          |      |      |    |
| Macromia sp.         |                                      |           |     |  |  |  |     | 4        |      |      |    |
| Progomphus obscurus  |                                      |           |     |  |  |  | 4   |          |      |      |    |
| TRICHOPTERA          |                                      |           |     |  |  |  |     |          |      |      |    |
| Cheumatopsyche sp.   |                                      | <b>22</b> |     |  |  |  |     |          |      |      |    |
| Culoptila sp.        |                                      |           |     |  |  |  |     |          |      |      | 36 |
| Cyrnellus sp.        |                                      |           | 4   |  |  |  |     | 1.4      | 4.17 | 115  | 10 |
| Helicopsyche sp.     |                                      | 0.50      |     |  |  |  | 0.0 | 14       | 47   | 115  | 18 |
| Hydroptila sp.       |                                      | 976       | 0.0 |  |  |  | 32  |          | 14   |      | 4  |
| Nectopsyche gracilis |                                      | 39        | 29  |  |  |  |     |          |      | 1.4  | 14 |
| Ochrotrichia sp.     |                                      | -         | 9.0 |  |  |  |     |          |      | 14   |    |
| Oecetis sp.          |                                      | 1         | 30  |  |  |  |     | 10       | 07   | 4 70 |    |
| Protoptila sp.       |                                      |           |     |  |  |  |     | 18       | 97   | 19   | 4  |
| Smicridea sp.        |                                      |           |     |  |  |  |     | 50       | 80   | 18   | 4  |

erosional habitat; 3 subsamples collected using a Surber square foot sampler depositional habitat; 3 subsamples collected using a square foot Peterson dredge \*

-

#### Table 7

|         | 1    | Percen<br>Functio | tage (<br>nal Fe | Compos | ition o<br>Group | $\mathbf{f}_{\mathbf{s}^{\boldsymbol{\partial}}}$ | М               | ayflies                 | Tubificid<br>Oligochaetes |                              |                                  | Macrobenthic                  |
|---------|------|-------------------|------------------|--------|------------------|---------------------------------------------------|-----------------|-------------------------|---------------------------|------------------------------|----------------------------------|-------------------------------|
| Station | gr   | ga                | mi               | fi     | sh               | pr                                                | # of<br>species | percent of<br>community | percent of<br>community   | Biotic<br>Index <sup>b</sup> | Similarity<br>Index <sup>C</sup> | Health<br>Rating <sup>d</sup> |
| A*      | 49.1 | 3.9               | 17.4             | 17.9   | 8.9              | 2.8                                               | 3               | 3.1                     | 4.2                       | 2.2                          |                                  | good                          |
| A**     | 14.3 | 9.6               | 27.7             | 18.9   | 1.7              | 27.9                                              | 1               | 0.1                     | 5.7                       | 2.3                          |                                  | good-to-excellent             |
| B**     | 0.8  | 23.3              | 66.6             | 0.0    | 0.9              | 8.5                                               | 0               | 0.0                     | 26.6                      | 3.1                          | 0.20                             | poor                          |
| C**     | 0.0  | 0.2               | 99.0             | 0.0    | 0.0              | 0.8                                               | 1               | 0.01                    | 77.8                      | 3.1                          | 0.10                             | very poor                     |
| D*      | 7.7  | 6.0               | 33.5             | 14.0   | 21.3             | 17.4                                              | 1               | 2.5                     | 8.6                       | 2.4                          | 0.42                             | good-to-excellent             |
| G*      | 19.4 | 4.5               | 47.0             | 21.5   | 3.8              | 3.8                                               | 4               | 0.9                     | 10.7                      | 2.6                          | 0.46                             | good-to-excellent             |
| H*      | 31.6 | 10.9              | 20.8             | 24.3   | 4.9              | 7.4                                               | 5               | 5.5                     | 22.6                      | 2.1                          | 0.54                             | good-to-excellent             |
| I*      | 29.2 | 4.0               | 41.5             | 13.8   | 2.1              | 9.3                                               | 5               | 5.7                     | 1.7                       | 2.0                          | 0.45                             | good-to-excellent             |
| J**     | 0.0  | 10.7              | 31.9             | 57.3   | 0.0              | 0.0                                               | 3               | 6.6                     | 13.3                      | 2.8                          | 0.43                             | good                          |
| K*      | 16.5 | 11.1              | 29.3             | 20.3   | 19.1             | 3.7                                               | 3               | 11.1                    | 0.0                       | 2.0                          | 0.40                             | good-to-excellent             |

