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EXECUTIVE SUMMARY

Expansion of aggregates in concrete pavements is often associated with freeze-thaw cycles
(resulting in durability cracking [D-cracking]) and alkali-silica reaction (ASR) during wet-dry
cycles. The primary focus of this research is to utilize poromechanical modeling to predict
D-cracking in concrete due to expansion of aggregates caused by freezing of the aggregates.
Sensitivity of the damage growth to the aggregate and matrix constitutive parameters 1s assessed.
This modeling approach could also be utilized to predict damage in concrete due to the formation
of ASR gel.

A poroelastic spherical model consisting of an aggregate core surrounded by a cement
paste or mortar matrix shell is developed. Using this model, pore pressure, tangential stress, and
bulk strain results are analyzed to predict the influence of constitutive parameters on the stress
magnitude and damage propensity. The model is evaluated experimentally through acoustic
emission analysis under freeze-thaw cyclic loading, which reveals that air-entrained concrete
may undergo D-cracking if deleterious materials are used. It is found that low-porosity, low-
permeability aggregates embedded in a relatively less stiff matrix may create high tangential
tensile stress in the interfacial transition zone. This damage can be prevented if a high-porosity,
high-permeability (e.g., lightweight) aggregate and stiff matrix are used.

It is determined that high-porosity, low-permeability aggregates with fine pore structure
are the most vulnerable to D-cracking in non-air-entrained concrete, and the destructive tensile
stress 1s generated at the aggregate boundary by the Mandel-Cryer effect. This Mandel-Cryer
effect 1s induced by the strain differential caused by the expansive aggregate center. On the other
hand, low-porosity, high-permeability aggregates relax the pore liquid pressure rapidly and prove
to be beneficial for the non-air-entrained concrete. Moreover, reduction in aggregate size is
found to be effective in quickly relaxing the tensile tangential stress, which eventually helps
mitigate D-cracking of concrete under freezing temperatures.

It is observed that the difference between the coefficients of thermal expansion (CTEs) of
the coarse aggregate and the matrix in which they are embedded should not be too high since it
may cause tensile stress at the aggregate boundary or interfacial transition zone (ITZ). Higher

CTE of the high-porosity, low-permeability aggregate may exacerbate D-cracking by



substantially increasing the delayed tensile tangential stress at the aggregate boundary induced
by the Mandel-Cryer effect.

It is found that a high-porosity, low-permeability aggregate and a less stiff matrix may
deteriorate concrete resistance to D-cracking. Low water-to-cement mass ratio (w/c) and addition
of pozzolans help increase the bulk modulus, reduce the porosity of the porous body, and
improve durability. It is also observed that increase in cooling rate decreases concrete durability
under freezing temperatures through the reduction in time available to relax pore pressure
buildup and the related tangential stresses in the aggregate and matrix.

The proposed model is a poroelastic model and may over-predict the stress since it does
not account for the viscoelastic stress relaxation. Dependence of saturation on pore pressure,
presence of dissolved species in the pore fluid, presence of entrapped air pockets inside the
concrete, degradation of material properties with damage and time, and interaction between
aggregate particle stress/strain fields are neglected to avoid complications in the solutions.

Other than including the above-mentioned factors that have been neglected to simplify
the analytical solution, this model can be modified to account for the damage caused by the
expansion of the alkali-silica hydrate gel during ASR reaction and degradation. The gel can be
treated as a separate band of material in between the matrix shell and the aggregate core, or it can
be treated as an integrated part of the expansive aggregate core that develops tensile tangential
stress in the matrix. In addition, incorporation of an appropriate fatigue-based damage model for
both D-cracking and ASR problems will further improve the model and help predict damage

caused by the expansive aggregates.
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1 INTRODUCTION

Based on previous Texas Transportation Institute (TTI) research, the Federal Highway
Administration (FHWA) reported that about 10% of the nation’s 208,000 km (129,000 mi) of
Portland cement concrete pavements was affected by damage due to expansion of aggregates in
1997 [ 1], with the percentage likely much higher now. Expansion of aggregates in concrete
pavements 1s often associated with freeze-thaw cycles (resulting in durability cracking
[D-cracking]) and alkali-silica reaction (ASR) during wet-dry cycles. On average, pavements
distressed by expansive aggregate-induced damage will require extensive rehabilitation after 10
years of service. Texas and other states have a severe problem with both ASR and D-cracking, as
demonstrated by the many research projects sponsored by the state departments of transportation
(DOTs) 1n this region dealing with these topics. However, while much research has already been
performed and millions of dollars expended studying ASR and D-cracking, the research has thus
far focused primarily on empirical or semi-empirical experimental investigations of mechanisms
and/or effects on structural capacity. Little work has been done to investigate the role of
mechanics and constitutive properties of concrete phases in the formation and growth of damage
in concrete due to ASR and freezing of aggregates.

Reducing the temperature of concrete below 0° C may cause aggregates within the
concrete to expand (due to freezing of pore water and associated pore water pressure), causing
tensile stresses in the surrounding cement paste matrix. The extent of the expansion and resulting
damage depends on many factors, including the pore structure of the aggregates and surrounding
cement paste, the rate of temperature change and minimum temperature achieved, and the
mechanical properties of the aggregates and cement paste. Poroelastic theory [2], [3] has been
used successfully to model the behavior of cement paste exposed to freezing temperatures [4—7]
but has not been applied to the problem of freezing aggregates within concrete.

ASR 1nvolves the dissolution of certain glassy siliceous aggregates within concrete and
the subsequent formation of an amorphous alkali-silica hydrate that imbibes water. The
imbibition of water results in swelling of the gel, which creates tensile stresses in the surrounding
cement paste and subsequent damage growth. The magnitude of the stress in the cement paste
surrounding the expanding gel-coated aggregate depends on the mechanical properties of the

aggregate, gel, and cement paste, but also potentially on the pore structure of the aggregate and
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cement paste. Since the gel 1s a viscoelastic material, it may flow through the pore network under
shear stresses, which would relax stresses in the paste. Poroelasticity has been applied to the
ASR problem [8] but has not been utilized to study the magnitude of the stress relaxation
possible by optimizing material parameters.

The primary focus of this research was to utilize poromechanical modeling to predict
D-cracking in concrete due to expansion of aggregates caused by freezing of the aggregates. This
modeling approach can also be utilized to predict damage in concrete due to the formation of
ASR gel.

D-cracking, which appears as a series of closely spaced, crescent-shaped cracks along
joints in concrete slabs, 1s a progressive structural deterioration of the concrete beginning in
certain types of susceptible coarse aggregates and caused by repeated freezing and thawing after
absorbing moisture [9-11]. It 1s initiated when moisture penetrates the tiny pores of certain types
of aggregates (some limestones and fine-grained sedimentary rocks). When frozen, the trapped
moisture expands to form ice. As thawing occurs, more moisture is able to penetrate the newly
formed cracks created by the destructive expansion of the previous freeze. The next freeze then
produces more destructive cracking, and so on. Large particles of the same type are more
susceptible to D-cracking than small particles. This is because the larger the particle, the longer
the water flow path, and the more cracks will form, since the water cannot escape during
freezing. Again, the higher the permeability, the faster water can escape during freezing, causing
less damage. Therefore, 1n the same material, the smaller size aggregates with high permeability
perform better than the larger ones. The problem is less prevalent in very cold regions where
fewer cycles of freezing occur.

When the temperature of concrete 1s reduced below 0 °C, aggregates within the concrete
may undergo cryo-deformation due to freezing of pore water and associated pore water pressure,
causing tensile stress gradient in the surrounding cement paste matrix. Powers first came up with
a hydraulic pressure model, which illustrates that when water in the pore network freezes to ice,
liquid pressure 1s built up by the expulsion of excess water due to the increase in volume [12]. As
a result, cracks develop when the concrete strength fails to resist the excess pressure. Powers
proposed that suitably spaced air voids would prevent the development of the excess pore
pressure. However, subsequent work by Powers and Helmuth showed that air-entrained pastes

still suffer stress and expansion caused by the crystallization pressure [13]. The importance of



crystallization pressure was later expanded by Scherer and Valenza, who concluded that the
primary source of stress during freezing is the crystallization pressure, not the hydraulic pressure
[14]. In support of the crystallization pressure mechanism, they referred to the work of Beaudoin
and Maclnnis, which showed that concrete still expands when water is replaced by organic

liquid, which contracts upon freezing, since expansive hydraulic pressure is absent in this case

'15]. According to this mechanism, the harmful stress is created by the repulsive van der Waals
forces between the ice crystal and the minerals in the pore walls. At the ice, water, and mineral
interface, additional attributions to the disjoining pressure may come from the electrostatic forces
or the structuring of the solvent at the solid surface. This repulsion 1s so high in magnitude that a
liquid film separating the ice and pore walls always exists and permits the crystal to grow while
pushing away the pore walls [14].

In addition to these two mechanisms, at a temperature below the bulk freezing point,
confined water can partially remain liquid provided it depressurizes relative to the adjacent ice
crystals, provoking in turn a cryo-pumping of the distant liquid water [5]. As a result, properly
air-entrained concrete contracts upon freezing because the liquid water transforms to ice
instantaneously when entering entrained air voids and causes cryo-suction in the air-void vicinity
owing to the liquid-crystal thermodynamic equilibrium [4], [S], [13], [14], [16]. In this regard,
Coussy, and Coussy and Monteiro, attributed freeze-thaw-induced damage to the following
various combined actions [5], [6]:

* The difference of density between the liquid water and the ice crystal; this density
difference provokes the expansion of the solid matrix surrounding the crystal in
formation, as well as the expulsion of some liquid water from the freezing sites
toward the pores still filled by liquid water.

* The surface tension arising between the different constituents, which eventually
governs the crystallization process in connection with the pore radius distribution.

* The drainage of the liquid water expelled from the freezing sites toward the air voids.

* The cryo-suction process, which drives liquid water toward the already-frozen sites as
the temperature further decreases.

* The elastic thermomechanical coupling between the pressurized pore space and the

surrounding solid matrix, which governs the overall cryo-deformation.



The proposed poromechanical model accounts for the above-mentioned damage
mechanisms and predicts D-cracking in the concrete caused by freezing temperatures. Using this
model, a sensitivity of the damage growth to the aggregate and matrix constitutive parameters 1S
assessed. This, in turn, will allow improved concrete design and spawn new ideas for preventing

and mitigating damage due to expansive aggregates.



2 MODEL DEVELOPMENT

In this chapter, a poroelastic concrete sphere is considered with a coarse aggregate core of radius
R;embedded inside a mortar or cement paste matrix shell (throughout this report, the terms
“aggregate’ and “matrix” will be used to represent the coarse aggregate core and the paste or
mortar shell, respectively) of outer radius R, , as shown in Figure 4. An elastic model is first
developed based on the classical elastic theory proposed by Timoshenko and Goodier [17]. It is
then extended to include poromechanical constitutive properties based on the theory developed
by Biot [2] and discussed by Coussy [3], [5], and Coussy and Monteiro [6], [7]. The elastic case
is presented in Section 2.1, and the unsaturated poroelasticity is presented in Section 2.2.
Throughout this report, the following sign convention is used:

» Pore pressure (liquid or crystal) 1s positive for compression and negative for suction

or tension.
= Stress and strain are positive for tension and negative for compression.
= Change in temperature, AT (= T,,-T), 1s positive for cooling and negative for heating,

since it 1s measured with respect to the melting temperature 7, in the absolute scale.



Aggregate Core

Matrix Shell

Figure 4. Geometry of the proposed model representing a coarse aggregate core of radius R;
embedded in a cement paste or mortar matrix shell of outer radius R,,.

2.1 Elasticity

Determination of the elastic stress and strain components given in this section follows much of
Timoshenko and Goodier’s work [17], with the only exception being that thermal strain is
replaced by free strain. A simple case of a temperature symmetrical with respect to the center
and a function of radius, 7, is considered. On account of the axial symmetry, the non-zero radial
(subscript ) and two tangential (subscript 8 and []) stress (6) and strain (¢) components in the

principal directions are given by:

o = %[(1_1/)5,, +2ve, —(1+V)e, ] (0)

Dy Fill = (1+V)[£; +ve, —(1+v)e, ] v
ou,

-2 (0)



Eyg=E€,=— (0)

where u 1s the radial deformation, K and v are the bulk modulus and the Poisson’s ratio of the
isotropic linear elastic porous material, and £, is the free strain and a function of pore pressure

and temperature. The above stress components must satisfy the condition of equilibrium given

by:
d"r+2(o,—a,):0 (0)
dr r

Substituting (0)—0)in the equilibrium equation (0), we get the differential equation for u,-

du 2v( du d 2 du 2u,
1-v ~ + r———u, |—(1+v)—(&, )+(1-2v)——=—(1-2v =0 0
( )dr2 rz( dr '] ( )dr( f) ( )r ar ( )r ©)
which can be simplified as:
du  2v du 2vu, 2du, 2u, d
- ~ + L — +(1-2v)——L—(1-2 =(l+v)—
(1-v) e+ 28D 4 (1-20) 2 2 (1-20) 2 = (14v) (e, )
d’u 2 du 2u d
=>(1- L+ (l-v)————(1- ~=(1+v)—
( V) er ( V)r dr ( V) r2 ( V)dr(gf)
du 2du 2u (1+v) d
===t T3 T (EI)
ar* rdr r° (l-v)adr
d| 1 d,, (1+V) d
=> = £ 0
dr{rz dr(r ur)} (1-v) dr( f) 0)
Integrating both sides of (0) with respect to r, we get:
1+
LS d(ru) ( I/)é:f+C,’ (0)

rdr

(1-v)
where C is the first integration constant. Rearranging (0) and then integrating again with respect

to r, we find:

(1+v)" r
rzur:( jg, 2dr+C?+C 0)

where C, is the second integration constant. Finally, after simplification, the solution can be

written as:



C(I+v) 1, C,
u = AT Jaefr dr+Cr+=3 (0)
This solution can be substituted in equations (0)+0) to obtain:
(1+v) 1% L, (1+v) 2C
£ =-2 E rdr+ £, +C ——2 0
ST vl e T A i o
1+v) 1 % C
eﬁzgv):ﬁl_viﬁ Iefrzdr+Cl+r—32 (0)
(1-2v) 1 "7 (1-2v) 6K
o =-6K €. rdr+3KC, - C 0
' (1-v) r3,=[ A N TI I @
o ae=2r) e (1-2v) 3K
0,=0,=3K (1—v) > ,;[,Efr dr—3Kef+3KCl+ (1+v) 54 (0)

We will now consider aggregate core and matrix shell separately. For aggregate core, the

lower limit g of the integrals will be taken as zero. At the center (» = (), radial displacement 1s

zero, which from (0) gives C, = 0, since limL I £ f"rzdr = 0. This means the term with C,

r—0 r2 0
r=

vanishes for aggregates. Rewriting equations (0)—(0)for aggregates and denoting by superscript

a, we obtain:
0 D e S
U, =(1—-v")r2 Igf r'dr+C/r (0)
r=0
o v ) (),
£ _-2(1—1/")1*3 rzjoef rdr+[l_va)£f +C (0)
1+v?) 1 =
e;=e;=E1_Va;:3 Ief“rzdr+C," (0)
r=0
" r=r
o° =—6K" ((11 I:)) 13 Ief“rzdr+3K"Cl“ (0)
V) r .5
§ ot U D =2V .
o, =0, =3K ((I—V“)) > ,.;[,gf r’dr—3K ((l—v"))ef +3K°C, (0)



In the case of the matrix shell, the lower limit of the integral is taken to be the radius at
the interface of the aggregate core and the matrix shell, R;. Rewriting equations (0)—(0) for paste

or mortar matrix and denoting by superscript p, we find:

P\  r=r
u’ :E:i:p< rlz Ié‘f”rzdr+Cl”r+r—2: (0)
} " =R
N R e S (L 2¢;
£’ __2(1—1/”) 5 £ £, dr+ [l—vp)gfp +CF - (0)
eP=eP=[1+VP: 1 r]rgprzdr+cp+c_zp (0)
6 ¢ [l_vp] 3 . f l r3
_ P r=r — VP
o’ =—6K* ((ll ZVP)) 13 _[Sf”rzdr+3K”C,p—((ll 2Vp)) 6K3P C,” (0)
—V y <R +V ¥
(1-2v7) | = (1-2v*) (1-2v") 3k~
qp =3K? j Efprzdr—?)Kp £ p+3KPC1p+ Czp (0)
(1-v?) % (1-v7) (14v?) 7

The three unknown integration constants, Cy', Cf , and Cf , are determined using the Solve

function Solve in Mathematica [18] and applying the following three boundary conditions. The

boundary conditions are:

= At the aggregate core-matrix shell interface (» = R;), radial displacement and radial

stress are the same 1n the matrix and aggregate, so:

[ur"] = [u,_p ] " in order to ensure a continuous displacement field, and (0)

r

o ]R — [O',"L& to satisfy equilibrium. (0)
= At the outer surface (» = R,) of the matrix shell, radial stress,o,” , 1s equal to the

negative applied pressure, p, , so:

(07 =P )

= The Mathematica notebook with the determination of the integration constants is

provided in the Appendix. Substituting the integration constants in the equation of

bulk strain, £, =€, + £, +€,, for aggregate core, we obtain:



3

£ =X<£f")+3ﬁef"+W<ef”>—p“”;R" (1+27,7) (0)

and for matrix shell;

£ =U(e " )+30"?+V(e,’)——"—< 0
W =U(e 4387, +V (e,”) 7 Iz (0)
where the angle brackets indicate a volumetric average, such that:
3 b
_ 2
(0)= g Jx(r) i (0)
1+v
= 0
A=30— (0)
1-2v
Z: (0)

1+v
Superscripts a and p denote aggregate and matrix, respectively. Coefficients U, V, W,

X, and Z are functions of material constants and are given in the Appendix.

