

# Forage Research in Texas

1982

The Texas Agricultural Experiment Station, Neville P. Clarke, Director, The Texas A&M University System, College Station, Texas

## CONTENTS

## Animal Performance

|    | Influence of Stocking Rates and Cow Weight Change<br>on Weaning Weights and Subsequent Birth Weights<br>of Calves and Cow Reproductive Performance | 1  |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------|----|
|    | Influence of Monensin on Gain of Stocker Calves<br>Grazing Cool-Season Annual Grasses                                                              | 5  |
|    | Influence of Stocking Rate, Creep Feed, and Electrical<br>Simulation on Carcasses of Calves Slaughtered at<br>Weaning                              | 14 |
|    | Rotational vs. Continuous Grazing Bermudagrass Types                                                                                               | 23 |
|    | Animal Performance on Tifton-44, Coastal and Brazos<br>Bermudagrass                                                                                | 25 |
|    | Factors Related to Diet Selection by Mature Crossbred<br>Cows                                                                                      | 27 |
|    | Cash Wheat Crop in a Cattle System for East Texas                                                                                                  | 31 |
| Co | ol Season Grasses                                                                                                                                  |    |
|    | 1980-81 Forage Production for Oats, Ryegrass, Rye,<br>Triticale and Wheat                                                                          | 35 |
|    | Small Grain Forage Tests Under Irrigated and Dryland<br>Conditions at Stephenville, Texas in 1980-81                                               | 42 |
| Wa | rm Season Grasses                                                                                                                                  |    |
|    | Perennial Grass Variety Test - Angleton                                                                                                            | 46 |
|    | Evaluation of Bermudagrass Hybrids                                                                                                                 | 48 |
|    | Dallisgrass Variety Test                                                                                                                           | 51 |
|    | Management Effects on Irrigated and Dryland Forage<br>Sorghum Cultivars at Stephenville in 1981                                                    | 53 |
|    | Selection and Evaluation of Heavy Seed Weight<br>Synthetic Cultivars of Kleingrass                                                                 | 59 |
|    | Total Alkaloid and Nitrate Content of Eleven Pearl<br>Millet Lines                                                                                 | 67 |
| Fe | rtilization                                                                                                                                        |    |
|    | Rate of Application and Source of Nitrogen on Yield<br>of Coastal Bermudagrass                                                                     | 70 |
|    | Soil Fertility Management for Selected Forages                                                                                                     | 74 |

74

|     | Evaluation of Alfalfa Response to Phosphorus and<br>Potassium Fertilization                        | 76  |
|-----|----------------------------------------------------------------------------------------------------|-----|
|     | Nitrogen vs. Clover on Pensacola Babiagrass                                                        | 78  |
|     | Nitrogen vs. Clover on Coastal Bermudagrass                                                        | 81  |
| Leg | gumes                                                                                              |     |
|     | Evaluation of Alfalfa Cultivars for Hay Production                                                 | 84  |
|     | Alfalfa Variety Performance in the Brazos River<br>Bottom                                          | 07  |
|     | Evaluation of Temperate Appual Clause                                                              | 0/  |
|     | Evaluation of femperate Annual Clovers                                                             | 90  |
|     | Forage Yields of Irrigated Legumes at Stephenville                                                 | 93  |
|     | Evaluation of Subterranean Clover for East Texas                                                   | 98  |
|     | Subterranean Clover Seeding Rates                                                                  | 102 |
| Est | ablishment and Management                                                                          |     |
|     | Emergence and Seedling Vigor of Annual Trifolium<br>Species                                        | 104 |
|     | Establishment of Arrowleaf Clover and Annual Ryegrass<br>in a "Tifton-44" Bermudagrass Sod         | 117 |
|     | Establishment of Subterranean Clover and Annual Ryegrass<br>in a "Tifton-44" Bermudagrass Sod      | 120 |
|     | Forage Yields of Turnips, Rape, and Kale Under Irrigated<br>and Dryland Conditions at Stephenville | 124 |

## Authors

Burson, B. L., research geneticist, Blackland Research Center, Temple

- Camp, B. J., professor, Veterinary Physiology & Pharmacology, College Station
- Conrad, B. E., associate professor, Texas A&M University, Soil & Crop Sciences Department, College Station
- Davis, J. V., research associate, Texas A&M Agricultural Research & Extention Center, Overton
- Evers, G. W., associate professor, Texas A&M Agricultural Research & Extension Center, Angleton
- Florence, M. J., research associate, Texas A&M Agricultural Research & Extension Center, Overton
- Gardenhire, J. H., professor, The Texas Agricultural Experiment Station, Dallas
- Godfrey, R. W., graduate research assistant, Texas A&M Agricultural Research & Extension Center, Overton
- Jones, Ronald M., research associate, The Texas Agricultural Experiment Station, Stephenville
- Krejsa, Beverly B., research technician, Texas A&M University Agricultural Research & Extension Center, Overton
- Holt, E. C., professor, Soil & Crop Sciences Department, College Station
- Hussey, M. A., graduate research assistant, Soil & Crop Sciences Department, College Station
- Lippke, Hagen, associate professor, Texas A&M University Agricultural Research and Extension Center, Angleton
- Mangaroo, A. S., professor, Prairie View A&M University Cooperative Research Center, Prairie View
- Nelson, L. R., associate professor, Texas A&M University Agricultural Research & Extension Center, Overton
- Randel, R. D., professor, Texas A&M University Agricultural Research & Extension Center, Overton
- Read, J. C., associate professor, The Texas Agricultural Experiment Station, Dallas

- Rich, P. A., research associate, Soil & Crop Sciences Department, College Station
- Riley, R. R., graduate research assistant, Animal Science, College Station
- Rouquette, F. M., associate professor, Texas A&M Agricultural Research & Extension Center, Overton
- Savell, J. W., associate professor, Animal Science, College Station

Smith, G. R., visiting associate professor, Texas A&M Agricultural Research & Extension Center, Overton

Voigt, P. W., research geneticist, Blackland Research Center, Temple

## Influence of Stocking Rates and Cow Weight Change on Weaning Weights and Subsequent Birth Weights of Calves and Cow Reproductive Performance

R. W. Godfrey, F. M. Rouquette, Jr. and R. D. Randel\*

## SUMMARY

Records covering an ll-year period were evaluated on a herd of fall calving F-1 Brahman x Hereford cows. Calf birth weights, 205-day adjusted weaning weights, calving intervals, and pregnancy data were collected annually. Cows and calves were placed on clover-ryegrass-bermudagrass pastures for 3 to 5 months during early- to mid-gestation. All animals were weighed at 28-day intervals while on the test pastures. In early to mid-July, calves were weaned and the cows removed from the test pastures and placed on bermudagrass paddocks where they remained until fall calving. During the breeding season cows were exposed to fertile bulls for a 90-day period.

The cow weight data was divided into 2 groups based on weight-loss or weight-gain while on the test pastures. The birth weight of the calves was similar (P > .10) for both groups of cows. The weight-loss cows weaned lighter (P < .01) calves than the weight-gain cows. There was a greater (P < .01) percentage of weight-gain cows than weight-loss cows pregnant at the end of the breeding season. Cows that lost weight and did conceive had longer (P < .01) calving intervals than cows that gained weight and conceived.

## Introduction

Low nutritional levels have been shown to negatively influence the reproductive performance of beef cows. Other researchers have reported decreased weaning weights of calves whose dams were nutritionally restricted during late gestation. Also, the birth weight of calves has been shown to be decreased by poor cow nutrition during the last trimester of gestation. Either by design or default, maximum utilization of forages for prolonged periods leads to significant weight loss of lactating beef cows. This study was designed to determine the effect of weight change by the cow in mid-gestation on reproduction performance of the cow, and to ascertain the effect of cow performance on weanling and subsequent calf performance.

<sup>\*</sup> Respectively, graduate research assistant, associate professor and professor, Texas A&M Agricultural Research & Extension Center, Overton, Texas 75684.

## Procedure

Records covering an 11-year period from a herd of fall calving F-1 Brahman x Hereford cows were analyzed. Calf birth weight, 205-day adjusted weaning weight, calving interval, and pregnancy data were collected annually. with Cows calves were placed on clover-ryegrass-bermudagrass pastures for 3 to 5 months during early- to mid-gestation. The cows were placed on the test pastures at 3 levels of forage availability (stocking rates). While on the test pastures the cows were weighed every 28 days. In early to mid-July, calves were weaned, cows removed from the test pastures, and placed on bermudagrass paddocks where they remained until the next calving season.

During the breeding season cows were exposed to a fertile bull for a 90-day period. Sire breeds during the eleven years have included Brown Swiss, Charolais, Santa Gertrudis, Brangus, and Simmental. Cows were rectally palpated 45 days after the end of the breeding season to determine pregnancy. The cow weight data was divided into 2 groups based on weight loss or weight gain by the cow while on the test pastures. The data was analyzed by the Students t-test and Chi-Square (Ott, 1977).

#### Results

The 11-year average of cow weight change is presented in Table 1. Cows in the weight-loss group lost 105 lbs while on the preweaning grazing treatments; whereas, cows in the weight-gain group gained approximately 116 lbs during the same period. In general, those cows which lost weight during the data collection period were assigned to the low forage availability or high stocked pasture; whereas, those cows which gained weight were assigned to the medium to high forage availability or lightly stocked pastures. Cows which lost weight weaned lighter calves (P<.01) (Table 1). There was a 70-pound weaning weight advantage for cows that gained weight during lactation. Table 2 shows the percent distribution of calf weaning weights as influenced by cow weight change.

Birth weights of subsequent calves were not affected by cow weight change during the first two trimesters of pregnancy (Table 1). Considering the breeds of bulls used during the 11-year period, birth weights were reasonably light at 75 pounds. Table 3 shows the percent distribution of calf birth weights as influenced by cow weight change.

Calving interval and pregnancy status of cows used in this data summary are shown in Table 4. Perhaps one of the most important considerations of those cows which lost weight prior to calving was that the calving interval was lengthened by more than one month. This not only affects weaning weights and dates, but also allows for more potential problems in matching forage systems with animal functions. The percent pregnant vs open cows selected in this data set were also significantly affected by cow weight change in the first trimesters of pregnancy (Table 4). From the data presented there is a definite carryover effect from high stocking rate pastures which were responsible for cow weight loss as well as a decline in body condition. The full implications of this carryover effect have not been ascertained, but are under current evaluation. It may be concluded, however, that weight loss by the cow during early to mid-gestation decreases the reproductive efficiency of the cow by lengthening the calving interval and decreasing the conception rate.

Table 1. Cow weight change during the grazing season and resultant calf weaning weights and birth weights.

| COW GROUP   | COW WEIGHT<br>CHANGE (lbs) | (n)   | CALF WEANING<br>WEIGHT (lbs) | (n)   | CALF BIRTH<br>WEIGHTS (1b | s) (n) |
|-------------|----------------------------|-------|------------------------------|-------|---------------------------|--------|
| WEIGHT-LOSS | -105.1±63.6 <sup>a</sup>   | (51)  | 439.5±59.2 <sup>a</sup>      | (51)  | 74.6±11.2 <sup>a</sup>    | (35)   |
| WEIGHT-GAIN | +116.6±62.0 <sup>b</sup>   | (145) | 509.6±64.2 <sup>b</sup>      | (138) | 74.6±11.3 <sup>a</sup>    | (124)  |
|             |                            |       |                              |       |                           |        |

a, <sup>b</sup>Values with different superscripts are statistically different (P .01).

|             |       | WEANING WEIGHTS (1bs) |         |         |         |      |  |  |  |  |
|-------------|-------|-----------------------|---------|---------|---------|------|--|--|--|--|
| COW GROUP   | 400   | 400-450               | 451-500 | 501-550 | 551-600 | 600  |  |  |  |  |
| WEIGHT-LOSS | 29.4% | 29.4%                 | 29.4%   | 5.9%    | 3.9%    | 1.9% |  |  |  |  |
| WEIGHT-GAIN | 5.1%  | 13.0%                 | 26.8%   | 28.9%   | 16.7%   | 9.4% |  |  |  |  |
|             |       | 3                     | `       |         |         |      |  |  |  |  |

Table 2. Percent distribution of calf weaning weight as influenced by cow weight change.

Table 3. Percent distribution of calf birth weights as influenced by cow weight changes.

|             |      | 5 m | BIRTH | WEIGHTS | (lbs) |       |      |
|-------------|------|-----|-------|---------|-------|-------|------|
| COW GROUP   | 60   | 60- | 70    | 71-79   | 80-90 | 91-99 | 99   |
| WEIGHT-LOSS | 8.3% | 33. | 3%    | 30.5%   | 19.4% | 5.5%  | 2.8% |
| WEIGHT-GAIN | 7.3% | 33. | 1%    | 31.5%   | 20.2% | 5.6%  | 2.4% |
|             |      |     |       |         |       |       |      |

Table 4. Calving interval and pregnancy status of cows gaining or losing weight during the grazing season.

| COW GROUP   | CALVING INTERVAL<br>(days)  | <u>(n)</u> | PREGNANT<br>(%)   | OPEN<br>(%)       | <u>(n)</u> |
|-------------|-----------------------------|------------|-------------------|-------------------|------------|
| WEIGHT-LOSS | 397.25 ± 37.16 <sup>a</sup> | (24)       | 72.5 <sup>a</sup> | 27.5 <sup>a</sup> | (51)       |
| WEIGHT-GAIN | 360.74 ± 41.84 <sup>b</sup> | (110)      | 90.3 <sup>b</sup> | 9.7 <sup>b</sup>  | (144)      |
|             |                             |            |                   |                   |            |

a,b Values with different superscripts are statistically different (P .01). Influence of Monensin on Gain of Stocker Calves Grazing Cool-Season Annual Grasses

F. M. Rouquette, Jr., J. V. Davis, and M. J. Florence

#### SUMMARY

A group of 60 calves, consisting of 20 heifers and 40 steers, was divided equally into two treatment groups: rye-ryegrass pasture only; rye-ryegrass pasture plus 200 mg monensin per head per day supplied in 2 pounds ground corn per head per day. Average initial weight of the February-born 1/2 Simmental 1/4 Brahman 1/4 Hereford calves was 495 pounds for hiefers and 565 pounds for steers. The monensin-corn fed calves had an average daily gain (ADG) of 2.11 pounds from November 18 to May 7 (170 days); whereas, the pasture only calves had an ADG of 1.73 pounds during the same period. Steers gained .36 pounds per day more than their heifer mates (2.03 vs. 1.67). With the exception of one 28-day period, consumption of the monensin-corn ration was approximately 90% of that offered.

## Introduction

Monensin is one of several compounds used to promote animal performance. Previous studies have shown that monensin increases feed efficiency and/or weight gains of growing cattle. When used with small quantities of feed carrier (2 lbs/hd/da) and bermudagrass pastures, monensin fed at 200 mg/hd/da does not normally present a palatability problem. However, when used in combination with annual winter pastures such as small grains-ryegrass, monensin has been reported to be unpalatable, and thereby, limits total feed-monensin intake. The primary objectives of this trial therefore were to: (1) determine the acceptability of supplemental feed containing monensin when fed to calves grazing an 'Elbon' rye-'Gulf' ryegrass pasture; (2) determine the influence of monensin on animal performance; and (3) measure forage availability and estimate forage disappearance for calculating forage:gain ratios.

## Procedures

<u>Pasture</u>. 'Elbon' rye was drilled into a prepared seedbed at the rate of 100 pounds of seed per acre and 'Gulf' ryegrass was planted at the rate of 20 pounds per acre on September 25. Six pastures were used with size of each ranging from 5.5 to 7.5 acres. Total fertilizer application during the growing period was 225-75-75 pounds per acre of N-P<sub>2</sub>0<sub>5</sub>-K<sub>2</sub>0. Available forage was harvested at 28-day intervals throughout the trial. Forage was hand-clipped inside and outside of wire cages to provide an estimate of forage disappearance. Protein and <u>in vitro</u> digestible dry matter (IVDDM) analyses were also conducted on the forage samples.

<sup>\*</sup> Respectively, associate professor, research associate, research associate, Texas A&M Agricultural Research & Extension Center, Overton, Texas 75684.

Animals. All calves used were the progeny of purebred Simmental bulls and F-1 (Brahman x Hereford) cows. Calves were weaned, given a multi-way blackleg vaccine, and allowed to graze bermudagrass until the winter pastures were ready to be grazed. Ten heifers and 20 steers were allotted according to weight and condition to both the control group and the monensin group. The steers were then separated into two groups of 10 head each for each treatment group to provide 3 replicates of 10 head each per treatment. All calves were provided with 2 lbs/hd/da of a ground corn creep feed one week prior to initiation of the trial. The 30 calves in the monensin group received 100 mg monensin/hd/da (1 1b of treated feed and 1 lb of untreated feed) during the first five days Thereafter, 200 mg monensin/hd/da was provided via 2 lbs pre-trial. feed. Feed refusals (orts) were recorded daily and discarded on a weekly basis. All calves were weighed twice at initiation and termination of the 170-day trial, and at 28-day intervals during the grazing period. Minerals were provided free choice to each of the six groups.

## Results

Average daily gain (ADG) for each of the animal groups is shown for each weigh period in Table 1. Calves which were fed 2 lbs ground corn/hd/da plus 200 mg monensin gained considerably more during the first 56-day period than the non-fed groups. This may be due to the dry matter contribution of the ground corn, or a combination of both the feed and the 200 mg/da monensin. Regardless of the primary agent responsible, the most significant point is that during this first 56 days, the corn + monensin fed calves gained 1.0 lbs/hd/da more than the non-fed groups (1.33 lbs/da vs 0.34 lbs/da).

Table 2 shows group ADG summaries for both a 141-day and 170-day period. Because of the excellent growing conditions for Elbon rye during the winter period and the warm, early spring which promoted rapid maturation during March, the Gulf ryegrass was restricted somewhat in its normal growth patterns during March and April. Thus, the decline in animal performance from 4-8 to 5-7 was due primarily to forage conditions. Even so, the monensin-fed calves gained nearly .4 lb/hd/da more than the non-fed calves. The gain advantage of steers vs heifers was nearly identical to that of the treatment groups.

Feed refusals are summarized by animal weigh periods in Table 3. With the exception of the 2-11 to 3-10 period, about 90% of the monensin-supplemented ground corn was consumed. From 2-11 to 3-10, there were 5 frequencies of measurable rainfall. This may have influenced consumption, but does not satisfactorily explain the extreme refusals in Group III.

Forage dry matter available for grazing is shown in Table 4. Since this type pasture has a moisture content of 70 to 85% during this test period, there was more than adequate forage available on all paddocks. Although there was considerable fluctuation in available forage between paddocks and between periods, forage availability did not restrict animal intake. There was always an abundance of this high quality forage available for maximum intake under grazing conditions. Table 5 presents an estimate of forage:gain ratios which were obtained via cage-difference technique in each paddock. The ratios were surprisingly similar and showed a slight numerical advantage for the monensin-fed calves. Forage:gain ratios, however, ranged from about 10:1 to 13:1 which were superior to those previously reported for monensin-bermudagrass trials.

Percent protein and in vitro digestible dry matter of available forage are presented in Table 6. These data further substantiate the equality of the paddocks and also show a decline in quality of the Elbon rye with advancing chronological and morphological age. The rapid decrease in calf ADG (Table 1) during the last 28-day period may be explained in part by the forage quality, but was also related to the physical nature of the maturing rye and the overall condition of the calves.

| GROUP        | Initial<br>Weight<br>(lbs) | 11-8<br>to<br>12-16 | 12-16<br>to<br>1-13 | 1-13<br>to<br>2-10 | 2-10<br>to<br>3-10 | 3-10<br>to<br>4-8 | 4-8<br>to<br>5-7 | 11-8<br>to<br>4-8 | 11-8<br>to<br>5-7 |
|--------------|----------------------------|---------------------|---------------------|--------------------|--------------------|-------------------|------------------|-------------------|-------------------|
| I Control    | 494                        | 75                  | .50                 | 1.64               | 2.75               | 2.62              | 1.28             | 1.36              | 1.35              |
| II Monensin  | 496                        | .25                 | 2.54                | 2.29               | 2.54               | 3.03              | 1.28             | 2.14              | 1.99              |
| III Monensin | 573                        | 1.14                | 1.96                | 2.82               | 3.00               | 3.24              | 1.90             | 2.44              | 2.35              |
| IV Control   | 567                        | 04                  | 1.57                | 2,07               | 2.86               | 3.48              | 1.41             | 2.00              | 1.90              |
| V Monensin   | 569                        | 14                  | 2.25                | 2.50               | 3.36               | 2.86              | 1.03             | 2.17              | 1.98              |
| VI Control   | 551                        | 29                  | 1.07                | 1.93               | 3.93               | 3.24              | 1.66             | 1.98              | 1.93              |
|              |                            |                     |                     |                    |                    |                   |                  |                   |                   |

Table 1. Monthly average daily gain of calves grazing rye-ryegrass pastures (lbs/day).

|          | Average Daily Gain          | (lbs)                      |
|----------|-----------------------------|----------------------------|
| Groups   | 11-18- to 4-8<br>(141 days) | 11-18 to 5-7<br>(170 days) |
| Monensin | 2.25                        | 2.11                       |
| Control  | 1.78                        | 1.73                       |
| Heifers  | 1.75                        | 1.67                       |
| Steers   | 2.15                        | 2.02                       |
|          |                             |                            |

Table 2. Group summaries of average daily gain.

|                | II      |      |      | III<br>lbs |      | IV    |         |      |       |
|----------------|---------|------|------|------------|------|-------|---------|------|-------|
| Date           | Offered | Orts | (%)  | Offered    | Orts | (%)   | Offered | Orts | (%)   |
| 11-18 to 12-16 | 560     | 7    | 98.7 | 560        | 7    | 98.7  | 560     | 0    | 100.0 |
| 12-17 to 1-13  | 560     | 9    | 98.4 | 560        | 0    | 100.0 | 560     | 0    | 100.0 |
| 1-14 to 2-10   | 560     | 18   | 96.8 | 560        | 86   | 84.6  | 560     | 71   | 87.3  |
| 2-11 to 3-10   | 560     | 104  | 81.4 | 560        | 280  | 50.0  | 560     | 62   | 88.9  |
| 3-11 to 4-7    | 560     | 7    | 98.7 | 560        | 18   | 96.8  | 560     | 92   | 83.6  |
| 4-8 to 5-7     | 600     | 30   | 95.0 | 600        | 0    | 100.0 | 600     | 42   | 93.0  |
|                |         |      |      |            |      |       |         |      |       |

Table 3. Feed offered, refused (orts), and calculated percent (%) consumption by period.

|          |                           |                             | GR                          | OUP                       |                           |                           |      |
|----------|---------------------------|-----------------------------|-----------------------------|---------------------------|---------------------------|---------------------------|------|
| DATE     | I<br>CONTROL<br>(heifers) | II<br>MONENSIN<br>(heifers) | III<br>MONENSIN<br>(steers) | IV<br>CONTROL<br>(steers) | V<br>MONENSIN<br>(steers) | VI<br>CONTROL<br>(steers) | x    |
|          |                           |                             | lbs                         | /acre                     |                           |                           |      |
| 11-17-80 | 1872                      | 1564                        | 1564                        | 2282                      | 2410                      | 2308                      | 2000 |
| 12-17-80 | 2052                      | 2820                        | 1974                        | 2821                      | 2385                      | 1795                      | 2308 |
| 1-22-81  | 2411                      | 2821                        | 2641                        | 2180                      | 2128                      | 2718                      | 2483 |
| 2-20-81  | 1385                      | 1051                        | 2539                        | 1513                      | 2359                      | 1692                      | 1757 |
| 3-16-81  | 2231                      | 2205                        | 4154                        | 2154                      | 2744                      | 4513                      | 3000 |
| 4-14-81  | 2539                      | 3103                        | 3025                        | 1846                      | 3179                      | 2308                      | 2667 |
| AVG      | 2082                      | 2261                        | 2650                        | 2133                      | 2534                      | 2556                      |      |

Table 4. Forage availability during winter grazing period.

H

| GROUP        | ADG<br>(11-8 to 5-7) | GAIN/ACRE (1bs) | FORAGE<br>DISAPPEARANCE<br>(lbs/acre) | FORAGE:GAIN<br>RATIO<br>(lbs:lbs) |
|--------------|----------------------|-----------------|---------------------------------------|-----------------------------------|
| I Control    | 1.35                 | 416             | 5279                                  | 12.7:1                            |
| II Monensin  | 1.99                 | 615             | 6770                                  | 11.0:1                            |
| III Monensin | 2.35                 | 589             | 6282                                  | 10.7:1                            |
| IV Control   | 1.90                 | 525             | 6692                                  | 12.8:1                            |
| V Monensin   | 1.98                 | 728             | 7744                                  | 10.6:1                            |
| VI Control   | 1.93                 | 609             | 7127                                  | 11.7:1                            |
|              |                      |                 |                                       |                                   |

Table 5. Estimated forage:gain ratios of treatment groups.

|          |             |                    |                   |                    |                    | GR                | OUP        |                     |            |                     |                 |                    |
|----------|-------------|--------------------|-------------------|--------------------|--------------------|-------------------|------------|---------------------|------------|---------------------|-----------------|--------------------|
| Data     | CON<br>(hei | I<br>TROL<br>fers) | I<br>MONE<br>(hei | I<br>NSIN<br>fers) | II<br>MONE<br>(ste | I<br>NSIN<br>ers) | CON<br>(st | IV<br>TROL<br>eers) | MON<br>(st | V<br>ENSIN<br>eers) | V<br>CON<br>(st | I<br>TROL<br>eers) |
| Date     | <u>Pro</u>  |                    | Pro               |                    | Pro                | DDM               | Pro        | DDM                 | Pro        | DDM                 | Pro             | DDM                |
| 11-17-80 | 25.8        | 85.2               | 29.4              | 85.7               | 21.9               | 88.5              | 24.8       | 88.1                | 22.5       | 84.1                | 25.9            | 83.0               |
| 12-17-80 | 20.4        | 87.9               | 19.7              | 85.5               | 17.1               | 88.9              | 21.3       | 83.5                | 22.7       | 86.0                | 22.9            | 86.2               |
| 1-22-81  | 18.3        | 88.8               | 21.9              | 88.8               | 17.1               | 85.3              | 19.0       | 82.1                | 21.9       | 88.9                | 21.9            | 84.6               |
| 2-20-81  | 22.5        | 82.3               | 23.5              | 81.7               | 21.2               | 80.5              | 23.7       | 80.6                | 23.8       | 81.7                | 26.5            | 85.4               |
| 3-16-81  | 17.2        | 81.0               | 20.4              | 82.4               | 16.9               | 82.7              | 21.0       | 84.3                | 17.5       | 77.1                | 19.3            | 79.5               |
| 4-14-81  | 16.3        | 73.0               | 18.1              | 71.9               | 13.6               | 64.0              | 19.1       | 73.8                | 17.8       | 77.3                | 16.0            | 67.7               |
|          |             |                    |                   |                    |                    |                   |            |                     |            |                     |                 |                    |

Table 6. Percent protein (Pro) and in vitro digestible dry matter (DDM) of winter pasture.

Influence of Stocking Rate, Creep Feed, and Electrical Stimulation on Carcasses of Calves Slaughtered at Weaning

F. M. Rouquette, Jr. R. R. Riley and J. W. Savell\*

## SUMMARY

Forty fall-born calves were divided into four pre-weaning treatments and slaughtered when weaned at an average age of 262 days. Pre-weaning treatments consisted of grazing a bermudagrass-arrowleaf clover-ryegrass sward at three stocking rates with both a creep fed and non-creep fed group on the light stocked paddocks. Average stocking rates during the 133-day trial were .81, .81, 1.39, and 2.71 cow-calf units per acre for light stocked + ad libitum creep feed (LSC); light stocked pasture only (LSP); medium stocked (MS); and heavy stocked paddocks (HS), respectively. Weaning weights and corresponding average daily calf gains, respectively, were 789 and 2.86 (LSC); 734 and 2.55 (LSP); 650 and 2.31 (MS); and 597 lbs and 1.70 lbs/hd/da (HS). Light stocked creep fed calves had heavier carcasses, but did not differ from LSP calves with respect to USDA yield grade, longissimus muscle area, fat thickness, % KPH, or fat color. Fat color did not differ among groups, but rated relatively high (4.5 to 4.8) on a 5-point scale. Steaks from U.S. Good-Choice steers (Not-ES) were slightly more palatable than those from certain Not-ES calf sides but no definite trends with respect to pre-weaning treatments were evident. There were no palatability differences between steaks from Not-ES U.S. Good-Choice steers and steaks from ES calf sides. Retail steaks from ES sides had brighter (P<.05) muscle color on all days of display and were more desirable (P<.05) on day 0 of display than steaks from Not-ES sides. Neither stocking rate nor sex of calf substantially altered retail appearance of steaks. In addition, sex of calf did not drastically affect any of the physical or sensory traits evaluated.

#### Introduction

The rapid acceleration in costs of beef production has caused producers to seek alternative marketing procedures for maximizing net returns for their cattle. One of these alternatives has been that of maintaining continuous ownership of cattle from birth to slaughter, thereby eliminating the separate, traditional stocker and feeder ownership phases. The commercial operator who maintains ownership must produce an animal whose carcass not only meets the quality control criteria of lean, yet palatable, beef, but also that meets the profit demands of the total operation. One such approach to attaining this type lean beef is that of producing a suitable carcass weight and grade as rapidly as possible. By providing animals of superior genetic potential with that of nutritious

<sup>\*</sup> Respectively, associate professor, Texas A&M University Agricultural Research & Extension Center, Overton, Texas 75684, graduate research assistant and associate professor, Animal Science, College Station, Texas 77843.

forages, heavyweight weanling calves may be produced and slaughtered directly at weaning. The objective of this study was to evaluate the influence of stocking rate, creep feed, and electrical stimulation on carcass characteristics of heifers and steers slaughtered at weaning.

## Procedure

Forty fall-born half-Simmental calves and their F-1 Brahman x Hereford dams grazed bermudagrass-arrowleaf clover-ryegrass paddocks from February 26 to July 8. Three stocking rates, light (LSP), medium (MS), and heavy (HS), were maintained throughout the pre-weaning grazing A fourth treatment group was maintained on light stocked period. paddocks and these calves received a 12% protein, commercially prepared creep feed (LSC). In the three non-fed groups, two steers, two heifers and their dams were assigned to each of two replicate paddocks. Four steers, four heifers and their dams were assigned to each of two replicate paddocks of the LSC groups. All animals were weighed at the start of the trial and at 28-day intervals throughout the 133-day grazing Paddock size ranged from 2.5 to 5.3 acres. A put-and-take, period. variable stocking rate technique was used to maintain the desired forage availability for each stocking rate. The HS paddocks had sufficient grazing pressure to maintain forage height at 2 in. or less. This grazing pressure allowed for less than 175 lbs/ac of dry forage available to the animals. Both the LSC and LSP paddocks had more than 2000 lbs/ac of available forage at all times. Forage availability on the MS paddocks averaged 785 lbs/ac during the trial. Forage availability and production were measured at 28-day intervals using the cage-difference technique. Forage inside and outside the cages was hand-clipped to a 0-in. height on all paddocks.

On July 8, all calves were weighed off pasture, transported 125 miles via trailer to a commercial slaughtering facility, and allowed to rest overnight. The calves were slaughtered at approximately 24 hours post-weaning, and each carcass split longitudinally into sides. The left sides were electrically stimulated (ES) using a Britton 300® unit, with 12 impulses of 550 volts (AC), 2 amps for a 3-second duration with a 2-second interval between impulses. At 96-hours postmortem, each side the following yield grades factors and quality and ribbed was characteristics were evaluated by Texas Agricultural Experiment Station personnel: carcass weight; lean, skeletal, and overall maturity; carcass conformation; degree of marbling; USDA quality grade (1972); lean color; firmness, and texture; subcutaneous fat color (1 = extremely yellowish orange; 5 = white); fat thickness over the longissimus muscle at the 12-13th rib interface; estimated percentage of kidney, pelvic, and heart (KPH) fat; longissimus muscle area; USDA yield grade; and amount of marbling.

On the fourth day postmortem, the wholesale rib was removed from both sides of each calf carcass. The <u>longissimus</u> muscle was removed from the 10th-12th rib area of each side on the fifth day postmortem and three steaks (each 1.0 in. thick) were cut beginning at the 12th rib end and proceeding cranially for shear force determinations, sensory panel evaluations, and for retail display. Ten wholesale ribs from U.S.

Good-Choice beef carcasses that were not electrically stimulated (Not-ES) were selected after five days aging, and one steak was cut from the 12th rib end of each for sensory panel comparisons. Steaks for sensory panel and shear force determinations were individually wrapped polyethylene-coated paper, frozen, and stored at 10 F. The steaks prepared for retail display evaluations were placed in plastic foam trays (one steak per rib per tray) and overwrapped with polyvinyl chloride film. packaging, all steaks were displayed (36 F, 1625 lux of incandescent light) for 3 days. At 24-hr intervals, a nine-member trained panel visually evaluated the steaks for muscle color, surface discoloration, and overall

For palatability evaluations, each steak was removed from the freezer, thawed (36 F), and broiled to an internal temperature of 160 F by use of a Farberware Open-Hearth Broiler. Steaks designated for shear force were cooled to room temperature (74 F), cores (.5 in. diameter) removed, and shear force determinations made with a Warner-Bratzler shear force machine. An eight-member trained sensory panel evaluated steaks for juiciness, muscle fiber tenderness, overall tenderness, flavor, panel-detectable connective tissue and overall palatability.

#### Results

Grazing pressures used to maintain desired levels of forage availability resulted in stocking rates of .81 cow-calf units per acre for the light stocked plus creep feed (LSC) and light stocked pasture only (LSP) groups, and increased to 1.39 and 2.71 cow-calf units per acre for medium (MS) and heavy stocked (HS) paddocks, respectively (Table 1). Weaning weights were not only affected by stocking rate, but were also enhanced by creep feeding and depressed by the unseasonably hot, dry weather during June and early July. Calves assigned to the creep-fed group gained slightly more than 1.7 lbs/hd/da during the last 28-day period and only consumed an average of 1.98 lbs/da creep feed during the entire trial. Gain per acre from the HS group was more than double that of either the LSC or LSP groups.