#### Additional Benthic Macroinvertebrate Community Indices

\* - erosional station

\* - depositional station

a - determined using the 12 most abundant species at each station; gr = grazers, ga = gatherers, mi = miners,
 fi = filterers, sh = shredders, pr = predators

b - determined using the 12 most abundant species at each station

c - with reference to the appropriate control station (i.e., Station A erosional, or Station A depositional)

d - based on the biotic integrity classification system of Karr (1981), with classes including excellent, good, fair, poor, very poor, and extremely poor

#### **REFERENCES CITED**

- Goodnight, C. J. and L. S. Whitney. 1960. Oligochaetes as indicators of pollution. Proc. 15th Ind. Waste Conf., Purdue University. Engin. Bull. 106: 139-142.
- Kørr, J. R. 1981. Assessment of biotic integrity using fish communities. Fisheries 6: 21-27.
- Twidwell, S. R. and J. R. Davis. 1984. Use attainability analysis of San Antonio River Segment 1901. Unpublished report, Texas Dept. of Water Resources, Austin.



APPENDIX A



#### FIELD AND LABORATORY PROCEDURES

The following methods are utilized for field and laboratory determinations of specified physical and chemical parameters. Unless otherwise indicated composite water samples are collected at each sampling station and stored in polyethylene containers on ice until delivery to the laboratory. Sediment samples are collected with a dredge or coring device, decanted, mixed, placed in appropriate containers (glass for pesticides analyses and plastic for metals analyses), and stored on ice until delivery to the laboratory. Laboratory chemical analyses are conducted by the Water Chemistry Laboratory of the Texas Department of Health unless otherwise noted.

WATER ANALYSES

Field Measurements

| Parameter                                | Unit of Measure              | Method                                                                                                          |
|------------------------------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Temperature                              | °C                           | Hand mercury thermometer,<br>Hydrolab Model 60 Surveyor,<br>or Hydrolab 4041.                                   |
| Dissolved Oxygen<br>(DO)                 | mg/1                         | Azide modification of Winkler<br>titration method, Hydrolab<br>Model 60 Surveyor, or Hydro-<br>lab 4041.        |
| рН                                       | Standard Units               | Hydrolab Model 60 Surveyor,<br>Hydrolab 4041 or Sargent-<br>Welch portable pH meter.                            |
| Conductivity                             | µmhos/cm                     | Hydrolab Model 60 Surveyor,<br>Hydrolab 4041, or Hydrolab<br>TC-2 conductivity meter                            |
| Phenolphthalein<br>Alkalinity<br>(P-Alk) | mg/l as<br>CaCO <sub>3</sub> | Titration with sulfuric acid<br>using phenolphthalein indicator(1).                                             |
| Total Alkalinity<br>(T-Alk)              | mg/l as<br>CaCO <sub>3</sub> | Titration with sulfuric acid<br>acid using phenolphthalein and<br>methyl red/bromcresol green<br>indicators(1). |
| Chlorine Residual                        | mg/1                         | N,N-diethyl-p-phenylene-diamine (DPD)<br>Ferrous Tetrimetric method(1).                                         |
| Transparency                             | m or cm                      | Secchi disc                                                                                                     |
|                                          |                              |                                                                                                                 |