2.2 Unsaturated Poroelasticity

The fundamental equations needed to model the deformations in concrete exposed to freezing

conditions, including thermal effect, hydraulic pressure, and cryo-suction, have already been

developed by Coussy [3] and Coussy and Monteiro [6], [7]. These equations are modified to

determine the damage in concrete caused by the harmful aggregates under the freeze-thaw cycle.

For simplicity, the following assumptions are made:

We assume that the rate of thermal equilibration is orders of magnitude faster than the
fluid flux such that a uniform temperature (T) field in our model is a reasonable
approximation.

Ice and water flow so slowly in comparison to the cooling timescale that change in
liquid or crystal saturation is assumed to be uniform and instantaneous with the
applied change in temperature.

When cooling freezes water in the pore network, ice blocks the passages and reduces
permeability. Dependence of the poromechanical properties (e.g., permeability and
viscosity) and the thermal properties (e.g., coefficient of thermal expansion [CTE] of

liquid water) on the temperature was neglected and assumed to be constant with time.
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= Damage accretion with each successive freeze-thaw cycle and subsequent change in
poromechanical properties (e.g., permeability, Biot’s coefficient and modulus, bulk
modulus) were also neglected.

For a porous material under freezing condition, the solid-liquid thermodynamic

equilibrium 1s given by [19]:
(l_pc/p!)(pi _pa!m)+pc' _pi =2m(Tm _T) = EmAT (0)
where p. and p, are the un-deformed densities of the crystalline and liquid phases, respectively;

p. and p, are the pressures in the crystalline and liquid phases, respectively; 7,, is the melting

temperature for water when the radius of curvature is infinite; 7 1s the melting temperature for

water when the mean radius of interfacial curvature is d ; AT is the change in temperature; and

P...is the atmospheric pressure. The term X =(s,—s5, ) is the mass-specific melting entropy

C

where s. and s, are the mass-specific entropies of the crystalline and liquid phases, respectively.

The constitutive law for a linear isotropic thermoelastic porous material subjected to uniform

pore pressure p can be expressed as [20]:

] V b
g=——|6———tr(6)1 |+ —= pl —ATI 0
26{0 T+ ") } 3k F ©)

where ¢ i1s the strain tensor, o is the externally applied stress tensor, G 1s the shear modulus of
the porous body, p is the pressure within the pore fluid, « is the linear CTE of the porous body,

and I 1s the identity tensor. The term b 1s Biot’s coefficient and can be written as:

K
bl (0)

A

where K 1s the bulk modulus of the solid phase comprising the solid skeleton. Under stress-free

condition (o = 0), equation (0) simplifies to:

bp
£, =——aAT 0
r=3g 0)
such that:
bp
Ed =3£f =—1'E—'—30.’AT (0)

where €, 1s the scalar dilatational free strain. According to Coussy [5] and Coussy and Monteiro

[6], [7], in the case of a freezing water-infiltrated porous material, pore pressure is no longer
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uniform since the porous space is partly occupied by ice crystals and partly occupied by the
liquid water, and thus (0) becomes:

— bcpc +bip! _3KaAT

£ 0
/ T (0)
where subscript ¢ refers to the ice crystal and subscript / refers to the liquid water, and:
b.+b=>0 (0)
Assuming that all pores subjected to the same pore pressure deform the same, we get:

b,=S§b 0)
where §; is the volume fraction of the pores occupied by species ; such that:
TS =1 (0)

j

In order to calculate £, from (0), it 1s necessary to determine p,and p, . p,. can be
determined in terms of p, using equation (0). Assuming p . to be the gauge pressure, and
substituting p.from equation (0) into (0), we obtain:
b!pi +bc BL pi +(bczm _3Ka)AT

£ = £ (0)

4 3K
which for aggregates can be written as:

b py +b,° = pr +(b7E, 3K a") AT

8 a — pf (0)

4 3K*
and for matrix:

b p?+br’ Pe p,° +(b(_"Em —3K”0:”)AT

£,” = P (0)

3K?
Now, assuming that Darcy’s law governs the liquid water flow, and substituting equation
(0) and (0) in equations (0) and (0), respectively, liquid pressure in the aggregate and the matrix,

as well as their corresponding strains, can be determined. This can be done by calculating the

total mass of water, m_ (both liquid and crystal), currently contained in the porous material per

unit initial volume. According to Coussy and Monteiro [7], m_ can be given as:

m,=p@,+p, (8, +9,) (0)

where ¢ is the initial porosity of the porous material, while:
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b, =(p“ —I}Q)SC (0)

P
and
J =be, + by L +3(¢9,5,a,+9,S.a. +a,+a. )AT (0)
1) M M [/ Il A’ 4
where
b S S .
l ¢a _;+¢o J (0)
M, K, £ K,
1 | ]
= —_— (0)
MMM,
=a(b,-¢,S,) 0)

Here, a,1s the coefficient related to the thermal volumetric dilation of the pore volume occupied

by the species j. M ;1s the Biot’s modulus of the species j. Using the mass balance equation

along with Darcy’s law, we can write:

Ldm, _d(8+8,) kop k] d(r , d ]
p, dt dt n, & n r’dr\ dr %

(0)

where  1s the intrinsic permeability with dimensions of length squared, and 7), 1s the viscosity of

the pore fluid.

Equation (44) should be solved for p, for both the aggregate and matrix. In order to solve

for p,“ and p,” , the following initial and boundary conditions are applied:

= Initially, the pore pressure is uniform and equal to atmospheric pressure, so:

() = P (0)

= Thereafter, the surface can be subjected to arbitrary applied pressure p, ; in this case
papp = pafm; hence:

(pip )r=R, = pa!m (O)
* At the aggregate-matrix interface, continuity of the pressure requires the liquid

pressure in the aggregate, p;', and that in the matrix, p/ , to be the same:

(p7),.. =(PF),_, (0)
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Based on the mass conservation, the liquid flow into the matrix must equal the heat

flow out of the aggregate (and vice versa). Therefore:

a p
k“(dp’ } =kp(dp' ] (0)
ar ) _ " ar | .
* Due to the radial symmetry, no flow condition occurs in the center, which gives:
[dp ' } =0 ©
dr r=0

The solution can be readily obtained by use of the Laplace transform, as shown in the Appendix.
The pore pressure, stress, and strain results obtained in the Laplace transformed domain is then

inverted numerically into the time domain with the Stehfest Algorithm [21] using the script from

[22] in Mathematica.
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3 PREDICTING DAMAGE: NUMERICAL EVALUATION

To implement the proposed model, and to estimate pore pressure and the resulting deformation
of the concrete under freezing condition, a coarse aggregate core of 0.051 m (2 inches) (R;=
0.0254 m) 1is considered to be embedded in the matrix shell, as proposed in Section 2.1. The
body is assumed to be completely saturated and surrounded by free water. Temperature is
decreased instantaneously to -25 °C 1n a single step. This results in uniform change of
temperature throughout the body. Diameter of the outer radius, R,, of the matrix shell is
calculated from the dry-rodded coarse aggregate volume fraction, which depends on the
maximum coarse aggregate size and fineness moduli of sands. For example, for a 2 inch
maximum coarse aggregate size, the dry-rodded coarse aggregate volume per unit volume of
concrete may vary from 72% to 78% for different fineness moduli of sands if the concrete
mixture is designed according to American Concrete Institute (ACI) procedures [23]. Therefore,
if a fineness modulus of 2.7 is assumed, the volume fraction of the dry-rodded coarse aggregate
is 75%, and the outer diameter of the concrete sphere 1s found to be 2.2 inches (outer radius, R,,

of the sphere is 0.028 m). In addition, typical values consistent with concrete are adopted for
both the aggregate core and matrix shell, such that@’ =@’ =0.2, k“ =k? =1x107*' m?,
K*=K? =45x10°MPa,a’ =a” =10x10°°C™", andv’ =v” =0.2. This is done to verify the

proposed model for a very simple structure with uniform properties. In the following section,
multiple cases are examined, and these properties are changed to see how they affect concrete

freeze-thaw response, especially the tensile stresses that may cause cracking to initiate. Bulk

modulus of the porous body, K, is then determined in terms of K. and @ [24], [25] according to:

K=(1-4,)'K, =
Furthermore, we let K, =1.79x10° MPa and @, =-98.77x10™° K" at 263 K for supercooled

water, and K =7.81x10’MPa and a, =51.67x10° K™"'at 263 K for ice crystal [5]. Liquid
density, p,, and crystal density, p., are assumed to be 999.8 kg m™ and 916.7 kg m™ at 273 K,
respectively [5]. Additionally, T _ is considered to be 1.2 MPa K™ [5], and liquid degree of

saturation, JS,, is derived using the same approach depicted by Coussy [5]:
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l —-m

ARl A A R
s =|1+ S(AT ; (1 p{]p,J 0)

m

= —

where m is the shape factor relating the pore size distribution, and 0 < m < 1. The closer m 1s to

1, the more narrow banded the pore radius distribution is. 3 1s a characteristic cooling related to
both the porous material geometry and the interface properties and can be determined in terms of
capillary modulus, X [5], using the following relationship:

3 =0.4734x X

where K ranges from a few MPa for rocks up to about 35 MPa for cement pastes [3]. The term

associated with p, in (0) 1s neglected, and the reason behind this assumption is twofold. First,

temperature change is assumed to be so fast compared to the pore liquid flow timescale that S,

can be assumed to be primarily dependent on temperature rather than pore pressure. Second,
dependence of saturation on pore pressure makes (0) highly complicated even in the Laplace
transformed domain, and in that case (0), the Laplace transformed domain needs to be solved
numerically. Thus, determination of pore pressure becomes much simplified, and it 1s possible to
obtain an analytical solution in the Laplace transformed domain if the pore pressure term in (0) is

eliminated. However, this assumption is only valid when low pore pressure (=80 MPa) 1s

generated. S, is then calculated from the constraint:

S . =1- 3§, (0)
In the present case, it 1s assumed that the outer boundary of the concrete sphere 1s
surrounded by free water at all times, and it is in equilibrium with the atmospheric pressure. This

might not be the case when the pavement is surrounded by pure water, which freezes instantly
when the temperature is reduced below the melting point. However, continuous traffic movement
and presence of dissolved salt may prevent complete freezing of the liquid water. Instant cooling
of the concrete sphere to -25 °C results in uniform freezing of liquid water in the entire pore
network. As a result, positive pressure builds up, caused by the volume increase associated with
the ice formation and the resulting pore volume change. At the very beginning, pore liquid
pressure 1s the same everywhere. However, this pressure relaxes immediately to atmospheric
pressure and attains equilibrium at the outer boundary of the sphere as the excess water 1s

expelled instantly to the surrounding free water body. However, high positive pressure at the
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center cannot dissipate at once because of the high distance that the excess water must travel to
the boundary to relax it. Moreover, the relaxation time can be on the order of hours for a material
with a very low permeability. Hence, a pressure gradient is generated in the liquid from the peak
positive pressure at the center to the atmospheric pressure at the outer surface. This 1s shown 1n
Figure 5. As temperature is held constant, the excess water from inside the body is expelled to
the outer periphery to relieve the gradient, and the pressure equilibrates everywhere. It is also
seen that as the distance the water has to travel to equilibrate the positive pressure becomes
higher toward the center, more time 1s required to relax the pressure.

As Figure 5(b) 1llustrates, as pore pressure dissipates from the outer layer, the outer part
of the sphere contracts. Consequently, due to the strain compatibity requirement, a sudden
pressure jump, namely the Mandel-Cryer effect [20] occurs in the inner part right before the
pressure starts to dissipate. Accordingly, that interior layer starts to shrink (Figure 6), but the
center does not shrink that much, and increasing tensile tangential stress (Figure 7) is developed
at that interior layer. As more time passes and water starts to dissipate from the interior, this
Mandel-Cryer effect shifts toward the center, creating over-pressurization. The tangential stress

thus transfers toward the center with time, as shown in Figure 7.

17



P57 near center
— pfatr=127 cm
e py at r=2.54 cm (agg—matrix interface)
_— — pi at r=2.54 cm (agg—matrix interface)
" pi at r=2.8 cm (surface)
e
= M_WT) - —i “—‘:;i- i
- \ \ _ )
~ | i LY *
= 80 AN v ]
= ' '
= 60}
=
2 40
< 20+
Okpm

104 0001 001

Q7.0

P - T | | |

= Qf AL o
— -

- 960_ -
o= -

F—‘_.‘

= ]
- —
e .
o

.

- .
-J -
—

=

 o—

. N

(b)

Figure 5. (a) Pressure gradient in the concrete sphere. The peak hydraulic pressure at the center
takes the longest time to equilibrate with the atmospheric pressure at the boundary. (b) As water
starts to dissipate from the interior, the Mandel-Cryer effect shifts toward the center.
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When the temperature drops, various deformations occur for different species (solid
skeleton, ice, and water) and affect the dimensional change of the body. Water shows highly
complex and anomalous behavior due to its intra-molecular hydrogen bonding [26]. Unlike other
liquids, water has a nonlinear CTE, which reduces increasingly at low temperatures and becomes
negative below 0 °C [26]. As a result, when water freezes at 0 °C, its volume increases by about
9% under atmospheric pressure. Moreover, under freezing temperatures, the unfrozen water
expands, whereas the frozen ice contracts. The deformation that will dominate over the other is
dictated by the physical and poromechanical properties of both the aggregate and matrix.
Initially, as shown in Figure 6, contraction caused by the cryo-suction process is offset by the
dilation resulting from the hydraulic pressure and the thermal deformation, and a uniform
expansion is observed. However, initial dilation of the outermost fiber of the matrix shell 1s
negligible due to the immediate equilibration of the pore pressure. As a result, strain differential
develops throughout the concrete sphere. With time, this dilation and strain differential disappear
as the pore liquid pressure decays to the atmospheric pressure to reach equilibrium, resulting in a

net contraction contributed by the thermal deformation and the cryo-suction process.
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Figure 6. Bulk strain distribution created by the pore pressure gradient in the concrete sphere.
Uniform contraction 1s achieved once pore pressure dissipates to reach equilibrium.

Figure 7 provides the tangential stress distribution caused by the combined action of the
crystallization and the hydraulic pressure. As water solidifies to ice, the crystal sustains a water
film between the pore wall and the crystal, allowing 1t to grow and push the wall away. The
pressure that ice generates this way creates tensile stress [14]. Moreover, pore pressure gradient
(Figure 5) created by the density difference between the 1ce and water results in strain
differential (Figure 6), which 1n turn generates tangential stress gradient in the body. This 1s
because the center has the peak positive pressure and dilates more than the boundary. However,
the boundary, which is at equilibrium with the atmospheric pressure, does not allow it to dilate
and thus puts 1t under compression. Similarly, higher dilation at the center than the boundary
exerts tensile stress at the surface. However, with time, as the matrix shell starts to contract more
than the aggregate core due to the pore water dissipation, over-pressurization occurs at the
center, induced by the Mandel-Cryer effect [20]. This in turn results in high tensile stress at the

aggregate boundary and high compressive stress at the center. The stress gradient eventually
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dissipates as the pore pressure relaxes and the strain becomes uniform. An initial peak stress of
about 24.5 MPa 1s developed at the outermost fiber of the matrix by the instantaneous cooling of
the material to -25 °C, which is unlikely to occur in the practical field. In real life, cooling rate is
much slower than the rate assumed here and is incapable of developing this high stress. This 1s
further discussed 1n detail in Section 4.1.1. However, at time t = 2 hours, by when a significant
amount of pore water pressure is dissipated, the stresses in the sphere are still high enough to
initiate cracks. Thus, successive cycles of freezing and thawing have potential to create cracks,
as the tensile stresses may exceed the matrix or aggregate tensile strength under freezing
temperatures. Once again, 1t 1s to be noted that for this particular example, tensile stress can be
developed in the sphere even though there is no distinction between aggregate core and matrix
shell constituent properties. This implies that crack initiating stress in this case is generated by
the strain differential and pressure gradient. The Mandel-Cryer effect further exacerbates this

tensile stress and reduces concrete durability.
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Figure 7. Tangential stress distribution, caused by the hydraulic pressure gradient and strain
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4 SENSITIVITY

When concrete 1s exposed to repeated cycles of freezing and thawing, D-cracking can occur if
the concrete contains a sufficient quantity of aggregate particles that are susceptible to
D-cracking. Severity of the damage can be attributed to various material properties such as
aggregate size, pore size distribution, aggregate and matrix permeability, thermal properties (e.g.,
CTE of ice, water, aggregates, and matrix), and aggregate and matrix bulk modulus. In addition,
air entrainment and cooling rate play key roles in determining concrete durability. This section
presents the sensitivity of the damage propensity to these various factors. The section is divided
into four subsections: the first two include effects of aggregate and matrix properties on the
extent of the damage development, and the third and fourth subsections describe the effect of the
air entrainment and cooling rate, respectively. For each sensitivity analysis, only the parameters
being discussed are varied, keeping the others the same as assumed 1n Section 1. Also, to predict

field results, typical material property values found in the existing literature are used.
4.1 Effect of the Aggregate Properties

Concrete subjected to freezing and thawing usually suffers D-cracking when pore pressure is
generated 1n a critically saturated, nondurable aggregate and the resulting tensile stress exceeds
the tensile strength of the aggregate. This in turn causes cracking of the aggregate particle and
the surrounding matrix and creates additional channels for the migration of moisture in the
aggregate particles. The newly formed cracks then become potential sites for the formation of ice
during the next freeze-thaw cycle [10]. Numerous studies have been performed to investigate the
role of aggregate properties on the concrete resistance to freeze-thaw and D-cracking [10], [27-
31]. Researchers found that the critical aggregate parameters influencing D-cracking are
maximum particle size, permeability, porosity, and pore size distribution. The purpose of this
section 1s to examine the influence of these properties on the damage growth propensity in
concrete subjected to freeze-thaw cycles. Furthermore, the effect of thermal properties (CTE) of

aggregates on concrete frost resistance is also investigated here.