Mean values for USDA yield grade factors and subcutaneous fat color for calf carcasses from the four pre-weaning grazing treatments are presented in Table 2. Except for carcass weight, sides of calves from LSC and LSP did not differ in physical traits. As stocking rate increased, carcass weights were lighter with smaller <u>longissimus</u> muscle area, less adjusted fat thickness, and kidney, pelvic and heart fat, and better yield grade (lower numerical value). Carcasses from the HS calves were significantly different (P<.05) in these physical traits than

Non-electrically stimulated (Not-ES) sides from calves on HS paddocks had higher (P<.05) lean maturity scores, and lower scores for marbling, USDA conformation, USDA quality grades, lean texture, and lean firmness scores than did Not-ES sides of LSC calves (Table 3). Not-ES sides from calves in LSC and LSP groups did not differ, and Not-ES sides from calves in LSP and MS groups did not differ in quality-indicating characteristics. Although the carcasses in this study were not ribbed until 96 hours postmortem, ES improved quality characteristics in 6 of 7 comparisons (P<.05) within the LSC group; 3 of 7 (P<.05) within the LSP group; 3 of 7 (P<.05) within the MS group; and 5 of 7 (P<.05) within the HS group.

Sensory characteristics and cooking losses of rib steaks from Not-ES and ES calf sides, and U.S. Good-Choice beef carcasses (Not-ES) are shown in Table 4. Steaks from Not-ES U.S. Good-Choice carcasses were generally superior to those steaks from Not-ES calves with respect to muscle fiber tenderness, overall tenderness, and overall palatability. Significant  $P^{<}.05$ ) differences between steaks from Not-ES calf sides from the stocking rate groups were found for juiciness, connective tissue amount, overall palatability and shear force values, but these differences did not suggest any clearly defined trends.

It has been reported that except for juiciness, grain-fed steers generally were more palatable than forage-fed calves at weaning, and it has been well-documented that grain-fed beef has superior physical and sensory traits than does forage-fed beef. Data from this study, however, (Table 4) suggests that the ES of carcasses from LSC, LSP, MS, and HS results in steaks that do not differ in palatability from Not-ES U.S. Good-Choice beef steaks. When comparing steaks from ES sides to their paired sides within each stocking rate, no significant differences were found within LSP, MS, and HS groups. However, within the LSC group, steaks from ES sides had higher (P<.05) sensory panel ratings for muscle fiber tenderness and overall tenderness.

Past research has indicated that forage-fed beef steaks deteriorate rapidly under retail sales conditions. Table 5 reports comparisons of retail appearance for boneless rib steaks from Not-ES and ES calf sides stratified according to stocking rate. At the beginning of the retail case period, steaks from Not-ES sides from LSC and LSP had brighter (P<.05) muscle color than steaks from Not-ES HS sides. However, no significant differences (P>.05) were observed between retail cuts from Not-ES sides for muscle color, surface discoloration and overall appearance after day 0. Unlike results for steaks from Not-ES sides, ES resulted in muscle color being increasingly less desirable with increased stocking rate and remained so for the duration of the display period. Among the stocking rate groups, ES sides were more desirable than Not-ES sides in the LSC and LSP groups.

With only minor exceptions, neither physical, sensory, nor retail carcass characteristics substantially differed (P>.05) with sex of calf. Thus, for calf carcasses there is no basis upon which price differentials for differences due to sex class can be justified. Heifer calves should be as valuable as steers if slaughtered at weaning; and this, alone, would result in a significant increase in positive cash flow at the producer level if the lack of difference was recognized by packers.

From these data, the use of weanling calf meat should not receive negative criticism because of age or size of carcass. The use of creep feed did not produce any significant advantages over non-fed, pasture-only calves with respect to physical or sensory carcass traits. There was evidence, however, that electrical stimulation of carcasses from creep-fed calves had a more positive effect on carcass characteristics than on those carcasses from non-fed calves. Therefore, unless the weight-gain advantage or USDA quality grade improvement is sufficient to offset the cost of the supplemental feed, it may be difficult to justify the use of creep feed in preparing calves for slaughter at weaning.

|                         | Ligh              | nt Stocked         |                   |                   |  |
|-------------------------|-------------------|--------------------|-------------------|-------------------|--|
| Item                    | Creep<br>Fed      | Pasture<br>Only    | Medium<br>Stocked | Heavy<br>Stocked  |  |
|                         |                   |                    |                   |                   |  |
| Stocking rate, AU/ac    | .81               | .81                | 1.39              | 2.71              |  |
| Age at weaning, days    | 265               | 265                | 258               | 259               |  |
| Avg. weaning wt., lbs   | 789 <sup>a</sup>  | 734 <sup>a</sup>   | 650 <sup>b</sup>  | 597 <sup>b</sup>  |  |
| Steer weaning wt., lbs  | 821 <sup>a</sup>  | 763 <sup>ab</sup>  | 692 <sup>bc</sup> | 622 <sup>C</sup>  |  |
| Heifer weaning wt., lbs | 757 <sup>a</sup>  | 698 <sup>b</sup>   | 610 <sup>C</sup>  | 572 <sup>c</sup>  |  |
| Calf ADG, lbs/da        | 2.86 <sup>a</sup> | 2.55 <sup>b</sup>  | 2.31 <sup>b</sup> | 1.70 <sup>C</sup> |  |
| Steer ADG, lbs/da       | 3.09 <sup>a</sup> | 2.73 <sup>ab</sup> | 2.53 <sup>b</sup> | 1.68 <sup>C</sup> |  |
| Heifer ADG, lbs/da      | 2.63 <sup>a</sup> | 2.36 <sup>b</sup>  | 2.08 <sup>b</sup> | 1.71 <sup>c</sup> |  |
| Gain/ac, lbs/ac         | 308 <sup>a</sup>  | 275 <sup>a</sup>   | 427 <sup>b</sup>  | 613 <sup>C</sup>  |  |
|                         |                   |                    |                   |                   |  |

Table 1. Weanling calf performance from various stocking rate paddocks

abc Means within the same row with a common superscript are not different (P>.01).

|                                              | Light \$         | Stocked           |                   |                  |  |
|----------------------------------------------|------------------|-------------------|-------------------|------------------|--|
|                                              | Creep            | Pasture           | Medium            | Heavy            |  |
| Trait                                        | Fed              | Only              | Stocked           | Stocked          |  |
|                                              |                  |                   |                   | a -              |  |
| Carcass weight, lbs                          | 439 <sup>a</sup> | 399 <sup>b</sup>  | 346 <sup>C</sup>  | 324 <sup>C</sup> |  |
| USDA yield grade <sup>d</sup>                | 1.9 <sup>b</sup> | 1.6 <sup>ab</sup> | 1.4 <sup>a</sup>  | 1.3 <sup>a</sup> |  |
| Longissimus <sub>2</sub> muscle<br>area, in. | 9.9 <sup>a</sup> | 9.8 <sup>a</sup>  | 9.5 <sup>ab</sup> | 8.9 <sup>b</sup> |  |
| Adjusted fat thickness<br>12th rib, in.      | .18 <sup>a</sup> | .12 <sup>ab</sup> | .09 <sup>b</sup>  | .05 <sup>b</sup> |  |
| Kidney, pelvic and<br>heart fat, %           | 2.4 <sup>b</sup> | 2.1 <sup>b</sup>  | 1.8 <sup>ab</sup> | 1.3 <sup>c</sup> |  |
| Fat color <sup>e</sup>                       | 4.5 <sup>a</sup> | 4.5 <sup>a</sup>  | 4.8 <sup>a</sup>  | 4.8 <sup>a</sup> |  |
|                                              |                  |                   |                   |                  |  |

Table 2. Mean values for USDA yield grade factors and subcutaneous fat color for calf carcasses stratified according to stocking rate.

abc Means in the same row with a common superscript letter are not different (P>.05).

<sup>d</sup>All calves were yield graded according to USDA (1975) grade standards for carcass beef.

<sup>e</sup>5 = nearly white; l = yellowish orange.

1

|                                   |                   | N                      | ot-ES             |                       | ES                |                        |                        |                   |
|-----------------------------------|-------------------|------------------------|-------------------|-----------------------|-------------------|------------------------|------------------------|-------------------|
|                                   | Light             | Light Stocked          |                   |                       |                   | Light Stocked          |                        |                   |
| Trait                             | Creep<br>Fed      | Pasture<br>Only        | Medium<br>Stocked | Heavy<br>Stocked      | Creep<br>Fed      | Pasture<br>Only        | Medium<br>Stocked      | Heavy<br>Stocked  |
| Lean maturity <sup>d</sup>        | Ca <sup>50a</sup> | Ca <sup>40a</sup>      | Ca <sup>48a</sup> | Ca <sup>78b</sup>     | Ca <sup>39a</sup> | Ca <sup>38a</sup>      | Ca <sup>29a</sup>      | Ca <sup>60b</sup> |
| Skeletal maturity $^{\mathrm{d}}$ | Ca <sup>66a</sup> | Ca <sup>70a</sup>      | Ca <sup>63a</sup> | Ca <sup>59a</sup>     | Ca <sup>66a</sup> | Ca <sup>70a</sup>      | Ca <sup>63a</sup>      | Ca <sup>59a</sup> |
| Overall maturity <sup>d</sup>     | Ca <sup>59a</sup> | Ca <sup>56a</sup>      | Ca <sup>55a</sup> | Ca <sup>68a</sup>     | Ca <sup>53a</sup> | Ca <sup>50a</sup>      | Ca <sup>51</sup>       | Ca <sup>59a</sup> |
| Marbling score <sup>e</sup>       | PD <sup>76a</sup> | $_{\rm PD}^{\rm 45ab}$ | PD <sup>35b</sup> | $_{\rm PD}^{\rm 10b}$ | PD <sup>66a</sup> | $_{\rm PD}^{\rm 36ab}$ | $_{\rm PD}^{\rm 46ab}$ | PD <sup>16b</sup> |
| Carcass conformation<br>score     | Ch <sup>85a</sup> | Ch <sup>53ab</sup>     | Ch <sup>28b</sup> | Ch <sup>23b</sup>     | Ch <sup>85a</sup> | Ch <sup>53ab</sup>     | Ch <sup>28b</sup>      | Ch <sup>23b</sup> |
| USDA quality $grade^{e}$          | 99a<br>G          | 99a<br>G               | $G^{88a}$         | G <sup>38b</sup>      | CH <sup>09a</sup> | Ch <sup>11a</sup>      | Ch <sup>05a</sup>      | G <sup>69b</sup>  |
| Lean color <sup>f</sup>           | 7.3 <sup>ab</sup> | 7.9 <sup>a</sup>       | 7.1 <sup>ab</sup> | 6.4 <sup>b</sup>      | 7.6 <sup>a</sup>  | 8.0 <sup>a</sup>       | 7.4 <sup>ab</sup>      | 6.8 <sup>b</sup>  |
| Lean firmness <sup>g</sup>        | 7.1 <sup>a</sup>  | 7.3 <sup>a</sup>       | 6.8 <sup>a</sup>  | 5.1 <sup>b</sup>      | 7.4 <sup>a</sup>  | 7.6 <sup>a</sup>       | 7.3 <sup>a</sup>       | 6.3 <sup>b</sup>  |
| Lean texture <sup>h</sup>         | 6.4 <sup>a</sup>  | 7.1 <sup>a</sup>       | 6.4 <sup>a</sup>  | 4.6 <sup>b</sup>      | 7.3 <sup>b</sup>  | 8.0 <sup>a</sup>       | 7.2 <sup>b</sup>       | 6.1 <sup>C</sup>  |

Table 3. Mean values for certain quality-indicating characteristics from untreated (Not-ES) and electrically stimulated (ES) calf sides stratified according to stocking rate.

Abc Means in the same row within the same treatment (ES or Not-ES) with a common letter are not different (P>.05).

<sup>d</sup> Calves slaughtered at chronological ages of 3 to 9 months generally produce carcasses with physiological maturity indicators described as Ca to Ca , respectively in USDA (1972) grade standards for calf carcasses.

<sup>e</sup>Based on descriptions included in USDA (1972) grade standards of calf carcasses.

f
8 = light grayish-red; 1 = very dark red or purple.

<sup>g</sup>8 = very firm; 1 = very soft.

h8 = very fine; 1 = very coarse.
\*

Means within a stocking rate group are significantly different due to electrical stimulation (P<.05) as determined by paired-t distribution (Barr et al., 1979). P>.05 was reported as nonsignificant (NS).

|                                          |                    | Not-ES             | 5                 |                    |                   |                   | ES                |                   |                   |                   |  |
|------------------------------------------|--------------------|--------------------|-------------------|--------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|--|
|                                          | Light S            | Stocked<br>Pasture | Medium            | Heavy              | U.S.              | Light S           | Stocked           | Medium            | Heavy             | -<br>U.S.         |  |
|                                          | Fed                | Only               | Stocked           | Stocked            | Good-<br>Choice   | Fed               | Only              | Stocked           | Stocked           | Good-<br>Choice   |  |
| Juiciness                                | 5.5 <sup>b</sup>   | 6.0 <sup>ab</sup>  | 5.7 <sup>ab</sup> | 6.1 <sup>a</sup>   | 5.8 <sup>ab</sup> | 5.4 <sup>b</sup>  | 5.8 <sup>ab</sup> | 5.8 <sup>ab</sup> | 6.1 <sup>a</sup>  | 5.8 <sup>ab</sup> |  |
| Muscle fiber<br>d<br>tenderness          | 4.9 <sup>b</sup>   | 4.2 <sup>b</sup>   | 4.3 <sup>b</sup>  | 5.4 <sup>ab</sup>  | 6.2 <sup>a</sup>  | 5.8 <sup>a</sup>  | 5.4 <sup>a</sup>  | 5.8 <sup>a</sup>  | 4.9 <sup>a</sup>  | 6.2 <sup>a</sup>  |  |
| Connective<br>tissue amount <sup>e</sup> | 7.5 <sup>a</sup>   | 7.4 <sup>a</sup>   | 6.8 <sup>b</sup>  | 7.5 <sup>a</sup>   | 7.4 <sup>a</sup>  | 7.5 <sup>a</sup>  | 7.3 <sup>a</sup>  | 7.3 <sup>a</sup>  | 7.3 <sup>a</sup>  | 7.4 <sup>a</sup>  |  |
| Overall<br>tenderness                    | 4.9 <sup>a</sup>   | 4.3 <sup>b</sup>   | 4.0 <sup>b</sup>  | 5.4 <sup>ab</sup>  | 6.2 <sup>a</sup>  | 5.9 <sup>a</sup>  | 5.5 <sup>a</sup>  | 5.6 <sup>a</sup>  | 4.9 <sup>a</sup>  | 6.2 <sup>a</sup>  |  |
| Flavor <sup>d</sup>                      | 5.6 <sup>a</sup>   | 5.5 <sup>a</sup>   | 5.5 <sup>a</sup>  | 5.7 <sup>a</sup>   | 5.4 <sup>a</sup>  | 5.4 <sup>a</sup>  | 5.6 <sup>a</sup>  | 5.2 <sup>a</sup>  | 5.7 <sup>a</sup>  | 5.4 <sup>a</sup>  |  |
| Overall<br>palatability <sup>d</sup>     | 4.7 <sup>abc</sup> | 4.1 <sup>bc</sup>  | 3.9 <sup>C</sup>  | 5.1 <sup>ab</sup>  | 5.3 <sup>a</sup>  | 5.1 <sup>a</sup>  | 5.1 <sup>a</sup>  | 5.2 <sup>a</sup>  | 4.7 <sup>a</sup>  | 5.3 <sup>a</sup>  |  |
| Warner-Bratzler<br>shear force, lbs      | 11.4 <sup>a</sup>  | 14.5 <sup>b</sup>  | 11.2 <sup>a</sup> | 11.7 <sup>ab</sup> |                   | 9.9 <sup>a</sup>  | 10.6 <sup>a</sup> | 11.7 <sup>a</sup> | 12.3 <sup>a</sup> |                   |  |
| Cooking loss, %                          | 22.8 <sup>a</sup>  | 21.7 <sup>a</sup>  | 21.6 <sup>a</sup> | 19.8 <sup>a</sup>  | 23.4 <sup>a</sup> | 22.6 <sup>a</sup> | 21.5 <sup>a</sup> | 23.7 <sup>a</sup> | 21.3 <sup>a</sup> | 23.4 <sup>a</sup> |  |

Table 4. Mean values for palatability characteristics and cooking losses of rib steaks from untreated (Not-ES) and electrically stimulated (ES) calf sides and U.S. Good-Choice beef carcasses (Not-ES)

<sup>abc</sup> Means in the same row within the same treatment (ES or Not-ES) with a common superscript letter are not different (P>.05).

d Means based on eight-point descriptive scales (8 = extremely juicy, tender or desirable; 1 = extremely dry, tough or undesirable).

<sup>e</sup>Means based on an eight point rating scale (8 = none; 1 = abundant).

\* Means within a stocking rate group are significantly different due to electrical stimulation (P<.05) as determined by paired-t distribution (Barr et al., 1979). P>.05 was reported as nonsignificant (NS). 21

Table 5. Mean values for muscle color, surface discoloration, and overall appearance for boneless rib steaks from untreated (Not-ES) and electrically stimulated (ES) calf sides stratified according to stocking rate.

|                    |     | -                | Not-             | ES                |                  |                  | E                 | S                     |                  |
|--------------------|-----|------------------|------------------|-------------------|------------------|------------------|-------------------|-----------------------|------------------|
|                    |     | Light            | Stocked          |                   |                  | Light            | Stocked           |                       |                  |
| Trait              | Day | Creep<br>Fed     | Pasture<br>Only  | Medium<br>Stocked | Heavy<br>Stocked | Creep<br>Fed     | Pasture<br>Only   | Medium<br>Stocked     | Heavy<br>Stocked |
| Muscle,            |     |                  |                  |                   |                  |                  |                   |                       |                  |
| color <sup>a</sup> | 0   | 6.1 <sup>a</sup> | 6.2 <sup>a</sup> | 5.9 <sup>ab</sup> | 5.5 <sup>b</sup> | 6 6 <sup>a</sup> | 6 5 <sup>ab</sup> | 5 obc                 | 5 6 <sup>C</sup> |
|                    | 1   | 5.6 <sup>a</sup> | 5.3 <sup>a</sup> | 5.1 <sup>a</sup>  | 5.2 <sup>a</sup> | 5.9 <sup>a</sup> | 5.8 <sup>ab</sup> | 5 5ab                 | 5.0b             |
|                    | 2   | 5.5ª             | 5.3 <sup>a</sup> | 5.1 <sup>a</sup>  | 5.2 <sup>a</sup> | 5.9 <sup>a</sup> | 5.7 <sup>ab</sup> | $5^{\circ}3^{\circ}b$ | 5 1 <sup>b</sup> |
|                    | 3   | 5.2 <sup>a</sup> | 5.3 <sup>a</sup> | 4.9 <sup>a</sup>  | 4.7 <sup>a</sup> | 5.7 <sup>a</sup> | 5.5 <sup>ab</sup> | 5.1 <sup>bc</sup>     | 4 6 <sup>C</sup> |
| Surface dis-       |     | -                |                  |                   |                  |                  |                   | 5.1                   | 4.0              |
| coloration         | 0   | 6.9ª             | 6.9 <sup>a</sup> | 6.9 <sup>a</sup>  | 6.9 <sup>a</sup> | 6.9 <sup>a</sup> | 6.9 <sup>a</sup>  | $6.9^{a}$             | 6 9 <sup>a</sup> |
|                    | 1   | 6.0 <sup>4</sup> | 5.7ª             | 5.6 <sup>a</sup>  | 6.2 <sup>a</sup> | 5.9 <sup>a</sup> | 6.0 <sup>a</sup>  | $5.6^{a}$             | 5.6 <sup>a</sup> |
|                    | 2   | 5.5              | 5.5ª             | 5.3 <sup>a</sup>  | 5.6 <sup>a</sup> | 5.7 <sup>a</sup> | 5.7 <sup>a</sup>  | 5.3 <sup>a</sup>      | 5.4 <sup>a</sup> |
|                    | 3   | 5.0ª             | 4.9 <sup>a</sup> | 4.5 <sup>a</sup>  | 5.3 <sup>a</sup> | 5.0 <sup>a</sup> | 5.2 <sup>a</sup>  | 4.7 <sup>a</sup>      | 4.6 <sup>a</sup> |
| Overall            |     | 2                |                  |                   |                  |                  |                   |                       |                  |
| appearance         | 0   | 6.4 <sup>°</sup> | 6.5ª             | 6.4 <sup>a</sup>  | 6.0 <sup>a</sup> | 6.8 <sup>a</sup> | 6.9 <sup>a</sup>  | 6.3 <sup>ab</sup>     | 6.0 <sup>b</sup> |
|                    | 1   | 5.5              | 5.0 <sup>°</sup> | 4.9 <sup>a</sup>  | 5.4 <sup>a</sup> | 5.5 <sup>a</sup> | 5.5 <sup>a</sup>  | 5.1 <sup>a</sup>      | 5.0 <sup>a</sup> |
|                    | 2   | 5.2              | 4.8ª             | 4.8ª              | 5.1 <sup>a</sup> | 5.4 <sup>a</sup> | 5.4 <sup>a</sup>  | 4.8 <sup>a</sup>      | 4.8 <sup>a</sup> |
|                    | 3   | 4.6ª             | 4.4 <sup>a</sup> | 4.0 <sup>a</sup>  | 4.6 <sup>a</sup> | 4.8 <sup>a</sup> | 4.9 <sup>a</sup>  | 4.3 <sup>a</sup>      | 3.9 <sup>a</sup> |

abc Means in the same row within the same treatment (ES or Not-ES) with a common superscript letter are not not different (P>.05).

<sup>d</sup>9 = very light cherry red; 1 = very dark purple.

<sup>e</sup>7 = no surface discoloration; 1 = total surface discoloration.

f
8 = extremely desirable; 1 = extremely undesirable. \*

Means within a stocking rate group are significantly different due to electrical stimulation (P<.05) as determined by paired-t distribution (Barr et al., 1979). P>.05 was reported as nonsignificant (NS).

B. E. Conrad<sup>1</sup>

## SUMMARY

There were no differences in average daily gains among animals grazing rotationally or continuously over a two-year period. The differences in animal performance due to bermudagrass type were at the two lighter stocking rates, where forage, on offer, far exceeded animal intake.

## Introduction

Under grazing conditions the theoretical choices of forage utilization systems open to the producer may be many, whereas the practical uses may at best be limited to only a few, and the profitable uses may be further limited to only a couple of choices. The method of choice for the producer must be based on a number of objectives of which animal performance may be only one factor. The literature, popular beliefs and old wives tales may or may not be based on sound reasoning, but more often than not, with warm-season perennial grasses, there is no basis for expecting differences in animal performance between rotational and continuous grazing. The amount of forage on offer becomes the driving force in animal performance within certain boundaries.

#### Procedure

Pastures of Coastal and Callie bermudagrasses were established on the Texas A&M University farm in the Brazos River bottom near College Station. Santa Gertrudis steers with an average initial weight of 445 pounds in 1980 and 625 pounds in 1981 were used as tester animals. Pasture sizes varied from 8712 square feet per animal to 16,212 square feet per animal in increments of 2500 square feet. All pastures were well established and were 4 to 6 years old. Animals on the rotational pastures were on a 7 days on and 21 days off frequency. The grazing season was from May 8, 1980 to October 18, 1980 for a total of 161 days and from April 23, 1981 to October 7, 1981 for a total of 167 days. The pastures were fertilized with 100 pounds of nitrogen per acre in March and an additional 100 pounds in July.

## Discussion

Average daily gains for the various stocking rates and hybrids by grazing systems are shown in Table 1. There were no differences between continuous and rotationally grazing averaged across grasses and stocking rates. Steers grazing Callie bermudagrass had an average daily gain approximately 12% higher than those grazing Coastal. At the heavier stocking rates the differences between the two hybrids were small, and there were no consistent trends between hybrids by grazing method. The greatest differences between the

<sup>&</sup>lt;sup>1</sup> Associate professor, Soil & Crop Sciences Dept., College Station, Texas 77843.

two hybrids were at the lighter stocking rates where animal selectivity was maximal.

Average daily gains on Callie have decreased slightly each year. Callie has persisted in the pastures from the standpoint of winter damage but has shown increasingly more leaf disease damage during the summer.

Table 1. Average daily gains of animals on two bermudagrass types grazed in rotational or continuous systems, 2 yr. average.

|             | Rotational | Continuous | Avg. |  |
|-------------|------------|------------|------|--|
|             |            |            |      |  |
| 5 hd/ac.    |            |            |      |  |
| Callie      | .35        | .61        | .48  |  |
| Coastal     | .42        | . 39       | .41  |  |
| Avg.        | . 39       | .50        | .45  |  |
| 3.85 hd/ac. |            |            |      |  |
| Callie      | .61        | . 59       | .60  |  |
| Coastal     | .72        | .65        | .69  |  |
| Avg.        | .66        | .62        | .65  |  |
| 3.22  hd/ac |            |            |      |  |
| Callie      | 1.00       | .94        | .97  |  |
| Coastal     | .65        | .83        | .74  |  |
| Avg.        | .83        | .89        | .86  |  |
| 2.70 hd/ac. |            |            |      |  |
| Callie      | .93        | 1.11       | 1.02 |  |
| Coastal     | .87        | .92        | .90  |  |
| Avg.        | .90        | 1.01       | .96  |  |
|             |            |            |      |  |

B. E. Conrad\*

#### SUMMARY

Animal performance of steers grazing Brazos bermudagrass has been approximately 20% greater than those grazing Coastal bermudagrass. During the 1981 grazing season there were no differences in animal gains of steers grazing Tifton-44 and Coastal bermudagrass. Average daily gain and gains per acre were greater on Brazos than on the other two cultivars.

## Introduction

Evaluation of potentially new bermudagrasses has clearly demonstrated that there are a number of the new hybrids which possess greater quality characteristics than Coastal with equal or near equal quantity capabilities. Many of the higher quality hybrids have been of the stoloniferous growth habit. These types in general have not been as cold hardy as Coastal and many are quite susceptible to leaf diseases. A number of potentially new cultivars which looked good in small plot studies have been eliminated when subjected to grazing for a number of reasons. The need for animal utilization data before a new cultivar is released becomes apparent.

## Materials

Pastures of Coastal, Tifton-44 and Brazos bermudagrass were established on the Texas A&M University Farm in the Brazos River bottom near College Station, Texas. The pastures were fertilized at the rate of 100 pounds of nitrogen per acre in February with an additional 100 pounds in July. Each cultivar was grazed continuously at four stocking rates for 167 days.

## Discussion

Average stocking rates for the three cultivars are shown in Table 1. Tifton-44 and Coastal were grazed at set stocking rates whereas Brazos was grazed at a variable rate. The average stocking rate for Brazos was slightly higher than for Coastal and Tifton-44. This increase was due to the allocation of animals based on forage on offer. At six animals per acre, dry matter available to the animal was generally deficient. At all other levels, dry matter on offer was sufficient to satisfy intake requirements but the amounts had various degrees of influence on grazing selectivity and estimated nutrient intake by the animals.

Tifton-44 was the first to green up in the spring followed closely by Brazos then Coastal. During the 1981 growing season and

<sup>\*</sup> Associate professor, Texas A&M University, Soil and Crop Sciences Department, College Station, Texas 77843.

particularly in the early spring, the growth rate of all the bermudagrasses was such that by the beginning of the grazing season there were no obvious differences.

The influence of selectivity on average daily gains is clearly shown in greater animal performance for all cultivars. Animals on Tifton-44 and Coastal had almost identical average daily gains. The overall average daily gain for the steers on Brazos was approximately 20% greater than those on Coastal and Tifton-44. This trend has been repeatable over the past four years with Coastal and Brazos, but this is the first full season of grazing on Tifton-44.

|             |        |       | Medium | Medium |       |
|-------------|--------|-------|--------|--------|-------|
|             |        | Heavy | Heavy  | Light  | Light |
| Tifton-44 H | ld/Ac  | 5.0   | 4.3    | 2.7    | 2.4   |
| Avg.I       | Da.Ga. | 0.42  | 0.56   | 0.86   | 0.98  |
| (           | Ga/Ac  | 354   | 406    | 392    | 397   |
|             |        |       |        |        |       |
| Coastal H   | ld/Ac  | 4.84  | 3.85   | 3.22   | 2.7   |
| Avg.I       | Da.Ga. | 0.11  | 0.60   | 0.90   | 1.02  |
|             | Ga/Ac  | 89    | 385    | 484    | 460   |
|             |        |       |        |        |       |
| Brazos H    | Id/Ac  | 6.0   | 4.0    | 3.3    | 3.0   |
| Avg.I       | Da.Ga. | 0.34  | 0.66   | 1.09   | 1.31  |
| (           | Ga/Ac  | 342   | 443    | 604    | 660   |
|             |        |       |        |        |       |

Table 1. Animal performance on Tifton-44, Coastal and Brazos bermudagrass.

## Factors Related to Diet Selection by Mature Crossbred Cows

## Hagen Lippke\*

#### SUMMARY

Mature crossbred cows, when offered ryegrass silage and sorghum silage ad libitum, selected diets that averaged 73% digestible organic matter (DOM) and 9.5% indigestible neutral detergent fiber (INDF). Dry matter intake averaged 2.63% of body weight (BW), which is 78% higher than the average voluntary intake when only sorghum silage and a small amount of cottonseed meal were offered. These values indicate selection of a higher quality diet by cows than yearling cattle selected from similar forages in previous experiments. Intake per unit BW was also higher for cows than previously observed for yearlings.

Body condition, which ranged from 4 to 7 on a 18-point scale, had a significant negative influence on dry matter intake.

## Introduction

Numerical data that describe the selection behavior of grazing cattle are needed for useful modeling of beef cattle systems. Results from several experiments (1) and (2) have shown that yearling cattle select forage diets with about 67% DOM and 12% INDF. Furthermore, diets containing either more than 15% or less than 8% INDF were associated with reduced intake of dry matter and DOM.

This experiment was conducted to obtain comparable values for mature beef cows.

## Procedure

Five mature, lactating, Hereford X Brahman cows and four dry cows of the same age and breeding were maintained and fed individually in 16' X 6' concrete stalls. The Simmental-sired calves of the lactating cows were maintained in stalls adjacent to their respective dams and allowed to nurse twice daily.

In Trial 1, all animals were offered sorghum silage ad libitum. Lactating cows were also given .9 lb and dry cows were given .2 lb of cottonseed meal daily. After a 5-day preliminary period, intake was measured for 7 days.

In Trial 2, ryegrass silage and sorghum silage were offered in separate containers at levels shown in Table 1. Intake was measured for 8 days after a 6-day adjustment period.

<sup>\*</sup> Associate Professor, Texas A&M University Agricultural Research and Extension Center, Angleton, Texas 77515.

Three lactating cows, three dry cows and two calves were used in Trial 3 to determine digestibility of the two silages. To eliminate orts, feed offered was reduced to 90% of the voluntary intake determined in Trial 2.

All cattle were weighed following a 16 hour fast at the beginning and end of the experiment; height of the cows was measured at the hook bone.

## Results and Discussion

Average daily weight gains are shown in Table 2 according to treatments in Trial 2. Weighing conditions were not the same for the starting and ending weights for cattle that received ryegrass silage, and weight gains are consequently biased downward for these animals. It is clear, however, that when allowed, cows selected a diet that provided rapid weight gains for themselves and/or their calves.

The greater gut capacity of mature cattle, relative to BW, was clearly demonstrated in Trial 1 wherein INDF intake by cows (Table 3) was more than 20% greater than had previously been observed for similarlyfed yearling steers (3). Since INDF is considered to be the intake-limiting component of most forages, its manipulation, from the standpoint of either the plant or the animal, is of prime importance.

Composition and component digestibilities of the two silages, shown in Table 4, were sufficiently different to allow full expression of selectivity of diet quality in Trial 2. Neither dry matter intakes nor the digestibilities of the diets selected were significantly different for dry cows and lactating cows. Body condition, however, which was statistically expressed as weight/height, had a significant negative effect on intake. On a subjective 10-point scale, body condition ranged from 4 to 7 among both dry and lactating cows.

Surprisingly, the quality of the diets selected by all cows on treatment 4 (Table 3) was notably higher than the diets selected by yearling cattle in previous experiments (3). Dry matter intake also was much higher for cows on treatment 4. However, the average and range of INDF intakes were very similar to the earlier findings with yearling steers. This gives further support to the hypothesis that cattle attempt to select diets that will simultaneously meet their physiological drives for energy and INDF.

Feed intake data from the calves is not valid due to the occurence of three cases of infectious scours during Trial 2.

|     | Amounts                 | Offered           | Number   |           |        |  |  |
|-----|-------------------------|-------------------|----------|-----------|--------|--|--|
| Trt | Ryegrass<br>silage      | Sorghum<br>silage | Dry cows | Lac. cows | Calves |  |  |
| 1   | none                    | ad lib.           | 1        | 0         | 0      |  |  |
| 2   | .3  X main              | ad lib.           | 1        | 0         | 0      |  |  |
| 3   | .6 X main. <sup>2</sup> | ad lib.           | 0        | 1         | 0      |  |  |
| 4   | ad lib.                 | ad lib.           | 2        | 4         | 4      |  |  |
| 5   | ad lib.                 | none              | 0        | 0         | 1      |  |  |

## Table 1. Treatments for Trial 2.

1

<sup>1</sup>/<sub>2</sub> An amt. anticipated to supply .3 X maintenance energy requirements. An amt. anticipated to supply .6 X maintenance energy requirements.

| Trt | Dry cows | Lac. cows | Calves       |  |
|-----|----------|-----------|--------------|--|
|     | (1b)     | (1b)      | (1b)         |  |
| 1   | .7       | _         | 2 <b>-</b> 1 |  |
| 2   | 1.3      |           | _            |  |
| 3   | _        | .4        |              |  |
| 4   | 2.2      | .9        | 2.3          |  |
| 5   | -        | -         | 2.5          |  |

Table 2. Average daily BW gains.

