

1. Report No.

SWUTC/12/476660-00078-1

2. Government Accession No.

3. Recipient's Catalog No.

4. Title and Subtitle

USING REAL TIME TRAVELER DEMAND DATA TO

OPTIMIZE COMMUTER RAIL FEEDER SYSTEMS

 5. Report Date

August 2012
6. Performing Organization Code

7. Author(s)

Yao Yu, Randy Machemehl

 8. Performing Organization Report No.

476660-00078-1

9. Performing Organization Name and Address

Center for Transportation Research

University of Texas at Austin

1616 Guadalupe Street, Suite 4.200

Austin, Texas 78701

10. Work Unit No. (TRAIS)

11. Contract or Grant No.

DTRT07-G-0006

12. Sponsoring Agency Name and Address

Southwest Region University Transportation Center

Texas A&M Transportation Institute

Texas A&M University System

College Station, Texas 77843-3135

13. Type of Report and Period Covered

14. Sponsoring Agency Code

15. Supplementary Notes

Supported by a grant from the US Department of Transportation, University Transportation Centers

Program.

16. Abstract

This report focuses on real time optimization of the Commuter Rail Circulator Route Network Design

Problem (CRCNDP). The route configuration of the circulator system – where to stop and the route among

the stops – is determined on a real-time basis by employing adaptive Tabu Search to timely solve a Mixed

Integer Program (MIP) problem with an objective to minimize total cost incurred to both transit users and

transit operators. Numerical experiments are executed to find the threshold for the minimum fraction of

travelers that would need to report their destinations via smart phone to guarantee the practical value of

optimization based on real-time collected demand against a base case defined as the average performance of

all possible routes. The adaptive Tabu Search Algorithm is also applied to three real-size networks

abstracted from the Martin Luther King (MLK) station of the new MetroRail system in Austin, Texas.

17. Key Words

Commuter Rail Circulator Network Design

Problem (CRCNDP), Austin Texas, Tabu

Search, Mixed Integer Program

18. Distribution Statement

No restrictions. This document is available to the public

through NTIS:

National Technical Information Service

5285 Port Royal Road

Springfield, Virginia 22161
19. Security Classif.(of this report)

Unclassified
20. Security Classif.(of this page)

Unclassified
21. No. of Pages

111
22. Price

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized

Technical Report Documentation Page

ii

iii

USING REAL TIME TRAVELER DEMAND DATA TO OPTIMIZE COMMUTER RAIL

FEEDER SYSTEMS

by

Yao Yu, B.E., M.S.E.

Graduate Research Assistant

The University of Texas at Austin

and

Randy Machemehl, P.E.

Professor

The University of Texas at Austin

Report SWUTC/12/476660-00078-1

Project 476660-00078

Performed in cooperation with the

Southwest Region University Transportation Center

Center for Transportation Research

1616 Guadalupe Street, Suite 4.202

The University of Texas at Austin

Austin, Texas 78712

August 2012

iv

v

ABSTRACT

This report focuses on real time optimization of the Commuter Rail Circulator Route Network

Design Problem (CRCNDP). The route configuration of the circulator system – where to stop

and the route among the stops – is determined on a real-time basis by employing adaptive Tabu

Search to timely solve a Mixed Integer Program (MIP) problem with an objective to minimize

total cost incurred to both transit users and transit operators. Numerical experiments are executed

to find the threshold for the minimum fraction of travelers that would need to report their

destinations via smart phone to guarantee the practical value of optimization based on real-time

collected demand against a base case defined as the average performance of all possible routes.

The adaptive Tabu Search Algorithm is also applied to three real-size networks abstracted from

the Martin Luther King (MLK) station of the new MetroRail system in Austin, Texas.

 vi

 vii

EXECUTIVE SUMMARY

Commuter rail systems, operating on unused or under-used railroad rights-of-way, are being

introduced into many urban transportation systems. Since locations of available rail rights-of-

way were typically chosen long ago to serve the needs of rail freight customers, these locations

are not optimal for commuter rail users. The majority of commuter rail users do not live or

work within walking distance of potential commuter rail stations, so provision of quick,

convenient access to and from stations is a critical part of overall commuter decisions to use

commuter rail.

Minimizing access time to rail stations and final destinations is crucial if commuter rail is

to be a viable option for commuters. Well-designed feeder routes or circulator systems are

regarded as potential solutions to provide train station to ultimate destination access. Transit

planning for main line or feeder routes relies upon static demand estimates describing a typical

day. Daily and peak-hour demands change in response to the state of the transport system, as

influenced by weather, incidents, holiday schedules and many other factors.

Recent marketing successes of “smart phones” might provide an innovative means of

obtaining real time data that could be used to identify optimal paths and stop locations for

commuter rail circulator systems. Such advanced technology could allow commuter rail users

to provide real-time final destination information that would enable real time optimization of

feeder routes.

This report focuses on real time optimization of the Commuter Rail Circulator Route

Network Design Problem (CRCNDP). The route configuration of the circulator system – where

to stop and the route among the stops – is determined on a real-time basis by employing adaptive

Tabu Search to timely solve a Mixed Integer Program (MIP) problem with an objective to

minimize total cost incurred to both transit users and transit operators. Numerical experiments

are executed to find the threshold for the minimum fraction of travelers that would need to report

their destinations via smart phone to guarantee the practical value of optimization based on real-

time collected demand against a base case defined as the average performance of all possible

routes. The adaptive Tabu Search Algorithm is also applied to three real-size networks abstracted

from the Martin Luther King (MLK) station of the new MetroRail system in Austin, Texas.

 viii

 ix

DISCLAIMER

The contents of this report reflect the views of the authors, who are responsible for the facts and

the accuracy of the information presented herein. This document is disseminated under the

sponsorship of the Department of Transportation, University Transportation Center Program, in

the interest of information exchange. Mention of trade names or commercial products does not

constitute endorsement or recommendation for use.

 x

 xi

ACKNOWLEDGEMENTS

The authors recognize that support for this research was provided by a grant from the U.S.

Department of Transportation, University Transportation Centers Program to the Southwest

Region University Transportation.

 xii

 xiii

TABLE OF CONTENTS

Chapter 1: Introduction ... 1

Study Motivation ... 1

Study objectives ... 4

Expected Contributions .. 4

Chapter 2: Literature Review .. 7

Model Objectives and Decision Variables ... 7

Analytical Models .. 8

Heuristic Models .. 9

Heuristics .. 10

Meta-heuristics .. 11

Genetic Algorithm ... 11

Simulated Annealing .. 12

Tabu Search ... 13

Summary .. 15

Chapter 3: Model Formulation ... 17

Formulation .. 17

Assumptions ... 19

Sets/indices .. 20

Parameters and data ... 20

Decision Variables ... 21

Objective function .. 22

Constraint set ... 23

Summary .. 24

Chapter 4: Meta-Heuristic Algorithm ... 25

Adaptive Tabu Search for the real-time CRCNDP .. 26

Initial solution ... 27

 xiv

Neighborhood ... 28

Evaluation and updating ... 29

Results summary .. 30

Summary .. 31

Chapter 5: Numerical Testing Results .. 33

Numerical tests... 33

Testing Results ... 34

Proposed Methodology to find the minimum destination information 36

Summary .. 37

Chapter 6: Case Study ... 39

Network Description .. 39

Summary .. 50

Chapter 7: Summary, Conclusions and Recommendations .. 51

Summary and Conclusions .. 51

Future Research Directions .. 52

Appendices .. 55

Appendix A: Code illustrating implementation of the Adaptive Tabu Search

 Algorithm ... 55

References ... 89

 xv

LIST OF FIGURES

Figure 1: Network Representation (Lownes (2007)).. 18

Figure 2: Adaptive Tabu Search Solution Framework. .. 26

Figure 3: Initial Solution Construction. .. 28

Figure 4: Solution Evaluation and Updating. ... 30

Figure 5.1: Numerical Results for 12-node Network .. 34

Figure 5.2: Numerical Results for 10 Centroids/ 20 stops Network 34

Figure 6.1: Numerical Results for 12-node Network .. 35

Figure 6.2: Numerical Results for 10 Centroids/ 20 stops Network 36

Figure 7: Overview of MLK Station Coverage Region ... 40

Figure 8: Demand Centroid (46) and Candidate Stop Locations (84) within MLK Station

Coverage Region ... 41

Figure 9: Route solution for the 46/84 MLK network: Best Route. 44

Figure 10: Demand Centroid (30) and Candidate Stop Locations (50) within MLK Station

Coverage Region ... 45

Figure 11: Route solution for the 30/50 MLK network: Best Route. 46

Figure 12: Demand Centroid (62) and Candidate Stop Locations (118) within MLK Station

Coverage Region ... 47

Figure 13: Route solution for the 62/118 MLK network: Best Route. 48

Figure 14: Computational Time for three networks of different sizes 49

 xvi

 xvii

LIST OF TABLES

Table 1: Guideway for Commuter Rail Projects. ..2

Table 2: Summary of optimal results based on three methods30

Table 3: Comparison of two methods’ capability in capturing the true optimal

 solution ..31

Table 4: Case Study Zonal Demand..42

Table 5: MLK Station Case Study Results ...43

Table 6: Case Study Zonal Demand in the 30/50 network ...45

Table 7: Case Study Zonal Demand in the 62/118 network48

 xviii

 1

CHAPTER 1. INTRODUCTION

Population and employment growth are the two primary factors resulting in rush hour travel

demand growth. The demographic and economic changes that have taken place over the past 50

years are dramatic. The population has grown from 165 million in 1955 to 295 million in 2005

while economic growth and employment growth have remained healthy and strong to meet the

demand of the ever-increasing population. The population growth trend, according to U.S.

Census projections, is anticipated to continue through 2055. By that time, more of the population

will choose to live in the metropolitan areas due to the economic incentive in these areas and the

lasting economic vitality will again promote employment growth.

Traffic congestion due to travel demand exceeding the service capacity of urban

transportation systems is a long-standing problem among all issues confronting transportation

planners. According to the 2011 version of the annual Texas Transportation Institute Mobility

Report (Schrank & Lomax, 2011) urban congestion (based on wasted time and fuel) is estimated

to cost about $115 billion in the year 2011 alone. The bulk of transportation research mainly

focuses on increasing highway capacity to alleviate congestion. Constraints in construction and

maintenance budgets, the lack of available right-of-way and other political and environmental

factors often cap the capacity of current highways. With the current demand for urban

transportation far exceeding the service supply of existing highway systems, alternative means

must be further explored to provide more reliable, accessible and efficient transportation

systems.

Commuter rail has been the subject of increasing interest within the United States in

recent years, chiefly because it offers the potential for providing attractive, high-quality rapid

transit service at a more reasonable cost when compared with other types of urban rail systems,

such as light rail or heavy rail. Commuting trips, which account for a large fraction of peak-

period transport demand, are usually carried out daily during approximately the same peak hours

and usually follow a fixed route with an aversion toward congestions. All the facts that justify

commuter rail systems target commuting trips as an appropriate opportunity for an effective and

practicable solution to ever-worsening congestion.

STUDY MOTIVATION

Commuter rail development and expansion programs are in progress at a number of locations in

the United States currently. The Federal Transit Administration (FTA), the primary federal

funding source for commuter rail projects, allocates investment through its New Starts program.

According to FTA officials, FTA will not award full-funding grant agreements to commuter rail

projects unless the commuter rail agency resolves relevant track access issues. Table 1 lists the

current commuter rail projects in the New Starts Program Annual report for the fiscal year 2012

(FTA, 2011) and indicates whether these new commuter rail systems are going to use existing

track or construct new guideway.

 2

Table 1. Guideway for Commuter Rail Projects.

New Starts Program on commuter rail (Annual

Report for Fiscal Year 2012)

Use existing track or construct new

track

1
Wilmington to Newark Commuter Rail

Improvements
Construction of a third track

2 Weber County to Salt Lake City Commuter Rail

Operates within an existing railroad

corridor parallel to Interstate 15 (I-

15), utilizes right-of-way previously

acquired by UTA under a rail corridor

preservation plan with certain

facilities already in place

3 Northeast Corridor

This section of the Northeast Corridor

is currently used only for Amtrak and

freight operations

4 Pawtucket/Central Falls Commuter Rail Station Facilities already in place

5 Eagle Commuter Rail
Construction of the east corridor and

the Gold line

6
Central Florida Commuter Rail Transit - Initial

Operating Segment

Sharing track with existing freight and

Amtrak services

As indicated in the table, among the six new Commuter Rail projects in fiscal year 2012,

only two of them propose to construct new track, and all the others are going to use existing

track. Most of the reason is that Right-of-Way (ROW) for commuter rail – obtained either

through leasing track from freight-rail operators or using abandoned track is cheap and easily

accomplished. The use of existing rail ROW is a major factor in the evaluation of urban

transportation options. This trend will continue as ROW continues to be difficult for transit

operators to obtain.