4.1.1 Aggregate Pore Structure: Porosity, Permeability, and Pore Size Distribution

Various studies have already established that the pore characteristics of aggregate significantly

influence the frost resistance of concrete [10], [27], [30]. Although the volume of pores in most

23



natural aggregates is usually under 3% and rarely exceeds 10% [32], [33], the coefficient of
permeability of marble, trap rock, diorite, basalt, and dense granite is generally of the order of 1
to 10x107%'m*. Some varieties of granite, limestone, sandstone, and chert show values that are

higher by two orders of magnitude [33]. For example, for limestone, intrinsic permeability 1s
reported to be 1.7x10™' m’ [34], and for sandstone, it can be as high as 1.28x10™° m*[33], [35].

The reason why some aggregates with only 10% porosity show much higher permeability is that
the size of capillary pores in aggregates is usually much larger than 10 pm on average [33].
Some cherts and limestones contain considerable content of fine pores with low permeability,
making them vulnerable to expansion and cracking associated with slow moisture movements
and the resulting hydrostatic pressure [33]. Therefore, based on the previous studies on the
aggregate response under freezing conditions, the following classes of aggregates are considered
for analyzing the proposed model:
= High-porosity (¢ =0.1), low-permeability (k“ =1.7x107*'m?) aggregate with fine
pore structure (m“ =0.5).
= Low-porosity (@ =0.003), high-permeability (k“ =1.28x107"°m*) aggregate with
coarse pore structure (m“ =0.9 ).
= High-porosity (¢’ =0.1), high-permeability (£“ =1.28x10™"°m?) aggregate with
intermediate pore structure (m* =0.7 ).

= Low-porosity (¢’ =0.003), low-permeability (k“ =1.7x107*'m*) aggregate with fine
pore structure (m“ =0.5).

4.1.1.1 High-Porosity, Low-Permeability Aggregate with Fine Pore Structure
According to Verbeck and Landgren, high-porosity but low-permeability aggregates, typical of
cherts with a fine pore structure, can cause failure because of high internal pressures built in the
aggregates [27]. In the same study, they estimated that the pressure created at the beginning of
freezing of the low-permeability chert should be approximately 100 times greater than for the
high-permeability dolomite [27]. Later, Kaneuji established a correlation between pore size
distribution of aggregates to the concrete freeze-thaw durability and reported that the pore size of
aggregates affects the durability of concrete greatly in the diameter range of 10 pm to 0.1 pm,
and the durability drastically decreases for aggregates with a pore size larger than 1 um [36].
However, pores smaller than 45 A do not affect the durability, probably because they are so
small that the water needs a much lower temperature to freeze in them [36]. Also, Mehta and

Monteiro associated D-cracking with the coarse aggregates that contain high pore volume in the
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narrow pore size range (0.1 to 1 pm) [33]. Therefore, a 0.051 m (2 inch) aggregate with high
porosity, ¢’ =0.1, low permeability, k“ =1.7x107*'m?*, and fine pore structure, m“ = 0.5, is

analyzed here. The resulting plots are provided in Figure 8, Figure 9, and Figure 10.

As shown in Figure 8, a pore pressure of about 96 MPa is 1nitially developed throughout
the porous body. Because of the low permeability, a very tortuous path is created through which
water has to travel to the boundary to relax this pressure. As a result, a relaxation time of about
7 hours is required for the complete dissipation of the pore pressure at the center of the
aggregate, which may cause substantial damage to the concrete. In the beginning, as shown in
Figure 9, the outer part of the matrix shell contracts due to the immediate relaxation of the pore
pressure, whereas the interior part expands. Additionally, the matrix shell interior expands more
than the aggregate core. This may be the consequence of the various thermal deformations that

are occurring simultaneously in difference species: the solid skeleton and ice are contracting,

while the unfrozen water is dilating. Since the pore volume in the aggregate (@' =0.1) is smaller

than the pore volume fraction in the matrix (¢” =0.2), and K is the same for both elements,

bulk modulus of the porous body, K, and Biot’s modulus, M, for the aggregate are bigger than
for the matrix, whereas Biot’s coefficient b 1s smaller for the aggregate than the matrix. As a
combined effect of this, initially the aggregate expands less during cooling to -25 °C than the
matrix interior and exhibits tensile stress, as illustrated in Figure 10. Consequently, the matrix
interior undergoes compressive tangential stress at first. As the aggregate is assumed to contain a
high volume of fine pores with low permeability, the tangential stress developed at the outermost
fiber of the aggregate attains the peak value at around t = 0.25 hours due to the strain distribution
imposed by the Mandel-Cryer effect. Furthermore, it 1s interesting to note that at the equilibrium,
as the entire pore pressure relaxes to the atmospheric pressure, the aggregate shows higher
contraction than the matrix and therefore experiences tensile stress. Hence, several cycles of
freezing and thawing can eventually generate tensile stress exceeding the tensile strength of the
aggregate and initiate cracks inside the aggregate. Thus, it is found that the high-porosity, low-

permeability aggregate is susceptible to D-cracking, which is in accord with previous findings

[27], [33].
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Figure 8. (a) Pore pressure distribution caused by the high-porosity (¢ =0.1), low-permeability

(k“=1.7x10"%'m?*), and fine-pore-structured (m* = 0.5) aggregate. (b) Transfer of Mandel-
Cryer effect toward the center delays the peak stress formation in the aggregate’s outermost fiber
(see Figure 10).
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Figure 9. Strain differential caused by the high-porosity (¢ =0.1), low-permeability
(k“ =1.7x107*'m?), and fine-pore-structured (m“ = 0.5) aggregate.
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Figure 10. Delayed formation of the tensile stress (caused by the Mandel-Cryer effect and the
assoclated shrinkage) at the outmost fiber of the high-porosity (¢ =0.1), low-permeability

(k“ =1.7x107*'m?*), and fine-pore-structured (m“ = 0.5) aggregate makes it vulnerable to D-
cracking.

4.1.1.2 Low-Porosity, High-Permeability Aggregate with Coarse Pore Structure
Verbeck and Landgren also recognized that the low-porosity (¢ = 0.003 ), high-permeability

aggregates with coarse pore structure can cause failure due to the high external pressure built up
in the matrix [27]. Examples of such aggregates are quartzite sand marbles. In order to verify this
phenomenon, the porosity is lowered from 0.1 to 0.003 with coarse pore structure (m“ =0.9)
and high permeability (£ =1.28x10""m?*). As shown in Figure 11, a high magnitude of initial
pore liquid pressure of about 250 MPa 1s generated in the aggregate and in the interfacial
transition zone (ITZ), which agrees with Verbeck and Landgren’s study [27]. However, an initial
uniform strain of -0.0006 in the aggregate generates a uniform tensile stress of about 3 MPa,
while the matrix interior exhibits expansion and generates compressive stress of about -23 MPa

in the ITZ. These results are shown in Figure 11, Figure 12, and Figure 13, respectively. As
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coarse pore structure with low pore volume fraction is assumed in the present example, about
98% of the pore volume is invaded by the ice at -25 °C. Therefore, an initial dilation caused by
the micro-cryo-suction process and mass density difference between the constituent species in
the pore volume should have offset the thermal shrinkage [6]. Yet, the geometry and the
equilibrium condition used 1n this model give rise to a complicated strain distribution where
atmospheric pressure at the periphery causes the outermost fiber of the sphere to shrink (Figure
12). As a combined effect of all these deformations, a uniform initial strain of about -0.0006 1s
observed 1n the aggregate core, whereas a huge dilation of about 0.0011 1s seen at the matrix
fiber at the aggregate-matrix interface, which created a huge pressure of about 250 MPa in the
aggregate. Additionally, magnitude of the tangential stress in the aggregate is relaxed
substantially, as high permeability allows fast dissipation of the pore pressure (Figure 11),
whereas the matrix shell exhibits wide distribution of pressure, stress, and strain because of the
low permeability

(k? =1x107*'m? ). Therefore, it is found that due to low porosity, the aggregate exhibits
contraction and exerts compressive stress on the ITZ, and therefore no damage 1s expected in this
layer, even though a very high pressure of 250 MPa is generated in the ITZ. Finally, for the
reasons mentioned above, it can be concluded that although low-porosity, high-permeability
aggregates create high pressure in the ITZ, they can seldom cause damage to the paste matrix
unless a very big aggregate i1s used where the tensile stress takes hours to decay and create cracks

within the aggregate.
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Figure 11. Pore pressure caused by the low-porosity (¢ = 0.003), high-permeability

(k" =1.28x10""m?*), coarse-pore-structured (m* = 0.9 ) aggregate.
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Figure 12. Strain differential generated in the concrete sphere caused by the low-porosity

(¢ =0.003), high-permeability (k¢ =1.28x107"°m?), coarse-pore-structured (m“ = 0.9 )
aggregate.
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Figure 13. Stress gradient generated 1n the concrete sphere caused by the low-porosity
(@7 =0.003), high-permeability (k° =1.28x107"°m?), coarse-pore-structured (m“ = 0.9 )
aggregate.
4.1.1.3 High-Porosity, High-Permeability Aggregate with Intermediate Pore Structure

In this section, high-porosity but relatively high-permeability aggregates are considered, for
which failure depends on the rate of temperature drop and the distance water must travel to find
an escape boundary [27]. Typical examples of this type of aggregate are limestones, dolomites,
and sandstones.

Figure 14, Figure 15, and Figure 16, respectively, show the pore pressure, tangential stress, and
bulk strain generated in a concrete sphere made out of a high-porosity (¢ =0.1), high-

permeability (k* =1.28%10™°m*), fine-pore-structured (m“ = 0.7 ) aggregate. In

Figure 14, it is seen that a uniform positive pore pressure of about 95 MPa 1s generated in the
aggregate. The stress and strain distributions, as well as the relaxation time, are the same as
found in the previous examples. However, a very low tangential stress of about 1 MPa is created

in the aggregate, whereas a high initial stress of about 20 MPa is developed in the matrix, which

32



dissipates to a negative value (compression) of 3 MPa as water flows to the escape boundary.
Therefore, high-permeability, high-porosity aggregates reduce the potential to initiate cracks. It
should be added here that high-porosity, high-permeability aggregates with open pore structure
resemble lightweight aggregates, which proved beneficial under freeze-thaw cycles with
improved durability [37], [38]. However, the bigger size of such aggregates may delay the
relaxation and cause damage to the concrete by creating cracks in the matrix outermost

boundary.
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Figure 14. Pore pressure generated in the concrete sphere caused by the high-porosity (¢ =0.1),
high-permeability ( £* =1.28x10™"°m”* ), intermediate-pore-structured (m“ = 0.7 ) aggregate.
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Figure 15. Stress gradient generated in the concrete sphere caused by high-porosity (¢’ =0.1),
high-permeability ( k£ =1.28x107°m?), intermediate-pore-structured (m* = 0.7 ) aggregate.
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Figure 16. Strain differential generated in the concrete sphere caused by the high-porosity
(¢ =0.1), high-permeability ( k¢ =1.28x10"°m*), intermediate-pore-structured (m* = 0.7 )
aggregate.

4.1.1.4 Low-Porosity, Low-Permeability Aggregate with fine Pore Structure
As seen in Subsection 4.1.1.1 and 4.1.1.2, high-porosity, low-permeability aggregates are
susceptible to creating delayed harmful stress caused by the Mandel-Cryer effect, whereas low-
porosity, high-permeability aggregates are capable of producing high initial peak stress in both
the aggregate and matrix outermost fiber. Therefore, 1n this section, aggregates with low porosity
and low permeability with fine pore structure are assumed, and results are provided 1n Figure 17,
Figure 18, and Figure 19. As shown 1n Figure 17, a peak pore pressure of about 98 MPa 1s
developed in the aggregate center. However, as compared to the high-porosity, low-permeability
aggregate (see Figure 8[b]), small pressure jumps occur in this case due to the Mandel-Cryer
effect. Moreover, comparison of the results obtained 1n this section (Figure 18) to those in

Subsections 4.1.1.1 and 4.1.1.2 shows that the low-porosity aggregate exhibits an 1nitial
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contraction, whereas the high-porosity aggregate shows dilation at the very beginning. Therefore,
the expansive matrix shell creates uniform tensile tangential stress in the aggregate, as shown in
Figure 19.

In order to visualize the effect of aggregate properties on the damage propensity under
freeze-thaw cycles, peak tensile stresses in the aggregate for the above four cases are plotted 1n
Figure 20. It 1s found that the unique combination of high porosity, low permeability, and fine
pore structure makes the aggregate most vulnerable to D-cracking due to the delayed stress
formation, which 1s crucial for most freeze-thaw cycles that last longer than an hour, whereas the
high initial peak stress developed for the low-porosity aggregate dissipates before it can create
any damage to the aggregate. This peak stress is developed due to the instantaneous cooling of
the material, which 1s unexpected in the practical field where cooling rate is reported to have a
value of 0.8 to 0.9 °C/hour [39]. Such low freezing rate is incapable of creating this high initial
peak stress. This can be seen if the temperature is reduced to -25 °C at a cooling rate of 5 °C/hour
instead of freezing the material instantaneously in a single step. Two types of aggregates are
assumed 1n this case: one with high porosity and low permeability, and the other with low
porosity, low permeability, and fine pore structure. The representative plots are shown 1n Figure
21, where the initial tensile tangential stress is the same for both types of materials. However,
delayed peak tensile stress 1s developed in the high-porosity, low-permeability, fine-pore-
structured aggregate, which takes several hours to relax, making concrete susceptible to

D-cracking under freezing temperatures.
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Figure 17. (a) Pore pressure developed due to the low-porosity, low-permeability aggregates with
fine pore structure. (b) Relatively low Mandel-Cryer effect compared to high-porosity, low-
permeability aggregate (Figure &) 1s observed.
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Figure 18. Unlike high-porosity, low-permeability aggregates (Section 4.1.1.1, Figure 11), low-
porosity, low-permeability aggregates exhibit uniform contraction that creates high initial peak
stress 1n the aggregate for a severe cooling condition.
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Figure 19. Tangential stress developed in the low-porosity, low-permeability aggregates with
fine pore structure. The high initial peak stress in the aggregate that developed due to the
instantaneous cooling of the sphere to -25 °C dissipates within an hour without causing damage
to the concrete.
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Figure 21. The initial peak tangential stress disappears as the cooling rate of 5 °C/hour 1s used
instead of the single-step cooling of 25 °C. Hence, it is evident that high-porosity, low-
permeability, fine-pore-structured aggregates are the most susceptible to D-cracking.

4.1.2 Aggregate Size

Several studies have recommended that reducing the maximum size of D-cracking susceptible
aggregate particles improves the freeze-thaw durability of concrete and slows down the rate of
development of D-cracking [10], [28-30]. Verbeck and Landgren argued that the pressure
required to expel excess water from the frozen particles increases with the maximum aggregate
size, as the distance that the water must travel through the pores also increases [30]. They
claimed that a 1.3 ¢cm (0.5 inch) chert type aggregate of moderate absorption but low
permeability (fine pores) can survive freeze-thaw cycles successfully, whereas for a high-
permeability aggregate such as dolomite, the critical aggregate size to withstand frost damage

can be as high as 83.8 cm (33 inches) [27]. Another study performed by Stark and Klieger
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verified that the reduction in the nominal maximum size of crushed limestone aggregates
improves the durability of concrete pavement [29].
To investigate the role of maximum aggregate size on D-cracking, two examples are

examined:
= A high-porosity (¢* =0.1), low-permeability (k* =1.7x107'm* ) aggregate with fine

pore structure (m“ = 0.5), which is vulnerable to D-cracking, is considered. The size
of the aggregate 1s reduced 1n this case to examine if it improves the aggregate

performance under freezing temperature.
* A high-porosity (@’ =0.1), high-permeability (£“ =1.28x10™"°m?) aggregate with fine

pore structure ( m“ = 0.5) and big aggregate size 1s constdered to investigate if it

deteriorates the problem.