## Table 3. Daily intakes by cows in Trials 1 and 2.

|         | Dry Ma   | tter    |        |        |  |
|---------|----------|---------|--------|--------|--|
| Item    | Ryegrass | Sorghum | DOM    | INDF   |  |
|         | (% BW)   | (% BW)  | (% BW) | (% BW) |  |
| Trial 1 | -        | 1.49    | .72    | .41    |  |
| Trial 2 |          |         |        |        |  |
| Trt 1   | -        | 1.44    | .70    | .40    |  |
| Trt 2   | .32      | 1.46    | .94    | .42    |  |
| Trt 3   | .68      | 1.24    | 1.07   | .38    |  |
| Trt 4   | 2.12     | .51     | 1.73   | .25    |  |

|                   | Ryegra | Sorgl   | hum    |         |
|-------------------|--------|---------|--------|---------|
| Component         | Amount | Digest. | Amount | Digest. |
| o                 | (%)    | (%)     | (%)    | (%)     |
| matter            | 88.1   | 79.1    | 92.7   | 52.3    |
| NDF <sup>1</sup>  | 44.5   | 76.9    | 71.6   | 50.9    |
| INDF <sup>1</sup> | 5.9    | 0       | 29.6   | 0       |

| Table 4. | Composition and  | component | digestibilities | of | ryegrass | and |  |
|----------|------------------|-----------|-----------------|----|----------|-----|--|
|          | sorghum silages. | n news at |                 |    |          |     |  |

<sup>1</sup> Organic matter basis

## Literature Cited

- Lippke, H. 1981. Digestibility and selective intake of ryegrass and sorghum silages by yearling steers. Texas Agricultural Experiment Station PR-3760 in Beef Cattle Research in Texas, pp. 16-17.
- 2. Lippke, H. 1981. Intake, digestible organic matter and indigestible fiber contents of forage diets selected by yearling steers. Proc. American Society of Animal Science, Ann. Mtg. p. 277.
- Lippke, H. 1981. Factors related to forage diet selection by yearling steers. Department of Soil and Crop Sciences, Tech. Report 81-12. pp. 11-12.
Cash Wheat Crop in a Cattle System for East Texas

L. R. Nelson, F. M. Rouquette, Jr. and R. D. Randel\*

### SUMMARY

Partial results on the potential of wheat for forage as well as grain for East Texas are given in this report. A 2-year study involving wheat for forage and grain has shown good potential as a profitable part of a system for East Texas. About 1-1/2 tons dry matter of high quality forage can be produced by wheat from mid-November until mid-February. This has resulted in average daily gains from 0.5 to over 2 lbs per day depending on weather conditions and the type of animal being grazed. In 1981, 37 bu/wheat/acre was harvested off the wheat in addition to the forage.

# Objective

To determine the feasibility and profitability of a dual purpose wheat (grazing-grain) and ryegrass system. Further, to determine the seasonal forage supply from November through May. Lastly, to determine the grain yield potential of wheat which has been grazed through February 15th.

#### Methods

This study was initiated in the fall of 1980 and has a 2-year duration. In regard to wheat, there were four harvest treatments and five wheat varieties. The treatments were as follows:

- 1. Wheat grazed from November to mid-February and then allowed to produce grain.
- 2. Wheat clipped from November to mid-February and then allowed to produce grain.
- 3. Wheat clipped throughout growing season.
- 4. Wheat not clipped or grazed and harvested for grain only.

In addition, a 34 acre field was planted to wheat for grazing, and cattle weights were recorded at the beginning and in monthly intervals until mid-February when the cattle were removed and placed on a ryegrass pasture. The total amount of grain was measured to determine mean yields per acre.

The wheat varieties planted in each of the four treatments in 1980 were Coker 68-15, McNair 10-03, Tx-73-93, Tx 72-9 and Arthur 71. In 1981, two of these lines (Arthur 71 and Tx-72-9) were dropped form the study and

\* Respectively, associate professors, Texas A&M University Agricultural Research and Extension Center, Overton, Texas. were replaced by TAM-106 and Northrup King 812 in an effort to increase grain yields.

All wheat treatments were planted into a prepared seed bed. A preplant fertilizer application rate of 60 lbs/acre of N P $_{0.5}^{0}$  and K $_{0.0}^{0}$  was applied each year. Prior to the first year of the study, ag lime at a rate of 1<sup>1</sup>/<sub>2</sub> ton/acre was applied. Wheat was topdressed with 100 lbs/N in October to all clipped and grazed plots, but not to the grain treatment. A 60 lb/N/A rate was applied to all wheat treatments in February.

Planting dates in 1980 were in late September, while in 1981 planting dates were in early September. Forage yields were taken with a flail-type harvester on the clipped plots. On the grazed plots, wire cages were employed to protect the forage and an estimate of yield was obtained by hand clipping an area within the caged area on a monthly basis. Cages were moved after each harvest. Cattle were weighed when they went on the study and approximately every 30 days.

#### Results

<u>Forage yields</u>: The forage yields harvested from the wheat plots during 1980-81 were quite low (Table 1). This was the result of very dry growing conditions during the entire growing season. In addition, there was some damage caused by lessor corn stalk borer (during the fall) and greenbugs (in the spring). In making comparison between varieties, there were three good forage yielding lines (Coker 68-15, McNair 10-03 and Tx-73-93) and two low yielding lines (Arthur 71 and Tx-72-9).

On the study clipped until February 16, very low yields were harvested. These yields would normally be much higher than this. Forage yields on the plots grazed until February 13 are higher compared to the clipped (not grazed) plots, however, this is thought to be the result of method of harvest rather than due to grazing. The results for 1981-82 (Table 2) indicate much higher forage yields resulted for all varieties. During both years, more forage was produced on the grazed plots than on the clipped only plots. This indicates the scalping effect of the clipping treatments retards regrowth. The grazing pressure in this study left more vegetation which could promote more regrowth. Total season forage harvests or grain yields were not available for 1982 at the time this report was written.

<u>Cattle gains:</u> In the 1980-81 season, 37 head (average weight - 371 lbs) were turned onto the wheat on November 21. Three weigh periods of about 30 days each were taken and the calves were removed after 89 days. The average daily gain (ADG) for the 1st, 2nd and 3rd weigh periods were 0.29, 1.08 and 1.65 lbs, respectively, for a mean ADG of 1.06 for the 89 days. The low ADG for the 1st period is the result of the calves becoming adjusted to the pasture situation. The 2nd and 3rd weigh period gains are more respectable and indicate a fairly good gain for January and February. The calves were made up of Angus and Brahman breeds for the most part, and were not cross-bred types. The actual total gain of 3,803 lbs of beef on the 34 acres resulted in a gain of about 112 lbs of beef per acre.

In 1981-82, tester animals were made up of 10 Brahman heifers, 15 Brangus heifers and 12 crossbred steers. Cattle were turned on the wheat on November 3rd with ample forage being available. The ADG for the three groups of cattle were as follows:

|                      | (Nov 13-Dec 1) | (Dec 1-Jan 5) | (Jan 5 <b>-</b> Jan 29) |
|----------------------|----------------|---------------|-------------------------|
| Proban hoifor        | 1 2            | 1 0           | 0.2                     |
|                      | 1.3            | 1.5           | 0.2                     |
| Brangus nellers      | 1.2            | 1.3           | 0.9                     |
| Crossbred steers     | 3.9            | 2.3           | 0.7                     |
| Mean over all stocks | 2.2            | 1.7           | 0.6                     |

The overall gain in beef was 5,060 lbs or an average of 150 lbs/acre for 1981-82. The gains in January were the result of a 10 inch snow fall which covered the pasture for several days.

In 1981, we harvested about 37 bu/acre wheat grain from the study. We expect a higher grain yield in 1982 than in 1981. The economics of this system need to be studied, but appear to have economical potential.

| Table 1. | Forage yield o | £5  | wheat  | varieties | mechanically | clipped | for | entire |
|----------|----------------|-----|--------|-----------|--------------|---------|-----|--------|
|          | growing season | 198 | 80-81. |           |              |         |     |        |

|                 |        | 12.5    | Harvest  | : date    |         |         | Total |
|-----------------|--------|---------|----------|-----------|---------|---------|-------|
|                 | Dec 12 | Jan 23  | Feb 16   | 5 Mar 13  | Apr 7   | May 7   | yield |
| Variety         |        | Pou     | nds of c | ven dry   | forage  | 1.      | 7     |
|                 |        |         |          |           |         |         |       |
| Coker 68-15     | 894    | 409     | 179      | 1711      | 920     | 613     | 4726  |
| McNair 10-03    | 715    | 588     | 204      | 1607      | 741     | 919     | 4774  |
| Arthur 71       | 486    | 0       | 102      | 1430      | 996     | 537     | 3551  |
| Tx-72-9         | 460    | 128     | 102      | 1558      | 996     | 537     | 3781  |
| Tx-73-93        | 843    | 460     | 154      | 1686      | 1124    | 716     | 4983  |
| Mean            | 680    | 317     | 148      | 1598      | 955     | 664     | 4362  |
| C.V.            | 19     | 51      | 37       | 12        | 9       | 23      |       |
| LSD (10% level) | 169    | 206     | 70       | 237       | • 105   | 191     |       |
|                 | Mecha  | nically | clipped  | l until F | eb 16th | (not gr | azed) |
| Coker 68-15     | 639    | 358     | 205      |           |         |         | 1202  |
| McNair 10-03    | 664    | 562     | 307      |           |         |         | 1533  |
| Arthur 71       | 486    | 77      | 26       |           |         |         | 589   |
| Tx-72-9         | 333    | 102     | 0        |           |         |         | 435   |
| <b>Tx-73-93</b> | 588    | 384     | 205      |           |         |         | 1177  |
| Mean            | 542    | 297     | 148      |           |         |         | 987   |
| C.V.            | 18     | 39      | 32       |           |         |         |       |
| LSD (10% level) | 125    | 147     | 59       |           |         |         |       |
|                 |        | Clipped | d after  | regrowth  | of graz | ed plot | s     |
|                 |        |         | Harves   | t date    |         |         | Total |
|                 | 11/19  | /80 12, | /17/80   | 1/14/81   | 2/13/81 |         | yield |
|                 | ····   | Pounds  | s of ove | n dry mat | tter    | -       |       |
| Coker 68-15     | 141    | 5 6     | 572      | 791       | 427     |         | 3305  |
| McNair 10-03    | 124    | 7 10    | 208      | 863       | 644     |         | 3762  |
| Arthur 71       | 115    | 1 6     | 596      | 600       | 130     |         | 2577  |
| Tx-72-9         | 98     | 3 8     | 314      | 192       | 274     |         | 2263  |
| Tx-73-93        | 122    | 3 6     | 524      | 408       | 728     |         | 2983  |
| Mean            | 120    | 4       | 763      | 571       | 441     |         |       |

|              | -         | Harvest   | date      |          | Total       | - |
|--------------|-----------|-----------|-----------|----------|-------------|---|
| Variety      | Dec 16    | Jan       | 25 Feb    | 18       | yield       |   |
|              | Mechanica | lly clip  | ped until | Feb 18,  | not grazed  |   |
| TAM 106      | 2324      | 125       | 2 3       | 33       | 3909        |   |
| Coker 68-15  | 1839      | 104       | 7 3       | 30       | 3216        |   |
| NK 812       | 1864      | 99        | 5 3       | 35       | 3195        |   |
| McNair 10-03 | 1788      | 97        | 0 3       | 30       | 3088        |   |
| Tx-73-93     | 1584      | 990       | 5 2       | 81       | 2861        |   |
| Mean         | 1879      | 105       | 2 3       | 22       | 3253        |   |
| CV           | 46        | 20        | )         | 16       | 5255        |   |
| LSD          | NS        | NS        | 5         | NS       |             |   |
|              |           |           |           |          |             |   |
|              | Clipped   | after reg | growth of | grazed j | plots       |   |
|              | Nov 5     | Dec 2     | Jan 12    | Feb 14   | Total yield |   |
| TAM 106      | 577       | 1391      | 1343      | 408      | 3719        |   |
| Coker 68-15  | 529       | 1415      | 1032      | 576      | 3552        |   |
| NK 812       | 804       | 1391      | 1368      | 463      | 4026        |   |
| McNair 10-03 | 493       | 1487      | 1547      | 557      | 4084        |   |
| Tx-73-93     | 420       | 1463      | 1797      | 631      | 4311        |   |
| Mean         | 565       | 1429      | 1417      | 527      | 3938        |   |
| 12           |           |           |           |          |             |   |

Table 2. Forage yields of 5 wheat varieties mechanically clipped until mid-February versus regrowth of grazed plots in 1981-82.

## 1980-81 Forage Production for Oats, Ryegrass, Rye, Triticale and Wheat

#### R. L. Nelson\*

#### SUMMARY

It is important for producers to know which small grain varieties have the potential to produce high forage yields. This information is very valuable for cattlemen who will either graze out the small grain or pull cattle off and harvest grain. Therefore, in an attempt to simulate grazing, tests were clipped several times to compare varieties for forage yeild at various times during the growing season and for total yield. Separate tests were conducted for oats, rye, ryegrass, triticale and wheat. It is important to consider forage distribution throughout the growing season and not only total forage yield. Early fall and winter forage production may be of more value to a forage program than forage produced in April or May.

### Objective

These trials were conducted to determine which varieties produce highest forage yields in East Texas. Second, to compare experimental and newly released lines with recommended varieties for their adaptation to East Texas growing conditions.

#### Experimental Procedure

Rye, wheat and oats were planted into separate tests on September 8. The triticale and ryegrass variety tests were planted on September 12th and 15th, respectively. Seed was planted into six-row plots spaced 8 inches apart, 10 ft in length. The four center rows were harvested at a height of about 2 inches with a flail-type harvester. Fertilizer application consisted of a preplant application at a rate of 60-60-60 ( $N-P_{2}O_{5}-K_{2}O$ ) 1bs/acre and a split N application of 100 1bs on October 1, 1980 and 60 1bs on February 17, 1981 for a total N application of 220 1bs/acre. Individual small grain forage tests were harvested when there was sufficient forage to cut. Normally, this would be when the forage was from 8 to 10 inches tall. No serious disease or insect pests were observed in these tests.

Moisture was limiting during most of the fall and winter. This required one irrigation during late September of about 1 inch to avoid losing stands of all small grain forage tests. Precipitation amounts in inches by months were: September--3.3; October--2.0; November--3.6; December--1.5; January--1.1; February--2.8; March--2.8; April--2.0;

<sup>\*</sup> Associate professor, Texas A&M University Agricultural Research and Extension Center, Overton, Texas 75648

May - 7.9. We observed some winterkill on ryegrass and triticale, with the coldest temperatures occurring on February 12 when a temperature of 10° F was recorded. Winter injury on several triticale varieties was related to the harvest shortly before the severe low temperatures.

### Results and Discussion

Forage yield data are presented in Tables 1 through 5. Highest overall forage yields in 1980-81 were produced by oats and rye, followed by triticale, ryegrass and wheat. Overall, the warmer than average temperatures did not result in higher forage yields because of fairly dry growing conditions. These same warm growing conditions did allow mid-winter (Jan & Feb) growth for oats (Table 1) and ryegrass (Table 2). Some freeze injury occurred on ryegrass, however, none was recorded on oats. Good yields on rye (Table 3) were obtained and, as would be expected, most of the forage was produced prior to March 30th. Good yields were harvested on the triticale test (Table 4). A large proportion of the triticale forage was produced prior to December 10th and after March 30th. The distribution of wheat forage (Table 5) indicates a uniform production until early April. If wheat is going to be harvested for grain, cattle would normally be taken off about February 15th. Therefore, forage from the first two harvests only would be available, which in this particular study would have equalled from 2500 to 3000 lbs of forage per acre.

When making comparisons between varieties within a table, difference between varieties of less than the LSD are probably due to chance only and should not be considered as important. Furthermore, data from one year may be misleading because of unusual weather conditions. Therefore, these data should only be used to give an indication of varietal differences. Recommendations should be made using at least 3-years data.

|                 |       |        | Harves   | t date  |         |              |
|-----------------|-------|--------|----------|---------|---------|--------------|
|                 | Dec 3 | Feb 12 | Mar 5    | Apr 6   | May 8   | Total Yield  |
| Variety         |       | P      | ounds of | dry mat | ter per | acre         |
| Walton          | 1100  | 1000   | 1504     |         |         |              |
| Cohom 76 16     | 1162  | 1226   | 1584     | 2017    | 2248    | 8237         |
| Coker 76-16     | 1621  | 1098   | 1354     | 2299    | 1762    | 8134         |
| Coker //=19     | 2006  | 1201   | 1200     | 1583    | 2043    | 8033         |
| Coker 227       | 1135  | 1022   | 1864     | 2171    | 1787    | 7979         |
| Big Mac         | 1081  | 1175   | 1737     | 1992    | 1890    | 7875         |
| Coker 79-21     | 1270  | 1073   | 1507     | 2043    | 1966    | 7859         |
| Four-Twenty-Two | 1531  | 1379   | 1507     | 1507    | 1915    | 7839         |
| Coker 73-23     | 1720  | 945    | 1354     | 1609    | 2120    | 7748         |
| NF-95           | 1513  | 1200   | 1405     | 1941    | 1635    | 7694         |
| NF-188          | 1126  | 1149   | 1558     | 1915    | 1941    | 7689         |
| Coker 79-22     | 1756  | 1149   | 1124     | 1660    | 1967    | 7656         |
| Ark 148-15      | 1306  | 1047   | 1533     | 1800    | 1700    | 7656         |
| TAM-0-312       | 1351  | 1226   | 1405     | 1010    | 1760    | /564         |
| Coker 234       | 1441  | 971    | 1522     | 1813    | 1/02    | /55/         |
| NF-121          | 2153  | 869    | 1175     | 1966    | 1353    | 7521<br>7516 |
| New Nortex      | 1621  | 1047   | 1609     | 1522    | 1550    | 7267         |
| Mesquite        | 1126  | 1303   | 1558     | 1939    | 1420    | 7367         |
| Ora             | 1162  | 766    | 1550     | 2401    | 1202    | 7256         |
| Bob             | 1396  | 945    | 1420     | 2401    | 1303    | /190         |
| Nora            | 1081  | 792    | 1430     | 1/88    | 1283    | /142         |
|                 | 1001  | 192    | 1430     | 2420    | 1252    | 6981         |
| Mean            | 1428  | 1079   | 1471     | 1914    | 1749    | 7641         |
| C.V.            | 24    | 20     | 13       | 12      | 17      |              |
| LSD (10% level) | 405   | 259    | 230      | 272     | 351     |              |

Table 1. Oat forage variety test at Overton, TX 1980-81.

Planted on Sept. 8, 1980.

Fertilizer application preplant - 500 lbs of 12-12-12/acre, topdress N - 100 lbs/N/acre on Oct. 1st, 60 lbs/N/acre on Feb. 17th.

Table 2. Ryegrass forage variety test at Overton, TX 1980-81.

|                                                                                                                   |                                      | Ha                                | rvest d                           | ate                                  |                                      | Total                                | 8                          | Crown                                   |
|-------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------|-----------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|----------------------------|-----------------------------------------|
| Variatu                                                                                                           | Dec 12                               | 2 Jan 28                          | 8 Mar 5                           | Mar 31                               | Apr 27                               | Yield                                | Winter                     | rust                                    |
| variety                                                                                                           |                                      | Pounds                            | of dry                            | matter                               | per ac                               | re                                   | injury                     | 8                                       |
| Marshall<br>Tetrablend 444<br>Tx-O-R-78-1<br>Tx-O-R-80-4<br>Common                                                | 1098<br>1124<br>1022<br>1226<br>1124 | 945<br>919<br>971<br>1124<br>1073 | 1226<br>971<br>945<br>894<br>1022 | 1966<br>1634<br>1558<br>1328<br>1430 | 2222<br>1864<br>1890<br>1711<br>1634 | 7457<br>6512<br>6386<br>6283<br>6283 | 5<br>30<br>30<br>25<br>40  | 45 <sup>2</sup><br>30<br>10<br>15<br>25 |
| Gulf<br>Fla. Reseeding<br>Sunbelt<br>Ga. Reseeding<br>Tx-0-R-80-5                                                 | 1175<br>1175<br>1150<br>1124<br>1124 | 971<br>945<br>971<br>894<br>1098  | 818<br>843<br>818<br>869<br>818   | 1532<br>1430<br>1532<br>1405<br>1277 | 1737<br>1813<br>1711<br>1839<br>1813 | 6233<br>6206<br>6182<br>6131<br>6130 | 35<br>40<br>30<br>40<br>40 | 25<br>1<br>25<br>50<br>10               |
| Meritra<br>Mont. Selection<br>Shannon<br>Gulf - Vitavax (4 oz) <sup>1</sup><br>Gulf - Vitavax (8 oz) <sup>1</sup> | 971<br>741<br>1073<br>1456<br>1150   | 766<br>818<br>792<br>945<br>970   | 869<br>1022<br>843<br>741<br>792  | 1584<br>1456<br>1380<br>1354<br>1328 | 1890<br>1864<br>1481<br>1864<br>1941 | 6080<br>5901<br>5569<br>6360<br>6181 | 20<br>15<br>30<br>30<br>30 | 35<br>55<br>45<br>-                     |
| Mean<br>C.V.<br>LSD (10% level)                                                                                   | 1115<br>16<br>207                    | 947<br>15<br>170                  | 899<br>14<br>146                  | 1480<br>12<br>210                    | 1818<br>12<br>246                    | 6259                                 |                            |                                         |

<sup>1</sup>Seed treated with 4 and 8 oz, respectively, of vitavax per 100 lbs of seed.

Planted on Sept. 15, 1980.

Fertilizer application preplant 500 lbs 12-12-12/acre, topdress N - 100 lbs/N/acre on Oct. 1st, 60 lbs/N/acre on Feb. 17th.

<sup>2</sup>Crown rust ratings were taken on May 20, 1981 at Angleton, TX. Ratings are on a percentage of leaf area covered with rust.

Harvest date Nov 20 Jan 23 Feb 27 Mar 30 Apr 24 Total Yield Variety Pounds of dry matter per acre Wintergrazer 70-B NF 74 NF 72 NF 214 Wintergrazer 80 Bonel Maton GI-75 Wintergrazer 70 Gurley Grazer 2000 Elbon Gurley Abruzzi GI-75 NAPB SR-80 Wrens Abruzzi McNair Vitagraze Athens Abruzzi Northrup King SS1 Mean CV LSD (10% level) 

Table 3. Rye forage variety test at Overton, TX 1980-81.

Planted on Sept. 9, 1980.

Fertilizer application preplant - 500 lbs of 12-12-12/acre, topdress N - 100 lbs N/acre on Oct. 1st, 60 lbs N/acre on Feb. 17.

Table 4. Triticale forage variety test at Overton, TX 1980-81.

| Dec 10     | T 07                                                                                                      |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | Jan 27                                                                                                    | Mar 4                                                                                                                                                | Mar 30                                                                                                                                                                                                                                                                                               | May 7                                                                                                                                                                                                                                                                                                                                                                                           | Total yield                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | % Winter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|            | Pounds                                                                                                    | of dry                                                                                                                                               | matter                                                                                                                                                                                                                                                                                               | per a                                                                                                                                                                                                                                                                                                                                                                                           | cre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | injury                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2550       |                                                                                                           |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 3570       | 562                                                                                                       | 843                                                                                                                                                  | 1405                                                                                                                                                                                                                                                                                                 | 1634                                                                                                                                                                                                                                                                                                                                                                                            | 8014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2564       | 307                                                                                                       | 1252                                                                                                                                                 | 1609                                                                                                                                                                                                                                                                                                 | 1941                                                                                                                                                                                                                                                                                                                                                                                            | 7673                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2462       | 716                                                                                                       | 1328                                                                                                                                                 | 1354                                                                                                                                                                                                                                                                                                 | 1660                                                                                                                                                                                                                                                                                                                                                                                            | 7520                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2159       | 690                                                                                                       | 1507                                                                                                                                                 | 1609                                                                                                                                                                                                                                                                                                 | 1073                                                                                                                                                                                                                                                                                                                                                                                            | 7038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2347       | 818                                                                                                       | 996                                                                                                                                                  | 1252                                                                                                                                                                                                                                                                                                 | 1481                                                                                                                                                                                                                                                                                                                                                                                            | 6894                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1860       | 741                                                                                                       | 1252                                                                                                                                                 | 1225                                                                                                                                                                                                                                                                                                 | 1711                                                                                                                                                                                                                                                                                                                                                                                            | 6790                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2341       | 1099                                                                                                      | 1022                                                                                                                                                 | 1048                                                                                                                                                                                                                                                                                                 | 1226                                                                                                                                                                                                                                                                                                                                                                                            | 6736                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3205       | 894                                                                                                       | 384                                                                                                                                                  | 767                                                                                                                                                                                                                                                                                                  | 1227                                                                                                                                                                                                                                                                                                                                                                                            | 6527                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2774       | 588                                                                                                       | 537                                                                                                                                                  | 945                                                                                                                                                                                                                                                                                                  | 1303                                                                                                                                                                                                                                                                                                                                                                                            | 6147                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2306       | 741                                                                                                       | 767                                                                                                                                                  | 894                                                                                                                                                                                                                                                                                                  | 1200                                                                                                                                                                                                                                                                                                                                                                                            | 5909                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2433       | 971                                                                                                       | 1343                                                                                                                                                 | 511                                                                                                                                                                                                                                                                                                  | 179                                                                                                                                                                                                                                                                                                                                                                                             | 5437                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2585<br>18 | 732<br>22                                                                                                 | 1002<br>15                                                                                                                                           | 1158<br>11                                                                                                                                                                                                                                                                                           | 1356<br>19                                                                                                                                                                                                                                                                                                                                                                                      | 6833                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            | 3570<br>2564<br>2462<br>2159<br>2347<br>1860<br>2341<br>3205<br>2774<br>2306<br>2433<br>2585<br>18<br>550 | 3570 562   2564 307   2462 716   2159 690   2347 818   1860 741   2341 1099   3205 894   2774 588   2306 741   2433 971   2585 732   18 22   550 191 | 3570   562   843     2564   307   1252     2462   716   1328     2159   690   1507     2347   818   996     1860   741   1252     2341   1099   1022     3205   894   384     2774   588   537     2306   741   767     2433   971   1343     2585   732   1002     18   22   15     550   191   183 | 3570   562   843   1405     2564   307   1252   1609     2462   716   1328   1354     2159   690   1507   1609     2347   818   996   1252     1860   741   1252   1225     2341   1099   1022   1048     3205   894   384   767     2774   588   537   945     2306   741   767   894     2433   971   1343   511     2585   732   1002   1158     18   22   15   11     550   191   183   154 | 3570   562   843   1405   1634     2564   307   1252   1609   1941     2462   716   1328   1354   1660     2159   690   1507   1609   1073     2347   818   996   1252   1481     1860   741   1252   1225   1711     2341   1099   1022   1048   1226     3205   894   384   767   1227     2774   588   537   945   1303     2306   741   767   894   1200     2433   971   1343   511   179     2585   732   1002   1158   1356     18   22   15   11   19     550   191   183   154   320 | 3570   562   843   1405   1634   8014     2564   307   1252   1609   1941   7673     2462   716   1328   1354   1660   7520     2159   690   1507   1609   1073   7038     2347   818   996   1252   1481   6894     1860   741   1252   1225   1711   6790     2341   1099   1022   1048   1226   6736     3205   894   384   767   1227   6527     2774   588   537   945   1303   6147     2306   741   767   894   1200   5908     2433   971   1343   511   179   5437     2585   732   1002   1158   1356   6833     18   22   15   11   19   550   191   183   154   320 |

Planted on Sept. 12, 1980.

Fertilizer application preplant - 500 lbs of 12-12-12/acre, topdress N - 100 lbs N/acre on Oct. 1st, 60 lbs N/acre on Feb. 17.

|                 |        | Harvest d | date  |            | Total | <br> |
|-----------------|--------|-----------|-------|------------|-------|------|
|                 | Dec 11 | Feb 13    | Mar   | 5 Apr7     | yield |      |
| Variety         | P      | ounds of  | dry : | matter per | acre  |      |
|                 |        |           |       |            |       |      |
| Tx-0-73-133     | 1316   | 1609      | 1201  | 1507       | 5633  |      |
| McNair 10-03    | 1504   | 1507      | 1073  | 1302       | 5386  |      |
| Tx-0-76-40      | 1489   | 1328      | 1124  | 1251       | 5192  |      |
| Tx-0-73-93      | 1219   | 767       | 1405  | 1762       | 5153  |      |
| Tx-0-78-7303    | 1397   | 1252      | 971   | 1481       | 5101  |      |
| Tx-0-73-61      | 1330   | 1124      | 1379  | 1099       | 4932  |      |
| Tx-0-72-9       | 1035   | 614       | 1737  | 1507       | 4893  |      |
| Oasis           | 1415   | 1124      | 1124  | 1201       | 4868  |      |
| Delta Queen     | 1224   | 1456      | 741   | 1328       | 4747  |      |
| Rosen           | 1456   | 1379      | 1022  | 792        | 4649  |      |
| Coker 762       | 1046   | 1584      | 818   | 1175       | 4623  |      |
| Coker 68-15     | 1340   | 869       | 1430  | 971        | 4610  |      |
| Sturdy          | 1202   | 665       | 1277  | 1226       | 4370  |      |
| Tx-0-74-39      | 1740   | 1022      | 742   | 843        | 4347  |      |
| TAM-W-101       | 945    | 767       | 1609  | 996        | 4317  |      |
| NF-21           | 1258   | 1124      | 766   | 1149       | 4297  |      |
| NF-2            | 1310   | 1047      | 920   | 971        | 4248  |      |
| Agent           | 1271   | 1098      | 1047  | 817        | 4233  |      |
| Arthur-71       | 1164   | 741       | 1354  | 894        | 4153  |      |
| Ark-150-31      | 1256   | 767       | 1328  | 766        | 4117  |      |
| NF-25           | 1451   | 843       | 1099  | 664        | 4057  |      |
| Southern Belle  | 939    | 690       | 1533  | 869        | 4031  |      |
| Coker 797       | 1370   | 537       | 333   | 715        | 2955  |      |
| Mean            | 1290   | 1039      | 1132  | 1099       | 4561  |      |
| CV              | 18     | 19        | 18    | 22         |       |      |
| LSD (10% level) | 287    | 242       | 245   | 287        |       |      |
|                 |        |           |       |            |       |      |

Table 5. Wheat forage variety test at Overton, TX 1980-81.

Planted on Sept. 8, 1980.

Fertilizer application - preplant 500 lbs of 12-12-12/acre, topdress 100 lbs of N/acre on Oct. 1st, 60 lbs of N/acre on Feb. 16.

# Small Grain Forage Tests Under Irrigated and Dryland Conditions at Stephenville, Texas in 1980-81.

Ronald M. Jones, J.H. Gardenhire, and J.C. Read\*

#### SUMMARY

Wheat, rye, triticale, oats, and barley were tested for forage production under two moisture regimes. Triticale yields were highest in the irrigated test, while rye yields were higher in the dryland test. Barley produced the lowest yield in both moisture regimes. The average yield of the dryland test was 3285 pounds dry matter per acre versus 6681 pounds for the irrigated test.

#### Introduction

Small grain forage is highly nutritious for livestock. Cereals differ in time of production, palatability, cold hardiness and yield potential. Individual cultivars may also differ in yield potential. Irrigation may increase yields by allowing higher nitrogen rates or providing water when rainfall is deficient. Cold hardiness may also be improved under irrigation because of higher soil moisture during cold, dry periods. Cultivars of small grains need testing under local conditions to better estimate yield potential under irrigated and dryland conditions.

# Materials and Methods

Irrigated and dryland tests of small grains were established on Windthorst fine sandy loam to determine effects of irrigation and cultivar on yield and protein content. Nine oat cultivars; three barley, rye and wheat cultivars; and two triticales were sown in plots having four rows twelve feet long spaced one foot apart. A randomized complete-block design with four replications was used. Fertilizer at the rate of 47-59-0 was applied and incorporated by disking before sowing. Tests were topdressed March 26, 1981 with 107-0-0.

\*Respectively, research associate, The Texas Agricultural Experiment Station, Stephenville, and professor and associate professor, The Texas Agricultural Experiment Station, Dallas First and second cuttings were made with a flail mower when the taller cultivars were approximately ten inches tall. A sickle mower was used the third cutting.

Forage from the center two rows was collected from the twelve-feet length. The forage was weighed, and subsamples were dried at 70C to determine yields. Samples were retained for protein analysis.

Irrigation was applied with a solid-set sprinkler system as conditions indicated the need. Amounts of irrigation and rainfall received by harvest date are listed (Table 2).

### Results and Discussion

Dry matter yields of irrigated small grains ranged from 3887 pounds per acre for 'Tambar 402' to 8335 pounds per acre for 6TA-131A triticale (Table 1). The mean of irrigated yields was 2.04 times that of dryland yields. Lowest and highest producing cultivars of triticale, wheat, and barley were the same whether irrigated or dryland. This was true for oats except that yield of 'Walken' was very slightly higher than that of 'Okay' under dryland conditions. 'Bonel' rye yield was highest under irrigation and lowest under dryland conditions.

Low yields, especially at the first cutting, may have been due to insufficient nitrogen and equipment problems. Yellowing of plants in October and November as well as noticeable border effect on both irrigated and dryland tests also indicated inadequate nitrogen. Probably insufficient nitrogen was applied and some nitrogen leached due to the 4.3 inches of rainfall during the week following seeding. In addition, an estimated 10-15% of the forage cut was not collected by the flail mower in the first two cuttings.

Insect and disease occurrence was minor. Barley leaf rust disappeared after the first freezing temperatures. Barley yellow dwarf virus appeared on oats in early April. Some greenbugs were noted, but control measures were not required.

Most of the forage produced was harvested in March and May (Table 2). Oats and triticale produced greater yield from mid-April to mid-May while rye growth occurred mid-February to mid-March. Dryland wheat and barley yields were slightly higher in March, whereas irrigated yields were higher at the May harvest. Irrigated wheat yields were considerably higher at the May cutting.