However, there are detriments to using existing track, especially those abandoned. Grava

(2003) has discussed the issue of commuter rail placement:

A basic issue related to the use of existing rail alignments is their placement. They were

usually established more than 100 years ago to serve a completely different city

configuration and respond to the needs of that time. They are not necessarily central to

the current corridors of residential and commercial activity.

Much of the rail infrastructure was developed to serve freight traffic to or from industrial

centers. These industrial centers are generally associated with low-density land use. Also, freight

rail lines usually cause noise and vibration. Citizens generally do not reside near these industrial

centers because of the inconvenience and bad environment.

 3

In another words, population densities of the places that the existing rail tracks intend to

serve are fairly low. In urban areas with high-density population, additional ROW is not

generally available or usually too expensive to obtain to construct rail infrastructure.

Minimizing access time to rail stations and final destinations is critical if commuter rail is

to be a viable option for commuters. From the perspective of commuter rail operators, collector

and distributor systems are a means to gather potential rail passengers spread out around the

railroad to ameliorate the effect of low population density upon the commuter rail system, to

maintain a reasonable loading ratio and thus system feasibility. From the perspective of

commuter rail users, the circulator systems provide access to commuter rail since the majority of

commuter rail users do not live or work within walking distance of existing rail or proposed rail

stations. This represents a way to help cultivate and retain ridership in the short term until

development near the rail stations can enhance the stability of the system and its ridership.

The two ends of the commute trip have different characteristics. The home end of the trip

can usually take advantage of available land in suburban regions when commuter rail is first

introduced and access can be provided through the use of park and ride facilities. As these

suburban regions mature, parking shortages can arise as continuing development in these regions

consumes spare land. At the work end of the trip, it is highly likely that a commuter will not

have a personal vehicle at the destination station since he has already driven to the station at the

home end, and as discussed previously, it is also unlikely that the commuter will work within

walking distance of the destination station, as many station locations are not in the central

business district. Additional modes providing access from stations at this end of trip are needed

to insure commuter rail feasibility.

This report will assume that park and ride facilities will provide access to the commuter

rail line at the home end, and at the work end a circulator bus service is the only available mode.

The method presented focuses on the destination end of the commute trip to an urban work

location. Instead of solving the Commuter Rail Circulator Network Design Problem (CRCNDP)

based upon static demand estimates describing a typical day, real-time daily and peak-hour

demands in response to the state of the transport system, as influenced by weather, incidents,

holiday schedules and many other factors are collected for route planning. A method that

optimally designs the circulator network at the destination end of the commuter rail trip with

real-time demand will be developed to better serve passengers at the work trip destination end.

Note that having all rail passengers boarding the circulator bus is just one extreme scenario that

the transit operator must deal with. Since the case study in this report is a circulator network

design for the Martin Luther King (MLK) station of the commuter rail in Austin, TX, where

there is no destination within a walk distance to the station, this assumption is fairly reasonable.

Regarding cases where other station to destination travel modes are available, i.e. bus, taxi, smart

car or walking, this CRCNDP method can still be widely applied since real-time destination

information can still be obtained by simply asking passengers how and where they want to go,

and the model can still be used to optimize a feeder system for passengers choosing to board the

circulator.

 4

STUDY OBJECTIVES

The goal of this report is to develop a flexible algorithmic solution framework to implement real

time computer-aided design of commuter rail circulator networks and provide various good

solutions to accommodate real-time travel demand requirements. The proposed work in this

report is intended to fulfill the following objectives:

1. To identify knowledge that can reflect current related practice and existing rules of thumb

for commuter rail circulator route network design issues;

2. To develop a robust systematic efficient heuristic algorithm that can incorporate the

above knowledge, and to test a set of designed algorithmic procedures to search

intelligently for an optimal solution;

3. To explicitly account for the multi-objective nature of the commuter rail circulator

network design problem. This includes exploring the capability to evaluate performance

measures from the points of view of both the operator and transit users for service options

and to develop the ability to ascertain the characteristics of tradeoffs between conflicting

performance measure variables inherent in the commuter rail circulator network problem.

EXPECTED CONTRIBUTIONS

Due to the complexity and combinatorial NP-hard nature of the real-time Commuter Rail

Circulator Network Design Problem (CRCNDP), traditional exact analytical optimization

methodology is impracticable. The proposed work in this report is oriented to developing Meta-

heuristic approaches to finding an acceptable and operationally implementable route network

that can provide alternative design concepts in a reasonable time domain. The solution

methodology differs from existing approaches in many aspects and the expected contributions

from this report are summarized as follows:

1. Ability to apply a designed algorithmic procedures to search intelligently for an optimal

solution without the loss of applicable service planning guidelines and the transit planners’

knowledge and expertise;

2. Ability to produce a route network reflecting the inherent tradeoffs between conflicting

performance-measures. This includes explicit consideration of the multi-objective nature

of the commuter rail circulator network design problem and the capability to evaluate

performance measures and service options from the points of view of both the operator

and transit users;

3. Ability to systematically apply heuristic algorithms to produce quality solutions for the

CRCNDP and identify the most appropriate one(s) under certain circumstances;

4. Ability to obtain optimal or near-optimal CRCNDP solutions within a strict time limit to

realize real-time operation.

 5

Report Overview

In this chapter, the significance and motivation of working on the real-time optimization of the

Commuter Rail Circulator Network Design Problem (CRCNDP) has been discussed, and study

objective and expected contributions are also described.

 Chapter 2 presents a review of the literature that is related to the CRCNDP problem.

Since CRCNDP is identified as a sub-problem of transit route design problem, a significant

amount of literature focusing on general transit network design problems to find out the route

configuration and other operating strategies was reviewed. Model objective and decision

variables were taken a close look, both analytical model and heuristic models engaged in solving

these problems are discussed. Three meta-heuristics methods and their related literature are

reviewed in detail as implications for this report.

 Chapter 3 provides a detailed explanation of the model formulation for the real-time

CRCNDP. A mathematical nonlinear mixed integer programming model is formulated.

Constraint sets, decision variables and objective functions are presented.

 Chapter 4 presents the solution framework based on adaptive Tabu Search algorithm. The

adaptive Tabu Search algorithm is composed of neighborhood definition, initial solution

construction and evaluation and updating procedures. And results based on this methodology on

two sample cases are also shown in this chapter.

 Chapter 5 shows the numerical testing results based on Monte Carlo technique to find the

threshold across which more destination data given by additional passengers would make no

significant improvement to the optimal solution obtained by the meta-heuristic method. A

methodology is also proposed for this purpose.

 Chapter 6 presents the results on three real size cases abstracted from the Martin Luther

King (MLK) station of the new MetroRail system in Austin, Texas. Solution performance and

computational time are all discussed.

 Chapter 7 concludes with summaries of the developed algorithm and research results.

Suggestions for future research are also provided.

 6

 7

CHAPTER 2. LITERATURE REVIEW

Generally speaking, technical literature on the bus transit route network design problem involves

finding a bus transit route network configuration and other associated operational decisions that

achieve a desired objective with a variety of constraints. Depending on the problem characteristic

and modeler’s perspective, objective and decision variables can be defined in various ways.

MODEL OBJECTIVES AND DECISION VARIABLES

Kuah and Perl (1988) considered both users’ travel cost and transit agency’s operation cost while

formulating a feeder bus network design problem to design a feeder bus to access rail system. It

assumes an M-to-1 demand pattern where transit users would start from different bus stops,

transfer at a rail station and then get to a final common rail station that is located in a downtown

area. Since the demand starting from each stop is fixed, total access time to the bus stop is

constant and cannot be affected by the network configuration, user travel cost in the model

formulation includes user waiting cost at both bus stops and rail stations and user riding costs

along the bus route and rail line; while the transit agency’s operation cost is composed of capital

cost and variable cost that is related to vehicle running time. Considering both user travel cost

and transit operator cost also turns out to be a widely used way to achieve the optimal balance

between demand and supply in the transit network design problem.

Dubois, Bel, and Llibre (1979) believe that to simply minimize the total travel time is

appropriate while modifying a transportation network to better serve its existing demand. Instead

of including operation cost in the objective function, they actually consider a particular budget as

a cost constraint for the existing route modification. Ceder and Israeli (1998) provide a

methodology with no preference on the specification of network structure, and account for the

operators’ benefit. This approach is of interest since it is different from most other works. The

objective function in the model includes the empty space hours of vehicles to represent

unproductivity from the transit operator side. Lee and Vuchic (2005) provide a detailed

discussion of the composition of their conceptual objective function. They mentioned that

minimization of user travel cost is a proper objective for public transit agencies, however, for

private transit agencies, profit maximization would be more appropriate. The combination of the

two objectives, which represents the social benefit maximization or the social cost minimization,

tends to be favored by transit planners. The authors believe that if the operators’ constraint is

satisfied, user travel time minimization is desirable in many public ownership situations.

Therefore, user travel time minimization is used as the optimization criterion for simplicity.

Ceder and Wilson (1986) actually provide a description for the bus network design

problem and discuss the whole bus planning process as a sequential and systematic decision

process which consists of five levels of decisions: network route design, frequency setting,

timetable development, followed by bus scheduling and driver scheduling. It is mentioned that

early efforts were devoted to bus and driver scheduling since the largest single cost to transit

agencies of providing service is the driver wages and benefits, and optimization over these two

 8

scheduling problems would seem to be the best way to reduce this cost. Considering the entire

planning process, the design of bus routes and defining operating frequencies generally receives

the largest amount of attention. The author also mentioned: “If one could consider the full

problem domain including alternative bus networks, it is more likely that sub-optimality in the

final solution will be introduced by non-systematic rejection (through non-consideration) of

feasible networks than through sub-optimality at the stages of bus and driver scheduling, which

have already been extensively researched.” Later research work is more dedicated to transit route

set and frequency definitions. Pattnaik, Mohan and Tom (1998) focus on a problem of urban

bus route network design to determine a transit route set and its associated operating frequencies.

Route configuration and operation frequency on each route are the two primary sets of decisions

that entail the largest amount of work on typical transit design problems. Chakroborty (2003)

decomposes the urban transit network design problem into two sub-problems: the Transit

Routing Problem (TrRB) and the Transit Scheduling Problem (TrSP). As the TrRB aims to select

a set of routes, the TrSP substitutes a frequency optimization procedure for the process of

thorough schedule analysis based upon bus arrivals and departures at all stops of the network.

Solutions obtained based on this model formulation can actually provide more user-friendly

transit information – a timetable for buses on each route. And also this formulation can be

modified to incorporate the transfer concept without significant effort.

ANALYTICAL MODELS

Classical analytical optimization models were used in the early stages of the research on the

transit route network design problem. These models focus on developing a continuous convex

objective function under assumptions that simplify and idealize the transit network. By solving

first-order equations of the objective functions in these models, optimal solutions for stop

spacing, headway, frequency, or other route characteristics can be efficiently solved. As noted by

Ceder and Wilson (1986), analytic methods are suited to early stage screening in the planning

process or conceptual policy decisions where approximate design parameters are adequate but

have little practical benefit in solving real world problems. Examples of this traditional

operations research analytical optimization model can be seen in the work of Newell (1979),

Kuah and Perl (1988) and Chien and Schonfeld (1998).

Newell (1979) discussed issues relating to the optimal design of bus routes. One oft-cited

viewpoint from this work is the characteristic that distinguishes the bus transit assignment

process from that of the automobile assignment process, which is the higher the demand for trips

on a route, the better the level of service that can be provided due to higher frequencies and less

wait and transfer time. Newell mainly illustrated the sensitivity of any optimal geometry to the

nature of the trip distribution and showed that a square grid of straight-line bus routes does not

provide an optimal geometry even under highly idealized conditions where trips are uniformly

distributed. And the author stated that potential good geometries should assign routes onto a

single main street and past a common junction.

 9

Kuah and Perl (1988) specially address the problem of designing an optimal feeder bus

network to access a rail line with a differentiation-based method. The analytical model solves for

the three basic variables – the route spacing, operating headway and stop spacing. For the first

two decision variables, results showed that they are not highly sensitive to changes in the

relevant system parameters. With regard to the stop spacing, three cases are considered: uniform

spacing; constant spacing along routes; and variable spacing. In the first two cases, the optimal

stop spacing is shown to be related to some system parameter, increase with walking speed,

value of riding time and average time lost at a bus stop, and decrease with the value of walk

time. In the third case, the optimal stop spacing depends on initial conditions, and stop spacing is

shown to increase as the distance from the rail line decreases. Besides many of the same

restrictive assumptions about the network layout to make the problem solvable with analytical

methods, the authors indicate that the assumption of fixed demand for the feeder bus system is

applicable when the demand is affected primarily by the level of service and the resulting

ridership of the rail service.