## Laboratory Analyses

| Parameter                                                                                                              | Unit of<br>Measure | Method                                                                                                                                                         |
|------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Five Day, Nitrogen<br>Suppressed, Bio-<br>chemical Oxygen<br>Demand (BOD5, N-Supp.)                                    | mg/1               | Membrane electrode method(1).<br>Nitrogen Suppression using 2-chloro-<br>6-(trichloromethyl)-pyridine (TCMP)<br>method(2).                                     |
| Five Day, Filtered, Ni-<br>trogen Suppressed, Bio-<br>chemical Oxygen Demand<br>(BOD5, Filt., N-Supp.)                 | mg/l               | Samples filtered with glass fiber<br>filter. Analysis conducted on<br>filtrate. Membrane electrode<br>method(1). Nitrogen Suppression<br>using TCMP method(2). |
| Twenty Day, Nitrogen<br>Suppressed, Biochemical<br>Oxygen Demand (BOD20,<br>N-Supp.)                                   | mg/1               | Membrane electrode method(1).<br>Nitrogen Suppression using<br>TCMP method(2).                                                                                 |
| Twenty Day, Filtered,<br>Nitrogen Suppressed,<br>Biochemical Oxygen<br>Demand (BOD <sub>20</sub> , Filt.,<br>(N-Supp.) | mg/1               | Samples filtered with glass fiber<br>filter. Analyses conducted on<br>filtrate. Membrane electrode<br>method(1). Nitrogen Suppression using<br>TCMP method(2). |
| One through Seven Day,<br>Nitrogen-Suppressed, Bio-<br>chemical Oxygen Demand<br>(BOD1-7, N-Supp.)                     | mg/l               | Membrane electrode method(1).<br>Nitrogen Suppression using<br>TCMP method(2).                                                                                 |
| Total Suspended Solids<br>(TSS)                                                                                        | mg/l               | <pre>Gooch crucibles and glass fiber disc(l).</pre>                                                                                                            |
| Volatile Suspended Solids<br>(VSS)                                                                                     | mg/l               | Gooch crucibles and glass fiber disc(1).                                                                                                                       |
| Kjeldahl Nitrogen (Kjel-N)                                                                                             | mg/l as N          | Micro-Kjeldahl digestion and auto-<br>mated colorimetric phenate method(3).                                                                                    |
| Ammonia Nitrogen (NH3-N)                                                                                               | mg/1 as N          | Distillation and automated colorimetric phenate method(3).                                                                                                     |
| Nitrite Nitrogen (NO2-N)                                                                                               | mg/las N           | Colorimetric method(1).                                                                                                                                        |
| Nitrate Nitrogen (NO <sub>3</sub> -N)                                                                                  | mg/l as N          | Automated cadmium reduction method(3).                                                                                                                         |

Laboratory Analyses - Continued

| Parameter                       | Unit of<br>Measure | Method                                                    |
|---------------------------------|--------------------|-----------------------------------------------------------|
| Total Phosphorus<br>(T-P)       | mg/l as P          | Persulfate digestion followed by ascorbic acid method(1). |
| Orthophosphorus<br>(O-P)        | mg/1 as P          | Ascorbic acid method(1).                                  |
| Sulfate (SO <sub>4</sub> )      | mg/1               | Turbidimetric method(1).                                  |
| Chloride (Cl)                   | mg/1               | Automated thiocyanate method(3).                          |
| Total Dissolved Solids<br>(TDS) | mg/1               | Evaporation at 180°C(3).                                  |
| Total Organic Carbon<br>(TOC)   | mg/1               | Beckman TOC analyzer                                      |
| Conductivity                    | µmhos/cm           | Wheatstone bridge utilizing<br>0.01 cell constant(1).     |
| Chlorophyll <u>a</u>            | µg/1               | Trichromatic method(1).                                   |
| Pheophytin <u>a</u>             | µg/l               | Pheophytin correction method(1)                           |

#### SEDIMENT ANALYSES

Field Measurements

Sediment Oxygen Demand

A benthic respirometer, constructed of clear plexiglass, is utilized on intensive surveys to measure benthal oxygen demand(14). A dissolved oxygen probe, paddle, solenoid valve and air diffuser are mounted inside the test chamber. The paddle issued to simulate stream velocity and produce circulation over the probe. The solenoid valve allows air to escape from the test chamber during aeration. The air diffuser is connected by plastic tubing to a 12-volt air compressor which is used to pump air into the test chamber if required.

The paddle, solenoid valve, and air compressor are actuated by switches on a control panel which is housed in an aluminum box. The control box also contains two 12-volt batteries, the air compressor, a stripchart recorder (for automatic recordings of dissolved oxygen meter readings), a battery charger, and a battery test meter. Selection of a specific test site must be made in the field by the investigator with the depth, velocity, and benthic substrate taken into consideration. At the test site the dissolved oxygen meter, and strip-chart recorder are calibrated, the respirometer is dry tested by opening and closing switches and testing batteries; a stream velocity measurement is taken (for paddle calibration), and a water sample is collected just above the stream bottom near the sampling site. Portions of this water sample are poured into separate BOD bottles, one of which is opaque. The opaque bottle is placed on the respirometer and left for the remainder of the test. The initial dissolved oxygen value in the other bottle is measured when the test begins, while the dissolved oxygen in the opaque bottle is measured at the end of the benthic uptake test. The difference in the two dissolved oxygen values represents the oxygen demand of the water column.