Total forage production was highest for the two triticales under irrigation, whereas dryland rye produced slightly more than irrigated rye (Table 2). Oats ranked second under irrigation and third under dryland conditions. Barley was clearly lowest under either moisture situation. Therefore, in subsequent tests more triticale cultivars will be included, and barley will be removed.

| Tab. | le 1. 5 | Seasonal  | Distribu  | ition  | and  | <b>Total</b> | Forage | Production | of | Irrigated |  |
|------|---------|-----------|-----------|--------|------|--------------|--------|------------|----|-----------|--|
| and  | Drvland | d Small ( | Grains at | : Step | henv | ille.        | Texas  | in 1980-81 |    |           |  |

|                |           |        | DRYI<br>Date of | LAND<br>Harvest |       |                 |        | IRRIGATED<br>Date of Harvest |          |       |  |
|----------------|-----------|--------|-----------------|-----------------|-------|-----------------|--------|------------------------------|----------|-------|--|
| CULTIVARS      | CROP      | 12/17  | 3/17            | 5/14            | Total |                 | 12/18  | 3/23                         | 5/21     | Total |  |
|                |           | Pounds | Dry Mat         | ter Per         | Acre  |                 | Pounds | Dry Ma                       | tter per | Acre  |  |
| Winter Grazer  | Rye       | 170    | 3250            | 884             | 4304  | 6TA-131A        | 88     | 2419                         | 5827     | 8335  |  |
| 6TA-131A       | Triticale | 52     | 1442            | 2638            | 4132  | Okay            | 583    | 2746                         | 4344     | 7673  |  |
| Bone1          | Rye       | 81     | 3219            | · 807           | 4107  | Grazer Blend    | 435    | 2196                         | 5022     | 7653  |  |
| Maton          | Rye       | 108    | 2973            | 1023            | 4105  | TAM 106         | 116    | 2500                         | 4825     | 7441  |  |
| Walken         | Oat       | 76     | 1254            | 2727            | 4057  | New Nortex      | 416    | 2109                         | 4724     | 7249  |  |
| Okay           | Oat .     | 210    | 1662            | 2130            | 4003  | Coker 234       | 513    | 2131                         | 4529     | 7174  |  |
| New Nortex     | Oat       | 70     | 1783            | 1948            | 3801  | Four Twenty Two | 203    | 1945                         | 4948     | 7097  |  |
| Grazer Blend   | Triticale | 211    | 1321            | 1932            | 3464  | Bonel           | 302    | 3965                         | 2784     | 7052  |  |
| Big Mac        | Oat       | 114    | 1352            | 1904            | 3370  | Walken          | 212    | 2188                         | 4640     | 7040  |  |
| TAM 106        | Wheat     | 26     | 1639            | 1619            | 3284  | Big Mac         | 343    | 1883                         | 4791     | 7016  |  |
| Mesquite       | Oat       | 103    | 1193            | 1949            | 3246  | Mesquite        | 548    | 1646                         | 4761     | 6955  |  |
| Coker 234      | Oat       | 99     | 1408            | 1672            | 3179  | Maton           | 248    | 4203                         | 2446     | 6898  |  |
| Four Twenty Tw | oOat      | 70     | 1239            | 1829            | 3136  | Nora            | 300    | 1910                         | 4247     | 6457  |  |
| Nora           | Oat       | 100    | 1180            | 1812            | 3092  | Coker 68-15     | 550    | 2861                         | 2996     | 6407  |  |
| Coker 68-15    | Wheat     | 146    | 1840            | 987             | 2973  | Winter Grazer   | 376    | 3890                         | 2092     | 6357  |  |
| Sturdy         | Wheat     | 55     | 1331            | 1306            | 2692  | Coronado        | 518    | 1128                         | 4447     | 6093  |  |
| Coronado       | Oat       | 163    | 894             | 1405            | 2463  | Post            | 231    | 2050                         | 3611     | 5892  |  |
| Post           | Barley    | 46     | 722             | 1354            | 2123  | Sturdy          | 169    | 1973                         | 3667     | 5810  |  |
| Tambar 401     | Barley    | 86     | 1394            | 619             | 2101  | Tambar 401      | 430    | 2566                         | 2578     | 5574  |  |
| Tambar 402     | Barley    | 288    | 1453            | 332             | 2074  | Tambar 402      | 1380   | 1414                         | 1093     | 3887  |  |
| Mean           |           | 114    | 1627            | 1544            | 3285  |                 | 396    | 2386                         | 3919     | 6701  |  |
| CV             |           | 25 81  | 11.22           | 24 61           | 13.55 |                 | 38.46  | 16.96                        | 13.91    | 9.6   |  |
| LSD 0.05*      |           | 46     | 258             | 537             | 629   | • •             | 215    | 572                          | 770      | 909   |  |

\* The difference in yield between any two cultivars must be at least as large as the LSD 0.05 listed for each date in order to be 95% certain that the difference is not due to chance.

Table 2. Seasonal Distribution and Total Forage Production of Five Small Grains Grown Under Irrigated and Dryland Conditions at Stephenville, Texas, 1980-81.

|                   | Harvest    | Date-         | Dryland |         | Harvest Date-Irrigated |      |      |       |  |
|-------------------|------------|---------------|---------|---------|------------------------|------|------|-------|--|
| Cereal            | 12/17      | 3/17          | 5/17    | Total   | 12/17                  | 3/23 | 5/21 | Total |  |
| يە (ئېر ئېتى<br>1 |            |               | Pounds  | Dry Mat | ter Per Ac             | re   |      |       |  |
| Rye*              | 120        | 3147          | 905     | 4172    | 309                    | 4019 | 2441 | 6769  |  |
| Triticale**       | 132        | 1382          | 2285    | 3799    | 261                    | 2307 | 5425 | 7993  |  |
| Oats***           | 112        | 1329          | 1931    | 3372    | 404                    | 1965 | 4603 | 6972  |  |
| Wheat*            | 76         | 1603          | 1304    | 2983    | 278                    | 2445 | 3829 | 6552  |  |
| Barley*           | 140        | 1190          | 768     | 2098    | 680                    | 2010 | 2427 | 5117  |  |
|                   | ۰.<br>ماني | 1 - 2 - 1<br> |         |         |                        |      |      |       |  |
| Rainfall(In.)     | 8.58       | 3.73          | 1.81    |         | 8,58                   | 3.73 | 2.83 |       |  |
| Irrigation(In.)   | 0          | 0             | 0       | Ge      | 4.85                   | 2.00 | 2.00 |       |  |

\* Average of three cultivars

\*\* Average of two cultivars

\*\*\* Average of nine cultivars

# Perennial Grass Variety Test--Angleton

# G. W. Evers\*

#### SUMMARY

Dry matter production during the second year of a dallisgrass and hybrid bermudagrass variety test ranged from 7216 to 9622 lb/ac. Coastal, Tifton 44 and Alicia produced in excess of 9000 lb/ac.

#### Introduction

Hybrid bermudagrasses are the most popular and widely grown grasses in the Southeastern United States. They are primarily adapted to deep, well drained sandy and loam soils which are predominant in that area of the United States. Performance of these hybrid bermudagrasses in comparison to dallisgrass on poorly drained, clay rice soils has never been documented.

## Methods and Materials

Coastal, Callie, Alicia, Tifton 44 and SS-16 bermudagrasses and dallisgrass were established in the fall of 1979 on a Lake Charles clay at Angleton. Plots were 6 x 15 ft in a Randomized Block design with four replications. Five hundred pounds of 13-13-13 per acre were applied on March 20 plus 50 lb nitrogen on June 19 and July 30. Three pounds of Princep per acre were applied on Feb. 17. Plots were harvested six times during the year.

## Results and Discussion

The six grasses separated into a high yielding (Coastal, Tifton 44 and Alicia) and low yielding (dallisgrass, Callie and SS-16) group with a difference of about 2000 lb/ac (Table 1). Coastal had the most production and Callie and SS-16 the least at the first harvest. The most striking performance difference was the very low dallisgrass production (191 lb) compared to the bermudas (711 to 940 lb) at the Oct. 27 harvest. The preceeding growing period was hotter and drier than normal. The morphological and physiological factors which make dallisgrass tolerant of wet soils may also limit dallisgrass growth during very dry periods. The 1980 yields are also presented for comparison.

\* Associate professor, Texas A&M Agricultural Research and Extension Center, Angleton, Texas 77515.

|             |         |         | 1980    |         |          |         |        |        |
|-------------|---------|---------|---------|---------|----------|---------|--------|--------|
| Variety     | May 12  | June 18 | July 15 | Aug. 18 | Sept. 18 | Oct. 27 | Tota1  | Total  |
|             |         |         |         | 1b/ac   |          |         |        |        |
| Coastal     | 2547 a* | 1908 ab | 1760 bc | 1558 a  | 978 b    | 871 a   | 9622 a | 7274 a |
| Tifton      | 1845 bc | 2127 a  | 2057 a  | 1599 a  | 985 b    | 940 a   | 9553 a | 8633 a |
| Alicia      | 2112 ab | 1805 b  | 1961 ab | 1454 ab | 1114 b   | 711 a   | 9157 a | 8933 a |
| Dallisgrass | 1639 cd | 1506 c  | 1485 c  | 1265 bc | 1366 a   | 191 b   | 7452 b | 9263 a |
| Callie      | 1356 de | 1535 c  | 1720 bc | 1033 c  | 993 b    | 747 a   | 7384 b | 7447 a |
| SS-16       | 1147 e  | 1428 c  | 1744 bc | 1172 c  | 921 b    | 804 a   | 7216 b | 9903 a |
|             |         |         |         |         |          |         |        |        |

Table 1. Forage production of hybrid bermudagrasses and dallisgrass at Angleton.

\*Yields within a column followed by the same letter are not significantly different at the .05 level, Duncan's Multiple Range Test.

# Evaluation of Bermudagrass Hybrids

Ethan C. Holt and P. A. Rich

#### SUMMARY

Twenty-two new bermudagrasses and three standards were established in a replicated test in 1980. Due to weed competition and a very dry summer in 1980, some of the sources did not become well established until 1981. Yields in 1981 ranged from less than 2 tons to more than 8 tons per acre. Forage digestibility which is one of the important characteristics averaged from 50% for Coastal to 62% for the top ranking source. None of the sources ranked at the top for both yield and quality, though several sources exceeded Coastal in both characteristics. Most of the highest quality sources were damaged by low temperatures in the 1981-82 winter. Further evaluations are needed to identify the best combinations of yield, forage quality, cold tolerance and ground cover density.

### Introduction

Bermudagrass is the most important tame pasture grass in Texas, and Coastal is by far the most important improved variety in terms of total acreages. Research in recent years has shown that forage quality in bermudagrass can be improved through breeding. Improved quality is reflected in turn in increased animal performance. The important characteristics of an improved bermudagrass cultivar are higher dry matter digestibility, winterhardiness, ground cover density and stand maintenance under grazing, and yield. Coastal bermudagrass is a highly productive cultivar with adequate winterhardiness for most of the state and adequate ground cover to resist common bermudagrass invasion even under intensive grazing. Thus, Coastal serves as a standard for these characteristics. The major improvement needed over Coastal is forage quality and winterhardiness for North Texas.

A study was initiated in 1980 to evaluate 22 new genotypes of bermudagrass for the characteristics described above.

### Experimental Procedure

Twenty-two genotypes of bermudagrass not previously evaluated in Texas were made available for study in the spring of 1980. Fourteen of these are hybrids from the USDA bermudagrass breeding program at Tifton, Georgia (Dr. G. W. Burton) and eight originated from a field where an observation nursery had been grown previously on the J. Pybas ranch near Gainesville, Texas as types surviving two preceding severe winters.

KEYWORDS: Bermudagrass genotypes, yield, IVDMD, winter damage.

<sup>1</sup> Professor and research associate, respectively, Soil & Crop Sciences Department, College Station, Texas 77843. Four rooted sprigs were planted four feet apart in the center of 6 x 20 foot plots, 4 replications, on June 4, 1980. The plot area was treated with a preemergence herbicide following sprigging, but prostrate milkweed developed and competition retarded spread and ground cover development, especially in the slow spreading genotypes.

The test was harvested five times in 1981: May 13, June 30, July 30, September 11, and November 19. Nitrogen was applied at the rate of 60 pounds per acre in late March and following the June 30 and September 11 harvests. Forage samples were saved from each harvest and analyzed by the in vitro technique for dry matter digestibility.

#### Results and Discussion

Forage yields (total of 5 cuttings) ranged from 8.7 tons per acre to less than 2 tons per acre. Yield data were variable probably because of inadequate establishment of some genotypes at the time harvesting was initiated. Statistically significant differences occurred only between the highest yielding genotypes and a few of the lowest yielding genotypes.

Forage quality, averaged for the five cuttings, ranged from 62.0% IVDMD to 49.8 or more than a 12-unit difference. All of the genotypes exceeded Coastal numerically but only the extremes were statistically significant.

None of the sources were ranked at the top for both yield and quality. The highest yielding source (P-7) was ranked 21 in quality, and the highest quality source (B-2) was ranked 18 in yield. Several of the higher quality genotypes exceeded Coastal in yield. Several of the genotypes show promise for improvement over Coastal in both characteristics.

Because several of the plots were not well established until late in the season, it seems likely that yield rankings will change in 1982. For the same reason, ground cover density ratings were delayed until 1982.

The plots were rated on April 1, 1982 for relative amount of winter damage. It is obvious that the highest quality materials encountered considerable winter damage. Low temperatures on January 13-14 were 6 to  $7^{\circ}$  F. Damage seemed to be more severe in this test than in adjacent areas in that Coastal and Brazos showed no damage in three other tests. The late cutting (November 19) may have been a contributing factor to winter damage on some of the new materials. However, late defoliation did not result in damage to Coastal and Brazos in other tests.

| Hybrid or genotype | Total yield and<br>(rank)tons/acre | IVDMD and<br>(rank) % | Winter damage<br>rating<br>(1=none) | Recovery<br>4/30/82<br>(1=good) |   |
|--------------------|------------------------------------|-----------------------|-------------------------------------|---------------------------------|---|
|                    |                                    |                       |                                     |                                 | - |
| B-1                | 8.2 (4)                            | 57.4 (10)             | 8.5                                 | 4.8                             |   |
| B-2                | 5.7 (18)                           | 62.0 (1)              | 7.8                                 | 4.5                             | - |
| B-3                | 7.0 (13)                           | 61.9 (2)              | 7.0                                 | 3.3                             |   |
| B-4                | 7.2 (12)                           | 59.4 (5)              | 5.8                                 | 3.3                             |   |
| B-5                | 3.0 (22)                           | 61.5 (3)              | 9.7                                 | 5.0                             |   |
| B-6                | 8.6 (2)                            | 57.0 (9)              | 6.0                                 | 3.0                             |   |
| B-7                | 7.7 (10)                           | 55.4 (14)             | 5.3                                 | 2.8                             |   |
| B-8                | 6.2 (17)                           | 58.9 (6)              | 7.5                                 | 3.0                             |   |
| В-9                | 7.7 (8)                            | 59.5 (4)              | 7.8                                 | 4.0                             |   |
| B-10               | 5.4 (19)                           | 57.0 (9)              | 2.5                                 | 1.8                             |   |
| B-11               | 4.0 (21)                           | 54.8 (17)             | 5.0                                 | 3.5                             |   |
| B-12               | 7.9 (7)                            | 56.5 (12)             | 5.3                                 | 2.5                             |   |
| B-13               | 8.3 (3)                            | 56.8 (11)             | 4.3                                 | 2.8                             |   |
| B-14               | 8.0 (6)                            | 58.2 (8)              | 4.0                                 | 2.0                             |   |
| P-1                | 8.2 (4)                            | 55.2 (15)             | 1.3                                 | 1.0                             |   |
| P-2                | 8.0 (5)                            | 55.5 (13)             | 1.3                                 | 1.0                             |   |
| P-3                | 8.0 (5)                            | 53.9 (20)             | 1.3                                 | 1.0                             |   |
| P-4                | 7.2 (11)                           | 54.1 (18)             | 1.3                                 | 1.0                             |   |
| P-5                | 7.7 (9)                            | 54.9 (16)             | 1.3                                 | 1.0                             |   |
| P-6                | 6.9 (14)                           | 54.9 (16)             | 2.3                                 | 1.0                             |   |
| P-7                | 8.7 (1)                            | 52.7 (21)             | 1.8                                 | 1.0                             |   |
| P-8                | 6.5 (16)                           | 55.5 (13)             | 2.8                                 | 1.8                             |   |
| Costal             | 6.5 (15),                          | 49.8 (22)             | 4.0                                 | 2.0                             |   |
| Tifton 44          | $1.9(23)_{1}^{1}$                  | 54.0 (19)             | 2.0                                 | 3.0                             |   |
| Brazos (SS-16)     | $4.3(20)^{1}$                      | 58.5 (7)              | 4.3                                 | 2.3                             |   |
| LSD                | 4.1                                | 9.1                   |                                     |                                 | - |

Table 1. Forage yield and quality of bermudagrass hybrids, Brazos River bottom near College Station, 1981

 $^{1}$  Plots did not become well established until after the third planting.

50

### Dallisgrass Variety Test

## G. W. Evers, B. L. Burson and P. W. Voigt\*

### SUMMARY

Eight dallisgrass plant introductions were compared to common dallisgrass under Gulf Coast conditions. All lines were higher yielding than common with six of the lines producing an additional ton of dry matter per acre over common. No insect or disease problems were observed.

## Introduction

Dallisgrass is a warm season perennial grass which is well adapted to poorly drained heavy soils. Once established it requires little maintenance, although it does respond to fertilization. When mixed with white clover,  $1\frac{1}{2}$  acres will support a cow and calf with only 40 to 60 lbs. phosphorus per acre each fall. Because dallisgrass reproduces by apomixis (asexual reproduction), no crosses can be made to develop improved dallisgrass varieties. Different dallisgrass types were collected by Dr. Byron Burson while on a plant exploration trip in South America. Some of these plant introductions were evaluated and compared to common dallisgrass under Gulf Coast conditions.

## Methods and Materials

Eight dallisgrass introductions and common dallisgrass were started from seed in peat cups in the greenhouse. Seedlings plus peat cups were transplanted in a Lake Charles clay at Angleton on April 30, 1981. Seedlings were placed 1 ft apart within a row. Plots consisted of four rows, 1.5 ft apart, 12 ft long. The study was fertilized with 48 lb of nitrogen and 60 lb of phosphorus per acre at transplanting and an additional 50 lb/ac of nitrogen on July 30 after the first cutting. Sencor was applied at .5 lb/ac the day after transplanting for weed control. Plots were harvested on July 17, Sept. 10 and Oct. 28 at a 4 in height.

### Results and Discussion

All plant introductions were more productive than common dallisgrass (Table 1). Numbers 461, 544, 554, 455, 426, and 458 yielded an additional ton of dry matter over common dallisgrass.

<sup>\*</sup> Respectively, associate professor, Texas A&M University Agricultural Research and Extension Center, Angleton, Texas 77515 and research geneticists, Blackland Research Center, Temple, Texas 76501.

The first years results are encouraging for finding a higher yielding dallisgrass. All introductions produced seed although seed quality and germination were not determined. No insect or disease problems were observed.

| Plant<br>Introduction | July 17   | Sept. 10 | Oct. 28 | Total   |
|-----------------------|-----------|----------|---------|---------|
|                       |           |          | 1b/ac   |         |
| 461                   | 4117 abc* | 3679 a   | 657 a   | 8453 a  |
| 544                   | 4279 ab   | 3516 a   | 585 ab  | 8380 a  |
| 554                   | 4589 a    | 3219 a   | 569 ab  | 8377 a  |
| 455                   | 4356 ab   | 3218 a   | 519 ab  | 8093 a  |
| 426                   | 3733 abc  | 3581 a   | 645 ab  | 7959 a  |
| 458                   | 3841 abc  | 3459 a   | 638 ab  | 7938 a  |
| 460                   | 3573 bc   | 3159 a   | 639 ab  | 7373 ab |
| 555                   | 3557 bc   | 3158 a   | 354 ab  | 7069 ab |
| common                | 3283 c    | 2423 a   | 325 b   | 6031 b  |

Table 1. Dallisgrass Variety Test at Angleton - 1981.

\*Yields within a column followed by the same letter are not significantly different at the .05 level according to Duncan's Multiple Range Test. Management Effects on Irrigated and Dryland Forage Sorghum Cultivars at Stephenville in 1981

Ronald M. Jones and J.C. Read\*

#### SUMMARY

Twelve cultivars of the Sorghum genus were seeded to determine differences due to cultivars, irrigation, planting date, maturity, and regrowth. Dry matter yields of single-cut irrigated forage sorghums ranged from 1.08 to 6.14 tons per acre. Yields of most forage sorghum types were significantly greater than the sudan types at boot stage. Cultivar 'FS-25a+' produced significantly more forage than 'Atlas' at soft-dough. Yields of sudan types were not significantly different at the boot stage. May 22 was a significantly better planting date than April 9 although Atlas yields were higher for the earlier planting. Irrigation hastened booting by 5-9 days for cultivars seeded April 9. Cultivars planted dryland May 22 generally reached boot stage 21 days sooner than those planted April 9. Second cutting yields of 'FS-la', 'Sweet Sudan', and 'Trudan 8' were as large as the first under dryland conditions. Two harvests of dryland cultivars produced more dry matter than a single harvest of irrigated cultivars cut at booting. Regrowth rate of Trudan 8 was fastest while FS-la was slowest.

#### Introduction

Forage sorghums are used for hay, silage, and grazing by beef and dairy animals. Many cultivars of both sorghum and sudan types are available from commercial sources. Since the genetic base among types is narrow, performance of selected cultivars within each type is reasonably representative of those available. Knowledge of yield and quality potential of forage sorghums under various management options is essential to the producer.

The purposes of this study were: (1) to determine the effect of planting date and irrigation on the growth potential and forage quality of selected cultivars (2) to determine yields of forage sorghum and small grains in double-crop rotation (3) to determine the maturity stage for harvesting optimum yield and quality (4) to determine the effect of a second harvest on yield under dryland conditions. This paper reports the results of the first year of a two year study.

\*Respectively, research associate, The Texas Agricultural Experiment Station, Stephenville, and associate professor, The Texas Agricultural Experiment Station, Dallas.

# Materials and Methods

Plots were established on Windthorst fine sandy loam in 1981 in four separate tests designated A, B, C, and D. Twelve cultivars of the <u>Sorghum</u> genus were included in test A. These included the cultivars 'Hoti', 'FS-25 a+', 'FS-4', 'NK 300', 'Red Top Kandy', 'Kow Kandy', 'TE Haygrazer II', 'SX-17', 'Atlas', 'FS-1a', 'Trudan 8', and 'Sweet Sudan'. The latter four cultivars were selected for tests B, C, and D. Tests A and B were irrigated while tests C and D were dryland. Tests A and C were seeded April 9; tests B and D were seeded May 22. Plots in test C were split after the first harvest. Regrowth was harvested from one split-plot, and the other was destroyed by plowing. Test B and D were split in September and one-half was seeded to 'Grazer Elend ' triticale while the other half was fallowed. Each test had four replications in a randomized, complete-block design.

Fertilizer was broadcast on the area March 27 at the rate of 148-48-48 and incorporated by disking. A cone-type seeder unit mounted on a field crop planter was used to place one seed per row-inch. Plots forty feet long had three rows spaced 36 inches apart.

Tests A and B were designed for irrigation by a solid-set sprinkler system but received only three separate one-acre-inch applications primarily to aid seedling emergence. Rainfall received by cultivars in test A ranged from 7.91 - 10.73 inches by boot stage, 9.47 - 10.73 inches by anthesis, and 10.73 inches by the soft-dough stage. Cultivars in test B had received 8.07 inches by boot stage. Plant height prevented irrigation when it might have been beneficial.

Plants were cut at a height of three inches from four feet of the center row at each harvest. Each cultivar in test A was harvested when it reached the boot, anthesis, and soft-dough maturity stages. Cultivars in the other tests were harvested at the boot stage. Weight of harvested plants was determined, and subsamples were weighed and subsequently dried at 70C to determine dry matter per acre. Subsamples were retained for determination of protein content and <u>in vitro</u> dry matter digestibility.

#### Results and Discussion

Irrigated forage sorghum yields ranged from 1.08 to 6.14 tons dry matter per acre depending upon cultivar and growth stage at harvest (Table 1). Yields from a single harvest of the forage sorghum types (except for FS-la) were significantly greater than those of the sudan types at the boot stage. Yields of FS-25a+, Hoti, and Red Top Kandy were significantly greater than the sudan types and other forage sorghums at anthesis. Cultivars of the sudan types were not significantly different at the boot stage, but at the soft-dough stage other sudan types produced significantly greater yields than Sweet Sudan. FS-25a+ produced significantly greater yield than Atlas, NK 300, and FS-la at soft-dough, while FS-la produced significantly less than other forage sorghum types at the boot and soft-dough stages. Trudan 8, FS-la, and dryland Sweet Sudan produced higher yields when seeded May 22, while Atlas and irrigated Sweet Sudan yields were higher when seeded April 9 (Table 2). Lack of response to irrigation was probably due to cool soil temperatures following the April planting and to adequate rainfall following the May planting. The forage sorghum types produced more forage than the sudan types under both irrigated and dryland conditions.

Irrigation hastened booting by 5 - 9 days for the cultivars seeded April 9 (Table 3). Failure of irrigation to hasten booting of the May planting was due to adequate rainfall. Atlas, Trudan 8, and Sweet Sudan planted dryland on May 22 reached boot stage 21 days sooner than when planted April 9. However, the calendar date at booting was later for the May planting.

Dry matter production of FS-1a, Sweet Sudan, and Trudan 8 at the second cutting equaled or exceeded production at the first cutting under dryland conditions (Table 4). Yield of Atlas was substantially less at the second cutting, but total yield was slightly higher than the others. Yields at booting from two harvests of dryland FS-1a, Atlas, Sweet Sudan, and Trudan 8 were greater than those from a single harvest of these cultivars under irrigation (Tables 1,4). Trudan 8 had the fastest regrowth since it produced 2.67 tons/acre in the 32 days following the first cutting. FS-1a required 53 days to produce 2.23 tons per acre when it again reached boot stage. Table 1. Forage Yields of Irrigated Sorghum Cultivars Harvested at Three Growth Stages at Stephenville, Texas in 1981.

|                                                                              |                                                                                                                                  | Tons                                                                | Dry Matter                                                   | Per Acre**                                                          |
|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------|
| Forage Sorghum Type                                                          | s Seed Source                                                                                                                    | Boot                                                                | Anthesis                                                     | Soft-Dough                                                          |
| FS-25a+<br>Hoti<br>FS-4<br>Red Top Kandy<br>Atlas<br>NK 300<br>FS-1a<br>Mean | DeKalb AgResearch<br>R. C. Young<br>DeKalb AgResearch<br>R. C. Young<br>Warner Seed<br>Northrup, King & Co.<br>DeKalb AgResearch | 4.44<br>3.99<br>3.52<br>3.47<br>3.00<br>2.79<br><u>1.13</u><br>3.19 | 5.77<br>5.35<br>4.07<br>6.09<br>4.19<br>3.62<br>2.99<br>4.58 | 6.14<br>5,91<br>4.98<br>5.90<br>5.17<br>5.05<br><u>4.03</u><br>5.32 |
| Sudan Types                                                                  |                                                                                                                                  |                                                                     |                                                              |                                                                     |
| Kow Kandy<br>Sweet Sudan<br>TE Haygrazer II<br>SX-17<br>Trudan 8<br>Mean     | R. C. Young<br>R. C. Young<br>Taylor-Evans<br>DeKalb AgResearch<br>Northrup, King & Co.                                          | 1.58<br>1.56<br>1.39<br>1.39<br><u>1.08</u><br>1.40                 | 3.32<br>2.50<br>3.10<br>3.19<br><u>3.32</u><br>3.09          | 4.37<br>2.97<br>4.94<br>4.77<br><u>4.43</u><br>4.30                 |
| L.S.D.(0.05)*                                                                |                                                                                                                                  | 0.68                                                                | 0.80                                                         | 0.94                                                                |

\*Difference between two yields within a growth stage must exceed the L.S.D. value for that growth stage for the two yields to be significantly different with a 5% chance of error.

\*\* Mean of four replications

|                                                        | Planted A                                  | pril 9                   | Planted N                          | May 22           |                       |
|--------------------------------------------------------|--------------------------------------------|--------------------------|------------------------------------|------------------|-----------------------|
| Forage Sorghum<br>Types                                | Irrigated $\frac{1}{}$                     | Dryland 2                | / Irrigated 1/                     | Dryland -        | <u>3/</u> <u>Mean</u> |
|                                                        |                                            | Tons Per                 | Acre 4/                            |                  |                       |
| Atlas                                                  | 3.00                                       | 3.37                     | 2.75                               | 2.75             | 2.97a*                |
| FS-la                                                  | 1.13                                       | 2.00                     | 4.19                               | 4.36             | 2.92a                 |
| Sudan Types                                            |                                            |                          |                                    |                  |                       |
| Trudan 8<br>Sweet Sudan                                | 1.08                                       | 1.31<br>1.46             | 2.40<br>1.39                       | 2.39<br>1.58     | 1.81b<br>1.50c        |
| Mean - May Pl<br>Mean - April<br><u>1</u> / Three inch | anting 2.7<br>Planting 1.8<br>mes of water | 3a* N<br>6b N<br>applied | Mean — Dryland<br>Mean — Irrigated | 2.41a<br>1 2.19b |                       |
| <u>2</u> / 'Atlas', '                                  | FS-la' and '                               | Sweet Sudar              | n' received 9.47                   | 7 inches         | rainfall;             |

Table 2. Effect of Irrigation and Planting Date on Dry Matter Production of Forage Sorghum Cultivars Harvested at Booting. Stephenville, Texas, 1981.

'Trudan 8' received 8.34 inches

3/ Received 8.07 inches rainfall

\* Means followed by the same letter are not significantly different at the 0.05 level

4/ Mean of four replications

|             | Planted Ap | oril 9  | Planted May 22 |         |  |
|-------------|------------|---------|----------------|---------|--|
| Cultivar    | Irrigated  | Dryland | Irrigated      | Dryland |  |
| Atlas       | 75         | 80      | 59             | 59      |  |
| FS-la       | 61         | 70      | 68             | 67      |  |
| Trudan 8    | 61         | 66      | 45             | 45      |  |
| Sweet Sudan | 70         | 75      | 52             | 54      |  |

Table 3. Effect of Irrigation and Planting Date on Number of days to Booting of Forage Sorghums Grown at Stephenville, Texas in 1981.\*

\* See footnotes of Table 2 for irrigation and rainfall information

Table 4. Seasonal Distribution of Dry Matter Production of Forage Sorghum Cultivars Grown Under Dryland Conditions at Stephenville, Texas, 1981.

|                                           | Harvest                                  | Dates                                    | Tons Dry                     | Matter Per Act               | re <u>1</u> /                |
|-------------------------------------------|------------------------------------------|------------------------------------------|------------------------------|------------------------------|------------------------------|
| <u>Cultiva</u> r                          | Cutting 1*                               | Cutting 2**                              | Cutting 1*                   | Cutting 2**                  | Total                        |
| FS-la<br>Atlas<br>Sweet Sudan<br>Trudan 8 | June 19<br>June 29<br>June 24<br>June 15 | Aug. 12<br>Aug. 12<br>Aug. 12<br>July 17 | 2.00<br>3.37<br>1.46<br>1.31 | 2.23<br>1.31<br>1.36<br>2.67 | 4.23<br>4.68<br>2.82<br>3.98 |

\* Planted April 9 and cut at booting. 'Trudan 8' received 8.34 inches rainfall while other cultivars received 9.47 inches.

\*\* Planted April 9 and cut at booting. 'Trudan 8' received 2.43 inches rainfall, and other cultivars received 1.33 inches between harvests.

 $\underline{1}$  / Mean of four replications

# Selection and Evaluation of Heavy Seed Weight Synthetic Cultivars of Kleingrass

M. A. Hussey and E. C. Holt

#### SUMMARY

Selection for heavy seed in kleingrass, <u>Planicum coloratum L.</u>, has resulted in an increase in seed weight of 53 percent over the base population with three cycles of selection. Evaluation of large seeded synthetics has shown them to be superior to Kleingrass 75 and to the other experimental synthetics tested in stand establishment characteristics.

Yield data from 1981 indicate no statistical difference in forage production between Kleingrass 75 and the heavy seed weight selections. Forage yields from this test ranged from 7300 to 9500 pounds of dry matter per acre. There appeared to be little difference between the selections for <u>in vitro</u> dry matter disappearance, although two makarikariense types of <u>Panicum coloratum</u> tended to have lower IVDMD values at all harvest dates.

The first two years of this study at College Station have indicated that Verde Kleingrass is superior to Kleingrass 75 in stand establishment and early growth, but does not differ from Kleingrass 75 in forage quality or in dry matter production.

#### Introduction

Kleingrass is an important warm season perennial grass adapted to most regions of Texas (4). Although the species does not possess the yield potential of some of the other introduced species, it does produce favorable dry matter yields in the drier regions of the state. Grazing studies at both Beeville and McGregor have indicated a greater average daily gain for calves grazing kleingrass than for those grazing Coastal Bermudagrass (Cynodon dactylor, (L.) Pers.), demonstrating the importance of kleingrass in many areas of Texas (1).

Kleingrass has generally been reported to have good forage quality when compared to other warm season grasses and has also been shown to be important to wildlife. In areas in which kleingrass has been planted quail populations have also shown subsequent increases. Studies at Texas A&M have confirmed that kleingrass seed is acceptable to quail. In a feeding trial quail were found to consume kleingrass seed as 28% of their diet when given a free choice between kleingrass seed and a standard game bird mix (2). One limiting factor

KEYWORDS: Kleingrass 75, Panicum coloratum L., Verde Kleingrass, synthetic, heavy seed weight, forage quality.

<sup>1</sup> Respectively, Graduate research assistant and professor, Soil & Crop Sciences Department, College Station, Texas 77843.

which has been cited in the use of kleingrass seed as a potential food source for gamebirds is the small size of the kleingrass seed which may make it more difficult for birds to locate adequate seed to meet their nutritional requirements.

Recent work at College Station has focused on improving seed size in kleingrass. Improvements in seed size have been shown to be releated to improved seedling vigor in many small seeded species (3, 5), and has also been shown to have potential in improving stand establishment characteristics in kleingrass. Improved stand establishment characteristics coupled with the potential value of larger seed for gamebirds has made selection for heavy seed an important objective in the kleingrass breeding program.

#### Materials and Methods

Selection for improved seed weight in kleingrass has been carried out for three generations by selecting both within and among half-sib families. Each cycle of selection has involved hand harvesting individual plants within the nursery. The inflorescences from each of these plants were then threshed seperately by rubbing the seed on a rub board. The seed were blown in a constant air stream to remove all the chaff and then the seed were counted. Two lots of one hundred seed each were counted from each plant and then weighed to the nearest one-tenth milligram. The average of these two weights were used to represent the weight of each plant. Selection pressure was placed on the populations only for seed weight without respect to any other characteristic.

To evaluate the effect of selection for seed weight on forage yield and quality, six experimental synthetics, Kleingrass 75, and Verde Kleingrass (Table 1) were planted in a test in the spring of 1980 at College Station on a Norwoood silty clay loam soil. Each line was planted at a rate of 44 pure live seed per square foot (3 lbs. per acre based on Kleingrass 75). The seed were planted using a belt planter into 100 square foot plots (5 x 20 ft.) at a depth of 0.5 - 1.0 inches. The plots were fertilized with 50 lbs. of N, P, and K four weeks after planting and with an additional 50 lbs. of nitrogen per acre in July. Similar fertilization occurred in 1981.

Evaluation of seedling growth was made 28 days after planting in the spring of 1980, by harvesting two feet of row from each plot and counting the number of seedlings present. These seedlings were dried for 48 hours at 60°C to determine the average weight per seedling. Plot yields were determined by harvesting a 3 x 17 foot swath from each plot with a flail type mower. Samples for in vitro analysis were harvested prior to the six week yield harvest and whole plant digestibilities were calculated by taking the sum of the IVDMD's of the leaf and stem fractions.

#### Results and Discussion

Three cycles of selection for heavy seed have been successful in increasing seed weight in kleingrass from a mean weight of 79.3 mg/100 seed in the base population to 121.6 mg/100 seed in cycle 3. This increase in seed weight has resulted in the reduction in the

standard deviation for seed weight in this population (Table 2), and an average increase in seed weight of 17 percent per cycle of selection.

Field evaluations of heavy seed weight synthetics and other selected experimental lines were conducted in 1980 and 1981. In the establishment year, the heavy seed weight synthetics were superior to Kleingrass 75 in early growth (Table 3). While no significant difference in plant number was observed, the heavy seed weight genotypes had superior seedling vigor as measured by seedling weight and a visual score.