4.1.2.1 High-Porosity, Low-Permeability Aggregate with Fine Pore Structure
It has already been shown that the high-porosity, low-permeability aggregate with fine pore
structure and 0.052 m (2 inch) maximum aggregate size can develop harmful tensile stress at the
center of the aggregate. Thus, the size of the aggregate particle is reduced from 0.052 m
(2 inches; Subsection 4.1.1.1) to 0.013 m (0.5 inch). For 0.013 m (R;= 0.00635 m) maximum
aggregate size, 1f a sand of 2.7 fineness modulus 1s used, the dry-rodded volume fraction of the
coarse aggregate is found to be 56% 1f the concrete is designed according to ACI procedures
[23]. The outer diameter of the matrix shell 1s thus found to be 0.016 m (0.62 inch), with R,
being 0.008 m. Pore liquid pressure, bulk strain, and tangential stress are plotted in Figure 22,
Figure 23, and Figure 24, respectively. It is seen that the reduction of maximum aggregate size
by four times does not reduces the peak pore pressure but reduces the relaxation time
substantially from about 7 hours to 0.7 hours. However, the 1nitial pore pressure being the same,
reduction in the pore volume associated with the reduction in the aggregate size increases the
initial dilation and correspondingly increases the initial tangential stress, while faster relaxation
accompanies faster decay of stress and reduces the magnitude of the peak tensile stress at the

outermost fiber of the aggregate. The comparative effect of the aggregate size reduction on the

peak stress in the outmost fiber of the aggregate 1s shown in Figure 25. Thus, this model proves

that reducing the size of the high-porosity, low-permeability, fine-pore-structured aggregate
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improves the performance of the concrete under freezing conditions, which agrees with the

empirical findings in the literature [27].

pi near center
— - piatr=032cm
------------- pi at =064 cm (agg—matrix interface)
S — pi at r=0.64 cm (agg—matrix interface)
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Figure 22. Reduction in aggregate size from 0.052 m to 0.013 m does not reduce the peak
pressure of the high-porosity (¢¢ =0.1), low-permeability ( k* =1.7x107'm”) aggregate but
reduces the relaxation time by an order of magnitude.
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Figure 23. Reduction in aggregate size from 0.052 m to 0.013 m relaxes the strain gradient faster
in the high-porosity (¢ =0.1), low-permeability ( £* =1.7x107*'m*) aggregate. However, high

pore pressure at the beginning increases the initial dilation to accommodate the reduction in pore
volume.
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Figure 24. Reduction in aggregate size relaxes the stress faster and reduces the peak tensile
tangential stress in the outermost fiber of the aggregate to a negligible amount.
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Figure 25. Effect of aggregate size on the peak tensile stress generated in the outermost fiber of
the high-porosity (¢? =0.1), low-permeability ( £ =1.7x107*'m?), fine-pore-structured

(m“ =0.5) aggregate. Reduction in aggregate size develops higher initial stress to accommodate
expansion caused by the high initial pore pressure. However, faster relaxation in the small
aggregate reduces the damage propensity and improves the performance under freezing
conditions.

4.1.2.2 High-Porosity, High-Permeability Aggregate with Fine Pore Structure
As seen in Subsection 4.1.1.3, high-porosity (¢ = 0.1), high-permeability (£ =1.28x10""m?),

fine-pore-structured (m“ = 0.5) aggregates with 0.052 m (2 inch) maximum aggregate size cause
high tensile stress at the outermost fiber of the matrix shell but do not cause damage to concrete
because of the quick relaxation time. In order to verify if this type of aggregate 1s prone to
damaging the concrete, a bigger aggregate size of 0.15 m (6 inches) is considered. For this
maximum aggregate size (R;= 0.00635 m), according to ACI design procedures, if a sand with a
fineness modulus of 2.7 1s assumed, the dry-rodded volume fraction of the coarse aggregate 1s
found to be 84% [23]. The outer diameter of the matrix shell 1s calculated to be 0.16 m

(6.34 inches), with R, being 0.08 m. Results obtained for this analysis are provided in Figure 26,
Figure 27, and Figure 28. In this case, increase of aggregate size from 0.052 m (2 inches) to

0.15 m (6 inches) does not increase the peak pore pressure as expected. As a result, increase in

46



pore volume due to the increase in aggregate size reduces the initial dilation (Figure 27) and the
associated tensile tangential stress (Figure 28) at the matrix boundary. These high values are the
consequence of the instant cooling to a -25 °C, which is unexpected in the field. However, as
shown in Figure 29, use of bigger aggregates delays the relaxation time a significant amount,
thus exhibiting a high stress in the matrix for a longer period. This may in turn create cracks in
the matrix shell, even for slow cycles of freezing and thawing where fatigue tensile stress
exceeds the tensile strength of the matrix. Although such freeze-thaw damage originated in the
cement matrix resembles the cracking caused by nondurable coarse aggregates, it is not
considered D-cracking [10]. However, development of cracks in the matrix may alter the stress
state and help initiate and accelerate D-cracking during the successive freeze-thaw cycles when
unsound aggregates are present in the concrete. In general, it can be concluded that the use of a
small aggregate is beneficial because the harmful tensile tangential stresses at the boundary of
the aggregate and the matrix are relaxed quickly due to the short travel path to the escape

boundary.
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Figure 26. Increase in aggregate size from 0.052 m (2 inches) to 0.15 m (6 inches) does not
affect the iitial peak pore pressure (see Figure 11) but delays the relaxation time.
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Figure 27. Increase in aggregate size from 0.052 m (2 inches) to 0.15 m (6 inches) decreases the
initial dilation but takes hours to reach equilibrium.
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Figure 28. Increase in aggregate size delays the pore pressure relaxation, and the outer boundary
of the matrix shell exhibits the peak tensile stress for a long time when a high-porosity

(¢ =0.1), high-permeability ( £ =1.28x107°m?), fine-pore-structured (m* = 0.5) aggregate is
used.
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Figure 29. Increase in aggregate size from 0.052 m (2 inches) to 0.15 m (6 inches) slightly
decreases the initial peak tensile stress at the boundary of the matrix shell but delays relaxation
time by an order of magnitude that is capable of creating cracks 1n the matrix outmost fiber.

4.1.3 Aggregate Thermal Properties
As reported by Alexander and Mindess [32], the importance of aggregate CTE to the
performance of concrete under thermal cycling 1s twofold: first, 1t influences the CTE of the
concrete and hence thermal movements in structures; and second, 1t may contribute to the

development of internal stresses if there are large differences between the CTEs of the various

constituents. Typical values for CTE for various aggregates arc reported to vary from

4x107°°C™" to 13x107°°C'[23], whereas for cement paste, & is reported to be 10x107°°C ™ to
20x107° °C~' [40], and for concrete, it varies from about 6 to14x10°°C™", with an average value

of about 10x10™°°C™'[32]. «is reported to be 7.4x107°°C™" for Elgin sand mortar and

51



9.9x107°°C' for Ottawa sand mortar [41]. Callan reported that the limestone-sand mortars have
coefficients of 7.2° 10°°°C"' to 9° 10 ¢°C ', while most natural siliceous-sand mortars have

CTEs near 10.8° 10" °°C" '[42]. In the same study, he identified that the durability of the concrete
may be considerably low where the difference between the CTEs of coarse aggregate and cement
paste is large, and the maximum stress in that case occurs at the aggregate-matrix interfacial

boundary. Therefore, the difference between CTEs of coarse aggregate and matrix in which they

are embedded should not exceed about5.4x107°°C™' [42].
Here, a high-porosity (¢° =0.1), low-permeability ( k“ =1.7x10*'m?), fine-pore-

structured ( m = 0.5) aggregate with a low thermal expansion of 4x107°°C~" and a diameter of
0.052 m (2 inches) 1s considered. The resulting plots for pore water pressure, bulk strain, and
tangential stresses are shown in Figure 30, Figure 31, and Figure 32, respectively, and are
compared to the results obtained in Subsection 4.1.1.1, where a high-porosity, low-permeability,
fine-pore-structured aggregate with ¢ =10x107°°C™" was used. As shown in Figure 30, change
in CTE of the aggregate does not change the peak pore liquid pressure. However, substantial
change i1s observed in the bulk strain and stress distribution. In the present case, as illustrated in
Figure 31, the matrix contracts more than the aggregate at the equilibrium because CTE of the
aggregate is less than that of the matrix (a? =10x107°°C™"). As a result, the peak tensile stress

according to this model occurs in the matrix, as shown in Figure 32, and the damage 1s more

likely to occur in the ITZ, since the ITZ has a tensile strength of 0.5 MPa [32]. Similarly, peak
tensile tangential stress can be found 1n the aggregate boundary if the aggregate has a greater
CTE than the matrix shell. This is shown in Figure 33, Figure 34, and Figure 35, where the CTE
of the aggregate is assumed to have a value of 10x107°°C™' and the matrix CTE is assumed to be
4x107°°C~'. As anticipated, higher CTE of the aggregate than the matrix does not influence the
peak pore pressure. However, as the aggregate contracts more than the matrix, as shown in
Figure 34, the peak tensile tangential stress is developed at the aggregate outmost boundary (see
Figure 35), which 1s in accord with the findings of Callan [42]. Therefore, higher CTE of the
aggregate than the matrix can make the aggregate more susceptible to D-cracking than if there is
a lower coefficient differential between the aggregate and the matrix. The corresponding results

are plotted in Figure 36.
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Figure 30. Difference in the CTEs of the aggregate and the matrix does not affect the pressure
gradient (see Figure 8).
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Figure 31. Matrix contracts more at the equilibrium than the aggregate due to the lower CTE of
aggregate than that of matrix (see Figure 9).
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Figure 32. The equilibrium peak tensile stress occurs at the ITZ due to the reduction in the CTE
of aggregate, which agrees with the literature [42].
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Figure 33. As seen earlier, greater CTE of aggregate than matrix does not change the initial peak
pore pressure (see Figure 8 and Figure 30).
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Figure 34. The aggregate contracts more than the matrix at equilibrium because of its higher
CTE.
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Figure 35. The aggregate contracts more than the matrix and develops delayed peak tensile
tangential stress in the aggregate boundary, making it vulnerable to D-cracking.
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Figure 36. Difference in the CTEs of the aggregate makes concrete more susceptible to D-
cracking where aggregate CTE 1s higher than that of paste. However, peak tensile stress can
occur in the I'TZ if the matrix CTE 1s higher than the aggregate. Either way, durability of the

concrete 1s much lower if the difference in the CTEs of the aggregate and the matrix 1s

substantially high.

4.2 Effect of the Matrix Properties

The properties of the matrix, its permeability, porosity, pore structure, air content, CTE, and

other physical and poromechanical properties, are also involved in the problem of concrete

durability under freezing temperatures. In addition, the matrix can significantly influence the

degree of water ingress depending upon the permeability and thickness of the paste or mortar

cover that separates the aggregate from the wet surface of the concrete. In this section, the
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influence of matrix properties on the concrete behavior under freezing temperatures 1s examined
in detail. Two simulations are performed in this section:
*» High-porosity, low-permeability, fine-pore-structured aggregate covered with cement
paste matrix.
= High-porosity, low-permeability, fine-pore-structured aggregate covered with sand

mortar matrix.

4.2.1 Aggregate Covered with Cement Matrix

In this section, a concrete mixture 1s considered where a high-porosity (¢, =0.1), low-
permeability ( £ =1.7x107*'m?), fine-pore-structured (m* = 0.5), 0.052 m (2 inch) aggregate
with low CTE of 4x107°°C™' is covered with cement paste matrix. Elastic Young’s modulus,

E“=37x10’ MPa, is used for the coarse aggregate [43]. K“is determined using the relation

K= E“/3(1- 2n"), where n“ is the Poisson’s ratio of the aggregate. K’ is then calculated

using (57) and is found to be 30 X 10° MPa. The bulk modulus of the skeleton, K_, for both
concrete and cement paste may vary from 37x10° MPato 63x10° MPa, depending on the water-

to-cement mass ratio (w/c) and age [34]. Thus, an average of K” =45x10° MPa is used for the

cement paste matrix. Studies showed that capillary porosity of the cement paste may range from
0.22 to 0.33 for a w/c 0of 0.47 and can be as high as 0.51 for a w/c of 0.71, depending on the

degree of hydration [44]. Permeability of a hardened cement paste is reported to have an average

value of about 6x107°° m’[33]. Therefore, a high-porosity (@7 =0.5), low-permeability

(k? =1x107*'m?*), cement paste with fine pore structure (m” = 0.5) is assumed. CTE for the
cement paste matrix is assumed to be 10x107°°C™"'[38].

Pore liquid pressure, bulk strain, and tangential stress are plotted in Figure 37, Figure 38,
and Figure 39, respectively. It is seen in Figure 37 that pore pressure gradient is observed at the

very beginning because of the difference in the bulk modulus of the aggregate and the cement

paste matrix. Also, increase in matrix porosity, ¢”, from 0.2 to 0.5 induces high expansion in the

paste, as shown in Figure 38. As the porosity of the paste is considered high, huge cryo-swelling
caused by the density difference between liquid water and ice crystals overcomes the contraction

of the solid skeleton and already-frozen ice crystals. The aggregate, on the other hand, undergoes
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less expansion, which creates destructive tensile stress in the aggregate and at the outermost fiber
of the paste matrix (Figure 39). This is further exacerbated by the delayed harmtul tensile stress
in the aggregate boundary caused by the Mandel-Cryer effect [20]. With successive freeze-thaw
cycles, substantial damage in this case may result in the aggregate outmost fiber. Comparison
with the results obtained in Subsection 4.1.3 (Figure 32) shows that high porosity, low
permeability, and fine pore structure of the cement paste matrix creates high tensile tangential

stress at the aggregate boundary (see Figure 40) and has high potential to cause D-cracking.
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Figure 37. Pore pressure gradient in the concrete sphere, where a low-permeability, high-
porosity, fine-pore-structured aggregate 1s covered with high-porosity, low-permeability cement
paste matrix.
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Figure 38. Strain differential in the concrete sphere, where a low-permeability, high-porosity,
fine-pore-structured aggregate is covered with high-porosity, low-permeability cement paste
matrix.
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Figure 39. Although peak tensile stress 1s generated in the cement paste matrix, it dissipates
within an hour, reducing the damage susceptibility. However, delayed tensile tangential stress
developed in the aggregate boundary has the potential to create D-cracking.
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Figure 40. Increase in the porosity of the cement paste matrix causes huge expansion in the
cement paste matrix compared to the aggregate and creates high tension in the aggregate
boundary.

4.2.2 Aggregate Covered with Mortar Matrix

A high-porosity (¢" =0.1), low-permeability ( k* =1.7x107*'m"), fine-pore-structured

(m?=0.5), 0.052 m (2 inch) aggregate with a low CTE of 4x107°°C™" is considered to be

covered with a sand mortar matrix. For mortar with a w/c 01 0.55, a” can vary from 0.31 to 0.37,
depending on the air content [45]. Wong reported values for mortar porosity varying from 0.11

for 60% sand by volume to 0.26 for 10% sand with a w/c of 0.5 [46]. Corresponding

permeability has been measured to range between 8.3x10™" m’to 5x107'° m? [46]. E”is assumed

to have a value of 16° 10°MPa [45]. Assuming Poisson’s ratio of mortar, »”, as being 0.2, K? is

then determined using the relation K” = E” /3(1- 2n"). Using (0), K7 is calculated to be

13.9%10° MPa,, for which 77 = 0.2 is assumed. ’” is assumed to be 10x107°°C ™' for mortar [41].
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Figure 41 shows the pore pressure gradient generated in the aggregate covered with a
mortar shell. Since a very low bulk modulus 1s used for mortar, comparatively low pore pressure
occurs in the matrix. Also, high swelling is observed in the mortar interior (Figure 42), which
results in high tangential stress in the aggregate outmost fiber, as shown in Figure 43. Therefore,
decrease in the bulk modulus of the matrix increases the initial expansion of the matrix
surrounding the aggregate and induces high tensile tangential stress at the aggregate boundary. It
1S 1nteresting to note that even though there 1s a high difference in the CTEs of the aggregate and
the matnix, the equilibrium strain is the same for both of the constituent materials. Here, because

of the high modulus, the equilibrium strain is dictated by the aggregate.

66



pY near center
- piatr=127cm
q ot v KA or _ br o
p; at r=2.24 cm (agg—matnx mtertace)
— pi at r=2.54 cm (agg—matrix interface)
—_— - pi at r=2.67 cm
pi at r=2.8 cm (surface)

-I ey T e r T Tyl T : T ]

(.
(-

|

V4
o~

|

Liquid Pressure, pp (M)
™
&
-
____v_-_"_‘_:_'.ﬂ——

-
e
=

| NN

2 §

Time (hr)

10+ 0001 001

Figure 41. Pressure gradient in the concrete sphere containing high-porosity, low-permeability
aggregate core and mortar shell.
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Figure 42. Strain differential in concrete sphere with a high-porosity, low-permeability aggregate
covered with mortar matrix.
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generated in the concrete sphere of a low-permeability aggregate
mortar shell of low bulk modulus and low porosity.

4.3 Effect of Air Entrainment

It has already been established by the proposed model that instantaneous cooling may cause

severe damage to the concrete. Previous studies show that air-entrained void can act as an

expansion reservoir and cryo-pump and prevent this damage successfully [6], [13]. This section

describes how the proposed model can predict the effect of air entrainment on the cryo-

deformation of the concrete sp

here. This 1s done according to the guidelines proposed by Coussy

and Monteiro [6], [7]. Air voids, when properly distributed 1n a saturated freezing porous solid,

can accommodate the expellec
instantly upon entering the air

with the atmospheric pressure,

 liquid water from the freezing sites, and the liquid water freezes
void. Thus, the crystal pressure in the air void 1s 1n equilibrium

and the liquid pressure in the matrix assumes a negative value of

69



—r—IS DT, owing to the solid-liquid thermodynamic equilibrium condition (0). Substitution of

rcC

pr = —-’-ﬂlSrn DTand p” = 0 in (0) gives the linear free strain in the matrix:
rc
r1S_DT
el = - b/ = - a’DT. 0
" e 3K° )

Formulation of (0) assumes the thermodynamic equilibrium in the matrix containing the air
voids. Basically, 1t means that the air voids are so closely spaced that the liquid flows almost
instantly to these expansion reservoirs and freezes there, so that no crystal pressure 1s developed
in the matrix pore walls when the temperature is dropped below the freezing point. On the other
hand, since there is no entrained air void in the aggregates, positive pore liquid pressure 1s
developed initially, and this pressure has to be determined using the continuity equation, (0), as
explained in Section 2.2.