Chien and Schonfeld (1998) develop a model to jointly optimize both a rail transit line

and a dedicated feeder bus system to serve the rail line. The optimization method solves for rail

line length, rail station spacing, bus headway, bus stop spacing, and bus route spacing. With the

corridor demand characteristics specified with irregular discrete distributions to realistically

represent geographic variations, the total cost of the bus and rail network is minimized with their

proposed iterative method – a combination of basic calculus and a successive substitution

method. The basic idea of the classical optimization algorithm is to derive, for each decision

variable, the gradient vector by setting the first derivative of the objective function with respect

to each decision variable equal to zero. However, their method allows changes in all decision

variables within one iteration by successive substitution of decision variable values to efficiently

solve for all the variables. The numerical results show that the most significant factor in

determining the rail line length is the demand. The total cost function is relatively flat near the

optimum, and its practical application is that minor changes in the optimal solution would allow

transit suppliers flexibility in fitting the route structure to local circumstances without significant

deterioration of total cost.

HEURISTIC MODELS

Chakroborty (2003) has provided a detailed discussion regarding why the urban transit network

design problem (UTNDP) cannot be solved with exact algorithms such as Branch-and-Bound, or

Branch-and-Cut. First, inclusion of discrete decision variables in the UTNDP increases

computational complexity since existing methodologies, for instance, the branch and bound

technique, deal with integer variables iteratively by generating artificial constraints. Secondly,

the nonlinearity of the UTNDP also makes it hard to solve. Traditional methods would solve this

kind of problem through successive linearization, and this again would add a series of additional

variables and involve significant computational effort. Thirdly, as also mentioned by Baaj and

Mahmassani (1990) defining logical conditions to better describe a realistic transit network in the

 10

mathematical program will again introduce more integer variables and further computational

complexity. All these listed facts lead to a common problem – a significant computational

burden.

Given the limitation of exact algorithms in solving realistic transit network design

problems, approximation techniques – heuristics and meta-heuristics are usually preferred in

many practical situations. They enable one to solve the real-size network design problem in a

reasonable time frame, compared to exact algorithms. However, the problems related to

approximation methods are that the solution obtained is not guaranteed to be the global optimal,

that it is difficult to state bounds on solution quality, and that the solution quality would be

different every time the algorithm runs. Heuristic algorithms are usually guided by modelers’

experience without specific rules to follow. The problems are solved by heuristic methods simply

according to common sense. Meta-heuristics, as a subset of heuristics, are general algorithm

frameworks, and they try to mimic biological, physical or natural phenomena in the real world to

intelligently perform local searches. As they work well on combinatorial problems in which an

optimal solution is sought over a discrete solution space, they are also employed in transit

network design problems.

Heuristics

For solving a realistic size transit network design problem, heuristic methods rather than

traditional exact optimization methods are usually used. Motivated by the practical problem of

scheduling dial-a-ride transportation systems, Stein (1978) presents a heuristic method to solve a

many-to-many route design problem. For the single-bus problem, the algorithm first partitions

the service area into many smaller sub-regions, finding optimal tours for these regions and then

connecting these tours to other regions. And for the multiple-bus problem, the algorithm includes

predefined transfer points and allows buses to meet at these points for transfer until all origin-

destination pairs can be covered by the resulting route sets.

Dubois, Bel, and Llibre (1979) deal with the problem of modifying a transportation

network to better serve its existing demand. They decompose the problem into three sub-

problems: choosing an optimal subset of streets (the optimal network problem), selecting bus

lines, and then defining optimal service frequencies for the bus lines. The candidate street set and

bus line set are both developed with greedy heuristic procedures. Three greedy heuristics are

proposed for finding the street links, two of them finding the set by removing links step by step

to reduce the total travel time and the other by adding links to minimize the travel time. The bus

lines are chosen first by adding lines to connect the whole network, then searching for the main

connection nodes and adding lines to decrease the number of these nodes to eliminate indirect

trips, and finally joining lines or suppressing unused bus segments. The optimal service

frequencies for the bus lines are determined through an evaluation and optimization process.

Starting from a given set of bus lines and frequencies, performance of the bus network is

evaluated and various characteristics become index components, and based on the index value,

 11

new frequencies are sought through a gradient-search routine in the optimization procedure, then

the new network will be evaluated and optimized again until the frequencies converge.

Kuah and Perl (1988) define the feeder bus network design problem to provide feeder bus

service to access an existing rail system. The problem solution method aims to find the optimal

route set and operating frequency for the feeder bus system. A mathematical programming model

for an M-to-1 demand pattern is formulated and also generalized to the M-to-M pattern. A

heuristic method is presented to first initialize a feasible set of routes and then using a local

search algorithm, it seeks to obtain better solutions.

The initialization procedure generalizes the “sequential savings approach’ to consider

frequency. For each bus stop, the initial procedure first calculates the direct route costs to all rail

stations, and then finds the route link to the rail station with the minimum direct route cost, and

both the route link and its associated minimum cost are recorded as the direct route cost for each

bus stop. After that, the initial procedure starts to build the network by choosing from all bus

stops the one that has the largest direct route cost. And this stop will be used as the starting stop

of the first bus route and following stops will be placed between that stop and the train station

where the direct route ends. Nodes are sequentially inserted based on the savings due to inclusion

in the current emerging route. When predefined conditions occur, either constrains are violated

or savings caused by the inclusion of an additional node is below a set value, building of this

route will be terminated and a new route construction procedure will be initiated and follow the

same insertion process. The initialization will be terminated when all origin-destination demand

pairs are served by a feasible route.

After a feasible set of routes was constructed during initialization, an improvement

procedure – a local search will be employed to correct the limitations of the initial algorithm.

The single route exchange procedure optimizes the order of bus stops in a single route to reduce

total route cost. And the displacement will position a bus node to a different route if that action

can reduce the total route cost. Although the local search procedure was not guided by any

systematic mechanism and was highly problem-specific, it was a successful early effort to

provide an heuristic that would provide solutions that were superior to manually designed

networks.

Meta-heuristics

Genetic Algorithm

The Genetic Algorithm, inspired by the process of biological evolution, natural selection and

survival of the fittest in living organisms, works on a population of individuals representing

solutions to a given problem. Each individual is represented by a string of bits called

chromosomes or genes, and each chromosome reflects the solution attributes. A fitness value is

assigned to each individual in order to evaluate its optimality analogous to organisms’

adaptability to the environment. Individuals with higher fitness values have higher chances to be

selected for reproduction. Their offspring would inherit their characteristic. Hence, favorable

 12

characteristic would be able to spread throughout the population over generations and the most

promising areas of the search space are explored. Finally, the population should converge to an

optimal or near-optimal solution, which should be output as the search result.

Pattnaik, Mohan and Tom (1998) use a Genetic Algorithm to solve the urban transit route

network design problem. In their characterization of the problem both the route configuration for

a transit system and associated frequencies are determined to achieve the desired objectives. The

problem is solved in two phases: First, a set of routes for every terminal node pair were

generated and ranked based on performance (associated travel time) as the candidate route set

competing for optimal routes. Second, the optimal set was selected using an application of the

Genetic Algorithm (GA). With a coding-decoding scheme set up, the route index can be

converted to strings of bits, which are manipulated by GA for population initialization and

generation production. The GA was adopted by using the fixed string length coding scheme, and

a new variable string length coding was also proposed. With the fixed string length coding

scheme, the number of routes in a route set is assumed within a range. The number of routes in a

feasible solution is fixed during the successive generation. And the evaluation is carried out by

varying the size of the route set over a range to find the optimal set. The problem with this

method is that the user does not know how many routes would eventually evolve in an optimal

solution. The proposed variable string length coding scheme can solve this problem by allowing

different numbers of routes to be included in the set to be evaluated in the same generation. It

added the insertion and deletion operators to the reproduction process (usually composed of

mutation and crossover operator) in the fixed string length scheme so that by producing

successive generations the solution route set size and the set of routes can be found

simultaneously. Tom and Mohan (2003) applied the variable string length coding scheme in the

Genetic Algorithm to a medium-sized network with 75 nodes and 125 links and also proposed a

coding scheme to incorporate frequencies into the string representation in GA, in which case,

both route configuration and bus operating frequencies can be determined simultaneously.

Simulated Annealing

Simulated Annealing simulates the physical phenomena of the annealing process for solids. The

initial temperature and the rate at which the temperature reduces are called the annealing

schedule. It is a hill-climbing algorithm with additional ability to escape from local optima in the

search space. Using SA to solve problems, a feasible initial solution is constructed first. A

neighborhood of this solution is identified based on predefined neighborhood search techniques,

and the associated objective function value of this new solution is calculated. If the new

solution is better than the current solution in terms of improving the objective function value, the

new solution is accepted. If the new solution is not better than the current solution, the new

solution is accepted with a certain probability , where is a chosen unfavorable

change amount in the objective function value from the old to the new solution and is the

current temperature. The probability decreases exponentially with the badness of the move. The

annealing temperature is first set to be high so that the probability of acceptance will also be

 13

high, and at the beginning of the search almost all new solutions are accepted. As the

temperature gradually decreases, the probability of acceptance of low quality solutions will

become very small. In this algorithm framework, high temperatures allow a better exploration

of the search space, while lower temperatures allow a fine-tuning of a good solution. And the

whole procedure is less likely to get stuck in a local optimum since bad moves still have a chance

of being accepted.

Fan and Machemehl (2006) use a Simulated Annealing algorithm to solve the transit

route network design problem. The proposed solution framework is composed of three major

steps: An initial candidate route set generation procedure; a network analysis procedure that

assigns transit trips to each route and determines service frequencies; and a simulated annealing

procedure to perform a search and select an optimal set of routes from the search space. The

candidate routes set is generated using Dijkstra’s shortest path algorithm and Yen’s K-shortest

path algorithm to find the shortest path between centroid node pairs. All the candidate routes are

subject to the user defined minimum and maximum length constraints. They are indexed and

stored in the solution space. At the beginning of SA implementation, the initial route set was

randomly selected. With the network analysis procedure, transit trips were assigned to each

route, operating frequency was determined in iterative steps and the performance measurement

of this solution is also computed and stored. The annealing schedule consists of four

components: (1) the initial value of temperature T; (2) a cooling function

 ; (3) the number of iterations performed at each temperature; and (4) the stop criteria to

terminate the algorithm. The neighborhood defined in this problem is that for any route ,

replacing it with the route right next to it in the solution space produces a new neighborhood

solution. Starting from the random initial solution, SA guides the search procedure and updates

the current best solution until the number of iterations or termination criteria are satisfied. To

measure the solution quality of the SA algorithm, the authors also use genetic algorithm as a

benchmark. They test three experimental networks and state that the proposed SA algorithm

outperforms the GA algorithm in most cases and that compared to GA, the SA is at least as good

as GA as a candidate solution approach for the BTRNDP.

Tabu Search

The Tabu Search technique proposed by Glover (1977) is also widely used for solving

combinatorial optimization problems. Its name is derived from the word ‘Taboo’ meaning

forbidden or restricted. Tabu Search, like simulated annealing, allows for exploring the search

space smartly to escape local optima. The major distinguishing feature of Tabu Search is the use

of a short-term memory called a tabu list, in which reverse moves of recently taken moves are

controlled. Moves in the list are considered as prohibited by the Search and cannot be visited

again for a predefined number of iterations. The idea is to avoid the problem of cycling since the

search many be trapped within a certain neighborhood region, oscillating among solutions that

have been previously visited. By prohibiting recently visited moves, the algorithm is guided to

explore new regions of the search space in an attempt to escape the trap of local optima.

 14

Extended from the heuristics proposed by Kuah and Perl (1988), Martins and Pato (1998)

first expand the initial solution construction procedure by adding a two-phase construction

method to the original sequential savings approach. And mostly, they employed Tabu restrictions

in the improvement procedure. For both the single route exchange procedure and the internal and

external displacement procedures, Tabu restrictions prevent the replacement of a stop in its

previous position for a chosen number of iterations. Also, the intensification strategy of the Tabu

Search method accentuates the search in a region of good solutions by decreasing the tenure of

moves marked tabu, diversification strategies are attempted by increasing the costs of the more

frequently moved stops to take more consideration over them when initializing routes. This helps

to obtain solutions that are different from the previously visited ones.