Dry matter yields for 1981 are shown in Table 4. There were no significant differences in yield between any of the lines at the three-week harvest frequency. Although some differences were observed at the six week harvest frequency, only 78-31 which yielded 9500 lbs./acre was significantly different in yield from Kleingrass 75.

Data from <u>in vitro</u> analysis of each synthetic were not statistically analyzed (Table 5), although there appeared to be little difference in IVDMD's among the synthetics tested. Only the makarikariense forms of <u>Panicum coloratum</u> appeared to have a lower digestibility than Kleingrass 75. Kleingrass 75-25, a synthetic selected on the basis of high <u>in vitro</u> dry matter digestibility, did appear to be slightly higher in DMD at all harvest dates than the other synthetics in the test.

Initial results from this study are promising in that they indicate selection for large seed in kleingrass (Verde Kleingrass) has not resulted in any change in the quality or yield, but has resulted in a new cultivar superior to Kleingrass 75 in stand establishment characteristics. Further research is presently being conducted throughout Texas to determine the area of adaptation and persistence of these heavy seed weight synthetics.

### Literature Cited

- 1. Conrad, B. E. 1976. In: Grasses and legumes in Texas. Texas Agric. Exp. Sta. Research Monograph. RM6C.
- Hendler, R. J. 1979. Grass management for forage and seed production. M.S. Thesis. Texas A&M University.
- 3. Kneebone, W. R. and C. L. Cremer. 1955. Relationship of seed size to seedling vigor in some native grass spepcies. Agron. J. 47:472.
- 4. Pratt, J. N., A. C. Novosad, and E. C. Holt. \_\_\_\_ 'Kleingrass 75'. Texas Agric. Exp. Sta. L-1206.
- 5. Rogler, G. A. 1954. Seed size and seedling vigor in crested wheatgrass Agron. J. 46:216.

| Synthetic | Seed Weight<br>(mg/100 seed) | Protein Content<br>% | Seed Per Pound | Basis of Selection |
|-----------|------------------------------|----------------------|----------------|--------------------|
| 75-25     | 66.1                         | 13.8                 | 687000         | High DMD           |
| 79-34     | 61.6                         | 14.4                 | 737000         | High DMD           |
| (lein 75  | 70.1                         | 15.0                 | 648000         |                    |
| erde      | 90.9                         | 15.3                 | 500000         | Large Seed Size    |
| 8-30      | 100.9                        | 15.0                 | 450000         | Large Seed Size    |
| 9-35      | 107.8                        | 14.4                 | 421000         | Large Seed Size    |
| 8-31      | 98.8                         | 13.1                 | 460000         | makari type        |
| 8-32      | 89.2                         | 12.5                 | 509000         | makari type        |

Table 1. Experimental Kleingrass Synthetics. Seed Evaluation Data.

62

| 1                                |            |            |            |  |
|----------------------------------|------------|------------|------------|--|
| Cycle O                          | Cycle 1    | Cycle 2    | Cycle 3    |  |
| Mean 79.3 <sup>1</sup>           | 100.8      | 102.6      | 121.6      |  |
| Range 25.0-131.6                 | 63.7-144.1 | 74.9-138.1 | 84.7-165.2 |  |
| Std. Dev. 13.7                   | 11.0       | 10.8       | 7.1        |  |
| Klein 75                         | 83.2       | 81.0       | 81.3       |  |
| % Increase                       | 27.1       | 1.8        | 18.5       |  |
| Parent-<br>Progeny 0.61<br>Corr. | 0.78       | 0.28       | 0.29       |  |
|                                  |            |            |            |  |

Table 2. Summary of Three Cycles of Selection for Heavy Seed in Kleingrass

1 All values expressed as mg / 100 seed.

| Synthetic | Plant Number1       | Seedling Weight<br>mg / seedling | Visual Rating <sup>2</sup> |  |
|-----------|---------------------|----------------------------------|----------------------------|--|
| 75-25     | 17.0 A <sup>3</sup> | 8.9 BC                           | 4.0 C                      |  |
| .79-34    | 14.7 A              | 10.1 ABC                         | 4.3 C                      |  |
| Klein 75  | 19.0 A              | 11.3 AB                          | 4.8 BC                     |  |
| Verde     | 25.9 A              | 13.5 AB                          | 7.8 A                      |  |
| 78-30     | 25.5 A              | 13.5 AB                          | 7.5 A                      |  |
| 79-35     | 25.9 A              | 13.7 A                           | 7.0 A                      |  |
| 78-31     | 23.9 A              | 6.6 C                            | 5.0 BC                     |  |
| 78-32     | 22.4 A              | 9.7 ABC                          | 5.8 B                      |  |
|           |                     |                                  |                            |  |

Table 3. Stand Establishment of Kleingrass Synthetics. College Station-1980.

1 Number of plants per 2 ft. of row.

<sup>2</sup> Visual rating 1=no stand 10=100% stand

<sup>3</sup> Means within a column followed by the same letter do not differ at the 0.05 level as determined by Duncans Multiple Range Test.

|           | <br> |                     |         |
|-----------|------|---------------------|---------|
| Synthetic |      | 3 Week <sup>1</sup> | 6 Week  |
|           |      |                     |         |
|           |      |                     |         |
| 75-25     |      | 5433 A <sup>2</sup> | 7509 BC |
| 79-34     |      | 5249 A              | 8072 BC |
| Klein 75  |      | 6236 A              | 7932 BC |
| Verde     |      | 6522 A              | 8688 AB |
| 78-30     |      | 6053 A              | 7194 C  |
| 79-35     |      | 6142 A              | 7767 BC |
| 78-31     |      | 4591 A              | 9499 A  |
| 78-32     |      | 5295 A              | 7757 BC |
|           |      |                     |         |

Table 4. Seasonal Dry Matter Production of Experimental Kleingrass Synthetics Harvested at Three and Six Week Intervals. College Station-1981.

1 All values are pounds of dry matter / acre.

<sup>2</sup> Means within a column followed by the same letter do not differ at the 0.05 level as determined by Duncans Multiple Range Test.

| Synthetic | 6-12 | 8-4  | 9-16 | Seasonal Average |  |
|-----------|------|------|------|------------------|--|
|           |      |      |      |                  |  |
| 75 05     |      |      |      |                  |  |
| /5-25     | 56.2 | 61.9 | 64.0 | 60.7             |  |
| 79-34     | 56.5 | 57.5 | 61.7 | 58.6             |  |
| Klein 75  | 54.4 | 59.0 | 63.7 | 59.0             |  |
| Verde     | 57.1 | 60.6 | 61.8 | 59.8             |  |
| 78-30     | 58.4 | 59.7 | 56.7 | 58.3             |  |
| 79-35     | 58.0 | 58.4 | 62.2 | 59.5             |  |
| 78-31     | 54.8 | 53.8 | 54.6 | 54.4             |  |
| 78-32     | 56.5 | 57.7 | 57.1 | 57.1             |  |

Table 5. <u>In vitro</u> Dry Matter Disappearance ( IVDMD ) of Experimental Kleingrass Synthetics. College Station-1981.
Total Alkaloid and Nitrate Content of Eleven Pearl Millet Lines

Beverly B. Krejsa, F. M. Rouquette, Jr., L. R. Nelson, E. C. Holt, B. J. Camp

#### SUMMARY

Eleven forage-type pearl millet lines were grown during the summer of 1980, sampled, and analyzed for total alkaloid and nitrate content. Millet leaves (making up 62% of the whole plant sampled) contained more total alkaloid and less nitrate than stems. Large differences in alkaloid and nitrate content existed between the millet lines. Alkaloid content increased six-fold from the lowest to the highest entry, and nitrate content increased four-fold over the same span. Each pearl millet line ranked similarly for alkaloid and nitrate content; alkaloid and nitrate accumulation occurred simultaneously in this study. Drought tolerant entries accumulated higher levels of alkaloid and nitrate than the other entries.

### Introduction

Pearl millet is frequently planted in late spring to provide mid-summer annual grazing for young growing cattle or for lactating dairy cows. It has been reported that pearl millet became unpalatable when growing under apparent drought stress conditions in East Texas. Laboratory analyses revealed that the unpalatable millet forage contained higher than normal levels of total alkaloids and potentially toxic levels of nitrates. The primary objectives of this study were to: (1) examine factors which may affect alkaloid and nitrate accumulation in pearl millet forage; (2) determine if alkaloid and nitrate levels varied between different pearl millet breeding lines; and (3) ascertain if alkaloids and nitrate indeed accumulate simultaneously in these breeding lines.

### Procedures

The pearl millet lines included in this study were:

- 1.
- Millex  $24\frac{1}{2}$  hybrid pearl millet Tift 23DA<sup>2</sup> female parent of many pearl millet hybrids in 2. U.S.
- Tift 23B trichomed normal pearl millet 3.

\* Respectively, research technician, associate professor, associate professor, Texas A&M University Agricultural Research & Extension Center, Overton, Texas 75684; Professor, Soil & Crop Sciences, College Station, Texas 77843; Professor, Veterinary Physiology & Pharmacology, College Station, Texas 77843.

<sup>1</sup>Courtesy of Northrup-King Seed Co.

 $^2$ Lines 2-11 courtesy of Dr. W. W. Hanna, Research Geneticist, USDA Coastal Plain Experiment Station, Tifton, GA 31794.

- 4. Tift 23B trichomeless smooth mutant that shows drought tolerance (identical to 23B trichomed except for tr gene)
- 5. Tifleaf 1 hybrid
- 6. Gahi 3 hybrid
- 7. Inbred 383 male parent of Tifleaf 1
- 8. Inbred 186 male parent of Gahi 3
- 9. 78-10414-6 drought tolerant experimental line
- 10. 78-9815-10 drought tolerant experimental line
- 11. 78-10294-1 drought tolerant experimental lines

The lines were seeded on June 24, 1980 at 20 lb/acre on an upland Darco soil. The lines received 100 lb/acre each of N,  $P_20_5$ , and  $K_20$  at planting, plus an additional 50 lb/acre N on July 29, 1980. Millet samples were taken on August 8, 1980, divided into leaf and stem components, and analyzed for total alkaloid and nitrate content. Total basic alkaloids were extracted and measured by titration with p-toluenesulfonic acid. Nitrate levels were determined with a specific ion electrode.

#### Results

Mean leaf alkaloid content for the 11 millet lines, 89 ppm total alkaloid, was significantly higher than the mean stem content, 20 ppm Mean leaf nitrate content, 3,859 ppm nitrate , was (P<0.01). significantly lower than the mean stem content, 10,830 ppm (P<0.01). Pearl millet line alkaloid levels differed significantly (P<0.05) (Table 1). Line nitrate levels also differed significantly (P<0.05) (Table 2). The millet lines ranked similarly for alkaloid and nitrate content, and were significantly and positively correlated (r = 0.45, P<0.01). Of particular interest is that Tift 23DA, female parent of many U.S. millet hybrids, falls into the highest alkaloid and nitrate range. Also of importance is that three out of four drought tolerant entries rank in the highest alkaloid range, and all four entries appear in the highest nitrate range. Thus, in this study, alkaloid and nitrate levels differ between millet lines, and these antiquality agents accumulate simultaneously. Also, lines showing more drought tolerance seem to accumulate higher levels of total alkaloid and nitrate. None of the line nitrate levels entered the accepted potentially toxic range, which begins at about 15,000 ppm nitrate.

| Concentration (ppr |
|--------------------|
|                    |
| Tift tr 23B 121 a  |
| Inbred 186 112 ab  |
| 78-10294-1 99 abc  |
| 78-9815-10 77 abc  |
| Gahi 3 73 abc      |
| Tift 23DA 54 abc   |
| Tift Tr 23B 47 abc |
| Tifleaf 1 37 bc    |
| Millex 24 29 c     |
| Inbred 383 27 c    |
| 78-10414-6 20 c    |
| 70 10414 0 20 C    |

Table 1. Whole plant alkaloid content for 11 pearl millet lines.

abc Alkaloid contents followed by the same letter are not significantly different at the 0.05 level using Duncan's New Multiple Range Test.

Table 2. Whole plant nitrate content for 11 pearl millet lines.

| Line        | Concentration (ppm) |
|-------------|---------------------|
| Tift tr 23B | 9809 a              |
| 78-10294-1  | 8356 ab             |
| 78-9815-10  | 7969 ab             |
| Tifleaf 1   | 7261 ab             |
| Tift 23DA   | 7238 ab             |
| 78-10414-6  | 6825 ab             |
| Inbred 186  | 5747 abc            |
| Gahi 3      | 5691 abc            |
| Tift Tr 23B | 4892 bc             |
| Millex 24   | 4877 bc             |
| Inbred 383  | 2406 c              |
|             |                     |

abc Nitrate contents followed by the same letter are not significantly different at the 0.05 level using Duncan's New Multiple Range Test.

# Rate of Application and Source of Nitrogen on Yield of Coastal Bermudagrass

# F. M. Rouquette, Jr. and M. J. Florence\*

#### SUMMARY

Nitrogen was applied to Coastal bermudagrass at the rate of 400 lbs/acre as either ammonium nitrate, urea, Nitroform®, or a percentage mixture of ammonium nitrate:Nitroform. The various sources were applied either as a single application at the beginning of the growing season, or a sequally split applications throughout the season. Nitroform was also applied at the single application rate of 600 lbs/acre nitrogen. The 2-year average yields ranged from 12,453 lbs/acre dry matter for Nitroform in a single application to 14,413 lbs/acre dry matter for the 80:20 mixture of ammonium nitrate:Nitroform. In general, nitrogen supplied in a single application as any source and the high percentage mixture of Nitroform (20 AmNO<sub>3</sub>:80 Nitroform) had the lowest average yield of the ten treatments.

### Introduction

The need for nitrogen in the production scheme of Coastal bermudagrass has been well established. With the ever-increasing demand for fossil fuel products and by-products, the method of application and the source of nitrogen fertilizers are critical to the economic stability of forage-livestock operations in the Southeastern U. S. Current bulk fertilizer application costs are \$15.00 to \$20.00 per ton. Therefore, if less applications can be made through the use of heavier rates of nitrogen and/or slow release nitrogen fertilizers, the economic impact for the producer may be significant. The primary objective of this trial was to determine the influence of application rate and source of nitrogen on Coastal bermudagrass using conventional and slow-release sources of nitrogen.

### Procedure

Nitrogen was applied to Coastal bermudagrass as ammonium nitrate (33.5-0-0), urea (45-0-0), and Nitroform® (38-0-0) at the rate of 400 lbs/acre in single and split applications. Nitroform was also supplied in a single application at the rate of 600 lbs/acre nitrogen (Table 1). Phosphorus (0-46-0) and potassium (0-0-60) were applied at initiation of the growing season at the rate of 100 lbs/acre P<sub>2</sub>O<sub>5</sub> and 200 lbs/acre K<sub>2</sub>O, respectively. Treatments were replicated four times in a randomized complete block design, and the bermudagrass was harvested at the hay stage of growth.

<sup>\*</sup> Respectively, associate professor and research associate, Texas A&M Agricultural Research & Extension Center, Overton, Texas 75684.

### Results

During 1980, dry matter production of Coastal bermudagrass ranged from 8,121 lbs/acre from Nitroform supplied in two applications of 200 lbs/acre each to 11,435 from the 80:20 mixture of ammonium nitrate:Nitroform (Table 2). However, the reverse combination of ammonium nitrate:Nitroform (20:80) produced one of the lowest yields. Dry matter production was also apparently suppressed by the single applications of both ammonium nitrate and Nitroform at 400 lbs/acre nitrogen. In general, yields were relatively low on all treatments.

Dry matter yields during 1981 were nearly double those of the preceding year on some treatments (Table 3). Both the urea and Nitroform sources, when supplied in a single application, produced the least amount of forage. The other 8 treatments were surprisingly similar in production. The 2-year average yields are shown in Table 4. The lowest dry matter production occurred on the 400 lb/acre nitrogen rate of Nitroform supplied in a single application; whereas, the highest yield occurred with the 80:20 mixture of ammonium nitrate:Nitroform.

| Treatment | <u>N</u> rate<br>(lbs/ac) | N source                                 | Application                               |
|-----------|---------------------------|------------------------------------------|-------------------------------------------|
| 1         | 400                       | Ammonium nitrate                         | 100 lbs initial<br>100 lbs after each cut |
| 2         | 400                       | Ammonium nitrate                         | One application                           |
| 3         | 400                       | Urea                                     | One application                           |
| 4         | 400                       | Nitroform®                               | One application                           |
| 5         | 600                       | Nitroform                                | One application                           |
| 6         | 400                       | Nitroform                                | 200 lbs initial<br>200 lbs mid-season     |
| 7         | 400                       | 20% AmNO <sub>3</sub> :<br>80% Nitroform | 100 lbs initial<br>100 lbs after each cut |
| 8         | 400                       | 40% AmNO <sub>3</sub> :<br>60% Nitroform | 100 lbs initial<br>100 lbs after each cut |
| 9         | 400                       | 60% AmNO <sub>3</sub> :<br>40% Nitroform | 100 lbs initial<br>100 lbs after each cut |
| 10        | 400                       | 80% AmNO <sub>3</sub> :<br>20% Nitroform | 100 lbs initial<br>100 lbs after each cut |

Table 1. Nitrogen rate and source treatments applied broadcast to Coastal bermudagrass.

| Treatment | 6-11-80 | 7-12-80 | 8-20-80<br>-1bs/acre | 10-30-80 | TOTAL  |
|-----------|---------|---------|----------------------|----------|--------|
| 1         | 5,857   | 1,173   | 883                  | 3,184    | 11,097 |
| 2         | 4,406   | 1,823   | 672                  | 2,253    | 9,154  |
| 3         | 6,006   | 1,894   | 615                  | 2,196    | 10,711 |
| 4         | 5,165   | 1,250   | 764                  | 1,921    | 9,100  |
| 5         | 6,186   | 1,492   | 936                  | 2,317    | 10,931 |
| 6         | 3,786   | 947     | 1,125                | 2,263    | 8,121  |
| 7         | 3,764   | 903     | 999                  | 2,905    | 8,571  |
| 8         | 5,265   | 1,519   | 1,088                | 3,331    | 11,203 |
| 9         | 4,831   | 1,118   | 1,060                | 3,336    | 10,345 |
| 10        | 5,877   | 1,159   | 1,038                | 3,361    | 11,405 |
|           |         |         |                      |          |        |

| Table | 2. | Initial dry matter producti | on of | Coastal bermudagrass as |
|-------|----|-----------------------------|-------|-------------------------|
|       |    | influenced by rate and sour | ce of | nitrogen.               |

Table 3. Second-year dry matter production of Coastal bermudagrass as influenced by rate and source of nitrogen.

| reatment | 6-1-81 | 6-30-81 | 7-28-81<br>1bs/acre | 11-5-81 | ΤΟΊΛΙ.          |
|----------|--------|---------|---------------------|---------|-----------------|
| 1        | 5,385  | 4,198   | 3,622               | 3,682   | 16,887          |
| 2        | 6,236  | 3,766   | 3,430               | 4,018   | 17,450          |
| 3        | 5,841  | 3,934   | 2,746               | 3,274   | 15,795          |
| 4        | 4,869  | 3,694   | 3,118               | 4,125   | 15,806          |
| 5        | 5,877  | 3,850   | 3,334               | 3,670   | 16 <b>,7</b> 31 |
| 6        | 5,673  | 4,066   | 3,466               | 3,602   | 17,007          |
| 7        | 5,553  | 4,054   | 3,574               | 3,718   | 16,899          |
| 8        | 5,528  | 4,030   | 3,778               | 4,006   | 17,342          |
| 9        | 5,217  | 3,982   | 3,886               | 4,149   | 17,234          |
| 10       | 5,337  | 4,341   | 3,850               | 3,862   | 17,390          |

| Treatment                                                                                                       | 1980   | <u>1981</u> | 2-yr Avg. |
|-----------------------------------------------------------------------------------------------------------------|--------|-------------|-----------|
| in a start and a second start and a | 11 097 | 16.887      | 13,992    |
| 1                                                                                                               | 9,154  | 17,450      | 13,302    |
| 3                                                                                                               | 10,711 | 15,795      | 13,253    |
| 4                                                                                                               | 9,100  | 15,806      | 12,453    |
| 5                                                                                                               | 10,931 | 16,731      | 13,831    |
| 6                                                                                                               | 8,121  | 17,007      | 12,564    |
| 7                                                                                                               | 8,571  | 16,899      | 12,735    |
| 8                                                                                                               | 11,203 | 17,342      | 14,273    |
| 9                                                                                                               | 10,345 | 17,234      | 13,790    |
| 10                                                                                                              | 11,435 | 17,390      | 14,413    |

| Table 4. | Two-year average production of Coastal bermudagrass as |  |
|----------|--------------------------------------------------------|--|
|          | influenced by rate and source of nitrogen.             |  |

# Soil Fertility Management for Selected Forages

### A. S. Mangaroo\*

### SUMMARY

The forage yields of Klein, Limpo, Callie-Bermuda, Tifton-44 and SS-16 grasses were significantly increased by N fertilization applied at 262 kg/ha but not by P. Protein contents of the various forages were inversely proportional to DMY yields and did not increase appreciably by increase in N or P.

#### Procedure

Plots of each cultivar were established 1980 on the Hockley fine sandy loam of the Prairie View A&M University Cooperative Research Center. For this study there were 3 plots of each grass in each of 4 blocks (replications) representing 3 soil N levels of 22, 262, and 502 kg/ha N as NH<sub>4</sub>NO<sub>3</sub>, the first level being native N and the others being split applications of 60 and 120 kg/ha each in spring and following each harvest. Each block was split in 3 to accommodate soil P levels of 7, 207, and 407 kg/ha P as Superphosphate, the first level being native P and the others being split applications of 50 and 100 kg/ha each in the spring and following each harvest. In the spring all the plots were treated with K at 120 kg/ha and limed to pH 6.2. Cuttings were taken in May, June, July and September and dry matter yields (DMY) and crude protein determined.

### Results

Analysis of variance (Table 1) of the seasonal (total) DMY of the forages as a function of soil N and/or P indicated that seasonal DMY were significantly influenced by replication, soil N and variety interaction. Seasonal DMY were not significantly influenced by soil P nor any of its interactions.

The mean seasonal DMY of the forages as a function of soil N level is given in Table 2. Significant increases in mean seasonal DMY were detected for all the grasses at the 262 kg/ha level of soil N. No signifcant increases in DMY for any cultivar were detected when the soil N level increased to 407 kg/ha, in fact in almost every instance it can be observed that a decrease in yield resulted. The latter DMY trends were also evident for each harvest date.

The percentage of crude protein in the forages at different soil N levels are given in Table 3. Tifton-44 and SS-16 which yielded the lowest seasonal DMY had the highest concentration of crude protein, 8.73 to 10.02%. Limpo and Kleingrass which showed the greatest seasonal DMY had the lowest concentration of crude protein, 6.98 to

\* Professor, Prairie View A&M University Coop. Research Center, Prairie View, Texas 77445. 8.08%. Callie was intermediate. Increases in N and/or P level in the soil did not significantly affect protein concentration in Tifton-44 forage. Similar trends in protein contents at different N and P levels were evident for the various forages of other cultivars.

Table 1. Analysis of Variance of the Seasonal DMY of the Grasses as a Function of Soil N and/or P

| Source of Variation | DF | PR>F |  |
|---------------------|----|------|--|
|                     |    |      |  |
| Replication         | 3  | **   |  |
| Nitrogen            | 2  | **   |  |
| N x Rep.            | 6  | N.S. |  |
| Phosphorus          | 2  | N.S. |  |
| NxP                 | 4  | N.S. |  |
| NxPxRep             | 18 | N.S. |  |
| Variety             | 4  | **   |  |
| N x Variety         | 8  | **   |  |
| P x Variety         | 8  | N.S. |  |
| N x P x Variety     | 16 | N.S. |  |

\* Significant at 5% level

\*\* Significant at 1% level

Table 2. Mean Seasonal DMY (kg/ha) of the Forages as a Function of N Level

| N Level | Klein | Limpo | Callie | SS-16 | Tifton-44 |
|---------|-------|-------|--------|-------|-----------|
| 22      | 7255  | 8196  | 6896   | 6400  | 7460      |
| 262     | 10588 | 10290 | 9977   | 8555  | 9044      |
| 502     | 10434 | 10172 | 8756   | 8577  | 8739      |

Table 3. Percent Crude Protein in the Forages

|                      | 5 T 8 T                    | Tifto                       | m-44                         | SS-16                       | Limpo                      | Callie                     | Klein                      |
|----------------------|----------------------------|-----------------------------|------------------------------|-----------------------------|----------------------------|----------------------------|----------------------------|
|                      | PI                         | PII                         | PIII                         | PI                          | PI                         | PI                         | PI                         |
| NI.                  | 8.93                       | 8.73                        | 8.70                         | 9.18                        | 6.89                       | 8.03                       | 7.73                       |
| NII.                 | 9.14                       | 9.81                        | 8.63                         | 8.64                        | 7.33                       | 8.71                       | 7.04                       |
| NIII.                | 8.80                       | 9.44                        | 8.90                         | 10.02                       | 8.08                       | 8.74                       | 7.41                       |
| NI.<br>NII.<br>NIII. | PI<br>8.93<br>9.14<br>8.80 | PII<br>8.73<br>9.81<br>9.44 | PIII<br>8.70<br>8.63<br>8.90 | PI<br>9.18<br>8.64<br>10.02 | PI<br>6.89<br>7.33<br>8.08 | PI<br>8.03<br>8.71<br>8.74 | PI<br>7.73<br>7.04<br>7.41 |

75

# Evaluation of Alfalfa Response to Phosphorus and Potassium Fertilization

## E. C. Holt and P. A. Rich<sup>1</sup>

### SUMMARY

Brazos River bottom soils are generally high in phosphorus and potassium. A test was conducted in 1978-80 to determine if phosphorus and potassium fertilization improves the performance of alfalfa on these soils. Phosphorus was applied at the rates of 60, 120 and 180 pounds per acre as top dressing in 1978 and again in 1980. Potassium was applied at the rate of 120 pounds per acre in combination with 120 and 180 pounds of phosphorus. A significant response to phosphorus occurred in 1980 accounted for largely by the 60 pounds per acre rate. There was no response to potassium in addition to phosphorus.

### Introduction

Alfalfa is well adapted to the Brazos River bottom soils which are high in phosphorus and potassium. A test conducted in the Brazos River bottom near College Station in the late 1940's showed no response the first year to 80 pounds of phosphoric acid annually but increasing responses in the succeeding two years (1). Some stand failures and poor performances in recent years have raised the question of adequacy of phosphorus and potassium. A test was initiated in 1978 to provide information on this question.

### Experimental Procedure

'Moapa' alfalfa was seeded in 12-inch drill rows at the rate of 10 pounds of seed per acre on December 19, 1977. The soil is an alluvial Norwood fine silty loam (fine, loamy, mixed, thermic typic udifluvents) in the Brazos River bottom near College Station. The plots are 5' x 20' with harvest from the center 3' x 17'. The following fertilizers were applied at planting and again in April, 1980: 0-0-0, 0-60-0, 0-120-0, 0-180-0, 0-120-120, 0-180-120. Harvests were made in the 1/10-1/4 bloom stage on the dates shown in Table 1.

### Results

Good stands were obtained and no winter damage occurred even though the test was planted late (Dec. 19). The yield data are given in Table 1. Average annual yields were 5 tons per acre and increased about 500 pounds per year. The only treatments that did not show an increasing trend in 1980 were the check (0-0-0) and 0-120-120.

Statistical analysis were conducted only on the three-year data so differences among years or among treatments within years have not

KEYWORDS: Alfalfa, hay, fertilization, phosphorus, potassium.

<sup>1</sup> Professor and research associate, respectively, Soil & Crop Sciences Department, College Station, Texas 77843. been tested statistically. There appeared to be no trend or pattern among treatments until 1980 unless it was toward a reduced yield with higher combination rates of P and K in 1978. The three-year averages show a significantly higher (P<.10) yield with phosphorus than without phosphorus. The difference required for significance per cutting is 172 pounds. The K effect was not significant.

Visual inspection of the data indicate that the P effect did not show up until 1980. Both visual inspection of the data and the significant quadratic component indicate that the response is entirely to the first 60 pounds of  $P_{205}$ . These data agree with those reported earlier (1) at this location and indicate that soil phosphorus is fairly adequate during the first one or two years, but that phosphorus fertilization is necessary for sustained production of high yields.

### Literature Cited

1. Staten, Raymond O. 1957. Alfalfa production in Texas. Texas Agric. Exp. Stn. Bull. 855. 24 P.

|         |       |        | ·····   |         |           |           |
|---------|-------|--------|---------|---------|-----------|-----------|
| Harvest | 0-0-0 | 0-60-0 | 0-120-0 | 0-180-0 | 0-120-120 | 0-180-120 |
| 6/2/78  | 2510  | 26.20  | 2590    | 24.80   | 2100      | 0500      |
| 7/11/78 | 3720  | 3650   | 2590    | 2400    | 2190      | 2520      |
| 8/15/78 | 1530  | 1670   | 1/20    | 1190    | 3510      | 3280      |
| 9/26/78 | 2530  | 2500   | 2240    | 1100    | 1420      | 1220      |
| 2720770 |       | 2300   |         | 2300    | _2390     | 2260      |
| Total   | 10290 | 10440  | 9840    | 9090    | 9510      | 9280      |
|         |       |        |         |         |           |           |
| 6/12/79 | 2420  | 2360   | 2520    | 2450    | 2460      | 2380      |
| 7/18/79 | 3030  | 2900   | 2500    | 2870    | 2860      | 2860      |
| 8/14/79 | 2480  | 2690   | 3080    | 2660    | 2290      | 2790      |
| 9/24/79 | 2400  | 2510   | 2240    | 2170    | 2410      | 2360      |
| Total   | 10330 | 10460  | 10340   | 10150   | 10020     | 10390     |
| 5/27/00 | 2/ 90 | 1060   |         |         |           |           |
| 5/27/60 | 3480  | 4360   | 4480    | 4390    | 3830      | 4770      |
| 0/20/80 | 2120  | 2450   | 2420    | 2730    | 2100      | 2530      |
| //21/80 | 2150  | 2430   | 2600    | 2710    | 2270      | 2560      |
| 9/23/80 | 1550  | 1840   | 2010    | 1740    | _1770     | 2060      |
| [otal   | 9300  | 11080  | 11510   | 11570   | 9970      | 11920     |
|         |       |        |         |         |           |           |

Table 1. Yield of Moapa alfalfa with varying phosphorus and potassium levels, Brazos River Bottom near College Station

# Nitrogen vs Clover on Pensacola Bahiagrass

### G. W. Evers\*

### SUMMARY

Pensacola bahiagrass production did not increase significantly above 225 lb N/ac. Total production of Pensacola bahiagrass overseeded with clovers was similar to bahiagrass receiving 150 to 200 lb N/ac. Mt. Barker subterranean and Yuchi arrowleaf clovers produced 2000 and 500 lb/ac respectively by Mar. 29. Summer nitrogen fertilization of clover-bahiagrass plots reduced Mt. Barker and Yuchi growth the following winter and early spring by 33 and 64%, respectively. Overseeded clovers provided as effective spring weed control as Princep.

### Introduction

Clovers are overseeded on warm season perennial grasses in an effort to substitute symbiotically fixed nitrogen for expensive nitrogen fertilizer. The addition of clovers also extends the grazing season which reduces the winter feeding period. The extent of these clover benefits will depend on the forage species and the management, climatic and edaphic conditions under which they are grown. The effects of nitrogen rates, overseeding clovers and applying Princep for weed control was investigated on the production and distribution of Pensacola bahiagrass.

### Methods and Materials

Pensacola bahiagrass was seeded on a Crowley very fine sandy loam at Eagle Lake in the spring of 1977. In 1978 and 1979 treatments were 0, 75, 150, 225 and 300 lb N/ac and 0, 75 and 150 lb N/ac plus 1 lb/ac of Princep applied in late February for weed control. Nitrogen treatments were divided in three equal applications on Apr. 1, June 1 and Aug. 1. Additional treatments were bahiagrass overseeded in the fall of 1978 with Yuchi arrowleaf and Mt. Barker subterranean clovers with no nitrogen or 50 lb N/ac on June 1 and Aug. 1.

Ninety pounds of phosphorus and 60 lb potassium per acre were applied each fall. Plots were 6 x 15 ft in a randomized block design with four replications. Plots were harvested about once a month with a flail mower at a 1 inch height. Botanical composition was estimated visually.

### Results and Discussion

Forage production increased as nitrogen rate increased but with no significant gain above the 225 N rate for the nitrogen only treatments (Table 1). Approximately half of the total forage production occurred

<sup>\*</sup> Associate professor, Texas A&M Agricultural Research and Extension Center, Angleton, Texas 77515.

|                    |         |         |          | Harvest  | dates   |          |          |         |          |
|--------------------|---------|---------|----------|----------|---------|----------|----------|---------|----------|
|                    | Dec. 19 | Mar. 29 | May 7    | June 11  | July 9  | Aug. 16  | Sept. 11 | Oct. 16 | Total    |
|                    |         |         |          |          | 1b/ac   |          |          |         |          |
| 0 N                |         |         | 635 f    | 1141 f   | 775 ef  | 882 de   | 369 bc   | 113 cd  | 3915 h   |
| 75 N               |         |         | 1026 ef  | 1587 de  | 1014 de | 1212 bcd | 360 bc   | 177 cd  | 5376 fg  |
| 150 N              |         |         | 1417 de  | 2065 bc  | 1351 bc | 1421 b   | 382 bc   | 245 abc | 6881 de  |
| 225 N              |         |         | 2474 a   | 2809 a   | 1499 ab | 1425 b   | 494 bc   | 317 ab  | 9018 ab  |
| 300 N              |         |         | 2041 abc | 2905 a   | 1498 ab | 1953 a   | 536 bc   | 361 a   | 9294 a   |
| 0 N + Princep      |         |         | 1048 ef  | 1392 ef  | 655 f   | 619 e    | 328 c    | 108 d   | 4160 gh  |
| 75 N + Princep     |         |         | 1557 cde | 1800 cd  | 1032 de | 1112 b-е | 367 bc   | 147 cd  | 6015 ef  |
| 150 N + Princep    |         |         | 1841 bcd | 2371 b   | 1350 bc | 1330 bc  | 551 bc   | 212 bcd | 7655 bcd |
| Yuchi              |         | 548 b   | 2263 ab  | 1819 cd  | 1580 ab | 617 e    | 347 c    | 146 cd  | 7320 cde |
| Yuchi + 100 N      |         | 197 c   | 2411 ab  | 2113 bc  | 1347 bc | 763 de   | 651 b    | 240 a-d | 7722 bcd |
| Mt. Barker         | 727 a*  | 1360 a  | 2341 ab  | 1490 def | 1148 cd | 669 e    | 602 bc   | 158 cd  | 8495 abc |
| Mt. Barker + 100 N | 338 b   | 1058 a  | 2601 a   | 1529 def | 1725 a  | 673 e    | 961 a    | 231 bcd | 9116 ab  |

Table 1. Forage production of Pensacola bahiagrass overseeded with clover or receiving nitrogen fertilizer 1979.