To model the effect of air entrainment, similar material properties as those used in
Subsection 4.2.2 are considered, where a high-porosity, low-permeability, fine-pore-structured
aggregate 1s assumed to be embedded in a low-porosity, low-permeability sand mortar matrix.
The temperature 1s lowered to -100 °C at a cooling rate of 10 °C/hour, as shown 1n Figure 44.
The volume average bulk strain 1s then plotted and compared to that for the same materal
without air voids (Subsection 4.2.2). The resulting plots are shown in Figure 45. It 1s seen that
the volume average bulk strain for the non-air-entrained concrete sphere shows an 1nitial dilation
and starts to shrink until t = 0.5 hours, when it jumps up and shows a hump before it starts
contracting again at around t = 2 hours. Similar results are shown by Tognon [47] for concrete
specimens undergoing cryogenic deformations. It is also seen that after t = 7 hours, at high
temperatures (> 70 °C), the concrete sphere starts to dilate, probably because a majority of the
pore volume at that temperature 1s invaded by ice crystals developing huge crystallization
pressure. However, for the air-entrained concrete, no dilation is observed at all, and a
substantially high shrinkage is seen with time. A recent study by Liu et al. [48] found 1dentical
results for a concrete specimen containing 3% air voids exposed to surface water without any
salt. The high shrinkage in the air-entrained concrete can be attributed to the thermal contraction

and the liquid depressurization induced by the air voids, which act as expansion reservoirs and

cryo-pumps [6].
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Figure 44. Temperature 1s lowered to -100 °C at a rate of 10 °C/hour.
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Figure 45. Air-entrained concrete suffers much higher shrinkage than the non-air-entrained
concrete, which agrees with the literature [47], [48].
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4.4 Effect of Cooling Rate

Studies have shown that the freezing rate has a major influence on the severity of concrete
freeze-thaw deterioration [10]. In order to predict the effect of cooling rate on the concrete
freeze-thaw durability, two cooling rates of 36 °C/hour and 10 °C/hour are used. In both cases,
the temperature is reduced to -100 °C. Similar material properties as those used in Subsection
4.2.2 are assumed. The resulting plots are shown in Figure 46. It is found that Steeper hump is
generated for a higher cooling rate, implying that the higher the cooling rate, the less time the
pore liquid has to dissipate to the boundary and the higher the dilation. Therefore, rapid cooling
is expected to cause more damage than the slow freezing of the material, which is in accord with
the findings of Pigeon et al. [49], where declined freeze-thaw durability was found for rapid
freezing and thawing laboratory tests. However, a decrease in the freeze-thaw durability in the
field with an increase in the cooling rate has also been reported [10], requiring further study on

this 1ssue.
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Figure 46. Effect of cooling rate on the bulk strain of concrete cooled to -100 °C. The higher the
cooling rate, the higher the swelling.
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S EXPERIMENTS

The purpose of this section is to evaluate the proposed model using acoustic emission (AE)
technology. Several researchers have used AE technology to detect cracking and deterioration of
concrete subjected to various stimuli [50-52]. When cracking occurs, rapid release of energy
produces elastic waves that travel i1n all directions. Appropriate sensors can detect these waves,
and damage caused can be further analyzed by quantifying the energy as the absolute area under
the wave form. In this section, two concrete beams are tested for freeze-thaw cycles according to
the American Society for Testing and Materials (ASTM) C666 [53], and the resulting damage i1s
monitored by quantifying AE energy.

5.1 Materials and Experimental Quantification

Two concrete beams of 7.62 cm x 10.16 cm x 40.64 cm (3 inch x 4 inch % 16 inch) are exposed
to more than 300 cycles of freeze-thaw in an environmental simulation chamber. Each cycle is

4 hours long with temperatures varying from 4.4 °C to -17.8 °C, as shown in Figure 47. A steel
bar is placed at the center of the specimen to reach the target temperature quickly. A
thermocouple is attached to the center of the specimen to monitor the temperature at the center.
Shimada et al. [50] found that the surface water affects the AE measurement of mortar, and it 1s
not directly related to the frost damage of mortar. Thus, the specimens are surrounded by water
on all sides but not the top surface during both the freezing and thawing period. The temperature
at the center of the specimen is measured by a thermocouple. Both the specimens are made of the
same material with the same proportions listed in Error! Reference source not found.. Half of
the limestone aggregate is 0.953 cm (3/8 inch) — 1.27 cm (1/2 inch), and the other half1s 1.27 ¢cm
(1/2 inch) — 1.91 cm (3/4 inch). The absorption capacity (AC) of the oven-dried coarse aggregate
1s measured to be 3.318%.

The AE system used for this research is a Vallen model AMSY6 [54]. Each specimen is
attached to a 75 KHz piezoelectric sensor to record acoustic emission activity generated by crack
formation. The sensor is attached to the top surface of the specimen with a vacuum grease
coupling agent. Additionally, an elastic band is used to apply the minimum pressure necessary
for a good contact with the specimen surface and to hold it firmly in place. Each sensor is
connected to a 34 dB preamplifier. The output from the preamplifier is then fed to the AE signal

processor to extract feature data. A threshold value of 55 dB was used in a previous study for
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mortars subjected to freeze-thaw cycles [50]. However, micro-cracks that initiate in the I'TZ can
have a value between 40-60 dB [51], so in order to select an optimum threshold value that will
filter out the environmental noise without excluding the micro-cracks, a sensor is placed 1n the
chamber to monitor the noise, and a single freeze-thaw cycle is run. A threshold value of 50 dB

1s determined to be the suitable value for this experimental setup.

10
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Figure 47. Temperature history for the applied freeze-thaw cycles.

Table 1. Mixture proportion and material properties.

Bulk-Specific | Absorption |Weights (kg per
Material Gravity Capacity (%) |m’ of concrete)
Cement 3.15 N/A 356.8
Water 1 N/A 1729
Limestone 2.61 3.318 864.4
Sand 2.59 0.65 886.7
Ailr 6%
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5.2 Measuring Needed Inputs

In order to verify the model, material properties obtained for the above concrete mixture are

used. Volume fraction of the coarse aggregate 1s found to be about 35%. The capillary porosity

of the mortar matrix, bulk modulus of the matrix, K”, 1s calculated from the w/c using the

following equation [23]:

¥ _0.360
= (0)

l'-E+ 0.32
C

where @ is the degree of hydration that can vary from 0 for fresh concrete to 1 for complete

hydration. Assuming 100% of the hydration 1s completed prior to testing, we get § = 1. For a

w/c of 0.5 used 1n the mixture proportion, ¢’ is calculated to be around 0.17. Bulk modulus for

mortar matrix, K’ , is calculated from the elastic modulus, E”, and Poisson’s ratio, v”. E”and

v? are assumed to be 16~ 10°MPa and 0.2, respectively. K” is then determined using the relation
K? = E* /3(1- 2n*). Using (0), K” is calculated to be 13.9x10° MPa . The bulk-specific gravity

of the saturated surface dry limestone is 2.61, and the AC of the oven-dry sample is 3.318%
(Error! Reference source not found.). Porosity of aggregate 1s calculated in terms of AC using
the following formula, and assuming specific gravity of water equals 1:

o % Mass of waterinpore _ AC _ W, - Wy, 0.033
’ 100 100 W, |

A permeability of 1 x 10! m® is adopted for both the aggregate and matrix. Approximate values

of & of 6 X 10°°C' [23]and 8 x 10°°C"' [41] are used for the coarse aggregate and mortar

matrix, respectively. Bulk modulus of aggregate is assumed as40x10° MPa. Also, a single-step

cooling to -25 °C 1s used.
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6 RESULTS

Yang et al. [51] correlated the AE signal energy distribution to different damage mechanisms.
They classified AE signals into four typical types and correlated them to different damage
sources and mechanisms:
= Type I signal has a short duration (< 200 ps) and low to medium amplitude (40—
60 dB) with a peak frequency at approximately 350 kHz.
*» Type Il signal 1s similar to a Type I signal; however, it has a medium to long duration
(400-600 ps).
= Type IIl signal has a peak frequency of 100 kHz and a long duration (> 2000 ps).
= Type IV signal has a high amplitude (> 70 dB) and long duration with a peak
frequency at approximately 100 kHz.
Type I and Type Il signals are associated with the paste cracking (microcrack initiation and
microcrack propagation, respectively), Type IIlI with de-bonding, and Type IV with physical
failure of aggregates [51]. Therefore, AE data are analyzed in Section 6.1 to quantify damage
and to determine possible damage sources caused during the freeze-thaw testing. In Section 6.2,

these results are then verified using the proposed model.
6.1 Measured Damage

In order to ensure that all noise is excluded, AE data are filtered in two steps. All data with
amplitude lower than 60 dB are excluded first. Although AE signals of this type (Type I and
Type II) can be attributed to microcrack initiation and propagation occurred in the matrix, our
primary concern 1s to detect D-cracking (Type IV signals) caused by the destructive aggregates.
This 1s done using the Visual AE software. After that, Mathematica 1s used to further filter the
data. Since both the specimens are tested together, and it is unlikely for both of them to have
cracks form at the exact same time, simultaneous AE events detected by the two sensors are
eliminated and assumed to be caused by the noise emitted from the environment. Filtered AE
data are then analyzed to measure damage caused by the freeze-thaw cycles. Figure 48 shows AE
events for the first six cycles detected by Sensor 1. A high number of AE events with high
amplitudes (> 70 dB) tend to occur at the beginning of the freezing cycles, followed by very few
events during the rest of the freezing period. This indicates that the Type V signals, which are

assoclated with the physical deterioration of aggregates, are more likely to occur during freezing.
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This 1s confirmed at the end of the experiment when concrete pieces come apart from the

specimen with broken aggregate parts. The peak amplitude is measured to be 99.9 dB. Also, a

substantial amount of AE events with low amplitudes (< 70 dB) 1s observed during both the

freezing and thawing periods. These signals might have been produced by the microcrack

initiation (Type I) or propagation (Type II) through the matrix.

Figure 49 provides the cumulative AE energy for both sensors. This energy is calculated

in Joule (J) as true energy by integrating the square of the recorded signal voltage over time.

According to Figure 49, both the curves exhibit gradually decreasing slopes, which shows that

the damage evolution rate decreases with increasing cycle. However, at around 7 = 2.5 days, t =

6 days, and 7 = 11 days, the lines exhibit steep slope, revealing that very high AE energy i1s

released, which also shows that extensive damage occurs at that time. As a result, much higher

energy 1s released over the first 20 days, which 1s about twice that released during the next 30

days.
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Figure 48. AE signal occurrence with freeze-thaw cycles.
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Figure 49. Cumulative AE energy generated by damage in concrete associated with the freeze-
thaw cycles. Sensor 1 and 2 represent two different specimens in the same environment.

6.2 Predicted Damage

Material properties measured 1n Section 5.2 are fitted in the proposed model. Since the
specimens contain 6% air void, they are modeled as air-entrained concrete, and resulting plots
are provided in Figure 51, Figure 52, and Figure 52. As shown in Figure 50, high pore liquid
pressure of around 85 MPa is 1nitially obtained at the center of the aggregate. This high pore
pressure eventually depressurizes in time to a stable value of about -29 MPa governed by the
solid-liquid thermodynamic equilibrium. Bulk strain distribution 1s shown in Figure 51. Since the
matrix 1s treated as air entrained, and the air bubbles act as expansion reservoirs and cryo-pumps,
a uniform contraction of about -0.001 occurs 1n the paste caused by the thermal contraction and
depressurization of the pore water. The aggregate, on the other hand, contracts less than the
mortar matrix due to the presence of ice crystals. Due to this strain gradient, as shown 1n Figure
52, the mortar matrix exhibits tensile tangential stress with a peak value of about 3.7 MPa at the
ITZ. It 1s this tensile stress that creates cracks at the ITZ. Such cracks may alter the stress path,
and cracks can propagate through the aggregate with successive freeze-thaw cycles, which
supports the experimental results obtained in the previous section (Section 6.1). The proposed
poroelastic model may over-predict the stress in the matrix, which in real life acts as a

viscoelastic material and exhibits stress relaxation. This high stress implies that even air-
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entrained concrete may suffer D-cracking i1f unwanted materials are used. An appropriate
combination of material geometry and constitutive properties may prevent this damage.

High tensile stress in the matrix can be reduced by increasing the bulk modulus of the
matrix and using high-porosity, high-permeability (lightweight) aggregates. This is shown in
Figure 53, Figure 54, and Figure 55, where the bulk modulus of the matrix is considered to be
45 x 103 MPa instead of 13.9 x 10 MPa. Also, an aggregate with high porosity (2= 0.2) and
high permeability (k® = 1071°) is used in this case. It is seen that due to high permeability, pore
pressure in the aggregate reaches the equilibrium much faster than in the low permeability
aggregate. Moreover, use of a high-porosity aggregate and stiff matrix reduces the strain
differential (Figure 54), which also reduces the tangential stress (Figure 55) significantly. The
peak stress (about 0.15 MPa) in this case 1s generated in the aggregate, which makes the concrete
ess susceptible to damage since the aggregate has a very high tensile strength (about 10 MPa

32]) compared to the ITZ (about 0.5 MPa [32]). Therefore, a high-porosity, high-permeability

aggregate along with stiff matrix can help improve the air-entrained concrete durability.
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Figure 50. Predicted pore pressure distribution for the specimen used for AE measurement. A
uniform suction of about -29 MPa 1s generated in the sphere required by the solid-liquid
thermodynamic equilibrium.
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Figure 51. Predicted strain differential. The matrix exhibits uniform contraction caused by the
thermal deformation and the pore water depressurization. The aggregate contracts less than the
matrix because of the presence of the ice crystals.
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Figure 52. Predicted stress distribution. Peak stress occurs at the ITZ due to the sudden strain
differential at the aggregate-matrix interface.
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Figure 54. High-porosity, high-permeability aggregate with stiff matrix reduces the strain
differential substantially.
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Figure 55. A very low tensile tangential stress is developed in the aggregate, which indicates that
a high-porosity, high-permeability aggregate embedded in a stiff matrix 1s much more durable
than a low-porosity, low-permeability aggregate with a relatively less stiff matrix.
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7 CONCLUSIONS AND RECOMMENDATIONS

A poroelastic model was developed that can predict stress and strain distributions (and thus

ostensibly damage likelihood) in concrete under freezing conditions caused by aggregates with

undesirable combinations of geometry and constitutive properties. The model was evaluated

through the AE analysis under freeze-thaw cyclic loading. The most important findings of this

research are summarized below:

Experimental results show that cracking with high amplitude (> 70 dB) occurs near
the beginning of freezing cycles, which is associated with the physical deterioration
of the aggregate, whereas AE signals with low amplitude (< 70 dB) characterizing
microcracking (microcrack initiation and propagation) in the mortar matrix were
observed throughout the test. This supports the modeling results, which show that
high tensile tangential stress develops at the ITZ and may alter the stress path, and as
a result, cracks may propagate through the aggregate with the successive freeze-thaw
cycles.

Experimental results also support the fact that air-entrained concrete may undergo
D-cracking if deleterious matenals are used. It was found that low-porosity, low-
permeability aggregates embedded in a relatively less stiff matrix may create high
tangential tensile stress in the ITZ.

It was predicted that high-porosity, high-permeability (e.g. lightweight) aggregates
and stiff matrix are beneficial for improving the freeze-thaw resistance of the air-
entrained concrete.

High-porosity, low-permeability aggregates with fine pore structure are the most
vulnerable to D-cracking in non-air-entrained concrete. The destructive tensile stress
according to this model is generated at the aggregate boundary by the Mandel-Cryer
effect. This Mandel-Cryer effect is induced by the strain differential caused by the
expansive aggregate center.

It was found that the low-porosity, high-permeability aggregates relax the pore liquid
pressure rapidly and are least susceptible to D-cracking for the non-air-entrained

concrete.
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= Although high-permeability aggregates were found to be sound against D-cracking, a
large particle diameter makes them susceptible to cracking at the matrix outmost
boundary.

* Reduction in aggregate size was found to be effective in quickly relaxing the tensile
tangential stress, which eventually helps mitigate D-cracking of concrete under
freezing temperatures.

* Although permeability and aggregate size greatly affect the pore pressure relaxation
time, they do not have an effect on the magnitude of the peak pore pressure in the
concrete under a step change in temperature.

= Difference between CTEs of coarse aggregate and matrix in which they are embedded
should not be too high since it may cause tensile stress at the aggregate boundary or
ITZ. Higher CTE of the high-porosity, low-permeability aggregate may exacerbate
D-cracking by substantially increasing the delayed tensile tangential stress at the
aggregate boundary induced by the Mandel-Cryer effect.

* A high-porosity, low-permeability matrix with fine pore structure may deteriorate
concrete resistance to D-cracking and increase the strain differential and the resulting
tangential stress at the aggregate-matrix boundary. An analogous response can be
found if the bulk modulus of the matrix is reduced. Therefore, low w/c and addition
of pozzolans help increase the bulk modulus, reduce the porosity of the porous body,
and improve durability.

* Increase in cooling rate decreases concrete durability under freezing temperatures
through the reduction in time available to relax pore pressure buildup and the related
tangential stresses in the aggregate and matrix.

Some limitations of the model developed in this work include:

* This model 1s a poroelastic model and may over-predict the stress since it does not
account for the viscoelastic stress relaxation.

* This model does not include the dependence of saturation on pore pressure, which
otherwise would have made the solution of pore pressure highly complicated.

= Presence of dissolved species in the pore fluid is neglected. Thus, the model does not

predict the effect of road salts on D-cracking.
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There may be entrapped air pockets inside the concrete in the field, which causes ice
crystallization even at a temperature right below the melting point. High
crystallization pressure will occur in such cases, generating huge expansion. It was
beyond the scope of this project to include such phenomenon.