Fan and Machemehl (2008) applied the Tabu Search algorithm for the design of public

transportation networks. The solution search framework includes: an initial candidate route set

generation procedure; a network analysis procedure to assign transit trips and determine service

frequencies; and a Tabu Search heuristic method to guide the local search process and select an

optimal route set from the huge solution space. All feasible candidate routes connecting terminal

node pairs are indexed and stored in the solution space. Starting from an initial feasible route set,

the Tabu Search algorithm defines neighborhood solutions of the current solution as those

obtained by replacing any route in the current solution by its adjacent routes stored in the

solution space and outside the current set. Moves that have been taken are marked as Tabu for a

user-defined or randomly generated number of iterations. The authors also include diversification

and intensification strategies in the search process. The diversification strategy allows more

routes to be replaced by remotely located routes so that the solution space can be traversed and

explored more evenly. And to respect the nature of Tabu Search, the intensification strategy

allows the diversification strategy to be used only once during a given operation. By conducting

sensitivity analysis over three experimental examples, the results show that the Tabu Search with

Shakeup and fixed tenure is the best TS algorithm application for solving the bus transit route

network design problem.

Lownes and Machemehl (2010) specifically address the CRCNDP problem by

formulating a mixed integer programming approach with the objective accounting for transit user

travel cost, transit agency operation cost and social cost related to unserved demand. Both

exact and heuristic methods are proposed to solve the problem. The exact method utilizes lower

bound and additional stopping criterion to reduce computational effort, yet it is still suitable to

small to medium-sized networks while the Tabu Search method solves large networks in a

reasonable time domain. The real-time CRCNDP in this report is closely related to Lownes’

work, but differentiates itself in two aspects: 1. As mentioned in the introduction chapter, this

report proposes a scenario in which all passengers alighting the train have no other mode choice

except the circulator provided, so that for any un-served destination node, a penalty for resulting

long walk trips is added to the objective function rather than categorizing the demand as un-

served; 2. Since this effort aims to provide optimal route configuration to each set of arriving

train passengers, it requires that the optimal or near-optimal solution be obtained in a limited

 15

time domain. That is to say, high computational speed is a primary goal in developing the

algorithm that is intended to provide virtually real-time route optimization solutions.

SUMMARY

This chapter has summarized related literature of transit network design problems based upon

their objective function, decision variables and solution framework. A combination of both user

travel cost and operators’ operation cost is a common practice in defining the objective function.

It is also a proper objective in the real-time CRCNDP since other factors, such as capital

investment and the impact on demand are both remotely related to and hard to control in the real-

time operation. Regarding the decision variables, since a seamless transfer concept is

incorporated, that is, all rail passengers use the bus service, only route configurations remain for

optimization. Two major sets of methodology for solving the route design problem are identified

and the meta-heuristics are chosen for real-time operation due to the inherent NP-hard nature of

the transit network design problem, as well as the quick response requirements of the real-time

CRCNDP. The next chapter will provide a detailed explanation of the model formulation for

the real-time CRCNDP.

 16

 17

CHAPTER 3. MODEL FORMULATION

The real-time CRCNDP aims to provide an optimal route for each set of passengers arriving at a

commuter rail station on a real time basis. Selection of bus stops and the route connecting them

are determined simultaneously to design a current feeder system network. Instead of having a

static O-D demand for commuters describing a typical day, a real-time O-D demand would be

obtained from passengers on each and every train. In the best case, if all passenger destinations

are known, every circulator bus could traverse a uniquely optimized route stopping only at

uniquely selected optimally located locations. However, depending on the success of the

method chosen to gather passenger destination information, less then 100 percent of the

passenger destinations would be known. This reality introduces the question of what fraction of

passenger destinations must be known to justify route and stop optimization based upon the

partial destination information. Since partial knowledge of the destination set is likely to be the

typical case, this question is not trivial. Therefore, it is experimentally addressed in later

sections

The total commuter rail demand alighting at the station is assumed to be totally served by

the circulator system. This assumption is applicable to those newly built and remotely located

rail system stations where neither public transit modes nor walk can be a viable option for

accessing the rail station. With a rail system in place, land use policy could allow Transit

Oriented development around rail stations over a long time period. In that case, passengers

alighting the rail stations might have other travel options (walk, bus, light rail and so on) to get to

their destinations. But there is no negative effect on this model since real-time destination

information can still be obtained by simply asking passengers how and where they want to go,

and the model can still be used to optimize a feeder system for passengers choosing to board the

circulator without loss of generality. Since the optimization process may not include every

possible destination node in the optimal stop set, long walk penalties are applied to the objective

function accordingly. The model will also incorporate the seamless transfer concept, which is a

bus for each circulator route should be present at the rail station when a commuter train arrives at

the station.

The CRCNDP can be formulated in various ways. Every modeler confronts the decision

regarding tradeoffs between modeling precision and computational cost. For a real time

optimization algorithm, a model formulation which enables obtaining an optimal or near-optimal

solution within a very limited time constraint (in this problem, from the time passengers board

the commuter rail train to the time they get to the station served by the circulator) becomes quite

necessary. Following is the formulation of the CRCNDP in this report based upon the work of

Lownes (2007).

FORMULATION

The formulation of the CRCNDP uses an idealized, simplified network representation similar to

that shown in Figure 1. A rail station shown as the Green node is associated with a number of

 18

demand centroids located at the center of each zone. Around each demand centroid, candidate

bus stops are represented by the red nodes at the mid-block and intersection locations. There are

various methods to select potential stop locations and inclusion of both mid-block and

intersection stops makes the network representation more comprehensive, however, the more

locations included in the network, the greater complexity of computational effort would arise in

each evaluation process. Therefore, decisions have to be made upon stop location selections

when dealing with realistic problems. Different from most of the previous work, the route

configuration in this report is not based upon zonal demands and it actually incorporates the

exact location of bus stops. Then the optimal route configuration obtained based on this network

representation would be used to identify a path that connects the actual bus stops rather than

“schematically” connecting the demand zones and leaving actual stop location choices to the

judgment of the analyst. This enables the algorithm developed in this report to provide the

level of information that transit operators really want in practice. The algorithm will permit the

user to specify potential stops at mid-block and intersection locations. However, as the number

of potential stops increases the speed with which the algorithm can find the solution decreases. In

other words, the user is not limited to a certain number or a characterization of stops that is built

into the algorithm. If a user requires quicker response times, this could be obtained most easily

by reducing the number of candidate stops.

Figure 1. Network Representation (Lownes (2007)).

 19

Before a detailed description of the formulation components is given, to avoid ambiguity,

several assumptions are described.

ASSUMPTIONS

1. There is no traffic congestion and no incidents along any circulator route and circulator

buses operate at constant speed, so that travel time is proportional to the distance between

nodes.

2. A non-zero fraction of passengers would provide their destination information and this

information will be used as real-time demand.

3. Real-time demand is located at predefined zone activity centroids.

4. Real-time demand is only a reflection of the final destinations of the set of passengers on

the train.

5. Each circulator route starts and ends at the commuter rail station (Node 1).

6. The number of passengers boarding each circulator will not exceed its capacity.

The first assumption simplifies the problem by accounting for travel time with its

expected value, although stochastic travel time in a transportation network is common and

unavoidable due to many factors. This assumption can be relaxed in future work to better

describe the real and practical problem and ensure the robustness of the CRCNDP model.

The next three assumptions address the demand used to drive the formulation. Although

it is aggressive to assert that all passengers would provide transit operators their final

destinations, we start with a 100% sample or complete destination data to test the algorithm and

seek in later chapters the potential range of destination sample size that guarantees the value of

“real-time” optimization. Depending on feasibility and availability, a variety of destination

formats can be assumed applicable in the model formulation. As a starting point, this formulation

assumes that real-time demand data will only show the general attractiveness of the destination

zone, also called aggregated demand. Conventionally, the layout of the transportation network

will affect the demand estimates since it predefines the accessibility of all existing modes in the

network. However, in this report, the model is formulated to optimize the circulator route design

especially for a certain set of real-time passengers, so that it is reasonable that the long-term

interaction between service supply and traffic demand is left without consideration.

The fifth assumption guarantees the seamless transfer concept and it also makes the

CRCNDP problem conform to the structure of a Traveling Salesman Problem (TSP) problem.

Lastly, since it is a newly-introduced commuter rail, it takes time for ridership of the commuter

rail to build up. And during its early stages, it is reasonable to assume that circulators serving the

commuter rail at each rail station are not capacity constrained. Even when the rail system

becomes mature and a large number of passengers alight at the rail station, the non-constrained

capacity concept can still be applicable if multiple circulators are employed along the same route

obtained by the algorithm developed in this work.

The formulation components of the CRCNDP problem are sets/indices, parameters and

data, decision variables, the objective function and a constraint set.

 20

SETS/INDICES

In this network, the sets’ representation is simple and clear. Locations of the demand centroids

are identified as the set G. Since this demand labeling system makes no implications regarding

the geographic size of the members of the set, many different levels of aggregation can be used

to describe demand and these can be incorporated into this definition. Candidate bus stops

surrounding the demand centroids are represented as the set . A demand centroid can be

served by any of its surrounding bus stops depending on which are included in the route. And

passengers can also alight the feeder bus at one stop even though they are destined for non-

adjacent centroids. Among all potential bus stop locations in set , the algorithm will select a

subset of locations as to form a circulator route.

 Circulator demand centroid locations

 Candidate circulator stop locations

 Subset of demand locations/nodes to visit in circulator route

Depending upon the capability of the communication application between individual

users and the circulator operator, street address or block level demand, or demand for Traffic

Analysis Zones (TAZ’s) could be estimated. Block level demand aggregation seems to be a

reasonable compromise between dis-aggregate street address data and potentially aggregated

TAZ data, therefore, block level demand aggregation has been chosen as the basis for the

algorithm development. Since all train passengers are assumed to board the circulator, but the

optimal stop set likely will not include all possible destination stops, some users will have long

walks at the end of their trips. The algorithm will include a “cost” associated with long walks

that is directly proportional to the walk lengths and numbers of passengers taking the long walks.

PARAMETERS AND DATA

The first three parameters are the values of the cost components used in the multi-objective

formulation of the CRCNDP. The default values of these parameters rely heavily upon the

Transit Cooperative Research Program (TCRP) Report 78 (2002), which gives practical cost

parameter values.

 Transit bus operation cost ($/hr)

 Equivalent cost of traveler’s in-vehicle travel time ($/hr)

 Equivalent cost of traveler’s out-of-vehicle travel time ($/hr)

The real-time demand data is considered as given since it is obtained and summarized

before the CRCNDP algorithm is executed. Rectilinear distances for node to node pairs are used

to determine the route design, which stops to be visited and in what order, and later to calculate

the bus operating cost and traveler in-vehicle travel cost. Distance from node to centroid will be

used to calculate traveler’s out-of-vehicle travel costs.

 Real-time demand for service at demand centroid

 Rectilinear distance from node to node

 Rectilinear distance from node to demand centroid

 21

The commuter rail headway will pose a strict constraint to the CRCNDP problem as the

seamless transfer concept is implemented. That is, the circulator will be designed to provide

enough passenger spaces to accommodate all alighting passengers at the rail terminal for every

train arrival. Typical values for headway (H) range from 15 – 30 minutes. The following two

values for bus speed and walking speed are derived from Levinson (1983) for bus operating

speeds and the TCRP Report 78 (2002) for walking speed. The default values for these

parameters are 10 mph and 2.5 mph, respectively. The bus operating speed is estimated for city

routes (as opposed to CBD or suburban routes) and the walking speed is an average value that is

typically assumed in the transit planning process.

 Commuter rail headway is the time interval between arriving trains

 Circulator bus operating speed

 Pedestrian walking speed

The final three parameters are not given but can be easily calculated. is a parameter

that signifies which stop is going to serve which demand centroid. For each demand centroid,

one stop will be determined to provide the shortest walking path. That is to say, each demand

centroid is served by the stop in route providing minimum walk distance. The sum of the

demands for the centroids served by stop produces the total demand served by stop ().

Dwell time is estimated by simply assuming a linear relationship between dwell time and the

number of deboarding passengers developed by Levinsion (1983). The expression for dwell time

in this report is .

 Binary variable indicating whether demand centroid is served by stop

in route

 Total demand that is served by node in route

 Dwell time at node

DECISION VARIABLES

The decision variables used in this formulation are straightforward. Similar to decision variables

in traditional TSPs, the binary variable signifies if a trip from to is made during the

tour. The variable records the number of passengers that travel from to for a tour of

the subset r. This variable is important to maintain so that accurate in-vehicle travel costs and bus

operation costs can be computed for each segment of the route and flow conservation is

maintained at all nodes within the subset r.