The respirometer can be lowered from a boat or bridge, or can be placed by hand in shallow streams. Care is taken to insure that the sediment at the test location is not disturbed and that a good seal between the base of the instrument and bottom of the stream is made. After the respirometer has been placed in the stream, the dissolved oxygen is recorded. In shallow, clear streams the instrument is covered to prevent photosynthesis from occurring within the chamber. The test chamber is then closed and the paddle frequency adjusted. Recordings of dissolved oxygen are made until oxygen is depleted within the chamber or 6 hours has elapsed.

#### Paddle Frequency

$$f = 36 v$$

v = Velocity to be simulated in m/s
 (measureed with current meter)

#### Benthic Oxygen Uptake

 $B^{\mathsf{T}}DO_1 - DO_2 = 196 \frac{(DO_1 - DO_2) - BOD_t}{\Delta t}$ 

where: B<sup>T</sup>DO<sub>1</sub>-DO<sub>2</sub> = Oxygen uptake rate in g/m<sup>2</sup>/d corresponding to the sample temperature, T

 $DO_1 = Initial DO reading in mg/1$ 

DO<sub>2</sub> = Final DO reading in mg/l

- $\Delta t$  = Time interval between DO<sub>1</sub> and DO<sub>2</sub>
- T = Temperature of sample in °C
- BODt = Measured difference in DO
   between the two BOD bottles

#### Laboratory Analyses

| Parameter                       | Unit of<br><u>Measure</u> | Method                                                               |
|---------------------------------|---------------------------|----------------------------------------------------------------------|
| Arsenic (As)                    | mg/kg                     | Silver diethylidithcocarbonate method(3).                            |
| Mercury (Hg)                    | mg/kg                     | Potassium permanganate digestion followed by atomic absorption(3,4). |
| All other metals                | mg/kg                     | Atomic absorption(3,4).                                              |
| Volatile Solids                 | mg/kg                     | Ignition in a muffle furnace(3).                                     |
| Chemical Oxygen Demand<br>(COD) | mg/kg                     | Dichromate reflux method(3).                                         |
| Kjeldahl Nitrogen<br>(Kjel-N)   | m <b>g/</b> kg            | Micro-Kjeldahl digestion and automated colorimetric method(3).       |
| Total Phosphorus (T-P)          | mg/kg as P                | Ammonium molybdate(3).                                               |
| Pesticides                      | µg <b>∕kg</b>             | Gas chromatographic method(4,5).                                     |
| Oil and Grease                  | mg/kg                     | Soxhlet extraction method(3).                                        |

#### BACTERIOLOGICAL

Bacteriological samples are collected in sterilized bottles to which 0.5 ml of sodium thiosulfate is added to dechlorinate the sample. Following collection, the samples are stored on ice until delivery to a laboratory or until cultures are set up by survey personnel (within 6 hours of collection). Bacteriological analyses are conducted by survey personnel or a suitable laboratory in the survey area.

| Param | eter         | Unit of Measure |          | Method   |           |
|-------|--------------|-----------------|----------|----------|-----------|
| Total | Coliform     | Number/100 ml   | Membrane | filter m | method(1) |
| Fecal | Coliform     | Number/100 ml   | Membrane | filter r | method(1) |
| Fecal | Streptococci | Number/100 ml   | Membrane | filter m | method(1) |

#### BENTHIC MACROINVERTEBRATES

Benthic macroinvertebrates are collected with a Surber sampler  $(0.09 \text{ m}^2)$  in riffles and an Ekman dredge  $(0.02 \text{ m}^2)$  in pools. Samples are preserved in 5 percent formalin, stained with Rose Bengal, and sorted, identified, and enumerated in the laboratory.

Diversity  $(\bar{d})$  is calculated according to Wilhm's(6) equation:

 $d = -\sum_{i=1}^{s} (n_i/n) \log_2 (n_i/n)$ 

where n is the total number of individuals in the sample, n<sub>i</sub> is the number of individuals per taxon, and s is the number of taxa in the sample.

Redundancy  $(\bar{r})$  is calculated according to the equations derived by Young et al.(7)

(1) d max = 
$$\log_2 s$$

(2)  $\bar{d} \min = -\frac{s-1}{n} \log_2 \frac{1}{n} - \frac{n-(s-1)}{n} \log_2 \frac{n-(s-1)}{n}$ (3)  $\bar{r} = \frac{\bar{d} \max - \bar{d}}{\bar{d} \max - \bar{d} \min}$ 

where s is the number of taxa in the sample and n is the total number of individuals in the sample.