Degradation of material properties with damage and time are neglected to avoid
complications in the solutions.

No interaction between aggregate particle stress/strain fields are considered.

On the basis of the limitations summarized above, some recommendations are provided

here for future research:

Over-prediction of the results can be effectively handled by incorporating
viscoelasticity that accounts for stress relaxation.

The geometric model can be further improved by treating ITZ separately from matrix
shell as a different band of material. This is still possible within the framework of the
proposed model.

This model should be further developed to include pore pressure dependence of
saturation. Finite element modeling in that case may prove beneficial.

Time dependence of permeability, density, viscosity, and CTE can be included.
Degradation of material properties, such as bulk modulus and permeability, due to
damage growth can be included in this model using the concept of damage
mechanics.

The modeling approach presented herein can be utilized to predict damage caused by
the expansion of the alkali-silica hydrate gel during ASR reaction and degradation.
This can be done in two ways: the gel can be treated as a separate ring of material in
between the matrix shell and the aggregate core, or it can be treated as an integrated
part of the expansive aggregate core that develops tensile tangential stress in the
matrix.

Damage due to expansion of aggregates rarely occurs after one loading cycle, where
loading cycle refers to a single freeze event or single imbibition of water by ASR gel.
For the freeze-thaw case, many freeze-thaw cycles are generally necessary to develop
visible damage. Likewise, current research at TTI [55] has indicated that more severe

damage occurs when ASR-affected concrete is subjected to moisture cycling rather
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than a sustained source of moisture. Therefore, this model can be further developed
by incorporating an appropriate fatigue-based damage model for both D-cracking and
ASR problems.

In conclusion, the proposed model uses material properties that are directly used in the
concrete mixture design procedure and successfully predicts pore pressure, stresses, and strains
generated within the structure that may occur in the field. It i1s expected that incorporation of this
theory into the mixture design process will help with selecting appropriate materials, which in

turn will improve the durability of concrete infrastructure.
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APPENDIX

The Mathematica code containing the elastic and poroelastic formulation along with the material

constants and coefficients is given here.

Load Modules

The following commands set the present directory as the work directory, and load the required files.

thigDir = ToFileName [
("FileName" /. NotebookInformation[EvaluationNotebook[]]1)([[1]])]);

SetDirectory([thisDir];

<< NumericallInversion.m;
<< NLapInv.m;

Needs [ "PlotLegends "“]);

Elastic Behavior (Time Domain)

An elastic model was first developed based on Lhe classical elastic theory proposed by Timoshenko and Goodier
[16]. This section deals with the delermination of the integration conslants, and stress strain responses of the
elastic concrete sphere.

Integration Constants

Integration constants for the elastic response of the concrete sphere containing the coarse aggregate core
surrounded by the mortar or cement matrix shell are determined in this section. Coefficlents Sa, Bp. Ta, Tp. xa.
xp. Xx, Uu, Vv, Ww, and Zz are used to simplify the equallons.

The followlng equations set the radlal deformation of the aggregate equal to that of the matrix at the aggregate-
matrix interface.

l+va Ri
i Y efaggave+CIaggtai] //. {{(L+va)/ (1-va) -+ 3pBa};
- va

uraggint = [

C2paste
urpasteint = Clpaste+Ri + ’

Rid
BCl = uraggint == urpasteint;

The equations below set the radial siress of the aggregate equal to thal of the malrix at the aggregate-matrix
Interface.

1-~2va

oraggint = (- 2 Ka efaggave + 3 Ka Clagg) //. {(L-2=xva) / (1-va) -+ ta);

l-va

l1-2vp Czpauta] /

l+vp Ri?
((1-2+vp)/ (1-vp) 2Tp, (1-2%VvpP)/ (1+VP) »XP}
BC2 = oraggint == oxpasteint;

orpasteint = (3 Kp Clpaste - 6 Kp

The radlal stress of the matrix is set equal to the applied stress at the outer surface of the sphere in the subsec-
tion below.
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1-2v K
s 2 = (Ro’ - Ri’) » 6fpasteave +

l-vp RO’

orpasteout = (-

1-2+»vp Kp
3 Kp Clpaste -6 Czpaste] /.
l+vp RO’

{((L-2¢vp)/ (L-vp) 2 tp, (1-2avp)/ (1+vVvp) =+ xpP))
BC3 = orpasteout = capplied;

The above three boundary conditlons are solved here to get the three unknown integration constants.
IntConst = S8olve[{BCl, BC2, BC3}, (Clagg, Clpaste, C2paste}];

ClAGG = FullSimplify([Clagg /. IntConst];
C1PASTE = FullSimplify([Clpaste /. IntConst],
C2PASTR = Pull8implify[C2paste /. IntConst];

Development of Free Strain during Freezing

The above developed elastic model is then extended Lo include poromechanical constitutive properties based on
the theory developed by Biol |13] and discussed by Coussy [9], [14]. and Coussy and Montefro [12], [15]. This

{s done in this seclion.

ot

Free Strain and the Continulty Equation

The Gibbs_Thomson Equation relating the crystal and liquid pressure to the freezing temperature (AT) and
melting entropy (Sp,) Is given by

pc
[l— —T](pl—patm)+pc—pl == EmAT
p

Under the stress-free conditon the volumetric free strain is given by:
bp-3aKpAT
ef =
Kp

[n the case of freezing water-inflltrated porous material subjected to a temperature below 0°C; the pore pressure
Is no longer uniform since the porous space Is partly occupied by ice crystals at pressure p. and partly occupled

by the water remalning in liquid form at pressure p;:
e bcpc +blpl -3aKpAT
Kp
Replacing p. from the above equation using Lthe Gibbs-Thomson Law gives the expression of one dimensional
free stralns as a function of S, p;. and AT:

1 (boapca blaplajr, t)
efalinear = FullSimplify[— [———- ¢ —————ee ~ 3 aa AT ([T, t]) /.
3 Ka Ka
pc
poa -> BmAT([r, t]) +pla[r, t] - (1- -—1 pla(r, t) ]:
o

98



boppcp blpplp(r, t]
+ e ————
Kp Kp

1
efplinear = Fulls:l.mplify[; [ -3 ap AT(r, t]) //.

pep - EmAT(r, t] +plp[r, t] - [1-51) plp[r, t] ];
P

Bulk strains of aggregate and matrix are given by:

capp [t] Ro® (1+2
ekkagg = Xx efaave[t] + 3 fa efalinear + Wwefpave[t] + _PP;_!:__]__(_*__Q’

iz
oapp[t]) Ro® (Ka+2K
ekkpaste = Uu efaave[t] + Vv efpave([t] + 3 Spefplinear + ~ Ppit] L( P xp) ;
Kp 2z
where
3
efaggavrageft] = — fm efalinear r dr
Ri3 Jo

3 o
efpasteaverage|l] = f efplinear r2 dr
pas gelt] R Ja P

The total mass of water (my,) currently contained in the porous materlal per unit of Initial volume df), in both
liquid and solid form Is:

mw = ol ¢o + pl (VAp + V§)
where, V 4, Is the pore volume change due to the change in saturation (S j) under the condition S, + S, = 1, and
due to the mass density difference between the two constituent specles, §.

pc
‘VApa = (— - 1) ¢oa Sca;
pl

pc
VApp = (— - 1] ¢op Scp;
pl

V, Is the pore volume change due to the thermomechanical loading In unsaturated condition. For the aggregate,
“Vycan be given as:

pla{r, t]
Y¢al = FullSimplify [Pactor [ba ekkagg + T +
5

pca

+3AT[x, t] (aca+ala+Slaal goa+Scaacdoa) //.
Mca

pc
{pca -> 8mAT[x, t] +pla[r, t] - (1- —1 pla(r, t],
P2

aca -> aa (bca - ¢oa 8ca), ala -> ca (bla- ¢oa Sla) }] ] //.
{Zz (Mla (Ka + ba bca Mca Ba) pc + Mca (Ka +babla Mla B8a) pl) - Aa};

The above expression is simplifled as:

1
partATagg = - Mlapl Zz
Ka Noa Nla Zz pl

(boca Jica (3 Xaaa +ba Sa8m) +Ka (8m+ 3 Mca (blaaa-baaapa))) AT[x, t),
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partATtinesSatagg =

1
— WlA pl 2% (Ka (3 Nca ((-8caaa-B8laaa+8caac +Slaal) ¢oa))) AT[r, t];
Ka Nca Mla 2z pl

1
partremainingagg = (Aapla[x, t] +
Ka Mca Nla 2z pl

Nla pl (baKa Koa (Xx Zx ¢faave[t) + Ww Zs efpave[t) + Ro’ (1 + 2 xp) oapp(t])))s

simplVéa = partATagg + partATtimesSatagg + partremainingagg;

The above simplification can be checked by:
checksimagyg = FullS8implify[simplVéa - Vdal]

0

Therefore, the simplified Vy for the aggregate can be written as:
véa = simplVéa //. (partATagg -+ BbAT[r, t], partATtimesSatagg -> ATtimesSatagyg)};

For the matrix shell, Vg4 can be written as:

plp([x, t]

Vépl = FullSimpli fy[Factor [bp ekkpaste + - +
Mlp
pcp
M—_ +3AT(r, t] (acp+alp+Slpal ¢op+Scpacgop) //.
1~
pc
{pcp -> 8mAT[x, t] +plp[x, t] - (1- -—1- plp[r., t] .,

(&)

acp -> ap (bep - ¢op Sep), alp -> ap (blp - pop Slp)}] ] /7.
(Zz (Mlp (Kp + bep bp Mep Bp) pc + Mcp (Kp + blp bp Mlp 8p) p1) - Cc};
This can be further simplified as:

1

Rpl(cp-ll-l-pz:pl
(Mlp pl (Zz (bop Mop (3 Kpap + bp Sp 8m) + Kp (Em + 3 Mop (ap (blp-bp Bp)))) AT[x, t]));
1

partATpas =

partATtimesSatpas =
Kp Mcp Mlp Zz ol

(M1p pl (Zz (Kp (3 Mop ((8cp ac + Blp al) ¢op + ap (- (8¢cp + 81p) ¢op)))) AT(x, t]))s

1
partremainingpas = (coplp(r, t] +
Kp Nop Mlp Zx pl

Mlp ol (hp Mop (:puuh efaave([t] + Kp Vv Zz efpave(t) + Ro® (Ka + 2 Xp xp) onpp[t]))) !

simplV¢p = partATpas + partATtimesSatpas + partreamainingpas;

The above simplification can be checked by:
checksimpas = FullsSimplify|[simplVv¢p - Vépl)

0

Therefore, the simplified “V4 for the matrix shell can be written as:
Vép = simplVép //. (partATpas -+ DAAT([r, t], partATtimesSatpas -> ATtimesSatpas};
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where MLJ- =& -:: > ’+%P‘ with K; and K being the bulk modulus of the porous body and different (crystal and
Hquid) phases of water, respectively. We got the above equation by replacing p. from the Gibbs-Thomson

equation, and a; = a(b; - ¢,S;). Here, a, Is the coefficient related to the thermal volumetric dilation of the
pore volume occupied by the specles J.

The liguid  continuity  equation  together  with  Darcy’s  law
givesf; -:—t (mw) = pil % (ol do + pl (Vap + Vo)) = :1 rl, :r (13 0910{:'” ) . Since ¢o and pl are

k 1 0 (.2 opl (x,t)
nl r? or or

constant, the above equation can be written as: :—t (VAp + V@) =

aggstorage = FullSimplify([Factor[ Vapa +Véa)l];
pastestorage = FullSimplify([Factor([VApp + Vopl];

Laplace transformatlon of slorage variation in aggregates eliminates the time derivative from the above equa-
tlons, and is glven as L(ﬂ’&lﬂ) = s V(s) - V4(t = 0). Initially, the total mass (mw) is equal to pl ¢o, and
VAp+V@=0, the Initial value of (VAp+V¢) must be zero. Therefore:

aggstorageinitial = 0;

LPaggstorage = s aggstorage ~ aggastorageinitial //. {pla[r, t] - pla([r, 8],
AT [r, t] -> AT, efaave[t] -> efaave, efpave(t] -> efpave, capp([t] -> capp};

The above equation Is simplified as:
1
Ka Mca Mla Zz pl

partpla s Fullsimplify[ Aas pla(r, a]] !

partfa = FullSimplify|
(a (Ka Mca Mla (Zz (ATtimesSatagg pl + (Bb AT + ba Xx efaave + ba Ww efpave) pl +
Sca (pc-~pl) ¢oa) +baRo’ pl capp (1+2xp)))) / (RaMcaMlazzpl)];

The above simplification can be checked by:
LPaggstor = partpla + partfa;

Checkaggstor = PullSimplify[LPaggastorage - LPaggstor]

0

The simplified expression for storage variation in the aggregate in the Laplace transformed domain Is;
LPaggst = LPaggstor //. {partfa -> fa[s], partpla - Cplapla(r, s8]}

fa(s] +Cplapla(r, s]

Similarly, Laplace transformation of the storage variation in the malrix Is given as:

pastestorageinitial = 0;

LPpaatestorage =
(s pastestorage - pastestorageinitial) //. {plp[x, t] » plp[r, 8],
AT[x, t] -> AT, efaave(t] -> efaave, efpave([t] -> 6fpave, capp[t] -> capp};

The above equation is simplified as:
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partplp = FullSimplify[ (Cesplp(r, 8]) ] ]

Kp Mcp Mlp Zz pl
partfp = Pullsimplify[

(e (Mcp Mlp (Kp 2z (ATtimesSatpas pl + (Dd AT + bp Uu efaave + bp Vv efpave) pl +

Scp (pc - pl) dop) +
bp Ro’ pl oapp (Ka+2Kp xp)))) / (Kp Mop Mlp 2z pl) | 5

The above simplification can be checked by:
LPpastestor = partplp + partfp;
Checkaggstor = FullSimplify[LPpastestorage - LPpastestor];
The simplified expression for storage variatlon in the matrix in the Laplace transformed domaln is:
LPpastest = LPpastestor //. {partplp -» Cplp plp(r, 8], partfp - fp[8]}

fp(s] +Cplpplp|r, 8]

Solution to Contlnulty Equations

Continuity equations for the pore liquid pressure in the aggregate core and the matrix shell in the Laplace
transformed domaln are given by:

ka |
fals] + Cplaplalr, s] == i) D[ Dplalr. s]. r]. r]
n

l .ol l
> 3 D[r® D [plalr. s). r}, ] - %Cpla pla[r, s) = g; fals}

]
> n D|r% D [plalr, s]. r]. r] - Taplalr, s] = FA

kp 1,
fpls] +Cplp pip[r. s] == e Dfr“DIplplr. s}. r]. ]

l nl ]
> — D[ D [plp[r. s]. c]. r] = — Cplp plp|r. s] = — fpl[s]
r [ DIplp ] o plpplp » p

1
= > > D| D [plplr. 8. r], r] = Tpplplr. s] = FP
l
These above two equatlons are solved in terms of the coefficlents FA [ = :— fals] ] and
a

|
FP [ = -:— fp[s]] wlth the help of the boundary conditions. Volume average of the pore
p
liquid pressure In the aggregate and matrix are then calculated. These lwo equatlons and the
expressions for the FA and [P are then solved together to get the expressions for efaave, efpave,
FA, and I'P. After that, FA and FP are substituted in the solution to the pore pressure. However,
the pore pressure results obtained have one more unknown, Qint,

the pore liquid flux at the aggregate — matrix interface. This s then calculated using the last boundary
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condlllon where the pore pressure at the interface in aggregate is equal to that ln paste. Finally,
the interfaclal pore pressure Is substituted in the expression obtained for the liquid pore
pressure In aggregate and paste. This pore presstire term Is then substituted in the,
stress strain terms In the Laplaced transformed domain. The solution thus obtained in the Laplace
transformed domain Is then numerically Inverted to the time domaln uising the Stehfest Algorithm | 20].