 Binary variable indicating whether the bus travels from to on route r

 Link pass variable indicating the number of passengers traveling from to on

route r

 Arbitrary real number at node used for subtour elimination

The formulation of the CRCNDP utilizes the subtour elimination strategy developed by

Miller, Tucker and Zemlin (1960) and introduces the unrestricted decision variable . Although

this subtour elimination constraint does not provide as intuitive a method of subtour elimination

 22

as other common methods seen today that identify and eliminate disconnected subtours, it solves

problems well with the familiar TSP constraints that are discussed below in terms of high speed

elimination.

OBJECTIVE FUNCTION

The objective function based on the model developed by Lownes (2007) contains four cost

components:

 ∑ ∑

 ∑ ∑

 ∑ ∑

∑ (∑)

These four components can be basically categorized into two competing parts: operation

cost from the transit operator perspective and travel cost from the transit user side. The first two

components are the two major cost portions to transit users – out-of-vehicle travel cost and in-

vehicle travel cost. Out-of-vehicle travel cost is computed by identifying the demand served by

the walk trips and the lengths of these trips. And in-vehicle travel cost applies the travel cost for

trip segment to each passenger onboard the vehicle during that trip segment. The third

component identifies the operation cost to transit operators due to operating buses along the

route. While passengers alight the circulator bus at each stop along the route, the dwell time will

cause both in-vehicle travel cost to transit users that remain on the vehicle and operation cost to

transit operator. And these are described by the fourth component.

The model developed by Lownes (2007) accounts for those unserved nodes by a cost

component defined as unserved demand cost. The unserved demand cost is applied to the total

cost if there are demand centroids left out of the optimized route. For long-term planning based

on static travel data, once the route is optimized, it is going to be in place for a long time period.

So that it is reasonable to include the unserved demand cost component to partially account for

the interaction between the route design and the ridership of the feeder. There is a tradeoff

between served demand cost and unserved demand cost when deciding how many stops to be

included. With less stops included in the route, transit agencies’ operation cost and transit users’

travel cost can both be controlled, however, unserved demand cost will increase due to more

people being left out of service, and vice versa. The problem defined in this report, is a different

case, passengers are assumed to have no other access mode besides the feeder buses and they are

providing their destination information on a real-time basis. The route is optimized and selected

based on the destinations of passengers on each and every train. The route selected for this set of

passengers would not affect the choice of the other set of passengers. In this real-time

optimization problem, the penalty for impropriation of route design is actually accounted by

inclusion of long-walk trips, which is also part of the out-of-vehicle travel cost.

 23

CONSTRAINT SET

The first two constraints, equations (2) and (3) represent the property of a typical TSP problem,

which is every node should be visited exactly once. The optimal solution has to satisfy the

requirement that only one incoming trip and one outgoing trip is associated with each node in the

route. Constraint (4) sets an upper limit of linkpass (the volume of passengers traveling along

the link) for each selected trip segment.

∑

∑

 (∑

)

Constraints (5), (6) and (7) further describe the property of linkpass in this particular

CRCNDP problem in which (5) is a typical network flow conservation constraint. The number of

passengers alighting at node should be equal to the number of passengers arriving at this node

on the bus less the number of passengers remaining on the bus as the vehicle leaves the node.

Constraints (6) and (7) set the initial and final trip segment conditions for the route. Since

demand served at node 1 (the rail station) is zero, the first segment contains all passengers that

will alight at all stops in the route. And there will be no passengers coming back to node 1.

 ∑

 ∑

∑

 (∑

)

∑

Constraint (8) incorporates the seamless transfer concept. The circulator bus has to come

back to the rail station before the next train arrives.

∑∑

 ∑

Since this formulation is dealing with a newly introduced commuter rail system, the

ridership and operation frequency would be reasonably low so that one circulator bus is

sufficient to serve the demand. For a mature commuter rail system (approximately full trains),

 24

this CRCNDP formulation constraint should be slightly modified. That is, more passenger

spaces could be provided by using larger vehicles or smaller vehicles could be scheduled in

tandem.

Constraint (9) presents the Miller, Tucker and Zemlin (1960) subtour elimination

constraint. There are different ways to eliminate subtours in the GAMs library and this technique

is selected based on its computational efficiency and overall performance.

 | | | |

The final three constraints, just as they imply, restrict to be binary, to be a

positive integer and to be unrestricted.

SUMMARY

A mathematical nonlinear mixed integer programming model is formulated in this chapter. A

seamless transfer concept is incorporated, both users’ and operators’ costs are included in the

objective function and out of vehicle travel cost are also included in the objective function to

penalize long walk trips due to the exclusion of some stop locations on the route. The

formulation has both features of a combinatorial optimization problem and the Traveling Sales

Problem, so that it is non-deterministic polynomial-time hard. To realize real-time operation

based on this formulation, a heuristic algorithm is developed in Chapter 4 to solve this problem

in terms of an optimal or nearly optimal solution.

 25

CHAPTER 4. META-HEURISTIC ALGORITHM

With the inherent complexity and the combinatorial NP-hard nature of the real-time CRCNDP

problem, the complete enumeration method which searches over the whole solution space for the

global optimal solution by simply enumerating and comparing the objective value for all possible

solutions requires tremendous time even for a small size network. Note the objective of this

report is development of a real-time practice aimed to identify an optimal route for passengers on

the rail train during the time between train boarding and alighting. It is necessary to develop an

algorithm which solves the real-time CRCNDP with a good solution in a limited time domain.

The Tabu Search, due to its power and efficiency, has traditionally been used on

combinatorial optimization problems and has been widely applied to many integer programming

problems, routing and scheduling, traveling salesman and related problems. The real-time

CRCNDP coincides with the property of the traveling salesman problem in its routing design.

The basic concept of Tabu Search is presented by Glover (1977). The overall approach is to

avoid cycling while searching for global optima by forbidding moves which take the solution, in

the next iteration, to points in the solution space previously visited, hence the moves were

marked as Tabu for a certain number of iterations (the number is usually fixed and called Tabu

tenure). The Tabu Search starts with an initial solution and updates the best current solution at

each iteration as the optimal solution after searching through the predefined neighborhood space.

Again, recent moves are marked in one or more Tabu lists to avoid reversing the steps that have

been made during the search process. There is no guarantee that every move leads the search to a

better solution; actually, the fact that moves taken by a Tabu Search lead to deterioration of the

objective function is part of Tabu’s diversification mechanism which enables the algorithm to

search beyond local optima.

The static Tabu Search defines the Tabu tenure of each move during the search process as

a fixed number regardless of the performance of the incumbent solution reached by these moves.

Improvement can be made when slightly modifying the Tabu tenure as adaptive to the

performance of the incumbent solution. The rules of adaptive Tabu are intuitive: if the incumbent

solution obtained after a certain move is superior to the best current solution ever stored, the

Tabu tenure associated with its reverse move is extended to prevent the search away from

solution spaces related to this move; similarly, for moves leading to deteriorative solutions, the

algorithm marks its reverse move as Tabu and decreases its tenure for later searches to quickly

step back from solution space with worse performance. There are a variety of ways to execute

Tabu Search, and the performance of these various methods is really a problem-specific issue.

Adaptive Tabu Search is applied to a small size network to test its practicality.

It is obvious that there is a tradeoff between improved computational speed and quality of

the optimal solution. In this chapter, the quality of the optimal solution obtained by adaptive

Tabu Search will also be evaluated.

 26

ADAPTIVE TABU SEARCH FOR THE REAL-TIME CRCNDP

The solution framework based upon adaptive Tabu Search is illustrated in Figure 2. The

algorithm first defines the number of stops to be included in the route and then searches in the

neighborhood where alternative solutions contain the same number of stops; while solutions are

still feasible, the algorithm increases the number of stops by one and performs the search process

until it reaches a region where most solutions are infeasible. The decision on the number of stops

to be visited by a route is controlled outside the local search – Tabu Search procedure.

Generally, with more stops included in the route, time spent traveling along the route, as well as,

time spent dropping off passengers at these stops increases but passenger walking times

decrease. Most of the feasible solutions are typically found in the region where a smaller

number of stops is selected to construct the route. For this single route design problem, the

strategy takes advantage of this characteristic of the problem while keeping the search procedure

well controlled.

Starting from a random selection of a single bus stop location, together with the rail

station, two stops are firstly included in the route to construct an initial solution, then local search

is performed over predefined neighborhood solutions, and guided by the adaptive Tabu Search

algorithm, solutions are evaluated and updated accordingly. As noted previously, while solutions

are still feasible, the number of stops is increased by one and the initialization and search

procedure are carried out again.

Figure 2. Adaptive Tabu Search Solution Framework.

 27

Initial solution

The effectiveness of Tabu search, similar to many other Meta-heuristics, is highly dependent on

the initialization success – obtaining a good starting solution. Since our model formulation

assigns higher unit cost to out-of-vehicle travel time than to in-vehicle travel time, the first

intuition for constructing a good starting solution is serving dense demand centroids primarily to

shift portions of long walk trips to bus trips and further reduce total travel cost. The original

procedures for initial solution construction are as follows:

1. Define the number of nodes | | including node 1 to be covered by the route, note that

node 1 is for the rail station and is always kept in the route.

2. Randomly select the | | nodes (demand centroid or stops) associated with the

highest demand and together with the rail station (node 1) form a set .

3. Call GAMS to solve CRCNDP with the set , if it is a feasible route to the CRCNDP,

keep it as the initial solution; if not, randomly replace members of the set until a feasible

set is encountered and record it as the initial solution.

While this works well for ideally designed networks (Lownes, 2010), however,

difficulties arise when the concept is applied to more realistic case studies. If the stop nodes

associated with the highest demand centroids do not generate a stop set comprising a feasible

route, the initialization procedure will be highly dependent on a random process to select the

stops to be included in the route. When it comes to a solution space where feasible solutions are

sparse, a long time is required to finally construct a feasible initial solution since these selections

are completely random and each time there is a low probability of finding a feasible solution

especially when there is no guidance from any historical memory mechanism.

After experimentation was used to determine why this initialization proposal often fails,

another procedure was developed. Instead of seeking an initial solution with potentially lower

total cost, this initialization procedure conservatively prefers a solution with a greater likelihood

of meeting the feasibility constraints. This procedure selects clustered stops with a priority of

producing a feasible route. By having stops close to each other, the vehicle travel time which is a

major component of the total time spent on a route, is tightly controlled, and it avoids violation

of the time constraints and maintains the solution feasibility. The procedure is shown as follows:

1. Define the number of nodes | | including node 1 to be covered by the route, note that

node 1 is for the rail station and is always kept in the route.

2. Use the | | nodes (demand centroid or stops) from the best current solution and

select an additional one from the rest of the stops with the least total distance to all the

| | nodes.

3. Call GAMS to solve CRCNDP with the set , if it is a feasible route to the CRCNDP,

keep it as the initial solution; if not, randomly replace members of the set until a feasible

set is found and record it as the initial solution.

The initialization procedure is shown in Figure 3. The differences between the two

procedures are as follows: the previous procedure prefers to add a node serving high demand and

 28

the selected one prefers to add a node that is close to the current set of stops. Inclusion of a

node serving high demand can potentially reduce long walk travel costs; however, if the

additional node is itself far from the selected set of stops, the solution created by including this

node would violate the time constraint and thus cannot be used as a starting solution. When this

occurs, the algorithm switches to the other procedure that selects the stop clustered with the

current stops in the set. In this way, feasibility is maintained first, and optimality is left for later

neighborhood searches and process updates. The selected procedure for initialization is actually

more efficient time-wise and is proven to work well for both small cases and large cases.

Figure 3. Initial Solution Construction.

Neighborhood

The neighborhood definition in Tabu Search can also be developed in a variety of ways. For this

particular CRCNDP problem, a simple and easy to implement way is to randomly select the

leaving node within set and replace it with a random node outside set . However, our goal is

to make the best use of the limited iterations to which the Tabu search is restricted; the candidate

stop set should be smartly selected for CRCNDP evaluation to guarantee the optimality within a

reasonable time domain. The employed steps are as follows:

1. Pair up every node in set with every node outside set and each pair can be regarded

as a possible move for the incumbent solution to get to its neighborhood solution.

2. Select the move based on two guiding strategies to form a new set as a neighborhood

solution. Both of the following techniques are being used. For any current solution, the

algorithm would first perform technique (a) to construct a neighborhood solution.

Technique (b) will be employed either when the neighborhood solution is infeasible or

the current solution is being visited again.

 29

a) Select the non-Tabu move with highest value of attributes defined as ,

∑

b) Randomly select from the available moves.