Equitability is (e) is calculated according to Pielow's(8) equation:

$$e = \frac{d}{\log_2 s}$$

where d is the calculated diversity value and s is the number of taxa in the sample.

The number of individuals per square meter is determined by dividing the total number of individuals by the area sampled.

#### PERIPHYTON

Periphyton are collected from streams and reservoirs from natural substrates or from artificial substrates placed in the water. Standard size, frosted microscope slides are commonly used as artificial substrates and are held in place a few centimeters beneath the water surface at the sampling sites in floating periphytometers. Following a 25 to 30 day incubation period the accrued materials are analyzed for chlorophyll <u>a</u>, pheophytin <u>a</u>, and for identification and enumeration of the attached organisms.

In the field, following retrieval of the periphytometer, two slides are placed in a brown glass container containing 100 ml of 90 percent aqueous acetone. The material from these two slides is used for pigment measurements. Two slides are placed in another brown glass container containing 100 ml of 5 percent buffered formalin. The material from these two slides is used for biomass measurements. The remaining slides are also placed in buffered formalin and utilized for identification and enumeration of organisms according to procedures discussed for the phytoplankton. The brown glass jars containing the material for laboratory analyses (pigment and biomass measurements) are placed in a deep freeze and kept frozen prior to analysis.

The autotrophic index is calculated according to the equation given by Weber and McFarland(9).

Autotrophic Index =  $\frac{\text{Biomass } (g/m^2)}{\text{Chlorophyll } \underline{a} (g/m^2)}$ 

Periphyton samples may also be collected from natural substrates by scraping areas from each type of substrate available at each sampling location. Scrapings are made from a range of depths from subsurface to the stream bottom, from bank to bank, and at points spanning the range in stream velocity. The scrapings from each sampling location are composited into a container, preserved with Lugols solution and returned to the laboratory for identification and enumeration following procedures discussed in the phytoplankton section. Diversity, redundancy, and equitability statistics are calculated as described previously.

#### PLANKTON

#### Phytoplankton

Stream phytoplankton are collected immediately beneath the water surface with a Van Dorn sampler or by immersing a sampling container. Phytoplankton samples are collected with a Van Dorn water sampler at depths evenly spaced throughout the water column of reservoirs. Samples are stored in quart cubitainers on ice and transferred to the laboratory where aliquots of each sample are analyzed live to aid in taxonomic identification. Samples (950 ml) are then preserved with 50 ml of 95 percent buffered formalin or 9.5 ml of Lugols solution and stored in the dark until examination is completed. The phytoplankton are concentrated in sedimentation chambers, and identification and enumeration are conducted with an inverted microscope utilizing standard techniques. If diatoms are abundant in the samples, slide preparations are made using Hyrax mounting medium(10). The diatoms are identified at high magnification under oil until a minimum of 250 cells are tallied. Diversity, redundancy, and equitability statistics are calculated as described previously.

#### Zooplankton

Zooplankton are concentrated at the site by either filtering a known volumne of water through a number 20 mesh standard Wisconsin plankton net or vertically towing the net a known distance or time. Concentrated samples are preserved with Lugols solution or in a final concentration of 5 percent buffered formalin. The organisms are identified to the lowest taxonomic level possible, and counts are made utilizing a Sedgwick-Rafter cell. Diversity, redundancy, and equitability statistics are calculated as described previously.

#### NEKTON

Nekton samples are collected by the following methods(1):

Common-sense minnow seine - 6 m x 1.8 m with 0.6 cm mesh

| Otter trawl            | <ul> <li>3 m with 3 cm outer mesh and 1.3 cm<br/>stretch mesh liner</li> </ul>                                 |
|------------------------|----------------------------------------------------------------------------------------------------------------|
| Chemical fishing       | - rotenone                                                                                                     |
| Experimental gill nets | - 38.1 m x 2.4 m (five 7.6 m sections ranging in mesh size from 1.9 to 6.4 cm).                                |
| Electrofishing         | <ul> <li>backpack and boat units (both equipped with<br/>AC or DC selection). Boat unit is equipped</li> </ul> |

Nekton are collected to determine: (1) species present, (2) relative and absolute abundance of each species, (3) species diversity (4) size distribution, (5) condition, (6) success of reproduction, (7) incidence of disease and parasitism, (8) palatability, and (9) presence or accumulations of toxins.

with variable voltage pulsator.