\*Yields within a column followed by the same letter are not significantly different at .05 level, Duncan's Multiple Range Test.

by the second harvest on June 11. The low production in summer and early fall is due to the low water holding capacity of the shallow soil. A clay pan 10 to 14 inches below the soil surface restricts water and root penetration. Rainfall in excess of  $\frac{1}{2}$  to 3/4 inch is lost through evaporation or run off. Therefore rain or irrigation is required every 10 to 14 days to maintain grass growth.

Princep improved forage production at the first harvest at all three nitrogen rates but only the 75 N rate was significantly higher. In contrast to Coastal bermudagrass and dallisgrass, bahiagrass forms a thick tight sod which is very competitive to emerging weed seedlings.

Mt. Barker subterranean and Yuchi arrowleaf clovers produced 2000 and 500 lb/ac, respectively by Mar. 29. Total production of Pensacola bahiagrass overseeded with clovers was similar to bahiagrass receiving 150 to 200 lb N/ac. Applying 50 lb N/ac on June 1 and Aug. 1 to cloverbahia mixtures the previous growing season reduced forage production of Mt. Barker and Yuchi by 33 and 64%, respectively. Summer fertilization increased grass growth and vigor so that it was more competitive to the fall emerging clover seedlings.

There was little difference in weed production in the nitrogen only treatments at the May 7 harvest (Table 2). Applying Princep significantly reduced weed yields at each of the three low nitrogen treatments. Weed production on bahiagrass overseeded with clovers was not significantly different from the Princep treatments.

|     |   | May 7 harvest. |                 |         |
|-----|---|----------------|-----------------|---------|
|     |   | lb/ac          |                 | lb/ac   |
| 0   | N | 360 b*         | 0 N + Princep   | 7 d     |
| 75  | N | 640 a          | 75 N + Princep  | 158 bcd |
| 150 | N | 385 b          | 150 N + Princep | 45 d    |
| 225 | N | 363 b          | arrowleaf       | 101 cd  |
| 300 | N | 313 bc         | subclover       | 37 d    |
|     |   |                |                 |         |

Table 2. Weed production on Pensacola bahiagrass at May 7 harvest.

\*Yields followed by the same letter are not significantly different at .05 level, Duncan's Multiple Range Test.

### Nitrogen vs Clover on Coastal Bermudagrass

### G. W. Evers\*

### SUMMARY

Coastal bermudagrass overseeded with Yuchi arrowleaf or Mt. Barker subterranean clovers produced as much forage as Coastal alone with about 100 lb N/ac. Mt. Barker and Yuchi produced 2400 and 500 lb/ac respectively by March 29. Applying 50 lb/ac on June 1 and Aug. 1 the previous growing season restricted clover growth by 60 percent. There was no significant difference in weed production on plots seeded with clover or sprayed with Princep.

#### Introduction

Major advantages of adding clovers to warm season perennial grasses are to extend the grazing season and use atmospheric nitrogen instead of expensive nitrogen fertilizer. The degree of improvement is dependent on adaptability and growth rate of the clover and grass and how they are managed and utilized. Performance of specific clover-grass mixtures needs to be characterized for the contrasting climatic regions of the state. Forage production and distribution of Coastal bermudagrass receiving various nitrogen fertilizer rates with and without Princep or overseeded with Yuchi arrowleaf for Mt. Barker subterranean clovers was determined on a fine sandy loam rice soil in Southeast Texas.

### Methods and Materials

Coastal bermudagrass was sprigged on a Crowley very fine sandy loam at Eagle Lake in the spring of 1977. In 1978 and 1979 treatments were 0, 75, 150, 225 and 300 lb N/ac and 0, 75 and 150 lb N/ac plus l lb/ac of Princep applied in late February for weed control. Nitrogen treatments were divided in three equal applications on April 1, June 1 and August 1. Additional treatments were Coastal overseeded in the fall of 1978 with Yuchi arrowleaf and Mt. Barker subterranean clovers with no nitrogen or 50 lb N/ac on June 1 and August 1.

Ninety pounds of phosphorus and 60 lb potassium per acre were applied each fall. Plots were 6 x 15 ft in a randomized block design with four replications. Plots were harvested about once a month with a flail mower at a 1 inch height. Botanical composition was estimated visually.

### Results and Discussion

Forage production increased as the nitrogen rate increased on the treatments that received nitrogen only (Table 1). However, there was not a significant forage increase from the 225 to 300 N treatment. Coastal is more responsive to high N rates on deep soils. On this soil, root growth is restricted by a clay pan 10 to 14 inches below the soil surface. This frequently causes moisture to be the most limiting factor during summer and early fall. One third of the total yield was produced

\* Associate professor, Texas A&M University Agricultural Research Station, Angleton, Texas 77515.

|                    |         | 17      |         | Harv    | est dates |         | 1        |         |          |
|--------------------|---------|---------|---------|---------|-----------|---------|----------|---------|----------|
| ·                  | Dec. 19 | Mar. 29 | May 9   | June 5  | July 16   | Aug. 22 | Sept. 17 | Oct. 18 | Total    |
|                    |         |         |         |         | - 1b/ac   |         |          |         |          |
| 0 N                |         |         | 1576 d  | 805 f   | 792 c     | 345 def | 248 e    | 228 d   | 3994 i   |
| 75 N               |         |         | 2198 cd | 1088 ef | 1545 b    | 390 c-f | 532 cde  | 483 cd  | 6236 gh  |
| 150 N              |         |         | 3192 b  | 1792 cd | 2143 a    | 454 b-e | 624 b-e  | 807 ab  | 9012 de  |
| 225 N              |         |         | 4902 a  | 2379 b  | 2191 a    | 554 b   | 601 b-e  | 896 ab  | 11523 ab |
| 300 N              |         |         | 4598 a  | 3373 a  | 2128 a    | 721 a   | 900 abc  | 985 a   | 12705 a  |
| 0 N + Princep      |         |         | 2263 cd | 895 f   | 712 c     | 283 f   | 243 e    | 243 d   | 4639 i   |
| 75 N + Princep     |         |         | 3458 b  | 1498 de | 1535 b    | 459 b-e | 542 cde  | 420 cd  | 7912 ef  |
| 150 N + Princep    | 42      |         | 4537 a  | 2208 bc | 2107 a    | 502 bcd | 677 a-d  | 751 ab  | 10782 bc |
| Yuchi              |         | 483 bc  | 2911 bc | 1492 de | 2173 a    | 388 c-f | 505 cde  | 271 d   | 8223 e   |
| Yuchi + 100 N      |         | 190 c   | 2160 cd | 1119 ef | 1075 bc   | 405 bf  | 1036 a   | 667 bc  | 6652 fg  |
| Mt. Barker         | 883 a*  | 1487 a  | 2912 bc | 861 f   | 1027 bc   | 303 ef  | 300 de   | 347 d   | 8120 e   |
| Mt. Barker + 100 N | 405 b   | 562 b   | 2772 bc | 1144 ef | 2443 a    | 539 bc  | 948 ab   | 739 ab  | 9552 cd  |

Table 1. Forage production of Coastal bermudagrass overseeded with clover or receiving nitrogen fertilizer 1979.

\*Yields within a column followed by the same letter are not significantly different at the .05 level, Duncan's Multiple Range Test.

by May 9 and over half by June 5. Applying Princep for weed control allowed a significant forage increase at the 75 and 150 N rate at the first harvest and for total yield.

Overseeding with clover did provide earlier forage production. Mt. Barker subterranean clover produced over a ton of dry matter by March 29. Summer nitrogen application the previous growing season restricted Yuchi and Mt. Barker growth by 60 percent. Nitrogen fertilization of clover-Coastal mixtures stimulated grass growth which made the grass sod more competitive to the fall emerging clover seedlings. Coastal overseeded with clovers produced as much forage as Coastal alone with about 100 1b of nitrogen.

Weed production in the nitrogen only treatments decreased as nitrogen rate increased (Table 2). The higher nitrogen rates caused a more competitive sod which restricted weed growth. Princep significantly reduced weed production at all three nitrogen rates. Weed yields on plots overseeded with clovers were not significantly different from the Princep treated plots.

|       | lb/ac   |                 | 1b/ac   |
|-------|---------|-----------------|---------|
| 0 N   | 1355 a* | 0 N + Princep   | 122 de  |
| 75 N  | 1213 a  | 75 N + Princep  | 154 cde |
| 150 N | 990 ab  | 150 N + Princep | 81 de   |
| 225 N | 695 bc  | arrowleaf       | 206 cde |
| 300 N | 590 bcd | subclover       | 330 cde |
|       |         |                 |         |

Table 2. Weed production at May 9 harvest.

\*Yields followed by the same letter are not significantly different at the .05 level, Duncan's Multiple Range Test.

# Evaluation of Alfalfa Cultivars for Hay Production

# E. C. Holt<sup>1</sup>

#### SUMMARY

Fourteen alfalfa varieties were evaluated for yield during a three-year period in the Brazos River bottom near College Station. Several varieties averaged over 6 tons production per acre over the three-year period even though two cuttings were lost because of insect damage. Alfalfa weevil and fall army worm were the insects causing the most damage.

### Introduction

Alfalfa is recognized as the "Queen of Hay" plants because of its high level of potential production and excellent forage quality. Alfalfa is best adapted to deep, fertile, well-drained soils. While alfalfa is drought resistant in terms of plant survival, it requires large amounts of water for maximum production. Approximately 80% of the acreage grown for hay in Texas is found in the High Plains, Rolling Plains, and Trans-Pecos areas. The remaining acreages are largely in the Red, Brazos, and Rio Grande River bottoms. The High Plains, Trans Pecos, and Rio Grande River bottom acreages are essentially all irrigated. Average hay yield is about 4.7 tons per acre, ranging from less than 3 tons to more than 6 tons.

# Experimental Procedure

The varieties listed in Table 2 were planted October 13, 1977 on alluvial Miller clay soil at College Station (Brazos River--bottom). Seeding rate was 15 pounds of seed per acre. Plots consisted of 5 12-inch rows, 20 feet long, replicated 5 times. Harvests were made in the early bloom stage except when delayed by rainfall. The plot area received 0-60-0 fertilizer at planting, April 1979 and April 1980. Approximately 3 acre inches of irrigation water were applied each on June 21 and August 15, 1978, July 3 and July 9, 1979. Rainfall recorded near the test site at College Station is shown in Table 1.

### Results and Discussion

Alfalfa planted in the fall of 1977 at College Station produced 2 tons of hay per acre by the following May (Table 2). Four cuttings were harvested each in 1978 and 1979 and 3 cuttings in 1980. Regrowth following the August 1979 harvest was defoliated by fall army worms and not harvested. Similarly, the first growth in 1980 which should have been harvested in late April was defoliated by the Alfalfa weevil during a rainy period when we could not get into the field to control the insect.

KEYWORDS: Alfalfa varieties, hay yield, insect damage.

<sup>1</sup> Professor, Soil & Crop Sciences Department, College Station, Texas 77843. There were no significant differences among varieties in production during the three-year period. Yield per cutting was as high in 1980 as in 1978. Yield per year was down in the third year but due to the loss of one cutting from insect damage which did not occur in 1978. Also, rainfall was very limited in 1980 and no irrigation water was applied.

There is some indication that some varieties were losing vigor while others were not. Arc increased in yield each year while Mesilla and Williamsburg decreased each year. The difference between Arc and each of the two decreasers showed a significant (P<0.05) linear relationship. Stands of all cultivars in the spring of 1981 appeared to be satisfactory for production.

Insects are a major problem at times in alfalfa production, fall army worms and alfalfa weevil referred to previously being specific examples. Both are controllable with insecticides but require close monitoring because excessive damage can occur within short periods. Alfalfa cultivars are available that are resistant to one or more of the following insects: alfalfa weevil, spotted alfalfa aphid, pea aphid, and potato leaf hopper. However, insecticides to control alfalfa weevil may be necessary at times even with resistant varieties.

Inadequate soil moisture may severely restrict alfalfa yields at times. Apparently this was the reason for the lack of a fall cutting in 1980. There was essentially no effective rainfall from May until September 8. Only erratic regrowth occurred after the August 1 harvest. Recovery was poor after early September rainfall until after the first of October. Conditions did not permit the late fall growth to reach the bloom stage.

The data in this report indicate that alfalfa with adequate insect control will produce in excess of 5 tons of hay annually and that stands may be expected to persist three or more years under most conditions in the Brazos River bottom. The performance of additional varieties in the Brazos River bottom has been reported by Holt (1). Less drought stress was encountered in the earlier study, and yields ranged from 5 to 8 tons per acre over a three-year period.

### Literature cited

Holt, Ethan C. 1978. Evaluation of alfalfa varieties for hay production. Texas Agric. Exp. Sta. PR-3481. 6 P.

> Table 1. Rainfall during the growing season, University Farm, Burleson County, near College Station

|           | Rainfall ir inches |      |      |  |  |  |
|-----------|--------------------|------|------|--|--|--|
| Month     | 1978               | 1979 | 1980 |  |  |  |
| March     | 2.72               | 4.77 | 5.65 |  |  |  |
| April     | 1.62               | 3.93 | 1.44 |  |  |  |
| May       | 2.49               | 9.23 | 5.97 |  |  |  |
| June      | 3.85               | 1.13 | .61  |  |  |  |
| July      | .87                | 5.01 | . 38 |  |  |  |
| August    | .45                | 1.12 | . 20 |  |  |  |
| September | 7.56               | 1.30 | 3.97 |  |  |  |
| October   | 3.18               | 1.30 | 3.22 |  |  |  |

|                |        |          |             |         |       |          | Date of I | larvest1 |        |       |        |         |       |       |          |
|----------------|--------|----------|-------------|---------|-------|----------|-----------|----------|--------|-------|--------|---------|-------|-------|----------|
| Cultivar       | May 16 | June 21  | <u>1978</u> | Capt 20 |       |          |           | 1979     |        |       |        | 1980    | )     |       | Average  |
|                | 1 10   | bulle 21 | JULY 18     | Sept 26 | Iotal | April 25 | June 22   | July 23  | Aug 28 | Total | June 2 | June 28 | Aug 1 | Total | cutting2 |
| 1 Arc          | 4520   | 3100     | 2290        | 1780    | 11690 | 2690     | 4220      | 3200     | 2560   | 12670 | 6230   | 2510    | 2040  | 10780 | 3195     |
| 2 Olympic      | 4650   | 4430     | 2550        | 1910    | 13540 | 2310     | 4690      | 3220     | 2440   | 12660 | 5450   | 2760    | 1510  | 10020 | 3293     |
| 3 Kan 2A       | 4130   | 3940     | 2560        | 2080    | 12710 | 1400     | 3960      | 3040     | 2610   | 11010 | 5440   | 2720    | 2040  | 10200 | 3084     |
| 4 NAP B42      | 4830   | 4160     | 2640        | 2010    | 13640 | 2260     | 4630      | 3320     | 2470   | 12680 | 5590   | 2570    | 1810  | 9970  | 3299     |
| 5 Saranac      | 3810   | 4330     | 2150        | 1840    | 12130 | 1820     | 4130      | 2940     | 2720   | 11610 | 5010   | 2440    | 1830  | 9280  | 3002     |
| 6 WL512        | 4360   | 3960     | 2740        | 2020    | 13080 | 1420     | 3560      | 2910     | 2860   | 10750 | 4520   | 2620    | 2090  | 9230  | 3006     |
| 7 Apollo       | 4260   | 4050     | 2750        | 2120    | 13180 | 1910     | 4760      | 2830     | 2190   | 11690 | 5360   | 2780    | 2260  | 10400 | 3206     |
| 8 Team         | 4460   | 4000     | 2330        | 1970    | 12760 | 2880     | 4460      | 3360     | 2450   | 13150 | 5820   | 2680    | 1730  | 10230 | 3268     |
| 9 Williamsburg | 4210   | 4320     | 2110        | 1890    | 12530 | 1780     | 4310      | 3300     | 2690   | 12080 | 4450   | 2390    | 1780  | 8620  | 3021     |
| 10 Dawson      | 3770   | 4050     | 2360        | 1770    | 11950 | 1920     | 5180      | 3010     | 2320   | 12430 | 4570   | 2170    | 1870  | 8610  | 2999     |
| ll WL318       | 4390   | 4460     | 2540        | 1190    | 13290 | 2140     | 3830      | 3170     | 2810   | 11950 | 5170   | 2730    | 2270  | 10170 | 3219     |
| 12 Zia         | 3620   | 4120     | 2730        | 1910    | 12380 | 1650     | 4310      | 2870     | 2770   | 11600 | 4740   | 2650    | 1840  | 9230  | 3019     |
| 13 Mesilla     | 4370   | 3970     | 2530        | 2180    | 13050 | 1330     | 3880      | 2900     | 2430   | 10540 | 3460   | 2660    | 2020  | 8140  | 2885     |
| 14 Moapa       | 3760   | 4130     | 3000        | 2070    | 12960 | 1180     | 3470      | 2990     | 2740   | 10380 | 4700   | 2560    | 2190  | 9450  | 2981     |

| TABLE | 2.   | HAY   | PRODUCTION  | OF | ALFALFA | CULTIVARS. | BRAZOS  | DIVED  | POTTOM  | DUDI DOON | 001111  |  |
|-------|------|-------|-------------|----|---------|------------|---------|--------|---------|-----------|---------|--|
|       | NEAD | R COI | LEGE STATIC | ON |         | , , ,      | BIGIBOD | KT VER | BOITOM, | BURLESON  | COUNTY, |  |

<sup>1</sup>Pounds dry forage per acre

<sup>2</sup> Values not significantly different (P>0.05)

# Alfalfa Variety Performance in the Brazos River Bottom

E. C. Holt and P. A. Rich<sup>1</sup>

#### SUMMARY

Alfalfa produces relatively high yields of high quality hay on the Brazos River bottom alluvial soils. Twenty-four cultivars (varieties) were planted on Norwood sandy loam in late October 1979 and harvested five times and six times in the early bloom stage in 1980 and 1981, respectively. The first cutting in 1980, lost to alfalfa weevil damage and not included in the yields, averaged 2.2 tons per acre on undamaged plants. There was no effective rainfall from May 16 to September 7, 1980. The plot area was irrigated (approximately 3 inches) on July 18 and again on August 25, 1980. Several cultivars produced approximately six tons of hay each year with two tons of that being lost in 1980 due to alfalfa weevil damage and not included in the reported yields. If the estimated yield lost to alfalfa weevil damage is included in 1980, production in an extremely dry season with two irrigations was approximately the same as in 1981 which was a good rainfall year.

### Introduction

Alfalfa is adapted to the alluvial soils of the Brazos River bottom. Four to six cuttings of hay may be expected with annual production in the range of five to six tons per acre. Alfalfa weevil is currently the most critical insect pest though other insects pose some hazard to either production or the harvested hay. Stand persistence is generally limited to two to four years. This study is being conducted to evaluate the potential of a number of cultivars for production and for stand persistence.

# Experimental Procedure

Twenty four cultivars or experimental lines of alfalfa were seeded on November 14, 1979 on Norweed sandy loam soil (fine loamy, mixed, thermic, Udertic Haplustoll). Plots were 5 12-inch rows, 20 feet long, with 6 replications. The seeding rate was 20 pounds per acre. Plots were harvested and dry forage yields determined on May 23, June 20, August 1, September 24 and October 31, 1980; and April 3, May 20, June 29, July 27, September 11 and November 20, 1981. Erratic and very heavy alfalfa weevil damage occurred in May 1980 and rainfall prevented either insecticide treatment or earlier harvest. As a result, a reliable estimate of individual cultivar yield on that date was not possible and the May 23 harvest is not included in Table 1 yields.

The 1980 growing season was extremely dry, no effective rainfall between May 16 and September 26. Total rainfall during that 113-day period was 1.97 inches with no rain exceeding 0.3 inches. Drought stress occurred in irregular patterns in the plot area. Irrigation

KEYWORDS: Hay production, alfalfa, cultivars, alfalfa weevil damage.

<sup>1</sup> Professor and research associate, respectively, Soil & Crop Sciences Department, College Station, Texas 77843. water was applied on July 18 and August 25, approximately 3 inches each time, to reduce variability among plots.

### Results and Discussion

Forage yields are summarized in Table 1. The 1980 yields do not include the May 23 cutting which was damaged by alfalfa weevil. Samples harvested from undamaged areas on May 23 indicated an average yield of 2.2 tons per acre which corresponds to expected first cutting yields in the spring of about 2 tons per acre. Harvested yields were in the range of 3 to 4 tons per acre the first year and five to six tons per acre the second year, with a two-year average of 4 to 5 tons per acre. The latter would have been about one ton higher had one cutting not been lost. The yields, even if the May 1980 harvest is included, are a little below previous reports at this same site (Holt, 1978, 1980).

The effect of drought stress on yields was lessened by two irrigations but certainly not eliminated. We think that stands would have survived in the absence of irrigation and that considerable growth would have been made but the data would have been much more variable.

Yield differences among cultivars, approximately one ton each year, were not significant statistically. Cultivar rankings varied to some extent between years. Mesilla which ranked second the first year dropped to 12 the second year and WL 512 dropped from 7 to 16. On the other hand, Cimarron, Williamsburg, K7-28 and Riley moved up in rank in the second year. Florida 66a ranked at the top both years and Common was near the top both years. When insect and disease problems are not encountered, Common usually performs satisfactorily because it is a mixture of types. In the presence of specific diseases or insects, cultivars carrying specific resistance to that pest would be expected to show superior performance.

#### Literature Cited

- Holt, E. C. 1980. The performance of alfalfa at selected sites in Texas. <u>In</u> Dairy Research in Texas. Texas Agric. Exp. Stn. CPR-37333751. PR-3748. P. 91-96.
- Holt, E. C. 1978. Evaluation of alfalfa varieties for hay production. Texas Agric. Exp. Stn. PR-3481. 6 P.

| Tons of dry forage per acre |                    |      |      |      |      |       | 2   |  |
|-----------------------------|--------------------|------|------|------|------|-------|-----|--|
| Cu                          | ltivar             | 1980 |      | 1981 |      | Avera | age |  |
| 10                          |                    | 1 26 | (1)  | ( 10 | (1)  | 5 0/  |     |  |
| 10                          | Florida oba        | 4.30 | (1)  | 5.12 | (1)  | 5.24  | a   |  |
| 4                           | Common             | 4.00 | (3)  | 5.94 | (2)  | 5.01  | ab  |  |
| 14                          | WL 318             | 4.07 | (4)  | 5.40 | (4)  | 4.//  | DC  |  |
| 2                           | Cimarron           | 3.86 | (9)  | 5.58 | (3)  | 4.12  | DC  |  |
| 1/                          | H1-phy             | 3.95 | (5)  | 5.40 | ()   | 4.68  | bc  |  |
| 23                          | Mesilla            | 4.18 | (2)  | 5.16 | (12) | 4.6/  | bc  |  |
| 15                          | Williamsburg       | 3.84 | (10) | 5.46 | (5)  | 4.65  | bc  |  |
| 5                           | Classic            | 3.86 | (8)  | 5.31 | (9)  | 4.59  | bc  |  |
| 3                           | К7-28              | 3.80 | (12) | 5.37 | (8)  | 4.59  | bc  |  |
| 1                           | Riley              | 3.76 | (14) | 4.53 | (6)  | 4.59  | bc  |  |
| 20                          | NK-78010 (Raidor)  | 3.76 | (13) | 5.19 | (11) | 4.48  | cd  |  |
| 16                          | WL 512             | 3.86 | (7)  | 5.04 | (16) | 4.45  | cd  |  |
| 9                           | Kanza              | 3.64 | (19) | 5.28 | (10) | 4.46  | cd  |  |
| 13                          | Olympic            | 3.88 | (6)  | 5.01 | (17) | 4.45  | cd  |  |
| 18                          | NAPB 42 (Vanguard) | 3.60 | (20) | 5.10 | (13) | 4.35  | cd  |  |
| 6                           | Apollo             | 3.54 | (22) | 5.07 | (14) | 4.31  | d   |  |
| 11                          | K7-29 (Bancor)     | 3.50 | (23) | 5.04 | (15) | 4.27  | d   |  |
| 21                          | Arc                | 3.72 | (16) | 4.80 | (19) | 4.26  | d   |  |
| 12                          | Saranac            | 3.76 | (15) | 4.74 | (21) | 4.25  | d   |  |
| 24                          | Zia                | 3.66 | (18) | 4.80 | (20) | 4.23  | d   |  |
| 22                          | Моара              | 3.72 | (19) | 4.71 | (22) | 4.22  | d   |  |
| 7                           | Dawson             | 3.82 | (11) | 4.59 | (24) | 4.21  | d   |  |
| 8                           | Team               | 3.56 | (21) | 4.92 | (18) | 4.12  | d   |  |

Yield of alfalfa cultivars, University Farm near College Station, Table 1. 1980-81

1 Yields were not significantly different, Fisher's LSD, Numbers in ( ) are rankings within years. Mean separation based on BLSD at 0.05 level. 2

# Evaluation of Temperate Annual Clovers

E. C. Holt and P. A. Rich

### SUMMARY

Twelve species of temperate annual clovers and one Medicago species were evaluated for early and total forage production at College Station in 1980-81. Berseem, persian and rose clovers made the best early growth. The best total production was by berseem and subterranian clovers, exceeding 7,000 pounds per acre, followed by rose clover with over 6,000 pounds per acre. Differences within species for both early and total production indicate potential for improvements by breeding.

### Introduction

Legumes are needed in forage production because their nitrogen requirements can be met through biological nitrogen fixation. Perennial temperate legumes are generally poorly adapted in Texas because of the hot, dry summer climate. Self-seeding temperate annuals may meet part of the requirements. They have good forage quality and may extend the growing season several weeks when seeded in conjunction with warm-season grasses. This study was conducted to determine the potential of several species and sources within species for early and total forage production.

### Experimental Procedure

Twenty-seven cultivars and plant introductions representing 12 Trifolium species and one Medicago species were planted on October 10, 1980 in plots consisting of 5 30-cm rows, 6 m long, 4 replications, on Norwood sandy loam soil. The fall and winter were mild, permitting above average plant growth. Three center rows, 5.1 m long, from each plot were harvested with a flail mower at about 4 cm height on March 25, 1981 for dry matter yield determination. On May 12, 1981, a 0.4 m<sup>2</sup> plant sample was removed from each plot at the soil surface level to estimate total dry matter development exclusive of the previously harvested material.

### Results and Discussion

Berseem clover (<u>T</u>. <u>alexandrium</u>) made the best early growth, followed closely by persian (<u>T</u>. <u>resupinatum</u>), rose (<u>T</u>. <u>hirtum</u>) and arrowleaf (<u>T</u>. <u>vesiculosum</u>). <u>Trifolium diffusum</u> also made good early growth. If total plant top development had been measured at the first harvest, likely subterranean clover also would have shown good early production. Much of its development was likely below the mower height.

KEYWORDS: Temperate legumes, forage production, early production.

<sup>1</sup> Professor and research associate, respectively, Soil & Crop Sciences Department, College Station, Texas 77843. The best total production was by berseem and subterranean clover followed by rose, <u>T</u>. <u>balansae</u> and <u>T</u>. <u>diffusum</u>. Arrowleaf production has been in the range of 6,000 to 7,000 kg/ha in previous studies but totaled only 4,300 to 4,900 kg/ha in this study. Arrowleaf is normally later in maturing than May 12, but made very little growth after that date in 1981.

Seedling vigor and early production is related to some extent to seed size. This could explain the superior early performance of berseem and rose clover and likely subterranean, had total top growth been measured. However, persian clover has smaller seed than arrowleaf, yet early growth equivalent to rose clover. Thus, its ability to emerge and grow rapidly after emergence is not dependent on seed size.

Several species including <u>T</u>. <u>cherangeniense</u>, <u>T</u>. <u>striatum</u>, and <u>T</u>. <u>studeneri</u> were entered in the test because they appear to be perennials. They remain green longer into the summer than other T. species observed at this location. However, none survived the extremely hot and dry conditions encountered in 1980 nor the much milder conditions encountered in 1981. Because of their failure to persist and their low early and total production, they will not be continued. <u>T</u>. <u>diffusum</u>, <u>T</u>. <u>balansae</u>, and <u>T</u>. <u>petrisarvi</u> appear to be about equal to some rose and arrowleaf sources. There may be conditions under which one or more of these species will be superior.

| Entry  |                   | Cultivar      |           | Kg DM/ha |       |
|--------|-------------------|---------------|-----------|----------|-------|
| number | Species           | or P.I.       | 3/25      | 5/12     | Total |
| 20     | T Jauan durium    | lifestenboudu | 2410ab    | 1220had  | 7740  |
| 20     | 1. alexandrium    | Winternardy   | 3410aD    | 4330DC0  | 7740  |
| 25     | 1. Subterraneum   | Nangeria      | 1320JKIM  | 5790a    | 7020  |
| 24     | 1. subterraneum   | woogeneirup   | 1820gn1jk | 5200aD   | 7020  |
|        | 1. alexandrium    | 251213        | 3900a     | 306Uerg  | 6860  |
| 20     | 1. subterraneum   | Mt. Barker    | 1//Ognijk | 45/0DC   | 6340  |
| /      | 1. subterraneum   | Miss. Sel.    | 10501m    | 5220ab   | 6270  |
| 21     | T. resupinatum    | Abon          | 23/0detg  | 3740cde  | 6110  |
| 27     | T. resupinatum    | Resel. Abon   | 2500def   | 3560def  | 6060  |
| 9      | T. resupinatum    | 173974        | 2700cde   | 3000efg  | 5700  |
| 5      | T. hirtum         | 311485        | 2790bcde  | 2880efg  | 5670  |
| 8      | T. resupinatum    | 141503        | 3090bc    | 2310ghi  | 5400  |
| 2      | T. balansae       | 120159        | 2320efgh  | 3000efg  | 5320  |
| 4      | T. diffusum       | 120144        | 3010bcd   | 2310ghi  | 5320  |
| 23     | T. hirtum         | Wilton        | 3030bcd   | 2180ghi  | 5210  |
| 3      | T. vesiculosum    | 233782        | 2320efgh  | 2660fgh  | 4880  |
| 7      | T. petrisarvi     | 279926        | 3310abc   | 1570ij   | 4880  |
| 8      | T. vesiculosum    | Amc1o         | 2750cde   | 1760hi   | 4610  |
| 6      | T. vesiculosum    | Yuchi         | 2840bcde  | 1590ij   | 4430  |
| 9      | T. vesiculosum    | Meechec       | 1930fahij | 2360ghi  | 4290  |
| 6      | T. lappaceum      | 120153        | 2410defg  | 14601.i  | 4070  |
| 0      | T. species        | 383738        | 2110fghi  | 1740hi   | 3850  |
| 4      | T. vesiculosum    | 233816        | 1530iiklm | 2220ghi  | 3750  |
| 3      | T. cherangeniense | 226101        | 980m      | 2660fah  | 3640  |
| 2      | T. hirtum         | Kondinin      | 3350abc   | 100k     | 3450  |
| 1      | T. striatum       | 226676        | 1030m     | 1660hi   | 2690  |
| 2      | T. studeneri      | 262239        | 1270k1m   | 640 ik   | 1910  |
| 5      | M. obicularis     | 197351        | 1680hijk1 | 100k     | 1780  |
|        |                   |               | C C       |          |       |

Table 1. Dry matter yield of temperate, annual legumes, College Station, 1981.

 $^{\rm l}{\rm Values}$  followed by a common letter are not significantly different at the 0.05 level.

### Forage Yields of Irrigated Legumes at Stephenville

Ronald M. Jones and J. C. Read\*

### SUMMARY

'Redman' red clover, 'Madrid' sweetclover, three cultivars of arrowleaf clover, four cultivars of subterranean clover, five cultivars of vetch, and two cultivars of crimson clover were tested for forage production. Redman produced 5719 pounds dry matter per acre, the highest yield in the test. 'Yuchi' produced more than the other arrowleaf clovers with 5031 pounds. Both 'Nova II' and 'Vanguard' vetch produced over 4900 pounds, which was higher than the other vetch cultivars. Vetch yields were reduced by early spring harvest. Madrid sweetclover produced 4558 pounds, and 'Clare' had the highest production of the subterranean clovers. Although total yield of 'Tibbee' crimson clover was low, early production was greater than any other winter hardy cultivar. Distribution of production among all cultivars ranged from early spring to early summer. All annual cultivars reseeded and produced acceptable stands in the fall of 1981, but common vetch and subterranean clover suffered freeze damage.

### Introduction

Legumes have long been recognized as high quality forage and are used for silage, pasture, and hay. Since they have high nitrogen content and utilize atmospheric nitrogen, many species were used as green manure crops before relatively inexpensive nitrogen fertilizer became available. Greater use of legumes may again be necessary as the cost of nitrogen fertilizer continues to rise. This test is an effort to find high-yielding legumes that are well adapted to north central Texas.

### Materials and Methods

Sixteen cultivars from seven species were seeded October 9, 1980 on Windthorst fine sandy loam. Fertilizer at the rate of 0-215-0 was applied September 18, 1980 and incorporated by disking. Seed were inoculated with appropriate <u>Rhizobium</u> species and seeded one-half inch deep at reco mmended rates in rows spaced one foot apart. Plots fifteen feet long and five rows wide were arranged in a randomized complete-block design with four replications.

<sup>\*</sup>Respectively, research associate, The Texas Agricultural Experiment Station, Stephenville, and associate professor, The Texas Agricultural Experiment Station, Dallas.

Irrigation was applied following planting to aid seedling emergence through crusted soil. Applications of 0.63, 1.0, 1.0, and 0.75 inch were made October 15, 24, 29 and November 14, respectively. Additional irrigation was applied December 1, February 17, and April 7 to supplement rainfall. Moisture that was received by the three harvest dates is shown below Table 1.

Forage was harvested with a flail-type harvester except that the final harvest of subterranean clover was hand clipped. The center three rows of each plot were cut at a height of two inches the full length of the plot. Subterranean clover was cut one inch above ground level from two randomly selected one square foot areas within each plot. The effect on vetch of multiple cutting and early harvest was determined by harvesting separate plots either one, two, or three times.

# Results and Discussion

'Redman' red clover and 'Yuchi' arrowleaf clover produced 5719 and 5031 pounds dry matter per acre, respectively, which was more than all others in the test (Table 1). Distribution of yield differed in that 'Yuchi' production essentially ended with the May 12 harvest; 'Redman' growth continued through June, and 2924 pounds per acre were harvested near seed maturation July 15 (Table 1). 'Madrid' sweetclover also continued growth throughout June and was well past full bloom when cut July 15. This late production is attributed to ample rainfall received after the second cutting.