When identifying the node to be switched into the neighborhood, it is preferred that the

replacing node is associated with high demand and its inclusion into the route does not incur long

travel distance which may induce more travel time cost and operation cost. The move

attribute , calculated as the ratio of demand served by the replacing node to the total distance

between this node to all other nodes excluding the replaced node in the route, describes this

preference mathematically.

Random selection is also employed for the following two reasons: Cycling would occur

when the same solution was revisited, if all steps are predetermined by known parameters

without involving any randomness. The random process does not guide the search directly to the

global optima. However, it helps to traverse the solution space and the combination of more

move strategies provides opportunities to preserve the aggressiveness of Tabu Search by

diversifying the search to new regions.

Evaluation and updating

This is the final step taken to ensure that the search traverses infeasible neighborhoods and

escapes from local optima to possibly reach the global optimum, and the idea of this procedure is

shown in Figure 4. GAMS is called to solve CRCNDP with each neighborhood set and the

related objective value is recorded for the solution evaluation and updating.

1. If a neighborhood solution (incumbent solution) reached by a move performs better than

the current best solution, update the current best solution with the incumbent and mark

the reverse move as Tabu with a tenure as X+1. (X is a predefined parameter, usually 3);

2. If a move yields an infeasible neighborhood solution, mark the reverse move as Tabu

with a tenure as X and make no update to the current best solution;

3. If a move yields an incumbent with no improvement, mark the reverse move as Tabu

with a tenure as X-1 and make no update to the current best solution;

4. After a set number of iterations fails to update the current best solution, randomly select

new neighborhood solutions until a feasible one is located.

Regarding each move or switching pair of nodes as an attribute of the current solution,

we would be able to grade its reverse move according to the performance of the neighborhood

solution to which each move has led. The reverse move, Tabu, is marked for a longer duration

to keep desirable attributes of solutions available in later search processes. For example, if a

move takes the search to a neighborhood solution that is better than the best solution, this

attribute (the move or the switch) of the solution would want to be kept longer in later search

processes. Conversely, if a move takes the search to worse solutions, the algorithm quickly steps

back from the solution with poorer performance, hence it decreases the tenure of its reverse

 30

move. By editing the Tabu tenure according the performance of a neighborhood solution, the

memory mechanism is maximized to better guide the solution search.

Figure 4. Solution Evaluation and Updating.

RESULTS SUMMARY

Comparison results on the small size case study with 12 bus stop nodes in the network (Lownes,

2010) and the larger application with 10 centroids and 20 stops are shown in Table 2.

Table 2. Summary of optimal results based on three methods.

EE
Complete Enumeration

Method

Tabu Search

(Lownes, 2010)
Adaptive Tabu Search

Network

Size

Optimal

Solution

Comput

ing

Time

(s)

Optimal

Solution

Computi

ng Time

(s)

Optimal

Solution

Comput

ing

Time

(s)

12

Centroid

s

 { }

378

 { }

232
 { }

39

10

Centroid

s/20 Bus

Stops

 { }

20

hours

 { }

439

 { }

90

 31

It can be seen from Table 2 that the optimal solution obtained by the Enumeration

Method, Static Tabu Search and Adaptive Tabu Search are fairly comparable in quality.

However, regarding the computational time, the Adaptive Tabu Search, compared to both the

Complete Enumeration method and the static Tabu Search, applied on the two networks, reduces

the computing time very significantly. The time taken by the adaptive Tabu Search algorithm to

solve for a near-optimal solution falls within the time frame from passengers alight the rail till

they get to the feeder bus.

Table 3. Comparison of two methods’ capability in capturing the true optimal solution.

 Probability of hitting Global Optimal

Network Size
Static Tabu Search

(Lownes, 2010)
Adaptive Tabu Search

12 Centroids 40% 80%

10 Centroids/20 Bus

Stops
10% 60%

Table 3 shows that with the adaptive Tabu search algorithm, 8 times out of 10 tests, the

global optimal solution for the network with 12 stops was captured, and for the 10 centroids/20

stops network, 60% percent of the tests identified the true optimal solution. Using the static

Tabu Search, the probabilities of finding the global optimal solution are 40% and 10% for the 12

nodes and 10/20 nodes networks. One might expect that the computational power of the

Adaptive Tabu Search could be even more significant on larger networks.

SUMMARY

In this chapter, the Adaptive Tabu Search based algorithm was developed and applied to two

sample case studies. The results show that the Adaptive Tabu Search based solution framework

outperforms both the exhaustive search method and the static Tabu Search method (Lownes,

2010). With the inherent strategy in Adaptive Tabu Search to adjust the tenures for each Tabu

move according to its performance, the computational time taken to solve the problem has been

significantly reduced. Also, the better neighborhood definition and the efficient initial solution

construction procedure also helped to reduce the computational time to realize real-time

operation.

 The next chapter will employ simulation techniques to identify the minimum fraction of

passenger destination information that would guarantee the practical value of real-time

optimization for the CRCNDP. Since there are many practical obstacles in gathering complete

passenger travel destination information especially on a real-time basis, this issue must be

addressed.

 32

 33

CHAPTER 5. NUMERICAL TESTING RESULTS

The meta-heuristic algorithm developed for the CRCNDP in the previous chapter optimizes the

circulator route assuming that all passengers alighting the arriving train would provide their

destination information. However, this is practically difficult to realize for many reasons,

passengers’ unwillingness to give out their information, technical communication obstacles

between passengers and transit operators and so on. Therefore, another question comes with our

algorithm, which is what fraction of passenger destination information would guarantee the

practical value of real-time optimization for the CRCNDP. In this chapter, a series of scenarios

will be developed to characterize the potential range of destination sampling fraction cases and

how they depart from the base case described in the previous chapter. A Monte Carlo

simulation technique is employed to determine how many and which passengers would provide

their destination information in each scenario. The meta-heuristic algorithm will be applied to

each case and the aggregate of all simulated cases will describe the “distribution” of likely

differences. This frequency distribution of likely differences, compared to the base case defined

as the average performance of all possible routes, can be used to easily describe the potential

value of real time optimization.

NUMERICAL TESTS

To justify the value of CRCNDP optimized based on limited destination information, a few

assumptions must be made.

1. All passengers will board the circulator bus regardless of the actual route configuration,

whether or not they have provided their destination information.

2. All passengers have and use perfect information on which stop to get off once they board

the bus, that is to say, they know the nearest stop in the route to their destination and will

alight at this stop.

3. For those calculated optimal routes that violate the seamless transfer constraint due to

more dwell time with the load of all passengers in the train, more circulator buses will

operate along the same route to guarantee that each bus has reduced dwell time and can

come back to the rail station within the train headway time.

With the same 12-node and 10 Centroids/20 Stops network configurations used for

algorithm development, it is assumed that the same sets of passengers will arrive at the rail

stations. The evaluation procedure defines 7 scenarios to characterize the potential range of

destination cases, that is 30%, 40%, 50%, 60%, 70%, 80% and 90% of all passengers alighting

the train would have provided their destination information. For each scenario, Monte Carlo

techniques are used to decide randomly which passengers would give their information and form

a demand vector for the Adaptive Tabu Algorithm to get an optimal route. Then all passengers

would board the circulator bus running along this optimal route, and a total cost associated with

this optimal route and the set of passengers will be calculated as the evaluation result. For each

 34

scenario, the above procedure will be repeated 100 times in this numerical test, and the average

total cost and its standard deviation will be recorded for scenario comparison.

TESTING RESULTS

Figure 5.1. Numerical Results for 12-node Network.

Figure 5.2. Numerical Results for 10 Centroids/ 20 stops Network.

The results in Figure 5.1 and Figure 5.2 show that with more passengers providing their

destination information, the algorithm for solving real-time CRCNDP produces a better route

470.00

480.00

490.00

500.00

510.00

520.00

530.00

540.00

30 40 50 60 70 80 90 100

A
ve

ra
ge

 t
o

ta
l c

o
st

 in
 $

Percentage of passengers providing destination information (%)

Numerical Resulst for Network with 12 Nodes

330.00

340.00

350.00

360.00

370.00

380.00

390.00

400.00

410.00

30 40 50 60 70 80 90 100

A
ve

ra
ge

 T
o

ta
l C

o
st

 in
 $

Percentage of passengers providing destination information (%)

Numerical Results for Network with 10/20 nodes

 35

configuration to serve all passengers boarding the feeder bus. This is intuitive in the sense that

accurate information of passenger demands helps the model to perform better. In the 12 node

network, the variability associated with the performance of the optimal solution obtained based

on different sample sizes becomes larger as the fraction of known destinations decreases. Large

variability, in transportation systems, usually indicates unreliable service, and is undesirable.

However, the variability based on different samples for the 10 Centroid/20 Stops network

doesn’t behave exactly the same way. Although the trend of variability can be generalized as

decreasing with the increasing percentage of known destinations, the variability in the scenarios

where 70% and 80% of passenger destinations are obtained is slightly higher than that in the

scenarios where less passenger information is provided. This misbehavior can be introduced by

the meta-heuristic algorithms since they aim to find an near-optimal solution and there is no

guarantee that every time the same solution is obtained and that a bound can be stated on the

objective value. Also, it can be seen after comparing the variability between the two scenarios on

the networks where the same amount of travel information can be obtained, the variability in the

10/20 nodes network is always larger than in the 12 node network. With more nodes in the

network the solution space is significantly enlarged. The local search path taken by the Tabu

Search algorithm is diversified and the optimal solutions obtained can be quite different from

each other. And it turns out that the variability in larger network is substantial.

Figure 6.1. Numerical Results for 12-node Network.

450.00

500.00

550.00

600.00

650.00

30 40 50 60 70 80 90 100

A
ve

ra
ge

 t
o

ta
l c

o
st

 in
 $

Percentage of passengers providing destination information (%)

Numerical Resulst for Network with 12 Nodes

Adaptive Tabu Search

Average on all possible
routes

Average on all 5-stop
routes

 36

Figure 6.2. Numerical Results for 10 Centroids/ 20 stops Network.

In Figure 6.1 and Figure 6.2, the red lines show the average performance of all possible

routes in the two sample networks. The average performance of all possible routes was used as a

base case to test the practical value of the real-time route optimization. It can be seen that the

optimized route obtained by the Adaptive Tabu Search algorithm reduced the total cost

significantly compared to the base case. In both cases, even if only 30 percent of passengers

provide their travel information, the optimized route obtained based on their input can still

perform better than the average performance of all possible routes.

As the performance of the optimal solution obtained based on the Adaptive Tabu Search

improves with the amount of available travel destination information, the following is a bold

assumption made by the author: there is a threshold across which more destination data given

by additional passengers would guarantee the practical value of searching for the optimal route

obtained by the meta-heuristic method against either staying with an currently operating route or

the average performance of all possible routes.

PROPOSED METHODOLOGY TO FIND THE MINIMUM DESTINATION INFORMATION

To find the threshold across which more destination data given by additional passengers would

guarantee the practical value of finding the optimal solution on a real-time basis, the following

procedure is proposed:

1. Set up the heuristic or meta-heuristic algorithm for solving the CRCNDP problem;

2. Assume a set of arriving passengers and each of them with fixed destination information.

Since this procedure is mainly designed for testing purposes, arriving passengers and

their destination information can be simply assumed, or based on observed average

demand data and land use information, or it could be gathered from a set of arriving

passengers on a real-time basis.

320.00

340.00

360.00

380.00

400.00

420.00

440.00

460.00

30 40 50 60 70 80 90 100

A
ve

ra
ge

 t
o

ta
l c

o
st

 in
 $

Percentage of passengers providing destination information (%)

Numerical Resulst for Network with 10/20 Nodes

Adaptive Tabu Search

Average on all possible
routes

Average on all 6-stop
routes

 37

3. For this specific set of passengers, employ a Monte Carlo sampling technique to

randomly select samples of passengers who provide their destination information. In this

step, two parameters must be predefined: the percentage of passengers to provide travel

information, and the number of random samples in each scenario where the fraction of

“know destination” is fixed.

4. Run the heuristic or meta-heuristic algorithm for each single sample selected in step 3

and obtain the optimal solutions. Then load all the passengers to the optimal routes

achieved in each sample and calculated the objective function value. It is obvious that

not all the optimal routes would still be optimal for the set of all arriving passengers, the

penalty for non-optimal design is accounted for by additional cost caused by long walk

trips, or could be taken into consideration by other ways if the model was formulated

differently.

5. Compute the average objective function value and its standard deviation for each scenario

representing a chosen fraction of known travel destinations.

6. Define a base case, which can be either the average performance of all possible routes for

the network or the currently operating route. It is easier to evaluate the current route by

loading passengers on the route and calculating the total cost. If the average performance

of all possible routes is selected as the base case, when the size of the network gets large,

it might be too time-consuming or computational complex to exhaust all possible

solutions to finally produce a base case result for comparison. In this case, sampling

techniques over the entire solution space can be employed to reduce computational

efforts.