Nekton collected for palatability are iced or frozen immediately. Samples collected for heavy metals analyses are placed in leak-proof plastic bags and placed on ice. Samples collected for pesticides analyses are wrapped in alumnium foil, placed in a waterproof plastic bag, and placed on ice.

As special instances dictate, specimens necessary for positive identification or parasite examination are preserved in 10 percent formalin containing 3 borax and 50 ml glycerin per liter. Specimens over 15 cm in length are slit at least one-third of the length of the body to enhance preservation of the internal organs. As conditions dictate, other specimens are weighed and measured before being returned to the reservoir or stream.

#### ALGAL ASSAYS

The "<u>Selenastrum capricornutum</u> Printz Algal Assay Bottle Test" procedure(11) is utilized in assaying nutrient limitation in freshwater situations, whereas the "Marine Algal Assay Procedure Bottle Test"(12) is utilized in marine and estuarine situations. <u>Selenastrum capricornutum</u> is the freshwater assay organism and <u>Dunaliella tertiolecta</u> is the marine assay alga.

#### PHOTOSYNTHESIS AND RESPIRATION

In areas where restricted flow produces natural or artifical ponding of sufficient depth, standard light bottle-dark bottle techniques are used. In flowing water the diurnal curve analysis is utilized.

#### Light Bottle-Dark Bottle Analyses

The light and dark bottle technique is used to measure net production and respiration in the euphotic zone of a lentic environment. The depth of the euphotic zone is considered to be three times the Secchi disc transparency. This region is subdivided into three sections. Duplicate light bottles (300 ml BOD bottles) and dark bottles (300 ml BOD bottles covered with electrical tape, wrapped in aluminum foil, and enclosed in a plastic bag) are filled with water collected from the mid-point of each of the three vertical sections, placed on a horizontal metal rank, and suspended from a flotation platform to the mid-point of each vertical section. The platform is oriented in a north-south direction to minimize shading of the bottles. An additional BOD bottle is filled at each depth for determining initial dissolved oxygen concentrations (modified Winkler method). The bottles are allowed to incubate for a varying time interval, depending on the expected productivity of the waters. A minimum of 4 hours incubation is considered necessary.

The following equations are used to calculate respiration and photosynthesis:

 For plankton community respiration (R), expressed as mg/l 02/hour,

 $R = \frac{DO_{I} - DO_{DB}}{Hours incubated}$ 

where DO<sub>1</sub> = initial dissolved oxygen concentration

and DO<sub>DB</sub> = average dissolved oxygen concentration of the duplicate dark bottles

(2) For plankton net photosynthesis (P<sub>N</sub>), expressed as mg/l 0<sub>2</sub>/hour,

$$P_{N} = \frac{DO_{LB} - DO_{I}}{Hours incubated}$$

where DOLB = average dissolved oxygen concentration of duplicate
 light bottles

(3) For plankton gross photosynthesis (PG), expressed as mg/l O<sub>2</sub>/hour,

$$P_G = P_N + R$$

Conversion of respiration and phtotsynthesis volumetric values to an aerial basis may be accomplished by multiplying the depth of each of the three vertical zones (expressed in meters) by the measured dissolved oxygen levels expressed in g/m<sup>3</sup>. These products are added and the result is expressed in g  $0_2/m^2/d$  by multiplying by the photoperiod. Conversion from oxygen to carbon may be accomplished by multiplying grams  $0_2$  by 0.32 [1 mole of  $0_2$  (32 g) is released for each mole of carbon (12 g) fixed].

#### Diurnal Curve Analysis

In situations where the stream is flowing, relatively shallow, and may contain appreciable growths of macropytes or filamentous algae, the diurnal curve analysis is tuilized to determine productivity and respiration. The procedure is adopted from the United States Geological Survey(13). Both the dual station and single station analyses are utilized, depending upon the various controlling circumstances.

Dissolved oxygen and temperature data are collected utilizing the Hydrolab surface units, sondes, data scanners, and strip chart recorders. Diffusion rate constants are directly measured in those instances where atmospheric reaeration rate studies have been conducted. In situations where direct measurements are not made, either the diffusion dome method is utilized, or an appropriate alternative. These alternatives are: (1) calculations from raw data, (2) substitution into various published formulas for determination of  $K_2$ , and (3) arbitrary selection of a value from tables of measured diffusion rates for similar streams.