'Vanguard' and 'Nova II' vetch produced higher yields than other vetches and ranked third and fourth, respectively, among all legumes tested (Table 1). Cutting February 16 reduced the April 2 harvest; cutting for the first time on April 2 eliminated further growth (Table 2). Total yields were greater from a single cutting May 12.

'Clare' produced slightly greater yields than the other cultivars of subterranean clover (Table 1). Most of the forage was harvested May 12.

Total production of the crimson clovers was less than all other cultivars (Table 1). However, earliness of production and winter hardiness of 'Tibbee' crimson clover make it more desirable for early forage than all other cultivars tested.

All annual cultivars reseeded and produced acceptable stands in the fall of 1981. However, most were harvested in the bloom stage, and seed were produced only on nonharvested plot edges. Since subterranean clover produced seed at ground level, reseeding was not affected by harvesting.

The common vetch and subterranean clover cultivars suffered freeze damage in January of 1982 from near-record low temperatures of 3 and 4 degrees Fahrenheit on two consecutive days having maximum temperatures of 22 and 27 degrees F. Damage of subterranean clovers was apparently limited to dieback of stems to the crown of the plant. Damage to the vetch included killing of smaller plants as well as stems. Approximately 20% and 75%, respectively, of the stems of subterranean clover and vetch cultivars were killed. No difference in winter hardiness was observed among cultivars within each group.

### Acknowledgement

The authors appreciate the contribution of inoculants by the Nitragin Company.

|                     |              | Harve   | est Dates  |           |       |
|---------------------|--------------|---------|------------|-----------|-------|
| Legume              | Cultivar     | April 2 | May 12     | July 15   | Total |
|                     |              |         |            | a         |       |
|                     |              | Pounds  | Dry Matter | Per Acre- |       |
| Red clover          | Redman       | 294     | 2501       | 2924      | 5719  |
| Arrowleaf clover    | Yuchi        | 772     | 4259       |           | 5031  |
| Arrowleaf clover    | Amclo        | 1330    | 3136       |           | 4466  |
| Arrowleaf clover    | Meeche       | 306     | 3294       |           | 3600  |
| Vetch (Common)      | Vanguard     |         | 4952       |           | 4952  |
| Vetch (Common)      | Nova II      |         | 4913       |           | 4913  |
| Vetch (Common)      | Cahaba White |         | 4303       |           | 4303  |
| Vetch (Hairy)       | Common       |         | 4158       |           | 4158  |
| Vetch (Common)      | Vantage      |         | 3950       |           | 3950  |
| Sweetclover         | Madrid       | 0       | 2608       | 1950      | 4558  |
| Subterranean clover | Clare        | 0       | 4227       |           | 4227  |
| Subterranean clover | Tallarook    | 310     | 3817       |           | 4127  |
| Subterranean clover | Woogenellup  | 430     | 3558       |           | 3988  |
| Subterranean clover | Mt. Barker   | 221     | 3549       |           | 3770  |
| Crimson clover      | Tibbee       | 3227    |            |           | 3227  |
| Crimson clover      | Dixie        | 2391    | 800        |           | 3191  |
| Rainfall (inches)   |              | 7.31*   | 1,79**     | 9.09***   |       |
| Irrigation (inches) |              | 6.88*   | 2.00**     | 0         |       |

Table 1. Seasonal Distribution and Total Forage Production of Legumes Cut at Three Dates at Stephenville, Texas in 1981.

\*Since planting October 9, 1980 \*\* Since first cutting \*\*\* Since second cutting a Mean of four replications

Table 2. Yields of Five Vetch Cultivars Cut in Different Combinations of Dates at Stephenville, Texas in 1981.

| Dates                                                    | Cahaba W                | hite | Hairy                  | Nova II                 | Vanguard        | Vantage                | Mean |
|----------------------------------------------------------|-------------------------|------|------------------------|-------------------------|-----------------|------------------------|------|
|                                                          |                         |      | Pounds                 | Dry Matter              | Per Acre-       | <u>/</u>               |      |
| Feb. 16<br>April 2 <u>1</u> /<br><u>May 12*</u><br>Total | 112<br>2374<br><br>2486 |      | 16<br>2812<br><br>2828 | 728<br>2215<br><br>2943 | 131<br>2357<br> | 88<br>2862<br><br>2950 | 2739 |
| April 2 <u>1</u> /                                       | 3391                    |      | 3127                   | 3170                    | 3112            | 2770                   |      |
| <u>May 12*</u><br>Total                                  |                         |      |                        | 3170                    | 3112            | 2770                   | 3114 |
| <u>May 12 2/</u>                                         | 4303                    |      | 4158                   | 4913                    | 4952            | 3950                   | 4455 |

- \* Only a few plots produced measurable yield
- 1/ All cultivars were in vegetative growth stage
- 2/ All cultivars were in full bloom
- 3/ Mean of four replications

## Evaluation of Subterranean Clover for East Texas

### G. R. Smith\*

### SUMMARY

Forage production and reseeding ability of subterranean (sub) clover were evaluated for three years at Overton. Eleven varieties of sub clover were planted in 1978 and managed for reseeding in the fall of 1979. Eighteen varieties were established in 1980 and naturally reseeded in 1981. Mt. Barker, Tallarook, Mississippi Ecotype and Woogenellup were consistently the highest yielding varieties. Mt. Barker and Woogenellup reseeded well in two different years, but reseeding stands of Tallarook and other varieties were reduced following an abnormally wet spring and summer. Yarloop failed to reseed in both years tested. Most varieties of sub clover were undamaged by 5°F temperatures, but stands of the variety Seaton Park were severely reduced.

#### Introduction

Subterranean clover was grown experimentally in Texas as early as 1921. It was observed to be a potentially valuable reseeding pasture crop worthy of extensive testing. Sub clover is unimpressive in appearance due to its prostrate growth habit. The stems stay low to the ground and produce a dense carpet in good stands. Flowers are also produced low and when pollinated turn downward to the soil surface. This is an important characteristic of sub clover because reseeding can occur under grazing. This differs from most other clovers such as crimson and arrowleaf which require animals to be removed for seed to mature. Sub clover is one of several <u>Trifolium</u> species undergoing evaluation and breeding at Overton. Trials were conducted to determine yield potential and reseeding ability of commercial varieties and plant introduction lines of subterranean clover.

### Procedures

Eleven varities of sub clover were seeded October 30, 1978 in 4.5by 12-foot plots at Overton. Seed were planted in a prepared seedbed at the rate of 19 pounds per acre. Inoculum (Type WR) was applied at 3X the normal rate using a commercial sticker. Each plot consisted of six 10-inch rows. Four hundred pounds per acre of 6-24-24 was applied at planting to the Bowie fine sandy loam soil. Soil test (0-6 inches) indicated a pH of 6.2 and no lime was applied. Natural reseeding occurred in 1979 and 500 pounds per acre of 0-20-20 was surface-applied in October 1979.

\* Visiting associate professor, Texas A&M Agricultural Research & Extension Center, Overton, Texas 75684.

Eighteen varieties of sub clover were established October 1, 1980. Seeding rates and inoculum application were the same as the 1978 planting. One and one-half tons of lime was incorporated prior to planting and 0-20-20 applied at the rate of 500 pounds per acre. These plots were allowed to reseed in 1981 and 400 pounds per acre of 0-20-20 applied in September.

### Results and Discussion

Three forage harvests were taken from the 1978 sub clover planting and six harvests from reseeding stands of the same test. Yarloop was the only variety that completely failed to reseed in 1979. Three forage harvests were taken from the 1980 sub clover variety test and 1981-82 stands were rated for reseeding.

Three year average yields of sub clover varieties included in all three harvest years are presented (Table 1). Mt. Barker, Tallarook, Mississippi Ecotype and Woogenellup were consistently the highest yielding cultivars of those tested. Two additional varieties and five plant introductions were evaluated in 1980-81, several of which show promise (Table 1).

Unusually high rainfall in May, June and July of 1981 resulted in early germination and death of many sub clover seedlings. All varieties in the trial were affected by this loss of seed but to different degrees (Table 2). For example, a large percentage of Tallarook seed germinated early, and poor stands were the result in the fall. Mississippi Ecotype was also adversely affected by early germination but to a lesser extent than Tallarook. Only a small percentage of Mt. Barker seed germinated early, and fall reseeding was excellent. The variety Yarloop again failed to reseed in 1981. Temperatures down to 5°F in January 1982 severely damaged the Seaton Park variety of sub clover. No significant cold damage was noted on other sub clover cultivars.

| Variety                  | 1978-79             | 1979 <b>-</b> 80 <sup>1</sup> | 1980-81          | 3-Yr Avg |
|--------------------------|---------------------|-------------------------------|------------------|----------|
| Mt. Barker               | 3079 a <sup>3</sup> | lbs DM,<br>4771 a             | /acre/<br>2936_a | 3595     |
| Tallarook                | 2561 b              | 4647 a                        | 2673 ab          | 3293     |
| Woogenellup              | 2510 b              | 4265 a                        | 2413 a-c         | 3062     |
| Miss. Ecotype            | 2318 b              | 4432 a                        | 2898 a           | 3216     |
| Dinninip                 | 1874 c              | 1046 de                       | 1521 fg          | 1480     |
| Howard                   | 1642 c              | 2636 b                        | 1972 c-f         | 2083     |
| Geraldton                | 545 d               | 624 e                         | 1583 e-g         | 917      |
| Daliak                   | 480 d               | 771 de                        | 1735 d-g         | 995      |
| Seaton Park              | 479 d               | 1373 cd                       | 1602 e-g         | 1151     |
| Dwalganup                | 444 d               | 1912 c                        | 1318 g           | 1224     |
| Yarloop                  | 412 d               | 0                             | 1410 f-g         | 911      |
| Nangeela <sup>2</sup>    |                     |                               | 2302 b-d         |          |
| Clare <sup>2</sup>       |                     |                               | 1300 g           |          |
| P.I. 277439 <sup>2</sup> |                     |                               | 2321 b-d         |          |
| P.I. 268067 <sup>2</sup> |                     |                               | 2229 b-d         |          |
| P.I. 277438 <sup>2</sup> |                     |                               | 2215 b-d         |          |
| P.I. 190568 <sup>2</sup> |                     |                               | 2118 b-e         |          |
| P.I. 291880 <sup>2</sup> |                     |                               | 1857 c-a         |          |
|                          |                     |                               |                  |          |

Table 1. Dry matter production of subterranean clover at Overton. 1978-81.

<sup>1</sup>Naturally reseeding from 1978 planting

<sup>2</sup>Planted only in 1980 test

<sup>3</sup>Yields followed by the same letter are not significantly different at the 0.05 level using Duncan's Multiple Range Test.

| Variety       | June 15, 1981 | Jan. 4, 1982 |
|---------------|---------------|--------------|
|               | % Stand       |              |
| Howard        | 72            | 35           |
| Daliak        | 54            | 13           |
| Geraldton     | 46            | 9            |
| Dwalganup     | 11            | 60           |
| Tallarook     | 89            | 16           |
| Nangeela      | 73            | 75           |
| Clare         | 11            | 54           |
| Yarloop       | 3             | 16           |
| Seaton Park   | 6             | 75           |
| Dinninip      | 8             | 58           |
| Woogenellup   | 52            | 76           |
| Miss. Ecotype | 88            | 30           |
| Mt. Barker    | 19            | 71           |
| P.I. 277438   | 43            | 83           |
| P.I. 268067   | 16            | 91           |
| P.I. 291880   | 48            | 50           |
| P.I. 277439   | 49            | 43           |
| P.I. 190568   | 71            | 61           |
|               |               |              |

Table 2. The effect of early germination on reseeding stands of sub clover.

### Subterranean Clover Seeding Rates

### G. W. Evers\*

### SUMMARY

Subterranean clover seed is more expensive than other clover seed so that it is critical to know the minimum seeding rate necessary for a satisfactory stand. On a prepared seedbed good stands were obtained with 4 lb of seed per acre. If early production is critical, seeding rates no lower than 12 lb/ac are necessary. Drilling seed in 5 inch rows resulted in slightly higher yields than broadcasting the seed or drilling in 10 inch rows.

### Introduction

Subterranean clover (Trifolium subterraneum L.), also called subclover, is a relatively new clover to the Southeastern United States. Advantages of subterranean clover over other cool season annual clovers are: 1) prostrate growth which permits close grazing without loss of stand and 2) seed development and placement on the soil surface which promotes reseeding. Presently most of the subterranean clover seed is imported from Australia, which makes it more expensive than other clover seed. Therefore determination of the lowest seeding rate which still results in satisfactory forage production is necessary to keep seed cost per acre to a minimum. Subterranean clover forage production and distribution was evaluated at six seeding rates under three methods of establishment.

### Methods and Materials

Mt. Barker subterranean clover was seeded Oct. 8 on a Lake Charles clay at the Angleton Research Station. Plot size was 5 x 15 ft in a split plot experimental design with four replications. Main plots were planting methods which included seed 1) broadcast, 2) drilled in 5 inch rows, and 3) drilled in 10 inch rows. Subplots were seeding rates of 4, 8, 12, 16, 24 and 32 lb/ac. After planting, all plots were rolled to insure good seed to soil contact. Plots were harvested at a 1 inch height with a flail mower.

### Results and Discussion

There was only about 300 lb/ac difference in total yield between the methods of clover establishment (Table 1). However subclover seeded in 5 inch rows did produce significantly more forage. Seeding rate had its greatest effect on forage production at the first harvest (Table 2). There was no large increase in yield above 12 lb seed/ac. By the second harvest, only the 4 lb seeding rate produced significantly less forage

\* Associate professor, Texas A&M Agricultural Research and Extension Center, Angleton, Texas 77515.
than the highest seeding rates. Total forage production generally increased as seeding rate increased with the major difference between the 4 lb and higher seeding rates.

| Planting<br>method | Jan. 13 | Feb. 27  | Mar. 27  | May 7  | Total  |
|--------------------|---------|----------|----------|--------|--------|
|                    |         |          | 1b/ac    |        |        |
| Broadcast          | 845 ab  | * 1702 a | 1346 b   | 1010 c | 4902 b |
| 5 inch rows        | 943 a   | 1670 a   | . 1459 a | 1155 b | 5226 a |
| 10 inch rows       | 811 b   | 1477 b   | 1397 ab  | 1272 a | 4958 b |

| Table 1. | Effect of planting method on subterranean clover pro | duction |
|----------|------------------------------------------------------|---------|
|          | averaged over six seeding rates.                     |         |

\*Yields within a column followed by the same letter are not significantly different at the .05 level, Duncan's Multiple Range Test.

| Seeding<br>rate | Jan. | 13 | Feb. 2 | 27 | Mar. 2 | 27 | May  | 7  | Tota | a1  |
|-----------------|------|----|--------|----|--------|----|------|----|------|-----|
| 1.18            |      |    |        |    | 1b/ac  |    |      |    |      |     |
| 4               | 285  | e* | 1294   | Ъ  | 1329   | а  | 1397 | а  | 4305 | d   |
| 8               | 606  | d  | 1621   | a  | 1457   | a  | 1257 | ab | 4941 | с   |
| 12              | 902  | c  | 1655   | а  | 1446   | а  | 1028 | с  | 5031 | bc  |
| 16              | 1027 | bc | 1686   | а  | 1435   | а  | 1158 | bc | 5305 | ab  |
| 24              | 1231 | a  | 1711   | а  | 1438   | а  | 1018 | с  | 5397 | а   |
| 32              | 1145 | ab | 1733   | a  | 1299   | a  | 1018 | с  | 5195 | abc |

Table 2. Subterranean clover production at six seeding rates averaged over three planting methods.

\*Yields within a column followed by the same letter are not significantly different at the .05 level, Duncan's Multiple Range Test.

Emergence and Seedling Vigor of Annual Trifolium Species

E. C. Holt and P. A. Rich<sup>1</sup>

#### SUMMARY

Temperate annual legume species differ in ability to emerge from deep planting, and the differences are not limited to seed size differences. Subterranean and berseem clovers emerged better from deep (40 mm) than from shallow (10 mm) planting, both with large seed, while persian, with the smallest seed, showed little difference between the two depths. Deeper planting generally tends to reduce total emergence. Deeper planting may favor initial nodulation (3) because of less moisture and temperature stress, and most species will emerge from deeper depths than usually suggested for planting. However, seedling size also is generally reduced by deeper planting, even if emergence is not affected. Surprisingly, plant height near maturity may reflect the effect of deep planting on early development of the seedling.

Seedling vigor (weight) varied three fold among species and up to two fold within species. While this relationship seemed to be accounted for in part by seed size, there was enough variation within similar seed sizes to suggest additional seedling vigor factors or causes.

The relationship between seed size and seedling vigor is much stronger than that between seed size and emergence percentage. This relationship holds both across species and generally among genotypes within species. Subterranean clover, with the largest seed, showed the least consistent relationship.

While none of the experimental materials in this study exceeded the commercial variety check in seedling vigor, the study indicates differences in seedling vigor and therefore the potential for improving seedling vigor.

#### Introduction

Temperate annual legumes, primarily <u>Trifolium</u> species, are increasing in use because of their potential for extending the grazing season, fixing nitrogen and improving forage quality. Because these legumes are usually seeded with a companion crop and/or overseeded on sod, the seedlings are subjected to varying degrees of competition during the establishment stage. Furthermore, the seedlings usually develop slowly resulting in little dry matter production until late winter. Two major needs in the annual legumes are the ability to emerge under less than ideal conditions and seedling vigor to improve establishment and early growth under less than ideal conditions, and

KEYWORDS: Trifoliums, annual clovers, seedling vigor, seedling emergence, planting depth.

<sup>1</sup> Professor and research associate, respectively, Soil & Crop Sciences Department, College Station, Texas 77843. seedling vigor to improve establishment and early growth under competition.

Rich, Holt and Weaver (3) have shown that depth of planting is an important factor in rhizobia survival and nodulation of Yuchi arrowleaf clover. Further, nodulation is favored by deeper seed placement than is emergence. Other studies (1, 2, 4, 5) have implicated seed size as an important factor in emergence from deeper planting depths.

Seed size varies with the annual <u>Trifolium</u> species and even more widely among species. A field test was conducted to evaluate emergence and seedling vigor in several <u>Trifolium</u> species.

## Experimental Procedure

Annual <u>Trifolium</u> clover species included in this study are arrowleaf (<u>T. vesiculosum</u> Savi), subterranean (<u>T. subterraneum</u> L.), persian (<u>T. resupinatum</u> L.), berseem (<u>T. alexandrium</u> L.), and rose (<u>T. hirtum</u> All.). One or more named varieties and two to four plant introductions within each species were included. The experimental materials are listed in Table 1.

Seed weight and viability were determined for each seed lot (Table 1). Seeding rate was constant but the number of viable seed per unit length of row was calculated and percentage emergence was based on the number of viable seed planted.

Each of the 25 seed sources was planted at two depths, 10 and 40 mm. The seed source-depth combinations were completely randomized within each of 4 replications. Individual plots consisted of a single row 2.13 m long, rows spaced 1 m. Planting was on November 12, 1980.

Plant counts and seedling weights were determined on January 12, 1981. Plants from a 60 cm section of row were removed at the soil surface, counted, dried, weighed and individual seedling weights calculated. plant height was measured on April 2, 1981.

#### Results and Discussion

## Species Responses and Differences

Seed size ranged from 714 mg/100 seed to 60 mg/100 seed. Average seed weights by species in mg/100 seed were: subterranean, 572; rose, 280; berseem, 248; arrowleaf, 118; and persian, 79. A two fold difference in seed size occurred among sources within both arrowleaf and rose clovers.

Average values for the five species for emergence, seedling weight and seedling height at the two planting depths are shown in Table 2. Berseem showed the best average emergence and subterranean the poorest though the differences were not significantly different. Both berseem and subterranean emerged better from 4 cm than from 1 cm planting depth. The other three species emerged better from 1 cm depth, with arrowleaf showing the most depression with deeper planting. Emergence response to deep planting was not very closely related to seed size. Subterranean which had the largest seed showed the greatest increase (80%) in emergence with deep planting. However, berseem and rose which had somewhat similar size seeds showed different responses to deep planting, berseem increasing in emergence with deep planting (35%), and rose decreasing (-15%). Similarly, persian which had the smallest seed decreased less with deep planting (-9%) than arrowleaf (-28%) which had 50% larger seed than Persian.

Seedling vigor (above ground seedling weight) differed significantly among species and also with planting depth. Subterranean, berseem and rose had heavier seedlings than persian and arrowleaf clovers. Seedling vigor (weight) at 60 days post planting was related to seed weight. Deep planting (40 mm) reduced seedling weight approximately 12%. Species differed in plant height near maturity largely because of differences in plant growth habit. Subterranean clover, because of its prostrate growth habit, was the shortest type with berseem being significantly taller than the other species. The slightly slower initial development from deep planting was still reflected in plant height in early April, plants from 40 mm planting depth being 10% shorter on the average than from shallow planting. Berseem and subterranean were exceptions to this pattern.

The species data indicate that arrowleaf clover emergence is affected negatively by increasing planting depth more than is the emergence of the other species and that subterranean and berseem may be favored by deeper planting. Rich, Holt and Weaver (3) found that maximum emergence of Yuchi arrowleaf occurred with 10 mm planting depth but with no significant difference over a range of 10 to 25 mm. Seed size had a greater impact on seedling vigor than on emergence, even emergence from 40 mm planting depth. When seedling weights of all 25 seed sources and two planting depths are ploted against seed weights, the relationship was linear and significant (Figure 1). As seed weight increased, seedling weight at 60 days post planting increased. The spread among similar seed weights increased above 200 mg/100 seed.

## Within Species Responses

Arrowleaf - Percentage emergence (Table 3) based on viable seed varied widely but was not related to percent viability nor to seed size (Figure 2A). Differences in emergence at the two depths appeared to be as great for heavier seed as for lighter seed. The only accession showing increased emergence with deeper planting was the poorest emerging accession and its seed weight was intrmediate. Seedling vigor varied markedly among the seven sources indicating considerable potential for improving these characteristics. However none of the plant introductions equaled the best available varieties for seedling vigor. Seedling vigor was related to seed size (Figure 2B). The loss in vigor due to deeper planting was as great with heavier seed as with lighter seed. Plant height varied about two fold primarily because of one short type among the accessions.

Subterranean - Seed viability was relatively low in all the subclover sources and especially in two of the sources, but was not a factor in emergence from viable seed. The range in emergence (Table 4) was about three fold with generally better emergence from deeper plantings. While the relationship between seed size and emergence was not close, there appeared to be a tendency for larger seed to result in less emergence (Figure 2C). On the other hand seed size showed a general though not close relationship to seedling vigor. Planting depth had no influence on either seedling vigor or plant height.

Persian - Though average percentage emergence ranged among sources from 36 to 62%, the differences were not significant statistically (Table 5). Some of the sources emerged better from 10 mm and some better from 40 mm. Emergence from deep planting was influenced by seed size (Figure 2E) but not emergence from shallow planting. Sources did not differ in seedling vigor (Table 5) and none of the plant introductions exceeded Abon in actual plant weight. Deep planting consistently reduced seedling weight at 60 days post planting but the difference was not significant statistically. Seed weight seemed to have a positive influence on seedling vigor (Figure 2F).

Berseem - Seed of only two plant introductions was available (Table 6). Emergence was better at 40 mm with all three sources and the sources differed significantly. Similarly, sources differed in seedling vigor and as a result of planting depth. The Winter Hardy selection was superior in seedling vigor to the two plant introductions.

Rose - Seed viability varied widely but did not seem to be a factor in emergence percentage of viable seed. Average emergence ranged from 14% to 62% with some sources emerging better from 10 mm and others from 40 mm planting depths (Table 7). Seedling vigor differed among sources and was significantly reduced by deeper planting. Even those sources that emerged better from deeper planting showed a negative effct of planting depth on seedling vigor. Both seedling emergence (Figure 2G) and seedling vigor (Figure 2H) showed a general positive relationship to seed weight.

## Literature Cited

- Beveridge, J. L., and C. P. Wilsie. 1959. The influence of depth of planting, seed size, and variety on seedling vigor in alfalfa. Agro. J. 51:731-734.
- Black, J. N. 1956. The influence of seed size and depth of sowing on emergence and early growth of subterranean clover. Aust. J. Agric. Res. 7:98-109.
- Rich, P. A., E. C. Holt, and R. W. Weaver. 1982. Establishment and nodulation of arrowleaf clover (<u>Trifolium</u> <u>vesiculosum</u> Savi). Agro. J. (Submitted).
- Townsend, C. E. 1972. Influence of seed size and depth of planting on seedling emergence of two milkvetch species. Agro. J. 64:627-630.
- Townsend, C. E. 1979. Associations among seed weight, seedling emergence and planting depth in Cicer milkvetch. Agro. J. 71:410-414.

5. Townsend, C. E. 1979. Associations among seed weight, seedling emergence and planting depth in Cicer milkvetch. Agro. J. 71:410-414.

| Entry<br>no. |    | Trifolium<br>species | 7   | Variety<br>or P.I. | Seed wt.<br>mg/100 seed | %<br>germi | ination |
|--------------|----|----------------------|-----|--------------------|-------------------------|------------|---------|
| 1            | Т. | vesiculosum          | Y   | luchi              | 138                     | 7          | 70.0    |
| 17           |    |                      | 1   | Meechee            | 147                     |            | 22.5    |
| 18           |    | 11                   | 1   | Amclo              | 126                     | 2          | 40.5    |
| 2            |    | **                   | :   | 233782             | 110                     | 1          | L5.0    |
| 3            |    |                      |     | 233816             | 121                     | L          | 42.5    |
| 4            |    | **                   | - : | 279948             | 69                      |            | 70.0    |
| 5            |    | 11                   | :   | 234310             | 114                     | t          | 55.0    |
| 6            | т. | subterraneum         | 1   | Mt.Barker          | 714                     |            | 11.0    |
| 7            |    | н                    | 1   | 190568             | 648                     |            | 38.5    |
| 8            |    | 11                   | :   | 233866             | 496                     |            | 37.5    |
| 9            |    | 11                   | :   | 277439             | 570                     |            | 32.5    |
| 10           |    | "                    | :   | 287998             | 442                     |            | 18.0    |
| 11           | т. | resupinatum          | 1   | Abon               | 97                      | 1          | 79.0    |
| 12           |    | **                   |     | 120195             | 60                      | :          | 37.0    |
| 13           |    | **                   | :   | 141503             | 87                      | (          | 51.0    |
| 14           |    | 11                   | :   | 173974             | 82                      | (          | 50.5    |
| 15           |    | "                    | :   | 204937             | 67                      |            | 56.0    |
| 16           | т. | alexandrium          | I   | Winter Hardy E     | xp. 273                 |            | 75.0    |
| 19           |    | "                    | :   | 251213             | 204                     | 1          | 56.5    |
| 20           |    | "                    | . 8 | 292967             | 268                     |            | 35.5    |
| 21           | т. | hirtum               | ]   | Kondinin           | 328                     |            | 52.0    |
| 22           |    | 4                    | ]   | BN9873-58          | 286                     |            | 24.0    |
| 23           |    | "                    |     | 311485             | 318                     |            | 88.0    |
| 24           |    |                      |     | 287974             | 167                     |            | 73.0    |
| 25           |    | ш                    |     | 348886             | 300                     |            | 25.5    |
|              |    |                      |     |                    |                         |            |         |

Table 1. Seed Characteristics of Trifolium accessions.

| Planting depth (mm)       Species     10     40     Av. $\chi$ emergence, January 15     Berseem     40     54     4       Persian     47     43     4       Rose     47     40     4       Arrowleaf     47     34     4       Subterranean     25     45     3       Average     47     34     4       Subterranean     25     45     3       Average     47     34     4       Subterranean     20.2     20.5     2       Berseem     18.4     16.2     1       Rose     17.1     14.1     1       Arrowleaf     8.3     6.5     5       Persian     7.8     6.3     5       Average     13.6a     12.0b     5       Seedling height (cm), April     31     32     3       Persian     24     20     2     3       Persian     24     20     2     3 < |              |            |             |             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------|-------------|-------------|
| Species     10     40     Avv       % emergence, January 15     Berseem     40     54     4       Persian     47     43     4       Rose     47     40     4       Arrowleaf     47     34     4       Subterranean     25     45     3       Average     47     34     4       Subterranean     20.2     20.5     2       Berseem     18.4     16.2     1       Rose     17.1     14.1     1       Arrowleaf     8.3     6.5     9       Persian     7.8     6.3     1       Average     13.6a     12.0b     1       Berseem     31     32     3       Persian     24     20     2       Rose     22     20     2       Rose     22     20     2       Rose     22     20     2       Rose     22     20     2       Arrow                               |              | Planti     | ng depth (m | m)          |
| % emergence, January 15     Berseem   40   54   4     Persian   47   43   4     Rose   47   40   4     Arrowleaf   47   34   4     Subterranean   25   45   3     Average   47   34   4     Subterranean   25   45   3     Average   47   34   4     Subterranean   20.2   20.5   2     Berseem   18.4   16.2   1     Rose   17.1   14.1   1     Arrowleaf   8.3   6.5   6.3     Persian   7.8   6.3   1     Average   13.6a   12.0b   1     Seedling height (cm), April   5   3   2   3     Persian   24   20   2   2   2   2     Rose   22   20   2   2   2   2   2   2     Rose   21   19   2   2   3   4   3                                                                                                                                          | Species      | 10         | 40          | Average     |
| Berseem   40   54   4     Persian   47   43   4     Rose   47   40   4     Arrowleaf   47   34   4     Subterranean   25   45   3     Average   47   34   4     Subterranean   25   45   3     Average   47   34   4     Subterranean   20.2   20.5   2     Berseem   18.4   16.2   1     Rose   17.1   14.1   1     Arrowleaf   8.3   6.5   5     Persian   7.8   6.3   5     Average   13.6a   12.0b   5     Seedling height (cm), April   5   3   3     Persian   24   20   2   2     Rose   22   20   2   2     Arrowleaf   21   19   2   3     Average   21   24   20   2                                                                                                                                                                            |              | % emerge   | nce, Januar | y 15        |
| Persian   47   43   4     Rose   47   40   4     Arrowleaf   47   34   4     Subterranean   25   45   3     Average   47   34   4     Subterranean   25   45   3     Average   47   34   4     Subterranean   20.2   20.5   2     Berseem   18.4   16.2   1     Rose   17.1   14.1   1     Arrowleaf   8.3   6.5   5     Persian   7.8   6.3   1     Average   13.6a   12.0b   1     Eerseem   31   32   3     Persian   24   20   2     Rose   22   20   2     Arrowleaf   21   19   2     Subterranean   8   8   1     Arrowleaf   21   19   2                                                                                                                                                                                                          | Berseem      | 40         | 54          | 47.0        |
| Rose   47   40   4     Arrowleaf   47   34   4     Subterranean   25   45   3     Average   47   34   4     Subterranean   25   45   3     Average   47   34   4     Subterranean   20.2   20.5   2     Berseem   18.4   16.2   1     Rose   17.1   14.1   1     Arrowleaf   8.3   6.5   5     Persian   7.8   6.3   6.3     Average   13.6a   12.0b   12.0b     Seedling height (cm), April   32   3     Persian   24   20   2     Rose   22   20   2     Arrowleaf   21   19   2     Subterranean   8   8   4                                                                                                                                                                                                                                           | Persian      | 47         | 43          | 45.0        |
| Arrowleaf   47   34   4     Subterranean   25   45   3     Average   47   34     Average   47   34     Average   47   34     Weight/seedling (mg), Janur     Subterranean   20.2   20.5   2     Berseem   18.4   16.2   1     Rose   17.1   14.1   1     Arrowleaf   8.3   6.5   6.3     Average   13.6a   12.0b   12.0b     Seedling height (cm), April   32   3     Persian   24   20   2     Rose   22   20   2     Arrowleaf   21   19   2     Subterranean   8   8   8     Arrowleaf   21   19   2     Subterranean   8   8   8                                                                                                                                                                                                                      | Rose         | 47         | 40          | 43.5        |
| Subterranean   25   45   3     Average   47   34     Weight/seedling (mg), Janur     Subterranean   20.2   20.5   2     Berseem   18.4   16.2   1     Rose   17.1   14.1   1     Arrowleaf   8.3   6.5     Persian   7.8   6.3     Average   13.6a   12.0b     Seedling height (cm), April   Berseem   31   32   3     Persian   24   20   2   2     Rose   22   20   2     Arrowleaf   21   19   2     Subterranean   8   8   4                                                                                                                                                                                                                                                                                                                          | Arrowleaf    | 47         | 34          | 40.5        |
| Average   47   34     Weight/seedling (mg), Janur     Subterranean   20.2   20.5   2     Berseem   18.4   16.2   1     Rose   17.1   14.1   1     Arrowleaf   8.3   6.5     Persian   7.8   6.3     Average   13.6a   12.0b     Seedling height (cm), April   Berseem   31   32   3     Persian   24   20   2   2     Rose   22   20   2     Arowleaf   21   19   2     Average   8   8   8                                                                                                                                                                                                                                                                                                                                                               | Subterranean | 25         | 45          | 35.0        |
| Weight/seedling (mg), JanurSubterranean $20.2$ $20.5$ $2$ Berseem $18.4$ $16.2$ $1$ Rose $17.1$ $14.1$ $1$ Arrowleaf $8.3$ $6.5$ Persian $7.8$ $6.3$ Average $13.6a$ $12.0b$ Seedling height (cm), AprilBerseem $31$ $32$ $3$ $24$ $20$ $2$ Rose $22$ $20$ $2$ Arrowleaf $21$ $19$ $2$ Subterranean $8$ $8$                                                                                                                                                                                                                                                                                                                                                                                                                                               | Average      | 47         | 34          |             |
| Subterranean   20.2   20.5   2     Berseem   18.4   16.2   1     Rose   17.1   14.1   1     Arrowleaf   8.3   6.5     Persian   7.8   6.3     Average   13.6a   12.0b     Seedling height (cm), April     Berseem   31   32   3     Persian   24   20   2     Rose   22   20   2     Arrowleaf   21   19   2     Subterranean   8   8   8     Average   21.2a   19.2b   2                                                                                                                                                                                                                                                                                                                                                                                 |              | Weight/see | dling (mg), | Janurary 15 |
| Berseem   18.4   16.2   1     Rose   17.1   14.1   1     Arrowleaf   8.3   6.5     Persian   7.8   6.3     Average   13.6a   12.0b     Seedling height (cm), April     Berseem   31   32   3     Persian   24   20   2     Rose   22   20   2     Arrowleaf   21   19   2     Subterranean   8   8   8                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Subterranean | 20.2       | 20.5        | 20.3a       |
| Rose   17.1   14.1   1     Arrowleaf   8.3   6.5     Persian   7.8   6.3     Average   13.6a   12.0b     Seedling height (cm), April     Berseem   31   32   3     Persian   24   20   2     Rose   22   20   2     Arrowleaf   21   19   2     Subterranean   8   8   8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Berseem      | 18.4       | 16.2        | 17.3a       |
| Arrowleaf   8.3   6.5     Persian   7.8   6.3     Average   13.6a   12.0b     Seedling height (cm), April     Berseem   31   32     Persian   24   20   2     Rose   22   20   2     Arrowleaf   21   19   2     Subterranean   8   8   8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Rose         | 17.1       | 14.1        | 15.6a       |
| Persian7.86.3Average13.6a12.0bSeedling height (cm), AprilBerseem3132Persian2420Rose2220Arrowleaf2119Subterranean88Average21.2a19.2b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Arrowleaf    | 8.3        | 6.5         | 7.4b        |
| Average13.6a12.0bSeedling height (cm), AprilBerseem3132Persian2420Rose2220211922212122212122212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Persian      | 7.8        | 6.3         | 7.1b        |
| Seedling height (cm), AprilBerseem31323Persian24202Rose22202Arrowleaf21192Subterranean88Average21, 2a19, 2b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Average      | 13.6a      | 12.0b       |             |
| Berseem   31   32   3     Persian   24   20   2     Rose   22   20   2     Arrowleaf   21   19   2     Subterranean   8   8   8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              | Seedling h | eight (cm), | , April 2   |
| Persian   24   20   2     Rose   22   20   2     Arrowleaf   21   19   2     Subterranean   8   8     Average   21, 2a   19, 2b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Berseem      | 31         | 32          | 31.5a       |
| Rose22202Arrowleaf21192Subterranean88Average21,2a19,2b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Persian      | 24         | 20          | 22.Ob       |
| Arrowleaf21192Subterranean88Average21,2a19,2b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Rose         | 22         | 20          | 21.0b       |
| Subterranean88Average21.2a19.2b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Arrowleaf    | 21         | 19          | 20.0b       |
| Average 21,2a 19.2b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Subterranean | 8          | 8           | 8.0c        |
| Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Average      | 21.2a      | 19.2b       |             |