7. Compare the average cost of each scenario to the base case, the minimum fraction of

travel information to guarantee the real-time optimization to have equivalent performance

as the current route or the average case will be identified.

Employing the Tabu Search algorithm to solve for an optimal solution is a problem-

specific matter. There are no general guidelines to define for which problem and under what

conditions the optimality is guaranteed. Numerical tests before its application in practice,

especially for real time operation tend to be necessary. With the aim to provide a route

configuration that is superior compared to those currently operating, these numerical tests

combined with simulation techniques can to some degree indicate the level of cooperation

needed from transit users – that is their willingness and capability in providing real-time travel

information.

SUMMARY

In this chapter numerical tests have been performed on the two sample cases to see the effect of

available destination information on the performance of the optimal route obtained by the

proposed solution algorithm. A series of scenarios have been developed to characterize the

potential range of destination sampling fraction cases and how they depart from the base case

described in the previous chapter. Monte Carlo simulation techniques are used for sample

 38

selection in each scenario. Performance location and variability behaves as expected. With larger

travel data sampling fractions, the solution performs better and behaves more like the true

optimal. This chapter has also proposed a methodology to find the threshold across which more

destination data given by additional passengers would make no significant improvement to the

optimal solution.

 39

CHAPTER 6. CASE STUDY

In previous chapters, the development and performance of the CRCNDP and the adaptive Tabu

Search solution method was illustrated, and examples of different network structures have been

tested. During the developmental stages it was found that the adaptive Tabu search method

performed well, providing good (and in some cases, optimal) solutions in a very short amount of

time compared to the enumerative method. This performance generates confidence in the

adaptive Tabu search’s ability to provide good solutions on a real-time basis. However, these

examples are limited since they are constructed using a small network for experimental purposes.

To guarantee its feasibility for real size problems, the adaptive Tabu Search solution method will

be implemented to three real size cases abstracted from the Martin Luther King (MLK) station of

the new MetroRail system in Austin, Texas.

NETWORK DESCRIPTION

Figure 7 provides an aerial overview of the MLK Station area. The black circle centered on the

MLK station represents a 2-mile radius coverage area used to limit the demand zones served by

the station. The station, UT campus and the CBD are all identified in the map.

 40

Figure 7. Overview of MLK Station Coverage Region.

In Figure 8 the red square identifies the MLK station. The green circle centered on the

MLK station represents a 2-mile boundary about the station used to limit the number of demand

zones that are considered in the analysis. The demand centroids are located as shown as green

squares and represent those passengers that are theoretically considered to have access to

commuter rail at the destination end of the commuter rail trip. In this case study application,

there are 46 demand centroids within the 2-mile boundary and 84 candidate stop locations (pink

dots) from which the route to serve MLK Station will be constructed. The demand of each of the

46 centroids is given in Table 4.

 41

Figure 8. Demand Centroid (46) and Candidate Stop Locations (84) within MLK

Station Coverage Region.

 42

Table 4. Case Study Zonal Demand.

Centroid Demand Centroid Demand Centroid Demand Centroid Demand

1 6 13 5 25 1 37 4

2 6 14 2 26 2 38 2

3 5 15 6 27 4 39 2

4 0 16 3 28 3 40 4

5 6 17 2 29 3 41 1

6 2 18 1 30 6 42 1

7 10 19 5 31 4 43 1

8 10 20 3 32 0 44 10

9 6 21 4 33 4 45 0

10 10 22 2 34 0 46 1

11 1 23 3 35 3

12 6 24 6 36 1

Test Results showed that the adaptive Tabu Search Algorithm solves this case study on

average in 105 seconds. This is much less than the on-train travel time for essentially all

passengers. Even if destination information cannot be collected before passengers alight the

train, in which case the algorithm could still be run while passengers walk from the train station

to the feeder bus. This time is estimated as 3 to 5 minutes and it is still adequate for the algorithm

to run to a near-optimal or optimal solution. Results for 10 test runs are shown in Table 5.

 43

Table 5. MLK Station Case Study Results.

Run #
Objective

Value

Optimal

Solution

Calculati

on Time

(S)

01 1890.47 1, 16, 38, 41, 48 103

02 1912.9 1, 16, 41, 48, 64 107

03 1864.56 1, 16, 36, 41, 48 100

04 1962.12 1, 38, 45, 47, 78 144

05 1942.02 1, 8, 15, 38, 80 102

06 1897.83 1, 16, 38, 47, 75 103

07 1905.52 1, 16, 46, 75, 84 95

08 1895.84 1, 15, 16, 38, 75 99

09 2062.43 1, 8, 15, 23, 38 101

10 1903.77 1, 15, 16, 38, 41 100

As shown in Table 6.2, the computational times for each execution of the adaptive Tabu

Search algorithm lie in the range from 1.5 minutes to 2 minutes on a 2 dualcore, hyperthreading

3.73 GHz Xeon processor with 2GB of memory. In the case that the optimization must be

performed while transit users are walking to the feeder bus from the rail station, this algorithm

should work fine to get a fairly good solution. In the case that destination information can be

collected and well-prepared way before transit users alight the train, this algorithm can be

executed more than one time to better search for a good solution. In short, the adaptive Tabu

search should be applicable to practical problems in a real feeder system serving a commuter rail

station.

In figure 9, the best route for this case study is depicted in the map. Since in the assumed

demand data, centroids associated with the UT campus were intentionally assigned larger

demands than other centroids, the optimal route, not surprisingly, provides service primarily to

the University area.

 44

Figure 9. Route solution for the 46/84 MLK network: Best Route.

Although the network structure and size are fairly representative for a feeder system

serving a commuter rail station, additional tests are performed to find the computational time

required for problems of different sizes. A smaller network with 30 centroids and 50 candidate

bus stops and a larger network with 62 centroids and 118 candidate bus stops are both

constructed for experiments. The network configuration and the optimal route obtained based on

the Adaptive Tabu Search are shown in Figure 10, 11, 12 and 13. The demand data is included in

Table 6 and Table 7.

 45

Figure 10: Demand Centroid (30) and Candidate Stop Locations (50) within MLK

Station Coverage Region

Table 6. Case Study Zonal Demand in the 30/50 network.

Centroid Demand Centroid Demand Centroid Demand

1 3 11 10 21 6

2 6 12 0 22 6

3 1 13 5 23 6

4 5 14 4 24 0

5 0 15 2 25 5

6 1 16 4 26 4

7 10 17 4 27 1

8 5 18 1 28 6

9 10 19 0 29 2

10 4 20 0 30 3

 46

Figure 11. Route solution for the 30/50 MLK network: Best Route.

 47

Figure 12. Demand Centroid (62) and Candidate Stop Locations (118) within MLK

Station Coverage Region.

 48

Table 7: Case Study Zonal Demand in the 62/118 network

Centroid Demand Centroid Demand Centroid Demand Centroid Demand

1 2 17 3 33 3 49 1

2 3 18 2 34 4 50 10

3 4 19 2 35 3 51 0

4 4 20 3 36 2 52 2

5 4 21 2 37 3 53 0

6 3 22 3 38 4 54 3

7 10 23 2 39 0 55 0

8 2 24 0 40 4 56 2

9 10 25 3 41 1 57 3

10 3 26 4 42 0 58 2

11 10 27 2 43 4 59 0

12 2 28 4 44 0 60 3

13 4 29 2 45 2 61 2

14 4 30 3 46 0 62 2

15 4 31 1 47 0

 16 0 32 1 48 3

Figure 13. Route solution for the 62/118 MLK network: Best Route.

 49

The demand dataset, for these two networks includes random demand assignments except

for the centroids associated with the UT campus where larger demands have been assumed.

Again, the optimal route provides service to the University area with priority because of the

larger specified demands. As shown when centroids are densely located as in the 62/118 MLK

network, the probability of a given stop serving more than one destination is higher, so fewer

stops can serve a larger area, while if demand centroids are far apart, as in the 30/50 MLK

network, the feeder buses must stop at more locations to provide service to an equivalent number

of destinations.

Figure 14. Computational Time for three networks of different sizes.

The computation complexity of the Tabu Search based heuristic developed for the

CRCNDP are mostly dependent on the predefined number of iterations. Hence, without looking

closely at the problem and the specific algorithm developed for it, the complexity of

computational efforts taken by the algorithm would not be revealed. However, to some degree

meta-heuristic methods guarantee that with the scale of the problem increasing, the

computational efforts do not necessarily expand dramatically and it provides practically useful

values where solution time duration is a tight constraint for the problem solving.

In the CRCNDP problem, it can be informally said that the adaptive Tabu Search method

adequately takes the place of the exhaustive search process to make decisions on which potential

stops to be included in the route, and it significantly reduces computational effort. While

complexity analysis is not valid on heuristic methods, approximate estimation of computational

time taken by the algorithm is still worthwhile.

The first decision to be made within the adaptive Tabu search algorithm is the number of

stops used to construct the route. Tests on the network with 46 centroids and 62 stops within the

solution space show the algorithm searched for solutions that included from 2 stops to 5 stops, as

80

100

120

140

160

180

200

220

MLK Small MLK Medium MLK large

C
o

m
p

u
ta

ti
o

n
al

 T
im

e
 (

SE
C

)

Computational Time for three networks

 50

4 major steps (2, 3, 4 and 5). The algorithm searches for solutions with 2 stops, and then

constructs a starting solution with 3 stops by smartly adding one stop to the best current solution

with 2 stops, and so on. In each major step, local searches of a user-defined number of iterations

are performed to update the best current solution. After local search over the solution space with

5 stops was completed, the algorithm selects the best solution it has ever encountered as the

optimal solution. The computational time taken by the algorithm can be roughly calculated as

follows:

 is the time taken for a single route optimization with selected stops. Each route

optimization has constraints as | || | and variables as | || | , again is the set of

selected stops and is the set of all candidate stops. is a factor larger than or equal to 1 and is

used to account for additional evaluations performed in each major step due to the existence of

infeasible or interior solutions. is the number of major steps defined in the algorithm.

In Figure 14, the blue dots show the average computational time for each of the three

tested networks with 10 random runs and the error bars represent the standard deviation of

computational time of these random samples. The average computational time for the three

tested networks formed a polyline. The smaller network took longer time to solve due to the fact

that the algorithm has to go through 6 major steps to finally search over solution space that

contains 7 stops to get a good solution while the medium size network was solved in only 4

major steps. As to solve the medium size network and the large size network took the same

number of major steps, the time taken for each evaluation in every major step becomes the

dominant factor. Although the number of steps is the same as the other networks the network

with more centroids and stop nodes requires significantly more computational effort in each

single evaluation. This explains the second part of the polyline.

SUMMARY

In this chapter, the adaptive Tabu Search solution method has been implemented to three real

size cases abstracted from the Martin Luther King (MLK) station of the new MetroRail system in

Austin, Texas to test its feasibility for real-time operation. The results have shown that the

solution algorithm works for the small, medium and large size network, although the medium

size network is representative for real world problems. A detailed explanation for the

computational time difference for the three cases has also been provided after analysis over the

algorithm procedures. The developed solution framework can be a candidate option for real-time

operation in CRCNDP.

 51

CHAPTER 7. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

Commuter rail has been widely recognized as an effective and practicable solution to ever-

worsening urban congestion caused mainly by commuter trips since it offers the potential for

attractive, high-quality rapid transit service at a reasonable cost. New commuter rail systems are

typically built along old freight rail tracks. Although use of existing right-of-way reduces time

and cost of construction, the paths do not provide for optimal station locations. Therefore

minimizing traveler access time from rail stations to final destinations is critical for commuter

rail to be a reasonable option for commuters.

This report aims to develop a robust optimization tool using meta-heuristic approaches to

design circulator routes on a real-time basis with real-time demand data. The CRCNDP involves

minimization of generalized costs subject to a variety of constraints. The decision one seeks to

make is the determination of a circulator configuration including the stops to be visited and the

route among them. An adaptive Tabu Search method is employed to solve the problem in an

efficient manner to realize real-time operation.

The sections in this chapter are organized as follows. In section 7.1, the principal features

of the solution approaches designed for the CRCNDP are reviewed and a summary of

conclusions for the numerical results derived from computational tests is discussed. Section 7.2

presents a brief discussion of the limitations of the current approaches and possible directions for

future research are also given.