HYDROLOGICAL

| Parameter                            | Unit of<br>Measure | Method                                                                                                                                                                                                                                         |
|--------------------------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Flow Measurement                     | m <sup>3</sup> /s  | Pygmy current meter (Weather<br>Measure Corporation Model F583),<br>Marsh-McBirney Model 201 electronic<br>flow meter, Price current meter<br>(Weather Measure Corporation<br>Model F582), or gage height<br>readings at USGS gaging stations. |
| Time-of-Travel                       | m/ s               | Tracing of Rhodamine WT dye using<br>a Turner Model 110 or 111<br>fluorometer(15).                                                                                                                                                             |
| Stream Width                         | m                  | Measured with a range finder                                                                                                                                                                                                                   |
| Tidal Period                         | hours              | Level recorder                                                                                                                                                                                                                                 |
| Tidal Amplitude                      | m                  | Level recorder                                                                                                                                                                                                                                 |
| Changes in Stream Sur-<br>face Level | m                  | Level recorder                                                                                                                                                                                                                                 |

#### Stream Reaeration Measurements

The stream reaeration technique is utilized to measure the physical reaeration capacity of a desired stream segment(16). The method depends on the simultaneous release of three tracers in a single aqueous solution: a tracer for detecting dilution and dispersion (tritiated water molecules), a dissolved gaseous tracer for oxygen (krypton-85), and Rhodamine WT dye to indicate when to sample for the radiotracers in the field. The tracer release location is chosen to meet two requirements: (1) it must be upstream of the segment for which physical reaeration data are desired, and (2) it must be at least 0.6 m deep and where the most complete mixing takes place. Before the release, samples are collected at the release site and at designated sampling stations to determine background levels of radiation. The first samples are collected 15 to 60 m downstream from the release site in order to establish the initial ratio of drypton 85 to tritium. Sampling sites are located downstream to monitor the dye cloud every 4 to 6 hours over a total period of 35 to 40 hours. The Rhodamine WT dye is detected with Turner 111 flow-through fluorometers. Samples are collected in glass bottles (30 ml) equipped with polyseal caps which are sealed with black electrical tape. Samples are generally collected every 2 to 5 minutes during the passage of the dye cloud peak. The three samples collected nearest the peak are designated for analysis in the laboratory (three alternate samples collected near the peak are also designated). Extreme caution is exercised throughout the field and laboratory handling of samples to prevent entrainment of air.

Samples are transferred to the laboratory for analyses within 24 hours of the collection time. Triplicate counting vials are prepared from each primary sample. All counting vials are counted in a Tracor Analytic 6892 LSC Liquid Scintillation Counter which has been calibrated. For each vial, counting extends for a minimum of three 10-minute cycles. The data obtained are analyzed to determine the changes in the krypton-85 to tritium ratio as the tracers flow downstream.

The calculations utilized in determining the physical reaeration raes from a stream segment from the liquid scintillation counter data are included here. Krypton-85 transfer in a well-mixed water system is described by the expression:

$$\frac{dC_{kr}}{dt} = - K_{kr}(C_{kr}, t)$$

(1)

 $K_{kr}$  = gas transfer rate coefficient for krypton-85

The concentration of krypton-85 present in the earth's atmosphere can be assumed zero for practical purposes. Therefore, any krypton-85 dissolved in water which is exposed to the atmosphere will be steadily lost from the water to the atmosphere according to equation 1.

The gas transfer rate coefficient for oxygen  $(K_{ox})$  is related to  $K_{kr}$  by the equation:

$$\frac{K_{\rm kr}}{K_{\rm ox}} = 0.83 \pm 0.04$$
(2)

Equation 2 is the basis for using krypton-85 as a tracer for oxygen transfer in stream reaeration because the numerical constant (0.83) has been experimentally demonstrated to be independent of the degree of turbulent mixing, of the direction in which the two gases happen to be moving, and of temperature. The disperion or dilution tracer (tritiated water) is used simultaneously with the dissolved gas tracer (krypton-85) to correct for the effects of dispersion and dilution in the stream segment being studied.