Table 2. The influence of species and planting depth on emergence, and seedling vigor of temperate legumes, College Station, 1980-81.

| Entry   | Variety |       | Planting dept      | ch (mm)       |
|---------|---------|-------|--------------------|---------------|
| no.     | or P.I. | 10    | 40                 | Average       |
|         |         |       | % emergence        | 2             |
| 3       | 233816  | 66.2  | 39.0               | 52.6a         |
| 2       | 233782  | 56.3  | 34.0               | 45.1ab        |
| 18      | Amclo   | 52.3  | 34.5               | 43.1abc       |
| 4       | 279948  | 50.3  | 32.3               | 41.3abc       |
| 1       | Yuchi   | 41.5  | 39.5               | 40.5abc       |
| 17      | Meechee | 46.5  | 33.0               | 39.8abc       |
| 5       | 234310  | 14.8  | 23.5               | 19.1c         |
| Average |         | 46.8a | 33.7Ъ              |               |
|         |         |       | Weight/seedling (m |               |
| 17      | Meechee | 11.0  | 7.6                | 9.3a          |
| 1       | Yuchi   | 9.6   | 7.5                | 8.6ab         |
| 18      | Amclo   | 8.9   | 7.5                | 8.2ab         |
| 3       | 233816  | 7.6   | 7.6                | 7.6b          |
| 2       | 233782  | 8.8   | 6.0                | 7.4b          |
| 5       | 234310  | 8.6   | 5.9                | 7.2b          |
| 4       | 279948  | 3.8   | 3.4                | 3.6c          |
| Average |         | 8.3a  | 6.5b               |               |
|         |         | Se    | eedling height     | : (cm)        |
| 1       | Yuchi   | 29.2  | 23.5               | 26.4a         |
| 18      | Amclo   | 26.5  | 23.0               | 24.8ab        |
| 3       | 233816  | 22.0  | 19.0               | 20.5b         |
| 2       | 233782  | 21.2  | 17.8               | 19.5bc        |
| 5       | 234310  | 17.5  | 21.0               | 19.3c         |
| 17      | Meechee | 20.2  | 17.5               | 18.9c         |
| 4       | 279948  | 12.8  | 11.0               | <b>11.9</b> d |
| Average |         | 21.4a | 19.0b              |               |

Table 3. The influence of planting depth on emergence and seedling vigor of arrowleaf clover sources, College Station, 1980-81.

| Entry   | Variety    |       | Planting dep   | oth     |
|---------|------------|-------|----------------|---------|
| no.     | or P.I.    | 10    | 40             | Average |
|         |            |       | % emergence    |         |
| 9       | 277439     | 42.8  | 78.3           | 60.5a   |
| 8       | 233866     | 23.0  | 39.3           | 31.1ab  |
| 10      | 287998     | 34.0  | 28.0           | 31.0ab  |
| 6       | Mt. Barker | 8.5   | 27.0           | 29.3ab  |
| 7       | 190568     | 16.0  | 27.0           | 21.5b   |
| Average |            | 24.9b | 44.5a          |         |
|         |            | Wei   | ght/seedling ( | (mg)    |
| 9       | 277439     | 27.9  | 31.4           | 29.7a   |
| 6       | Mt. Barker | 24.6  | 21.4           | 23.0ab  |
| 7       | 190568     | 20.9  | 24.6           | 22.8ab  |
| 8       | 233866     | 23.3  | 16.0           | 19.7ab  |
| 10      | 287998     | 16.6  | 18.3           | 17.5ab  |
| Average |            | 22.7a | 22.3a          |         |
|         |            | Seed  | ling height (c | :m)     |
| 6       | Mt. Barker | -     | -              | -       |
| 7       | 190568     | 8.5   | 10.2           | 9.4     |
| 9       | 277439     | 9.8   | 8.2            | 9.0     |
| 8       | 233866     | 5.0   | 6.5            | 5.8     |
| 10      | 287998     | -     | 7.5            | -       |
| Average |            | 7.8   | 8.1            |         |

Table 4. The influence of planting depth on emergence and seedling vigor of subterranean clover sources, College Station, 1980-81.

| Entry   | Variety | P1    | anting depth  | (mm)    |
|---------|---------|-------|---------------|---------|
| no.     | or P.I. | 10    | 40            | Average |
|         |         |       | % emergence   |         |
| 11      | Abon    | 58.5  | 66.3          | 62.4a   |
| 12      | 120195  | 45.5  | 48.5          | 47.0a   |
| 14      | 173974  | 50.8  | 32.0          | 41.4a   |
| 13      | 141503  | 37.8  | 42.0          | 39.9a   |
| 15      | 204937  | 46.5  | 26.3          | 36.4a   |
| Average |         | 47.4a | 43.0a         |         |
|         |         | Wei   | ght/seedling  | (mg)    |
| 11      | Abon    | 9.8   | 8.1           | 8.9a    |
| 14      | 173974  | 9.2   | 7.5           | 8.4a    |
| 13      | 141503  | 8.1   | 5.8           | 6.9a    |
| 12      | 120195  | 6.2   | 5.1           | 5.6a    |
| 15      | 204937  | 5.7   | 5.3           | 5.5a    |
| Average |         | 7.8a  | 6.4a          | 1       |
| 1       |         | Seed  | ling height ( | (cm)    |
| 12      | 120195  | 28.0  | 19.8          | 23.9a   |
| 14      | 173974  | 23.8  | 24.0          | 23.9a   |
| 11      | Abon    | 24.8  | 20.8          | 22.8a   |
| 13      | 141503  | 24.0  | 20.5          | 22.2a   |
| 15      | 204937  | 21.5  | 13.8          | 17.6a   |
| Average |         | 24.4a | 19.8a         |         |

Table 5. The influence of planting depth on emergence and seedling vigor of Persian clover sources, College Station, 1980-81.

| Entry   | Variety           | ]     | Planting depth (  | mm)     |
|---------|-------------------|-------|-------------------|---------|
| no.     | or P.I.           | 10    | 40                | Average |
|         |                   |       | % emergence       |         |
| 16      | Winter Hardy Exp. | 52.0  | 61.8              | 56.9a   |
| 19      | 251213            | 50.0  | 60.5              | 55.3a   |
| 20      | 292967            | 17.5  | 40.3              | 28.9b   |
| Average |                   | 39.8ъ | 54.2a             |         |
|         |                   | Wei   | ight/seedling (m  | g)      |
| 16      | Winter Hardy Exp. | 24.0  | 19.0              | 21.5a   |
| 19      | 251213            | 16.6  | 17.6              | 17.1b   |
| 20      | 292967            | 14.6  | 12.1              | 13.4c   |
| Average |                   | 18.4a | 16.2Ъ             |         |
|         |                   | See   | edling/height (c  | m)      |
| 16      | Winter Hardy Exp. | 30.0  | 34.2              | 32.1    |
| 19      | 251213            | 31.8  | 30.2              | 31.0    |
| 20      | 292967            | -     | 23.0              | -       |
| Average |                   | 30.9  | 32.2 <sup>1</sup> | . * .   |

Table 6. The influence of planting depth on emergence and seedling vigor of berseem sources, College Station, 1980-81.

<sup>1</sup>Value does not include entry 20.

| Fotru   | Variety   | Pla   | Planting depth (mm) |         |  |
|---------|-----------|-------|---------------------|---------|--|
| no.     | or P.I.   | 10    | 40                  | Average |  |
|         |           |       | % emergence         |         |  |
| 21      | Kondinin  | 75.0  | 49.5                | 62.3a   |  |
| 22      | BN9873-58 | 65.0  | 53.8                | 59.4a   |  |
| 23      | 311485    | 50.3  | 58.0                | 54.la   |  |
| 25      | 348886    | 34.0  | 22.0                | 28.Ob   |  |
| 24      | 287974    | 10.0  | 18.0                | 14.0b   |  |
| Average |           | 46.9a | 40.3a               |         |  |
|         |           | Wei   | ght/seedling        | (mg)    |  |
| 21      | Kondinin  | 21.9  | 17.2                | 19.5a   |  |
| 25      | 348886    | 17.4  | 19.1                | 18.2ab  |  |
| 23      | 311485    | 20.8  | 14.6                | 17.7ab  |  |
| 22      | BN9873-58 | 13.5  | 12.0                | 12.8bc  |  |
| 24      | 287974    | 12.2  | 8.0                 | 10.1c   |  |
| Average |           | 17.2a | 14.2b               |         |  |
|         |           | See   | dling/height        | (cm)    |  |
| 21      | Kondinin  | 29.2  | 24.2                | 26.8a   |  |
| 23      | 311485    | 27.5  | 23.5                | 25.5a   |  |
| 22      | BN9873-58 | 20.2  | 18.5                | 19.4b   |  |
| 24      | 287974    | 19.0  | 17.8                | 18.4b   |  |
| 25      | 348886    | 14.8  | 17.0                | 15.9b   |  |
| Average |           | 22.2a | 20.2a               |         |  |

Table 7. The influence of planting depth on emergence and seedling vigor or rose clover sources, College Station, 1980-81.



Figure 1. The relationship of seed size (weight) to seedling vigor (weight of tops) of temperate legumes (planting depth symbols: ☆ -10 mm, ● -40 mm).



Figure 2. The relationships of seed size (weight) to seedling emergence and seedling vigor of four temperate legumes. (planting depth symbols : ○-10 mm, ●-40 mm). 116

# Establishment of Arrowleaf Clover and Annual Ryegrass in a 'Tifton 44' Bermudagrass Sod

F. M. Rouquette, Jr. and M. J. Florence\*

#### SUMMARY

'Yuchi' arrowleaf clover was either drilled or broadcast on a 'Tifton 44' bermudagrass sod at seeding rates of 0, 5, 10, and 20 lbs/ac. At each seeding rate, arrowleaf was planted alone and in combination with 20 lbs/ac 'Gulf' ryegrass. Drilled clover produced 32% more forage than broadcast clover. Ryegrass planted alone and fertilized with nitrogen produced 2.5 times more dry matter forage than ryegrass planted in combination with arrowleaf. Clover yields were reduced by approximately 65% when ryegrass was included in the mixture. If planted alone, 5 lbs/ac arrowleaf seed would provide a reasonable stand and seed source for the succeeding year. If ryegrass was included in the mixture, 10 lbs/ac arrowleaf seed were necessary to provide an adequate stand for grazing and seed. Bermudagrass production from the various plots was surprisingly similar with a yield advantage of less than one ton per acre from the nitrogen fertilized plots vs clover-bermudagrass plots.

# Introduction

Ryegrass and clovers are used in pasture systems to provide a high nutritive value forage for improved animal performance. In addition, clovers are added to the forage system to allow for nitrogen fixation. Arrowleaf clover is well-adapted to the East Texas area, but it often produces partial or total crop failures under certain combinations of climatic conditions and cultural practices. The objective of this trial was to determine the effect of clover seeding rate, method of planting in a bermudagrass sod, and the inclusion of ryegrass on individual and cumulative forage yields.

#### Procedures

'Yuchi' arrowleaf clover was planted alone and in combination with ryegrass on a 'Tifton 44' bermudagrass sod at 0, 5, 10, and 20 lbs/ac in mid-October. Ryegrass was planted at the rate of 20 lbs/ac. At each clover seeding rate, the seeds were drilled and broadcast in separate plots. All plots received 425 lbs/ac of 6-24-24 at time of planting. The ryegrass planted alone (0 lbs/ac clover) received 150 lbs/ac 33.5-0-0 at 30-45 day intervals beginning February 1 and terminating August 1 for a total seasonal nitrogen application of 325 lbs/ac. The fourteen treatment combinations were replicated three times. Forage samples were harvested

\* Respectively, associate professor and research associate, Texas A&M Agricultural Research & Extension Center, Overton, Texas 75684.

with hand clippers from two one-square-foot areas within each plot. The forage species were separated into the various components in the laboratory.

## Results

Dry matter production from the individual and collective forage components is presented in Tables 1-2. On the average, clover yields were increased 32% and ryegrass yields increased 24% by planting with a drill vs broadcasting the seed on the sod surface. The frequency and duration of rainfall after planting are the most critical factors which affect seedling vigor of broadcast planted clovers. The primary advantage of drilling seed is that the seed are placed in contact with the soil where the moisture relationships are superior to that of the sod surface. Arrowleaf planted alone produced 65% more clover forage than when planted with ryegrass. Ryegrass, on the other hand, when planted alone and fertilized with nitrogen, produced 2.5 times more forage than when planted with clover. Bermudagrass production on the nitrogen fertilized plots was only one ton greater than that from the clover-bermudagrass plots. Nitrogen fixation from the previous clover crop was partially responsible for this increased bermudagrass yield. The quantity and distribution of rainfall during the summer months was probably of equal importance in accounting for the total forage production.

Table 3 shows the effect of planting ryegrass on clover yields. The clover yield was reduced most (61%) when ryegrass was included at the low clover seeding rates. This was probably due to the area available for ryegrass germination and growth, and the degree of plant competition from the lower seeding rates of clover. If arrowleaf is planted alone, the 5-lb/ac seeding rate would provide a stand and seed source for succeeding crops. If ryegrass is included in the planting mixture, the seeding rate should be increased to 10 lbs/ac.

| Clover             | Planting  |        | JIY Matter | Teru (IDS/ac) | momar  |
|--------------------|-----------|--------|------------|---------------|--------|
| Seeding rate       | Method    | Clover | Ryegrass   | Bermudagrass  | TOTAL  |
| (lbs/ac)           |           |        |            |               |        |
| 0 lbs + ryegrass   | Broadcast | 0      | 3,773      | 16,948        | 20,721 |
| 0 lbs + ryegrass . | Drilled   | 0      | 4,792      | 15,013        | 19,805 |
| 5 lbs alone        | Broadcast | 736    | 0          | 13,669        | 14,405 |
| 5 lbs alone        | Drilled   | 1,449  | 0          | 14,169        | 15,618 |
| 5 lbs + ryegrass   | Broadcast | 297    | 1,487      | 12,174        | 13,958 |
| 5 lbs + ryegrass   | Drilled   | 553    | 1,650      | 15,143        | 17,346 |
| 10 lbs alone       | Broadcast | 1,662  | 0          | 13,208        | 14,870 |
| 10 lbs alone       | Drilled   | 1,855  | 0          | 15,231        | 17,086 |
| 10 lbs + ryegrass  | Broadcast | 1,248  | 1,340      | 13,256        | 15,844 |
| 10 lbs + ryegrass  | Drilled   | 1,175  | 1,792      | 13,866        | 16,833 |
| 20 lbs alone       | Broadcast | 915    | 0          | 14,604        | 15,519 |
| 20 lbs alone       | Drilled   | 1,465  | 0          | 13,481        | 14,946 |
| 20 lbs + ryegrass  | Broadcast | 741    | 1,766      | 13,096        | 15,603 |
| 20 lbs + ryegrass  | Drilled   | 884    | 2,151      | 12,422        | 15,457 |
|                    |           |        |            |               |        |

Table 1. Dry matter production of 'Yuchi' arrowleaf clover, 'Gulf' ryegrass, and 'Tifton 44' bermudagrass as influenced by seeding rate and planting method.

|        | Dry Matter Yield (lbs/ac)                          |                                                                                                                                          |                                                                                          |  |  |
|--------|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--|--|
| Clover | Ryegrass                                           | Bermudagrass                                                                                                                             | TOTAL                                                                                    |  |  |
| 933    | 2,092                                              |                                                                                                                                          |                                                                                          |  |  |
| 1,230  | 2,596                                              |                                                                                                                                          |                                                                                          |  |  |
| 1,347  |                                                    | 14,060                                                                                                                                   | 15,407                                                                                   |  |  |
| -      | 4,283                                              | 15,981                                                                                                                                   | 20,264                                                                                   |  |  |
| 816    | 1,698                                              | 13,316                                                                                                                                   | 15,840                                                                                   |  |  |
|        | <u>Clover</u><br>933<br>1,230<br>1,347<br>-<br>816 | Dry Matter Y       Clover     Ryegrass       933     2,092       1,230     2,596       1,347     -       -     4,283       816     1,698 | Dry Matter Yield (lbs/ac)       Clover     Ryegrass     Bermudagrass       933     2,092 |  |  |

# Table 2. Component forage production as affected by planting method and specie mixtures.

<sup>1</sup> Yields combined across all seeding rates.

<sup>2</sup>Bermudagrass yields not additive across seeding rates and planting method.

|                   |       | Clover Dry | Matter (11                         | os/ac) |  |
|-------------------|-------|------------|------------------------------------|--------|--|
| Seeding Rate      | Yield |            | Yield Reduction<br>Due to Ryegrass |        |  |
| 5 lbs alone       | 1,093 |            |                                    |        |  |
| 5 lbs + ryegrass  | 425   |            | 668                                | 61%    |  |
| 10 lbs alone      | 1,759 |            |                                    |        |  |
| 10 lbs + ryegrass | 1,212 |            | 547                                | 31%    |  |
| 20 lbs alone      | 1,190 |            |                                    |        |  |
| 20 lbs + ryegrass | 813   |            | 377                                | 32%    |  |
|                   |       |            |                                    |        |  |

Table 3. Clover production as affected by seeding rate and ryegrass.

<sup>1</sup>Yields combined across method of planting.

# Establishment of Subterranean Clover and Annual Ryegrass in a 'Tifton 44' Bermudagrass Sod

F. M. Rouquette, Jr. and M. J. Florence\*

#### SUMMARY

'Mt. Barker' subterranean clover was either drilled or broadcast on a 'Tifton 44' bermudagrass sod at seeding rates of 0, 10, 20, and 40 lbs/ac. At each seeding rate, 'Mt. Barker' was planted alone and in combination with 20 lbs/ac 'Gulf' ryegrass. Drilled plantings of clover produced 49% more forage than broadcast plantings, whereas, there was only an 11% advantage for ryegrass under similar planting conditions. Ryegrass planted alone and fertilized with nitrogen produced 3.4 times more forage than clover alone, and 1.9 times more forage than clover plus ryegrass. The seasonal dry matter production from ryegrass-bermudagrass fertilized with nitrogen was approximately 1.6 times that forage produced from clover-bermudagrass or clover-ryegrass-bermudagrass.

#### Introduction

Subterranean clover was introduced into East Texas pastures more than forty years ago. However, due to problems associated with <u>rhizobia</u> strain specificity and general grazing management, the sub clovers did not appear to offer significant contributions to the overall forage-animal enterprise. With advanced research in soil microbiology, plant breeding, and clipping-grazing management, the sub clovers appear to offer some potential for the East Texas area. In order to evaluate alternative methods of establishing a sub clover stand, this study was designed to examine the effect of clover seeding rate, method of planting in a bermudagrass sod, and inclusion of ryegrass on both clover and grass production.

#### Procedures

'Mt. Barker' subterranean clover was planted alone and in combination with reygrass on a 'Tifton 44' bermudagrass sod at 0, 10, 20, and 40 lbs/ac in mid-October. Ryegrass was planted at the rate of 20 lbs/ac. At each clover seeding rate, seeds were drilled and broadcast in separate plots. All plots received 425 lbs/ac of 6-24-24 at time of planting. The ryegrass alone plots received 150 lbs/ac 33.5-0-0 at 30-45 day intervals beginning February 1 and terminating August 1 for a total seasonal nitrogen application of 325 lbs/ac. The fourteen treatment combinations were replicated three times. Forage samples were harvested with hand clippers from two one-square-foot areas within each plot. The forage species were separated into the various components in the laboratory.

\* Respectively, associate professor and research associate, Texas A&M Agricultural Research & Extension Center, Overton, Texas 75684.

## Results

Tables 1 and 2 show the individual and collective forage production from the various seeding rates and planting methods. Planting subterranean clover with a drill resulted in 49% more dry matter forage than a broadcast planting. Ryegrass which was drilled produced 11% more forage than that which was broadcast. Clover planted alone produced nearly double that amount of clover forage produced when planted in combination with ryegrass. Ryegrass when planted alone and fertilized with nitrogen produced 3.4 times more forage than clover alone; 2.7 times more forage than the ryegrass in the mixed planting; and 1.9 times more forage than the clover component in the mixed planting. In addition, the total seasonal yield of ryegrass-bermudagrass fertilized with nitrogen was approximately 1.6 times that of the non-nitrogen fertilized plots containing clover alone or in a mixture.

Table 3 illustrates the impact of ryegrass on clover yields when the two species are planted together. Subterranean yields were reduced by 65, 50, and 32%, respectively, on the 10, 20, and 40 lb/ac clover seeding rate plots that also contained ryegrass. Thus, the 10 lb/ac seeding rate of clover provided as much clover forage as the other seeding rates when seeded alone. With the addition of ryegrass, a higher seeding rate would be desirable to provide sufficient seed source for the succeeding year.

| Clover<br>seeding rate | Planting<br>method | Dry<br>Clover | Matter Yie<br>Ryegrass | ld (lbs/ac)<br>Bermuda | TOTAL  |
|------------------------|--------------------|---------------|------------------------|------------------------|--------|
| (lbs/ac)               |                    |               |                        |                        |        |
| 0 lbs + ryegrass       | Broadcast          | 0             | 5,296                  | 14,378                 | 19,674 |
| 0 lbs + ryegrass       | Drilled            | 0             | 5,635                  | 13,169                 | 18,904 |
| 10 lbs alone           | Broadcast          | 1,298         | 0                      | 9,997                  | 11,295 |
| 10 lbs alone           | Drilled            | 1,916         | 0                      | 11,803                 | 13,719 |
| 10 lbs + ryegrass      | Broadcast          | 479           | 1,658                  | 8,245                  | 10,382 |
| 10 lbs + ryegrass      | Drilled            | 655           | 1,776                  | 8,626                  | 11,057 |
| 20 lbs alone           | Broadcast          | 1,174         | 0                      | 8,425                  | 9,599  |
| 20 lbs alone           | Drilled            | 1,796         | 0                      | 10,700                 | 12,496 |
| 20 lbs + ryegrass      | Broadcast          | 736           | 1,874                  | 8,857                  | 11,467 |
| 20 lbs + ryegrass      | Drilled            | 747           | 2,637                  | 10,041                 | 13,425 |
| 40 lbs alone           | Broadcast          | 1,289         | 0                      | 11,958                 | 13,147 |
| 40 lbs alone           | Drilled            | 2,191         | 0                      | 9,053                  | 11,244 |
| 40 lbs + ryegrass      | Broadcast          | 895           | 2,071                  | 9,649                  | 12,615 |
| 40 lbs + ryegrass      | Drilled            | 1,473         | 2,082                  | 9,004                  | 12,559 |

Table 1. Dry matter production of 'Mt. Barker' subterranean clover, 'Gulf' ryegrass, and 'Tifton 44' bermudagrass as affected by seeding rate and planting method.

| 1                      | -      | Dry Matter Yie | ld (lbs/ac)  |        |
|------------------------|--------|----------------|--------------|--------|
| Treatment              | Clover | Ryegrass       | Bermudagrass | TOTAL  |
| Broadcast <sup>2</sup> | 979    | 2,725          |              |        |
| Drilled <sup>2</sup>   | 1,463  | 3,033          |              |        |
| Clover Alone           | 1,611  | -              | 10,323       | 11,934 |
| Ryegrass Alone         |        | 5,466          | 13,824       | 19,290 |
| Clover + Ryegrass      | 831    | 2,016          | 9,070        | 11,917 |
|                        |        |                |              |        |

| Table | 2. | Component  | forage   | production | as | influenced | by | planting | method |
|-------|----|------------|----------|------------|----|------------|----|----------|--------|
|       |    | and specie | e mixtu: | res.       |    |            |    |          |        |

<sup>1</sup>Yields combined across all seeding rates.

<sup>2</sup>Bermudagrass yields not additive across seeding rates and planting method.

Table 3. Clover production as affected by seeding rate and ryegrass.

|                   | Clover Dry Matter <sup>1</sup> (lbs/ac) |                                    |     |  |  |
|-------------------|-----------------------------------------|------------------------------------|-----|--|--|
| Seeding Rate      | Yield                                   | Yield Reduction<br>Due to Ryegrass | 0   |  |  |
| 10 lbs alone      | 1,607                                   |                                    |     |  |  |
| 10 lbs + ryegrass | 567                                     | 1,040                              | 65% |  |  |
| 20 lbs alone      | 1,485                                   |                                    |     |  |  |
| 20 lbs + ryegrass | 742                                     | 743                                | 50% |  |  |
| 40 lbs alone      | 1,740                                   |                                    |     |  |  |
| 40 lbs + ryegrass | 1,184                                   | 556                                | 32% |  |  |

<sup>1</sup>Yields combined across method of planting.

# Forage Yields of Turnips, Rape and Kale Under Irrigated and Dryland Conditions at Stephenville

Ronald M. Jones\*\*

#### SUMMARY

Six cultivars of the genus <u>Brassica</u> were seeded Spetember 29, 1981 in irrigated and dryland tests. Yields in the irrigated test ranged from 1693 to 2003 pounds dry matter per acre while dryland yields ranged from 1224 to 1749 pounds per acre. Cultivar yields were not significantly different, but irrigated yields were significantly and unexplainably higher than dryland yields Forage yields of 'Tyfon' turnip, 'Seven Top' turnip, and 'Dwarf Essex' rape were highest in both tests. Rape survival was 100%, kale survival was 20-40%, and other cultivars were killed by near-record low temperatures. Regrowth of rape averaged 1189 pounds dry matter per acre for two replications. Neither harvesting nor irrigating affected winter survival.

#### Introduction

Species of the genus <u>Brassica</u> may offer potential as a cool-season forage for livestock. Rape is an annual plant which has been used for hog pasture. Its nutritional value is nearly equal to legumes (1). Several turnip cultivars have been developed to produce large amounts of leaves. Cultivars producing enlarged roots may be desirable since the roots may be consumed by livestock during late fall or winter.

Management is needed to utilize turnip tops and roots. Since bloat is a potential problem, cattle should ingest only 100 pounds of tops per day. Flowers are poisonous to livestock, but those of 'Tyfon' (turnip X Chinese cabbage) are not. Cattle can easily pull turnip plants from the soil causing ingestion of soil and subsequent scours. Another management problem of turnips is that plants will not generate new growth when cut or grazed below the growing point at two inches."

The purpose of this study was to determine forage yield potential, growth patterns, winter hardiness, and protein content of six cultivars of the genus <u>Brassica</u> under irrigated and dryland conditions.

<sup>\*</sup> Tyfon, Mimeo. Report, Pacific Seed Production Co., P. O. Box 1141, Albany, Oregon 97321.

<sup>\*\*</sup> Research associate, The Texas Agricultural Experiment Station, Stephenville.

## Materials and Methods

Six annual cultivars of the genus <u>Brassica</u> were established in separate irrigated and dryland tests on Windthorst fine sandy loam. Fertilizer was applied at the rate of 100-60-0 and incorporated by disking. Plots measuring 5X12 feet were seeded September 29, 1981 with a garden-type planter. A carrot seed-plate metered eight pounds of seed per acre into rows spaced one foot apart. The four replications in the randomized complete-block design were separated by alleys four feet wide. Two rows of rape were seeded as border rows on the ends of all replications.

Irrigation at the rate of 1.5 inches per acre was applied to both tests October 1 to insure germination. Abnormally high rainfall of 7.50 inches during October made further irrigation unnecessary.

Plants were harvested November 24, 1981 by hand clipping four row-feet from two of the three center rows of each plot. Largest plants were about twelve inches tall. Clipping height was four inches for the irrigated test and two and one-half inches for the dryland test. Plant material was dried at 70C, and yields per acre were calculated. Following harvest, the plants in the dryland test and in two replications of the irrigated test were cut with a sickle mower to the same height used in hand clipping. Irrigation at the rate of one and one-half inches was applied December 15.

Root yield was determined by harvesting eight row-feet of plants on January 28, 1982. Rotten roots were discarded. Yield was determined on a fresh-weight basis.

The percentage of live plants in each plot was determined on March 8, 1982. Since irrigated rape had a good stand, it was then hand clipped to four inches. Dryland rape yield was estimated as a percentage of the irr-igated yield.

# Results and Discussion

Dry matter yields of a single harvest ranged from 1693 to 2003 pounds per acre for cultivars in the irrigated test (Table 1). Dryland yields ranged from 1224 to 1749 pounds per acre. Cultivars were not statistically different. 'Tyfon', 'Dwarf Essex', and 'Seven Top' tended toward highest yields since they ranked among the upper three cultivars in both the irrigated and dryland tests. Significantly higher yields of the irrigated test are inexplicable since soil, water, fertilizer, and other management factors were the same for both tests.

All cultivars except 'Dwarf Essex' rape and 'Improved Siberian' kale were killed by freezing temperatures before regrowth was sufficient for a second harvest. The two replications of irrigated 'Dwarf Essex' mowed at the first harvest produced 914 and 1483 pounds dry matter per acre the second harvest. Regrowth yield of rape in the dryland test was estimated at 20% of that of the lower yielding rape plot in the irrigated test. Irrigation water applied December 15 probably caused the difference.

Winter survival of rape was 100%, kale survival rate was 20-40%, and other cultivars were virtually destroyed (Table 2). Low temperatures of 3F, 4F, 8F, 9F, and 10F on January 10, 11, 13, 16, and 17, respectively, were the lowest of the winter. Survival was the same whether or not the cultivars were mowed November 25. Survival was also the same whether or not irrigation was applied during a dry period.

'Purple Top' was the only cultivar which produced edible roots. When the tops were mowed following the November harvest, root yields were 5.55 and 5.89 tons fresh weight per acre for the irrigated and dryland test, respectively. When the tops were not mowed, root yields were 13.35 tons fresh weight per acre in the irrigated test. Since the average dry matter content of roots is 8 percent," this is equivalent to 2136 pounds dry matter per acre. This may be compared with 1965 pounds dry matter produced by irrigated oats March 23, 1981 at Stephenville.

## Acknowledgments

The author acknowledges Mr. Troy Sellers, Agri-Business Consultant with Texas Power & Light Company who conceived the idea for these tests and provided the seed.

#### Literature Cited

1. Foster, James S. 1973. Forages For Swine and Poultry. p. 716. In Maurice E. Heath, Darrel S. Metcalfe, and Robert F. Barnes (ed.) Forages, The Science of Grassland Agriculture. Iowa State Univ. Press, Ames, Iowa. Table 1. Forage Yields of Brassica under Irrigated and Dryland Conditions at Stephenville in 1981.

#### Pounds Dry Matter Per Acre

| Scientific Name    | Common Name | Cultivar              | Irrigated $\frac{2}{}$ | Dryland 2/ |
|--------------------|-------------|-----------------------|------------------------|------------|
| Brassica rapa      | turnip      | Tyfon $\frac{1}{}$    | 2003                   | 1749       |
| Brassica rapa      | turnip      | Seven Top             | 1959                   | 1475       |
| Brassica napus     | rape        | Dwarf Essex 2/        | 1920+1189**            | 1521       |
| Brassica rapa      | turnip      | Purple Top <u>-</u> / | 1869                   | 1279       |
| Brassica oleracea* | kale        | Improved Siberia      | in 1718                | 1224       |
| Brassica napus     | turnip      | Shogoin               | 1693                   | 1403       |

\* variety acephala \*\* Second harvest only two replications. 1/ Chinese cabbage X turnip 2/ Cultivars are non-significant at the 0.05 level. Irrigated yields were significantly higher than dryland yields. 3/ 'Purple Top' edible root yields were 5.89 and 9.45 tons fresh weight per acre for the dryland and irrigated test, respectively.

Table 2. Winter Hardiness of Six Cultivars of the Genus <u>Brassica</u> Grown at Stephenville, Texas, 1981-82.

|             |                   | % Survi   | % Survival* |  |  |
|-------------|-------------------|-----------|-------------|--|--|
| Common Name | Cultivar          | Irrigated | Dryland     |  |  |
| rape        | Dwarf Essex       | 100       | 100         |  |  |
| kale        | Improved Siberian | 20-40     | 20-40       |  |  |
| turnip      | Purple Top        | 0         | 10          |  |  |
| turnip      | Seven Top         | 10        | 10          |  |  |
| turnip      | Shogoin           | 0         | 0           |  |  |
| turnip      | Tyfon             | 0         | 10          |  |  |

\*Determinations were made March 8, 1982 following near-record low temperatures of 3F and 4F on January 10 and 11, 1982, respectively.



Mention of a trademark or a proprietary product does not constitute a guarantee or a warranty of the product by The Texas Agricultural Experiment Station and does not imply its approval to the exclusion of other products that also may be available.

All programs and information of The Texas Agricultural Experiment Station are available to everyone without regard to race, ethnic origin, religion, sex, or age.

1.8M--8-82