Together with the boundary conditions, solution to the continuity equatlons are given by the following
commands

solagg =
1
PullSimplify[DSolve[{(—z) tD[r’D[pla[r. 8], r], r] - Tapla[r, 8] =x FA,
o

ka (Derivative{l, 0] [pla] [Ri, 8]) == Qint,
Derivative(l, 0] [pla] [0, s&] no}, pla[x, 8], (rx, a}]]a

PLA = Factor[pla[r, 8] //. solagg];

solpaste = FullSimplify(
DSolve[{(1/xr”"2) «D[r"2«D[plp[r, 8), xr], ] - TPplp[r, B8] == FP,
kp Derivative([l, 0] [plp][Ri, 8] == Qint,

plp(Ro, 8] == Papp}, plp[r. 8], (x. 8}]]:
PLP = plp[r, 8] //. solpaste;

where 7a = L Cpla, 7p = %Cplp, FAls) = Zfals]. and FPIs|=2 fpls}

Free strain for the aggregate core Is then determined as:

bcapca Dblapla[r, s)
efal = FullSimplify[ [ + ——e - 3 aa AT|[x, n]] /.
Ka Ka
pc
pca -> Em AT(x, e) +plafr, s8] - (1- —i- pla[r, B)| //.
p

{ 8la[r, t] -» 8la, pla[r, 8] » PLA, AT[r, 8] -> AT},
whereas, the matrix shell Is glven by:
bep pcp  blpplp(r, s)
Kp

efpl = FullSimplify[ ( -3 ap AT [, n]] /7.

pPcp <+ Em AT(r, 8] +plp(r, 8] - (1- %) plp(r, ﬂ]] /7.
p

{8lp[r, t] -+ Slp, plp[x, 8] » PLP, AT(x, 8] -> AT},

Thereafier, volume average strain for the aggregate is calculated as:
efaggave = Fullsimpl:lfy[— Integrate [{ (efal ) » r’} ({r, 0, Ri) ] ] )

The above expression is then simplified as:
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partgint = FullS8implify|
(bca (3Qint-0kaRi) pc+ (bla (3Qint-0kaRi) +kaRi7a0 (-3 Kaaa+bcagnm))
pl) /(3 kaKaRi7Tapl)];

partconst = FullSimplify(
(bca (3 x0-0kaRi) pc+ (bla (3 x0-0kaRi) +kaRi7aAT (-3 Kaaa+bca8n))

pl) / (3kaKRaRiTapl));

partfas = FullSimplify(
(bca (3x0-FAkaRl) po+ (bla (3 x0-FAkaRi) +kaRi7a0 (-3 Kaaa +bcaZm))
pl) / (3 kaKaRi7apl));

Therefore, the simplified volume average strain for the aggregate core Is:

efaggaverage = partqint + partoconst + partfas;

EQl = efaave == FullSimplify(
efaggaverage //. {partqint » hl Qint, partconst » h3d, partfas-» h2FA})

efaave == FAh2 + h3 + hl Qint

The above simplification can be checked by:
Checkefa = FullSimplify[efaggave - efaggaverage]

{{0})

The volume average strain for the matrix shell Is glven by:

3
efpasteave = FullBimplify[ — Integrate [(efpl ) »x?, (xr, Ri, Ro)]];
Ro’ = Ri

This Is further simplified as:
partfps = Pulls:l.npl:l.fy[

-3 Ro (-1+Ro'\r7';)

1 [SxOR:l.’Tp (bop pc + blp pl)
3Kp (Ri%-Ro?) 79% pl kp

(FP + 0 7p) (bap pc +blp pl) + (6 M V7P po 7P [-e“\/;oni"rpa,
anﬁkpko (-1+niw/‘rp) (rp+o-rp)) (bappc+b1ppl)]/
[o”‘\/;;kp (-1+Ri4/7D) +e? NP 1 (1+Riﬁ))_

Ri? 7p (bopFPpc+blpFP Pl +3KpTpap 0 pl -bep7p 0 8mpl) +

Ro® 7p (bcp FP pc +b1pPPp1+3RprapOpl-bcproampl)]]l
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1
3Kp (R1®-Ro?) 7p? pl

3 Qint Ri? 7p (bep pc + blp pl)
kp

[s o“ﬁno V7o (-u“‘[; Qint Ri’?‘pq-emﬁ kpRo (-1 +Riv7p) (0)]
(bcppc+blppl))/ (G“iﬁk}? (-1+R4 ﬁ) +

2% V7P o (1+nivﬁ))-m’ﬂp (0) +Ro> 7D m]]:

partqgintp = Ful 18:lmp1.'l.fy[

-3 Ro (-1+R0‘\/'Ip) (0) (becppc +blppl) +

1
3 Kp (R1’-Re?) 797 ol

partoonstp = Ful‘ls:l.mplify[

- -3Ro (-1+Ro VTP ) (0) (bcppc+blppl) +

[s VT RoV7p (-a“ﬁoni’vpu“f’;kpno (-1+R1Y7p) (0)]
(bcppc-l-blppl)]/ (e’uﬁkp (-1+Ri4/7P )+

e""ﬁkp (1+R4 7P )) -R1’7p (0+3KpTp ap AT pl -bcp 7p AT Smpl) +

(uoai’ Tp (bep pe + blp pl)

Ro® 7p (0+3Kp'7'papATp1—-bcp'rpATEmp1)]]:

partpapp = FullSimpl:lfy[

-3Ro (-14Ro4/7p )

1 [uoni"rp (bop pc + blp pl)
3 Kkp (Ri’ - Ro?) 7p? pl kp

(0 + Papp 7p) (bcppc+blppl) + (6 am‘\l;lto‘\/‘n) (-ehﬁoni’ﬁtr

o”ﬁkpno (-1+Ri‘\f7‘?) (0+Papp7"p)) (bcppc-u-blppl)]/
(eznﬁkp (-1+Ri7p) vet® V™ i (1+nu/7r?))-n1’

Tp (0) +Ro® 7p (0)]]:

Therefore, the simplifled volume average strain for the aggregate core Is:
efpasteaverage = partfps + partgintp + partconstp + partpapp;

EQ2 = efpave == g¢fpasteaverage//.
{partconstp -+ h4, partfps - h5 FP, partqintp -+ hé Qint, partpapp -+ h7 Papp)

efpave = h4 + FPhS + h7 Papp + h6 Qint
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The above simplification can be checked by:
Checkefp = FullS8implify|[efpasteave - ¢fpasteaverage]

{0)

Expressions for FA and FP are given as:

‘|
EQ3 =FA = Fulls:lmplify[ %— partta] )
a

1
EQ4 = FP s Fulls:lmplify[pk— partfp] ’
P

EQI. EQ2, EQ3 and EQ4 are then solved for FA, FP, efaave, and efpave:

SOL = Solve[{EQl, EQ2, EQ3, EQ4), (FA, FP, efaave, efpave}];
fas = Fullsimplify(FA //. 80L];

fpe = Full8implify[FP //. S80OL]),;

aefaggaver = Full8implify[efaave //. 80L];

efpasteaver = FullSimplify[efpave //. SOL};

FA and FP are then substituted in the expressions for the pore liquid pressure in the aggregate and matrix:
Plagg=PLA //. {FA - fas, AT{r, s] -> AT},
PLAGG = Plagg // .
nl (Kp 2z (kp-bp h5 8Vvnnl) (Scapc ¢oa+pl (Bb AT + ATtimesSatagg - Sca ¢oa)) +
ba (h4 kp Kp Ww 2z pl + h7 kp Kp Papp Ww Zz pl + h6 kp Kp Qint Ww Zz pl +
hikpKpXxZzpl+hl kpKpQintXxZzpl +bph3 h5 KpesUuWw 2z nlpl +
bphl hSKpQint sUuWwZznl pl -bph3 h§ Kps Vv Xx 2z nl pl -
bp hl hS RpQint s Vv Xx Zz 1l p1 + DA h5 Kp 8 Ww Z2 AT nl pl +
hS Xp e Ww 2z ATtimeaSatpas nl pl + kp Kp Ro® pl capp -
bp hS Kp Ro® 8 Vv nl pl capp + bp h5 Ka Ro® 8 Ww 1 pl oapp +
h5XpesScpWwZz nl pcdop-hb5Kp s Scp Ww 2z nl pl ¢op +
2 Kp Ro® (kp + bp hS & (- Vv + Ww) nl) pl capp xp) ) / (Kp 2z
(ka (kp-bphS58Vvnl) +bah2anl (-kpXx+bphb 8 (-UuRw+ Vv ix)nl))
pl) »gl,
Plpas = PLP //. {FP - fps, AT(x, 8] -> AT}
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PLPAS = Plpas //.
nl (Kp Zzz (ka-bah2 s Xxnl) (8cp pc ¢op + o1 (DA AT + ATt imesSatpas - Scp ¢op) ) +
bp (h3 ka Kp Uu 2z pl + hl ka Kp Qint Uu 2z pl + h4 ka Kp Vv 22 pl + h7 ka Kp
PappVvZz pl + hé kaKp Qint Vv 2z pl +bah2 h4 Kp s Uu Ww 22 nl pl +
bah2 h7 Kp Papps UuWw Zz 1l pl + bah2h6 Kp Qint s Uu Ww Zz nl pl -

bah2 h4 Kps Vv Xx Zz nl pl -bah2 h7 Kp Papp s Vv Xx Zz nl pl -
ba h2 h6 Kp Qint 8 Vv Xx Zz nl pl +« Bbh2 Kp 8 Uu Zz AT nl pl +

h2 Kp 8 Uu Zg ATt imesSatagg nl pl + ka Ka Ro? pl capp +

ba h2 Kp Ro® 8 Uu nl pl capp - ba h2 Ka Ro? s Xx nl pl capp +

h2Xp e ScaluZznl pc¢oa-h2KpeScaluZznl pl ¢oa+

2 Kp Ro® (ka +bah2 s (Uu- Xx) nl) pl capp xp)) / (Kp 2z
(ka (kp-bphS58Vvnl) +bah2snl (-kpXx+bphS s (-UuWwe+VvXx)nl))
pl) -+ g2;

Plagg and Plpas stlll have one more unknown Qint (pore liquid flux at the aggregate-matrix interface). So. Qint
s determined (o get the final expresslons for pla and plp.

Paggint = Plagg //. x =+ Ri,

Ppasteint = Plpas //. r - Ri;

Qinterface = Solve[Paggint = Ppasteint, Qint];
QINT = Qint /. Qinterface;

efaaver = ¢faggaver //. Qint -» QINT;

efpaver = efpasteaver //. Qint < QINT;

Pore Pressure

Pore liquid pressure In the aggregate:
Plp = Plpas //. Qint -+ QINT;

Pore liquld pressure in the matrix:
Pla = Plagg //. Qint -+ QINT,;

Pore crystal pressure In the aggregate:
pc

pca = Em AT + — Pla;
pl

Pore crystal pressure In the aggregate:

pc
pep = Em AT + — Plp;
pl

L.inear Free Strain

Free strain in the aggregate:
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(bca pc +blapl) PLAGG + (-3 Ka aa + bcaZm) pl AT

3 Kapl
{Sla[x, t] » 8la, 8lp[r, t] -» 8lp};

6efagg =

Free strain in the malrix:

(bep po +blp pl) PLPAS + (-3 Kp ap + bcp 8n) pl AT
3Kp pr

(8lar, t) » 8la, Slp[r, t] - 8l1p);

efpaste = /7.

Poroelastic Behavior (Laplace Transformed Domain)

This section contalns all the expressions of the poro-elastic response of the concrete sphere subjected to freeze-
thaw cycles In the Laplace transformed domalin.

Integration Constants

ClAGQ = (-Papp Ro® (1+2 xp) +2 (Ka efaaver ta (Ro’ +2Ri? XP) +
Kp (Ri*-Ro®) (3 Ba efaaver xp - efpaver (tp+2tpxp))))/
(3KaRo®+6 ((Ra-Kp) Ri’ +XpRo®) xp)

C1PASTE = (-Ka Papp Ro’ + 2KaKp (-Ri® + Ro*) efpaver tp + 2 Kp
(-Papp Ro® + Ka Ri® efaaver (3 Ba+2ta) +2Kp (-Ri’ + Ro’) efpaver t:p) xp) /
(3 KaKpRo® + 6 Kp ( (Ra-Kp) Ri? +Kp Ro®) xp);

C2PASTE = (R:I."‘ (R«:\3 (-Kp Papp + Ka (Papp + Kp efaaver (3 8a+2 ta))) +
2 (Ra-Kp) Kp (R1®-Ro?) efpaver tp)) /
(3RKaKpRo’ + 6 Kp ( (Ka-Kp) Ri* +KpRo®) xp):

aggintegral = Limit[Integrate[r? efagg, (xr, a, x}], a~ 0] //. Qint -+ QINT;

pasteintegral = Integrate [::2 efpaste, (r, Ri, r}] //. Qint - QINT;

Radlal Stresses

Radial stress of the aggregate core:
6 Ka ta aggintegral

oraas - + 3 Ka C1AGG;
3
Radial stress of the matrix shell:
1 Kp
orp = - = 6 Kp tp pasteintegral + 3 Kp CIPASTE - 2 xp C2PASTE 3 =
r ) o

Tangential Stresses

Tangentlal stress of the aggregale core:

3 Ka ta aggintegral
ota = +3KaClAGG-taldKaefagg //. Qint » QINT;

i
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Tangentlal stress of the matrix shell;

1
otp = = 3 Kp tp pasteintegral + 3 Kp C1PASTE +
Y

K
xp C2PASTE 3 -—I: -tp 3Kp (efpaste) //. Qint - QINT;
o

il

Radlal Stralns

Radial strain of the aggregate core;
2 x 3 fa aggintegral

era-= - 3 +3 Ba (efagg) + C1AGG //. Qint -+ QINT;
4
Radlal straln of the matrix shell:
erp =
2 x 3 Bp pasteintegral C2PASTE
- : + 3 Ap (efpaste) + CIPASTE - 2 ; //. Qint - QINT;
r r

Tangential Strains

Tangentlal strain of the aggregate core:

3 fa aggintegral

eta = —B—g——g-r—- + C1AGG;
3

Tangential straln of the matrix shell:

3 asteintegral C2PASTE
etp = PP P — + C1PASTE + —

r3 r?
Bulk Strains

Bulk strain of the aggregate core:
eka = era+2 eta)

Bulk strain of the matrlx shell:
ekp = exp + 2 etp;

Average Bulk Strains

Average strains are glven by :
3 (
efaggavit] = — | efalinearr® dr:
RP Jo

3 o
efpave|t) = fefllnearrzdr;
Pvell = o RE &

Average bulk strain of the aggregate core :

agapp Ro® (1+2 xp)
ekka = Xx efaaver + 3 Ba efaggregate + Ww efpaver + )

ekkaggave = ekka //. efaggregate -> efaaver;
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Average bulk strain of (he malrix shell :
oapp Ro® (Ka + 2 Kp xp)

ekkp = Uu efaaver + Vv efpaver + 3 fp efpas + —— !
Kp 22
ekkpasave = ekkp //. efpas -> efpaver;
Average bulk strain of the matrixshell :
1
ekkave « — (Ri* exkaggave + (Ro" - Ri®) ekkpasave) //. Qint -» QINT;
Ro

Coefficients

This section contalns all the coefficients that are used to simplify the expressions.

(1+va)
Ba = ]
3 (1-va)
(1-2«va)
ra s ——————
(1-va)
(1-2xva)
Xas —————y
(1+va)
1
gpe LB)
3 (1-vp)
(1-2+vp)
tp & ————)
(1-vp)
(1-2#vp)
Xpe — ———1i
(1+vp)

Aa = 2z (Mla (Ka + ba bca Mca Ba) pc + Mca (Ka+bablaMlaBa) pl);
partATagg
] AT(xr, t]
Cc = Zz (Mlp (Kp + bep bp Mcp Bp) pc + Mcp (Kp + blp bp Mlp Bp) pl);
partATpas
) AT[x, t]
2z = (Ka Ro’ +2 ( (Ka-Kp) R1°+Kp Ro’) xp) !

Bb ?

Dd !

Xx = -ziz (3 Kp (Ri® - Ro®) Ba xp+Ka ta (Ro + 2R1% xp) )
Z

2Kp (R1i’-Ro?) tp (1+2 xp)

W=~ }

Y4/
2 (Ri’ - Ro’) tp (Ka + 2 Kp xp)

Vve- i
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2 KaRi? (3 Ba+2ra) xp

Juspg
2z
bca pc +blapl
hl = ( —)-:
kaKaRi7Tapl
bca pc +blapl
h2 = -( -2-:
3KaTapl
bca AT &Em
hl=z -aa AT+ H
3 Ka
bep AT &n
h4 = -ap AT + ;
3Kp

(
hS = [[3Ro-Ri*Tp+Ro’ TP+

\ \
( \)

2 (-/Tp +Ri
3 7ol -W+———-—(-—LTB)————
t -1+e“'n’a°“l;(1+Ri'\/'rp)+Ri‘\/‘7'p ),

\
(bep pc + blp pl) / (3Kp (R1®-Ro*) 79% 1),
)

hé = (Ri? (bep pc +blp pl)

(1+ (Ro/Tp ) / (-R1 VTP Cosh[(R1-Ro) 4/7p | +Sinh[(Ri-Ro) ¥7P |)))/
(kpKp (RL*-Ro’) Tppl);
h7 = rRo (bep pc + blp pl)

Ri1Ro 7P

- 4
-1+Ri V7P Coth[(Ri-Ro) V7P ]

\

]/ (Rp (R1’-Ro%) TP 1),

1+

Roy TP

_Riﬁ+Tanh[(Ri-Ro) ﬁ]i
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gl=nl (Kp 2z (kp-bphb sVvnl) (Scapc ¢doa + pl (Bb AT + ATtimesSatagg - Scadoa)) +

ba (h4 kp Kp Ww Zz pl + h7 kp Kp Papp Ww Zz pl + h6 kp Kp Qint Ww 2z pl +

h3kpKpXxZzpl +hl kpXKpQintXxZz pl +bph3 hSKps UuWw 2z nl pl +
bp hl hS Kp Qint s Du Ww Zz nl pl - bp h3 h§ Kp s Vv Xx 2z nl pl -
bphlhS5KpQint s VvXx2znlpl+Ddh5Kps WwZzATnl pl +

hS Kp ¢ Ww 2z ATtimesSatpas nl pl + kp Kp Ro? pl capp -

bp hS Kp Ro’ 8 Vv nl pl oapp + bp h5 Ka Ro? 8 Ww nl pl capp +

hSKp e ScpWwZz nl pc d¢op-hS Kp 8 ScpWwZznl pl dop +

2KpRo® (kp + bph5 8 (- Vv +Ww) nl) pl oapp xp) ) /

(Kp 2z (ka (kp-bph58Vvpnl) +bah2snl (-kpXx+bphbs (-UuWw+VvXx) nl))

pl) //. Qint - QINT;

g2=nl (Kp 2z (ka-bah2 8 Xxnl) (Soppc ¢op + pl (DAAT + ATt imesSatpas - Scp ¢op) ) +

bp (h3 ka Kp Uu Zz pl + hl ka Kp Qint Uu 2z pl + h4 ka Kp Vv 2z pl + h7 kaKp

PappVvZzpl +hé kaKpQintVvZzpl +bah2 h4 Kps UuWwZz nl pl +
bah2 h7 Kp Papp s Uu Ww Zz 1l pl + ba h2 h6 Kp Qint s Uu Ww Zz nl pl -
bah2h4XpasVvXxZznl pl -bah2 h? Xp Papp s Vv Xx Zz nl pl -

bah2hé XpQintsVvXxZznl pl+Bbh2KpsUuZzATnl pl +
h2 Kp s Uu Zz ATt imesSatagg nl pl + ka Ka Ro® pl capp +

ba h2 Kp Ro® 8 Uunl pl capp - ba h2 Ka Ro® 8 Xx nl pl oapp +
h2 Kp 8 ScaUu Zz nl pc ¢oa - h2 Kp s ScaUu Zz nl pl goa +