A single homogeneous solution containing the dissolved krypton-85 gas, tritiated water, and dye is released at the upstream reach of the stream segment being studied. As the tracer mass moves downstream, multiple samples are collected as the peak concentration passes successive sampling stations. In the laboratory, peak concentration samples from each station are analyzed and the krypton-85/tritium concentration ratio (R) is established by the equation:

$$R = \frac{C_{kr}}{C_{h}}$$
(3)

where: 
$$C_{kr}$$
 = concentration of krypton-85 in water at time of peak concentration

 $C_{h}$  = concentration of tritium in the water at time of peak concentration

Applying this ratio concept, equation 1 can be modified to:

$$\frac{dR}{dt} = -K_{kr} R \tag{4}$$

with terms as previously defined

Equation 4 can be transformed to:

$$K_{kr} = \frac{n(R_d/R_u)}{-t_f}$$
(5)

where:  $R_u$  and  $R_d$  = peak ratios of krypton-85 to tritium concentrations at an upstream and downstream station

> tf = travel time between the upstream and downstream station determined by dye peaks

The tracers are used to evaluate the actual krypton-85 transfer coefficient  $(K_{kr})$ , and the conversion to the oxygen transfer coefficient  $(K_{ox})$  is from the established gas exchange ratio:

$$K_{ox} = \frac{K_{kr}}{0.83}$$

#### REFERENCES CITED

- American Public Health Association. 1975. Standard Methods for the Examination of Water and Wastewater, 14th Ed. APHA, New York. 1134 pp.
- Young, J.C. 1973. Chemical methods for nitrification control. J. Water Poll. Control Fed. 45: 637-646.
- U. S. Environmental Protection Agency. 1979. Methods for Chemical Analyses of Water and Wastes. Report No. EPA-600/4-79-020, U.S.E.P.A., Washington, D. C. 298 pp.
- 4. U. S. Environmental Protection Agency. 1979. Interim Methods for the Sampling and Analysis of Priority Pollutants in Sediments and Fish Tissue. U.S.E.P.A., Washington, D.C.
- 5. U. S. Environmental Protection Agency. 1977. Analysis of Pesticide Residues in Human and Environmental Samples. U.S.E.P.A., Washington, D.C.
- Wilhm, J.L. 1970. Range of diversity index in benthic macroinvertebrate populations. J. Water Poll. Control Fed. 42: R221-224.
- 7. Young, W.C., D.H. Kent, and B.G. Whiteside. 1976. The influence of a deep-storage reservoir on the species diversity of benthic macroinvertebrate communities of the Guadalupe River, Texas. Texas J. of Sci. 27:213-224.
- Pielou, E.C. 1966. The measurements of diversity in different types of biological collections. J. Theoretical Biol. 13:131-144.
- 9. Weber, C.I., and B. McFarland. 1969. Periphyton biomass chlorophyll ratio as an index of water quality. Presented at the 17th Annual Meeting, Midwest Benthological Society, Gilbertsville, Ky., April, 1969.
- U.S. Environmental Protection Agency. 1973. Biological Field and Laboratory Methos for Measuring the Quality of Surface Waters and Effluents. Report No. EPA-670/4-73-001, U.S.E.P.A., Cincinnati.
- Miller, W.E., J.C. Greene, and T. Shiroyama. 1978. The <u>Selenastrum</u> capricornutum Printz Algal Assay Bottle Test. Report No. EPA-600/9-78-018, U.S. Environmental Protection Agency, Corvallis. 126 pp.
- 12. U.S. Envoronmental Protection Agency. 1974. Marine Algal Assay Procedure: Bottle Test. U.S.E.P.A., Coravilis, Oregon. 43 pp.
- U.S. Geological Survey. 1977. Methods for the Collection and Analysis of Aquatic Biological and Microbiological Samples. Bood 5, Chapter A4, U.S.G.S., Washington, D.C. 332 pp.

#### **REFERENCES CITED - Continued**

- 14. URS/Forrest and Cotton, Inc. 1979. Benthic respirometer users guide. URS/Forrest and Cotton, Austin. 14 p.
- 15. U.S. Geological Survey. 1970. Measurement of Time-of-Travel and Dispersion by Dye Tracing. <u>In</u>: Techniques of Water Resources Investigations of the United States, Book 3, U.S.G.S., Washington, D.C. 25 pp.
- 16. Neal, Larry A. 1979. Method for tracer measurement of reaeration in free-flowing Texas streams. Law Engineering and Testing Company, Atlanta, Georgia. 53 p.