2 KpRo® (ka+bah2 s (Uu-Xx) nl) pl oapp xp)) /

(Kp 2z (ka (kp-bphSsVvnl) +bah2snl (-kpXx+bphSs (-UuWw+VvXx)nl))

Cpla =

Cplp =

nl

pl) //. Qint - QINT;

Aas

e ——
Ka Mca Mla %z pl

Ccs

e e et s« e e — '
Kp Mcp Mlp Zz pl

7a s — Cpla;

ka
nl

Tp= — Cplp;

kp

Inputs

This sectlon contalns all the required Inputs,

Applied Temperalure and Presstire

Applied pressure at the boundary of the splere in the tune domain:

Papptime = 0;

Applied pressure at the boundary in the transfonined domain:

Papp = LaplaceTransform[Papptime, t, 8])
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Applied stress at the boundary in the transformed domain:
oapp = - Papp;

Applied temperature at the boundary in the time domain:
Tamp = 25;

T = Tanp HeavisideTheta[t]

25 HeavisideTheta(t)

ATt = T
25 HeaviaideTheta(t)

Applied temperature at the boundary in the transforined domain:
AT = LaplaceTransform[ATt, t, 8]}

Geomelry
Diameter of the aggregate core in inches:
Di=2;
Radius of the aggregate core in meters:
Di 2.54
Ris —«
2 100
0.0254

Dry-rodded aggregate volune fraction in percentage according to the ACI mixture design (Table 10.8, Mindess
et al. [22)):

AggVolPercent = 75;

Outer radius of the matrix shell in meters

100 Ri? )
, 0.0001]

AggVolPercent

Ro = Round[[

0.028

Materlal Propertles

® Density (3)

Density of the pore liquid:
pl=0.9998 x 10%,
Deusity of the pore crystal:
pc= 0.9167 x 10%;

a Porosity

Porosity of the aggregate:
¢oa = 0.2

Porosity of the matnx:
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¢op = 0.2;
= Permeability (m?)

Permeability of the aggregate:
kas= 1x10°%,
Penmeability of the matrix:
kp= 1x 10°%1,

@ Thermal Expansion Coefficient (Degree C)
Thermial expansion coefficient of the aggregate:
aa= 10 x10°%;

Thermal expansion coefficient of the matrix;
ap=10x10°¢;
Thermal expansion coefficient of the pore liquid:

286.3 x10°¢

al o - —— ;

3

Thermal expansion coefficient of the pore crystal
155 x 10°¢

aoc s ’
3

® Bulk Modulus (Nm / n?)

Bulk modulus of the pore liquid:
Kl=1.79x10%+1.30x20%,

Bulk modulus of the pore crystal:

Kc= 7.81x10%#1.30x 10",

Bulk modulus of the solid aggregate skeleton:
Kea = 45x10% #1.30 x10%?;

Bulk modulus of the solid matrix skeleton:
Ksp = 45x 103 «1.30 x 10%%,

Bulk modulus of the porous aggregate:

Ka= (1- ¢oa)? »Kea,
Bulk modulus of the porous matrix:
Kp= (1- ¢op) 3. Kep)

s Polsson’s Ratlo

Poisson's ratio of the aggregate:

va = 0-2’

Poisson’s ratio of the matnx:

Vp- 002’
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® Fluid Viscosity (Nm /hr)
nl «1.79%x10" % w3,6x10°%

Nm/br!
» Melting Entropy ('—",L)

Sm =1.2+#1.30x 103,

» Capillary Modulus (MPg) (Coussy, 2005 [29))
Capillary modulus of the aggregate:
Na = 35)
Capillary modulus of the matrix:
Np = 35;
® Characteristic Cooling (Empirical: 7 in K and A in MPa ) (Coussy, 2005 [29])

Characteristic cooling of the aggregate:
Ja=0.4734 Na ;

Characteristic cooling of the matrix:
Jp =0.4734 Np

& Pore Size Distribution (0-1) (Coussy, 2005 [29])
Pore size distribution of the aggregate:

ma=0.5;
Pore size distribution of the matrix:

mp= 005,

Degree of Saturation

Liquid saturation in aggregate in the time domain:
i ~HA
1 1-ma
Slatime = [1 + [— (ATt) ] :
Ja

Liquid saturation in aggregate in the transfonned domain:
Slatrans = LaplaceTransform[Slatime, t, 8];

8la = Blatrans;

Liquid saturation in matrix in the time domain:

1
Slptime = |1 + [— (ATt) ;
Jp

Liquid saturation in matrix in the transfonned domain:
S8lptrans = LaplaceTransform([8lptime, t, 8);

Blp = S8lptrans;

Crystal saturation in aggregate in the time domain:
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Scatime = 1 - Slatime;
Crystal saturation in aggregate in the transformed domain:

Scatrans = LaplaceTransform[Scatime, t, 8];

8ca = Scatrans)
Crystal saturation in matrix in the time domain:
Scptime = 1 - S8lptime;

Crystal saturation in matrix in the transformed domain:

Scptrans = LaplaceTransform[Scptime, t, 8],

Scp = Scptrans;

Properites That Are Functions of S

s Biot’s Coefficient

Biot's coefficient of aggregate:

Ka
bax l-—
Ksa

Biot's coefficient of matmx:
K
bp=1- —p;
Kep
Biot's coefficient of crystal in the aggregate pore in the time domain

bcatime = ba Scatime;

Biot's coefficient of crystal in the aggregate pore in the transformed domain
bcatrans = ba Scatrans;

boca = s boatrans;
Biot's coefficient of liquid in the aggregate pore in the time domain
blatime = ba Slatime;

Biot’s coefficient of liquidl in the aggregate pore in the transformed domain
blatrans = ba Slatrans;

bla » s blatrans;

Biot’s coefficient of crystal in the matrix pore in the time domain
beptime = bp Soptime;

Biot's coefficient of crystal in the matrix pore in the transformed domain

beptrans = bp Scptrans;

bop = 8 bcptrans;

Biot's coefficient of iquid in the matrix pore in the time domain
blptime = bp Slptime;

Biot’s coefficient of liquid in the matnx pore in the transformed domain
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blptrans = bp 8lptrans;
blp = s blptrans;

Blot’s Modulus

Biot’s modulus of crystals in the aggregate pore in the time domain:

1
Mcatime = -3

bcatime-4oa Gcatime + ¢oa Scatime

Biot's modulus of crystal in the aggregate pore in the transformed domain:
Noatrans =« LaplaceTransform[Mcatime, t, 8],

Moa = § Moatrans)

Biot's modulus of liquid in the aggregate pore in the time domain:

1
Mlatime = Fre — :
ltm-:'o: platinme & ¢on 9::1:1‘.

Biot's modulus of liquid in the aggregate pore in the transformed domain;

Mlatrang = LaplaceTransform[Mlatime, t, 8))

Mla = s Mlatrans;

Biot’s modulus of crystals in the matrix pore in the time domain:

1
Mcptime T —— . §
boptinme-¢op s_ogtm Scptime
Ksp + Ko

Biot's modulus of crystal in the matrix pore in the transformed domain:

Mcoptrans = LaplaceTransform[Mcptime, t, 8],
Mop = s Noptrans;

Biot’s modulus of liquid in the matrix pore in the time domain:

1
Hlptime N ;; time Bl-tm 81 l.:l.l. d
...P_'::: puiss ‘_”Llf_.

Biot's modulus of liquid in the matrix pore in the transformed domain;
Nlptrans = LaplaceTransform|[Nlptime, t, =]

Mlp = s Mlptrans ;)

Biot's mnodulus of aggregate in the time domain:

1

Matime = !
1 1

Moatime ¥ Mlatime

Biot's modulus of aggregate in the transformed domain:
Matrans = LaplaceTransform{Matime, t, 8];

Ma o 3 Matxans;

Biot's modulus of matrix in the time doman:
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Mptime = '—1———1—!
Moptime * Mptime
Biot's modulus matrix in the transformed domain:

Mptrans = LaplaceTransform[Mptime, t, 8],
Mp = s Mptrans;

Varlables that are functions of both AT and degre= of saturation
ATS8atagg = 3 (-8catime aa - Slatime aa + Scatime ac + Slatime al) ¢oa ATL;
ATSatpas = 3 ((S8cptime qo + Blptime al) ¢op + (-Bcptime - Blptime) ap gop) ATE;
ATtimesfatagg » LaplaceTransform[ATSatagg, t, 8],

ATtimesSatpas = LaplaceTransform[ATSatpas, t, 8]

Inversion to time domain

The following commands invert the required outputs in the time domain from the Laplace transformed domain
using the Stehfest Algorithm.

NLInvSteh[Pla, 8, t, 6]
PAL » —m™m™m—m—m———————

1.30 x 1013

NLInv8teh{Plp, 8, t, 6]
PPL = —mMmMm™ ™ ——————;

1,30 x10%*
ekA = NLInvSteh(eka, 8, t, 6];

ekP = NLInvSteh[ekp, &8, t, 6]}
ekkAVE = NLInvSteh[ekkave, 8, t, 6];
NLInv8teh[ota, s, t, 6]

OtA = )
1.30 x 1013
NLInv8teh[otp, 8, t, 6]
otP = H
1.30 x 1023

orA = NLInvSteh[ora, 8, t, 2];
orP = NLInvSteh[orp, 8, t, 2];
etA = NLInvSteh[eta, 8, t, 6]}
etP = NLInvSteh(etp, B, t, 6);
erA = NLInv8teh[sra, g, t, 6];
erP = NLInvSteh[exp, 8, t, 6])
eRP = NLInv8teh([exp, 8, t, 6];
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Check Initial Value

Initial values are checked here using the obtained results. Results are considered accurate if mw =~ 0.
pa

Yapa = Stohfeat[saa [-1 + —1 ¢oa, B, t, 6] [/[/. t-1
P

-0.00743987
pc

VApp = Btahfoat[(—l- 1) ¢op Scp, 8, t, 6] [/. t=1
P

-0.00743987

Voa = Stohfa-t[(hn Pla + Mlapl
(Bb AT + ba Ka Mca (Xx 2z efaaver « Ww 2z efpaver + Ro® (1 +2 xp) oapp))) /
(KaMcaMlazzpl), s, t, 6] //. {r+0.01Ri, t~0.000001)
({(0.00747706}})

V¢p = Stehfest [ (Cc Plp + Mlp pl (DA AT+
bp Mcp (Kp Uu Zz efaaver + Kp Vv 2z efpaver + Ro® (Ka + 2 Kp xp) oapp) ) ) /
(Kp Mcp Mlp 2z pl), 8, t, 6] //. (t+R1+1/2 (Ro-Ri), t - 0.00001)
({{0.00747706}}}
mwa = Vipa + Véa
{{{0.0000371845}})
mwp = VApp + Vop
({(0.0000371845)}))

Yapa
(({-0.4998}})

« 100

Aggerror =

Paspteerror = « 100

VApp
{{(-0.4998}})

Example Plots

Predicting Damage
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LogLinearPlot|[{PAL //. x + 0.01Ri, PAL //. x+ 0.5Ri, PAL //. ¥ + R4,
PPL//.r-Ri{, PPL//.x-» (R1+0.5 (Ro-R1)), PPL//. r ~» Ro}, {t, 0.0001, 100},
PlotLegend + {8tyle["p] near center®, 16], style[*p] at r=1.27 cm", 16],
Style[*p] at r=2.54 om (agg-matrix interface)", 16],
style[np‘{ at r=2.54 om (agg-matrix interface)”, 16], styla[-pf at r=2.67 cm", 16],
St.yle["pf at r=2.8 om (surface)*, 16|}, Legendgshadow -» None,
LegendBorder -» Black, LegendPosition -+ {0.25, 0.1}, Frame - True,

FrameLabel - {"Time (hr)", "Liquid Pressure, p» (MPa)"}, LabelStyle - {16},
PlotsStyle - {{Black}, {Black, Dashing[0.02), Thick}), {Black, Dotted, Thick},

{Black, Thick, Dashing[0.04])}, {Black, Thick, Dashing[0.06])}, {Black, Th:lck}}]

pz near center
{ at 1=1.27 cm
wesunmnmrnne pi atr=2.54 cm (agg~matrix interface)
pt at 1=2.54 cm (agg—matrix interface)

- p

Py, atr=2.67 cm
p; atr=2.8 cm (surface)
3 Y - il

| \, A :
80 \ \ \\ -_
ol W\
' \ \ :

L X \ )
401 \ \ \ j

: \ \‘.\ \
s \ “w\ \
" \

Liquid Pressure, p; (MPa)

ok ~~ i
104 0.001 0.01 0.1 1 10 100
Time (hr)
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LogLinearPlot[{otA //. r+ 0.1Ri, otA //. xr+ 0.5Ri, otA //. r + Ri,
otP //. xR, otP //. r - (RL+0.5 (Ro-Ri)), otP //. r -+ Ro}, {t, 0.0001, 100},
PlotLegend -+ {8tyle["c} near cemter®, 16], style["o§ at x=1.27 cm", 16},
style["of at r=2.54 cm (agg-matrix interface)*, 16],
style["op at r=2.54 cm (agg-matrix interface)®, 16],
Stylo["og at r=2.67 cm*, 16], style["c; at r=2.8 om (surface)", 161},

LegendShadow -+ None, LegendBorder - Black, LegendPosition - {0.25, 0.1},

Frame - True, FrameLabel - {"Time (hr)*, "Tangential Stress, oo (MPa)*},
LabelgStyle -» {16}, PlotsStyle -

{{Black}, (Black, Thick}, {Black, Dotted, Thick}, (Black, Dashing[0.02], Thick}.,
{Black, Thick, Dashing(0.04]}, {Black, Thick, Dashing[0.06]}}]

09 near center
—_— oﬁ at1r=1.27 cm
ANESEOEERESESRA (Tg at 1‘:2,54 cm (agg—lllatl’ix i[lfel’face)
—— crﬂ’ at 1=2.54 cm (agg—matrix interface)
—— at r=2.8 cm (surface)
254 A s i S —
= ﬁ -
20f -
s F :
[l i K
e 15F p
5 : i
S 10F .
ot ¢ .
7 § :
_ 5 -
R " ]
= 3 ]
% Or B
~ f :
-3t p
_10.:;1 i il e ki ki) MR EITIY TR T s ST T I.EJ
1074 0.001 0.01 0.1 1 10 00
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LogLineaxPlot|{ekA //. r~ 0.01Ri, ekA //. r- 0.5R1, ekA //. T+ Ri,

ekP//.x->Ri, 6ekP //. - (R1+40,5 (Ro-Ri)), ekP //. r = R0}, {t, 0.0001, 100},
PlotLegend - {Stylo['eﬁk near center", 16], s8tyle["e;, at r=1.27 cm", 16],

8tyle["exx at r=2,54 cm (agg-matrix interface)", 16],
Style['eﬁk at r=2.54 om (agg-matrix interface)", 16], Bt.yla["egk at r=2.67 om", 16],
stylo["al’;k at r=2.8 cm (surface)", 16]}, Legendshadow - None,
LegendBorder - Black, LegendPosition -+ {0.25, 0.1}, Frame - True,

FrameLabel -+ {"Time (hx)",

"Bulk Btrain, ex™)}, LabelStyle -+ {16}, PlotStyle =
{{Black}, {Black, Thick}, {Black, Dotted, Thick}, {Black, Dashing[0.02], Thick]},

{Black, Thick, Dashing[0.04]), {Black, Thick, Dashing[0.06]}}]

€34, Near center
— ef('k at1=1.27 cm
FHENES RS NS at I"'2 54 Cm (agg—mau‘lx mtel face)
—— o eﬁ at 1=2.54 cm (agg—matrix interface)
— S— ey( at 1=2.67 cm
— ekk at 1.._2 8 cm (smface)
e . — . ' l '
| .
0.0004
0.0002 ~
& l i
g - ~
S  0.0000f 7
AN A :
. I ;
= &
A _0.0002} .
—0.0004}+ T
—0,0006:| . T A PP | el £t a3 s eaaal Aoikckoan s aal 1ad ]
10~ 0.001 0.01 0.1 1 10 100
Time (lr)
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Check with the solution obtained by Coussy and Monteiro [15}

1
babeca
1 (1- ) lnbn’ (ln {1 )
1.01566
-AaKa Ma 1 ba bca
i S TANp (E Ia )
Plcryo =
1.30 x 10
-5.65062
Aa Ka Ma

1- £ ¢oa Bcatime
+bal
plhydrau = ﬂ'—-"—'—(——’-l-)———— //.t+0.1

1.30 x 1013
93.0101
Aa Xa Ma
3 T ¢oa (aa - Bocatime ac - 8latime al) Tamp
plthermo ¢ —mmm oo —_—eeeeeee /] . £ 4 0.1
1.30 x 1013
7.42552

Pl = Ploryo + plhydrau + plthermo

94,785
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