SUMMARY AND CONCLUSIONS

As mentioned, the CRCNDP problem addressed in this report involves finding a feeder bus route

configuration that achieves a desired objective with a variety of given constraints. Related

literature describing previous solution approaches to the Transit Route Network Design problem

has been reviewed. As mentioned by several researchers including Baaj (1990), several main

sources of complexity often preclude finding a unique optimal solution for the Transit Route

Network Design problem. Some of these are also applicable to CRCNDP and they are discussed

as follows: (1) great difficulty in defining the decision variables and expressing the objective

function; (2) combinatorial complexity arises from the discrete nature of the route design

problem, making the CRCNDP NP-hard; (3) many important tradeoffs among conflicting

objectives need to be addressed, making the CRCNDP an inherently multi-objective decision

making problem. Additionally, for our solution approaches to be applied to real-time operation,

computational efficiency is another challenge to this report.

Previous approaches that were used to solve the Transit Route Network Design problem

can be generally categorized into two major groups: (1) analytical optimization models for

idealized situations; (2) meta-heuristic approaches for more practical problems. Few of them

really focused on the circulator route design, not to mention an algorithm developed for real-time

operation. Building on several previous approaches, mainly the Tabu Search method developed

by Lownes (2008), the solution methodology proposed in this report includes the following

 52

major features: (1) Ability to account for the inherent tradeoffs between conflicting performance-

measures; (2) Systematic heuristic methods for circulator route generation and improvement; (3)

systematic use of context-specific knowledge to guide the search technique; (4) Ability to

provide a route configuration that includes the exact bus stop location rather than corresponding

to just demand centers; (5) Computational efficiency to obtain an optimal or near-optimal

CRCNDP solutions to apply real-time control.

The proposed approaches – Adaptive Tabu Search consists of three main components: an

initial candidate route generation procedure that generates a feasible route as a starting point; a

neighborhood definition and search procedure that searches locally for a solution with better

performance; a memory mechanism that guides the search procedure to avoid cycling and to

search beyond local optima for a possibly global optimum.

Numerical tests have been performed to find the minimum fraction of passengers’

destination information that guarantee the practical value of the real-time optimization control.

And results have shown as expected that with more passengers providing travel information, the

algorithm produces a better route configuration to serve all passengers boarding the feeder bus

and that the variability associated with the performance of the optimal solution based on sample

size becomes larger as the fraction of known destinations decreases. However, a bold assumption

is made in this report, there is a threshold across which that more destination data given by

additional passengers would guarantee the practical value of real-time optimization. The trend

can be seen from the figures in Chapter 5 and is intuitively supported by the inherent nature of

meta-heuristic method aimed at obtaining near-optimal or good enough solutions in an efficient

manner rather than the global optimum. The procedures are proposed to find the threshold for the

minimum fraction of travelers that would need to report their destinations via smart phone to

guarantee the practical value of optimization based on real-time collected demand.

The adaptive Tabu Search algorithm was finally applied to three case study networks that

surround the MLK station on the Austin MetroRail commuter rail line. The three networks are

marked as small, medium and large networks. The number of demand centroids in the three

networks is 30, 46 and 62 respectively, and the number of candidate bus stop locations is 50, 84

and 118. Although, from the practical point of view, the size of the medium network is large

enough for a real world circulator system, the algorithm developed in this report produced a good

solution for all these three problems in a limited time domain.

FUTURE RESEARCH DIRECTIONS

One extension of this work is the accommodation of multiple routes in the formulation and

solution methods. The current methods assume that multiple vehicles follow the same route to

provide unique service. This situation assumption facilitates the communication with regard to

transit service between operators and users. There are no ambiguities regarding which vehicle

should the passenger board since all buses are going to travel along the same route. Incorporation

of multiple routes would enable the system to reduce the amount of long walk trips and the

associated costs. The inclusion of multiple routes will certainly increase the complexity and of

 53

the current solution method. A more sophisticated initial solution construction method and a

more complicated neighborhood search procedure might have to be developed to further

guarantee the possibility of real-time operation.

For this algorithm to be implemented into practice, additional application should also be

developed. A smart phone app to bridge the communication between transit operators and users

would be necessary. This app should enable the users to provide destination information in

various formats such as TAZ centroids, block level or a detailed street number address. And it

should also facilitate the transit operator data collection and preparation.

The numerical results were tested using a computer equipped with a 2 dualcore,

hyperthreading 3.73 GHz Xeon processor and 2GB memory. From the transit operation

perspective, this type of machine or an even faster machine is achievable. So that an

operationally and economically efficient optimal circulator network can be obtained in a real-

time basis, making the commuter rail a more viable option for commuters. Benefits can be

gained through less traffic congestion, reduced air pollution and lower energy consumption.

 54

 55

APPENDICES

APPENDIX A: CODE ILLUSTRATING IMPLEMENTATION OF THE ADAPTIVE TABU SEARCH

ALGORITHM

#include <iostream>

#include <cstdlib>

#include <fstream>

#include <iomanip>

#include <ctime>

#include <string>

#include <sstream>

using namespace std;

//Function to obtain the index number of the maximum demand node (used in

generating initial solution)

int maxIndex(double a[], int size, int check[]);

//Function to obtain the index number of the minimum demand node (used in

generating initial solution)

int minIndex(double a[], int size, int check[]);

//The qsort() function... to sort the set r[][]

int compare (const void * a, const void * b)

{

 return (*(int*)a - *(int*)b);

}

int factorial (int num)

{

 if (num==1)

 return 1;

 56

 return factorial(num-1)*num; // recursive call

}

int i,j,t,z,o,v,check,check2;

int carry[84][84] = {0};

int main()

{

 srand(time(0)); // Initialize random number generator.

 //The time function will determine the number of seconds elapsed between

the start and finish of the program

 time_t t1, t2;

 t1 = time (NULL);

 /*the variables and paramters defination*/

 const int CENTROIDS = 46;

 const int NUMSTOPS = 84;

 double demandCEN[CENTROIDS] = {0};

 double demand[NUMSTOPS] = {0};

 double gamma[NUMSTOPS][CENTROIDS] = {0};

 int lambda[NUMSTOPS][NUMSTOPS] = {0};

 /*demand and distance data from text files*/

 ifstream fin("demand.txt");

 for (i=0; i < CENTROIDS; i++) {

 fin >> demandCEN[i];

 }

 ifstream fin1("gamma.txt");

 57

 for (i=0; i < NUMSTOPS; i++) {

 for (j = 0; j < CENTROIDS; j++){

 fin1 >> gamma[i][j];

 }

 }

 for (i = 0; i < NUMSTOPS; i++){

 for (j = 0; j < CENTROIDS; j++) {

 if (gamma[i][j]<= 1980) {

 demand[i] = demand[i] + demandCEN[j];

 }

 }

 }

 cout<<"demand /";

 for (i = 0; i < NUMSTOPS; i++) {

 cout<<demand[i];

 if (i < (NUMSTOPS - 1)) {

 cout<<", ";

 }

 }

 cout<<"/;"<<endl<<endl;

 ifstream fin2("lambda.txt");

 for (i=0; i < NUMSTOPS; i++) {

 for (j = 0; j < NUMSTOPS; j++){

 fin2 >> lambda[i][j];

 }

 }

 58

 int n[NUMSTOPS] =

{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29

,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,

54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,

80,81,82,83,84};

 double zoptimal[6] = {1000000000};

 int roptimal[NUMSTOPS][6] = {0};

 for (int OUTCOUNT = 2; OUTCOUNT < 8; OUTCOUNT++) {

 int SETSIZE = OUTCOUNT;

 int ID = (SETSIZE + 1);

 int cont,tran1,leave,redo;

 int ** r;

 //memory allocated for elements of rows.

 r = new int *[SETSIZE] ;

 //memory allocated for elements of each column.

 for(i = 0 ; i < SETSIZE ; i++)

 r[i] = new int[ID];

 int * b;

 b = new int [SETSIZE];

 int * enter;

 enter = new int [ID];

 double * zstar;

 zstar = new double [ID];

 for (i = 0; i < ID; i++) {

 zstar[i] = 0;

 }

 59

 //Need to include the station (marked as 1)in every set r

 for (j = 0; j < ID; j++) {

 r[0][j] = 1;

 }

 double BEST = 1000000000;

 int ** bestset;

 //memory allocated for elements of rows.

 bestset = new int *[SETSIZE] ;

 //memory allocated for elements of each column.

 for(i = 0 ; i < SETSIZE ; i++)

 bestset[i] = new int[SETSIZE];

 int flag1[NUMSTOPS] = {0};

 double ratio[NUMSTOPS][NUMSTOPS] = {0};

 double ratio1[NUMSTOPS] = {0};

 int flag[NUMSTOPS*NUMSTOPS] = {0};

 //to generate an initial set r, start with the highest demand

centroids plus the station.

 if (OUTCOUNT < 3) {

 for (i = 1; i < SETSIZE; i++) {

 r[i][0] = n[maxIndex(demand, NUMSTOPS, flag1)];

 int tran = maxIndex(demand, NUMSTOPS, flag1);

 flag[tran] = 1;

 }

 }

 60

 cout<<"bestset OUTCOUNT -1 /";

 for (v = 0; v < SETSIZE-1; v++) {

 cout<<carry[v][OUTCOUNT-1];

 if (v < (SETSIZE - 2)) {

 cout<<", ";

 }

 }

 cout<<"/;"<<endl<<endl;

 if (OUTCOUNT > 2) {

 for (i = 1; i < SETSIZE - 1; i++) {

 r[i][0] = carry[i][OUTCOUNT - 1];

 }

 do{

 tran1 = rand()%(NUMSTOPS - 1) + 2;

 cont =0;

 for (i = 0; i < SETSIZE - 1; i++){

 if (r[i][0] == tran1) {

 cont++;

 }

 }

 }while (cont > 0);

 r[SETSIZE - 1][0] = tran1;

 }

 //to sort set r

 61

 for (j = 0; j < ID; j++) {

 for (i = 0; i < SETSIZE; i++) {

 b[i] = r[i][j];

 }

 qsort(b, SETSIZE, sizeof(int), compare);

 for (i = 0; i < SETSIZE; i++) {

 r[i][j] = b[i];

 }

 }

 //Output the set r to the gams input file, combinations.inc

 ofstream file("combinations.inc", ios::out | ios::trunc);

 file<<"set r(i) /";

 for (i = 0; i < SETSIZE; i++) {

 file<<r[i][0];

 if (i < (SETSIZE - 1)) {

 file<<", ";

 }

 }

 file<<"/;"<<endl;

 system("/usr/local/gams/23.5.2/gams TabuGams lo=2");

 ifstream opt("optimal.txt");

 opt>>zstar[0];

 62

 cout<<"set r(i) /";

 for (i = 0; i < SETSIZE; i++) {

 cout<<r[i][0];

 if (i < (SETSIZE - 1)) {

 cout<<", ";

 }

 }

 cout<<"/;"<<endl;

 cout<<zstar[0]<<endl;

 while (zstar[0] < 1) {

 cout<<"set r(i) /";

 for (i = 0; i < SETSIZE; i++) {

 cout<<r[i][0];

 if (i < (SETSIZE - 1)) {

 cout<<", ";

 }

 }

 cout<<"/;"<<endl;

 cout<<"Infeasible!"<<endl;

 leave = rand()%(SETSIZE - 1) + 1;

 // a small do-loop to check that the entering node is not already in the

set r

 63

 do{

 redo = 0;

 enter[0] = rand()%(NUMSTOPS - 1) + 2;

 for (i=0; i < SETSIZE; i++){

 if (r[i][0] == enter[0]){

 redo++;}

 }

 }while(redo > 0);

 cout<<"Leaving Stop index: "<<leave<<" Entering Stop:

"<<enter[0]<<endl;

 r[leave][0] = n[enter[0]-1];

 cout<<"set r(i) /";

 for (i = 0; i < SETSIZE; i++) {

 cout<<r[i][0];

 if (i < (SETSIZE - 1)) {

 cout<<", ";

 }

 }

 cout<<"/;"<<endl;

 for (j = 0; j < ID; j++) {

 for (i = 0; i < SETSIZE; i++) {

 b[i] = r[i][j];

 }

 qsort(b, SETSIZE, sizeof(int), compare);

 64

 for (i = 0; i < SETSIZE; i++) {

 r[i][j] = b[i];

 }

 }

 cout<<"set r(i) /";

 for (i = 0; i < SETSIZE; i++) {

 cout<<r[i][0];

 if (i < (SETSIZE - 1)) {

 cout<<", ";

 }

 }

 cout<<"/;"<<endl;

 ofstream file("combinations.inc", ios::out | ios::trunc);

 file<<"set r(i) /";

 for (i = 0; i < SETSIZE; i++) {

 file<<r[i][0];

 if (i < (SETSIZE - 1)) {

 file<<", ";

 }

 }

 file<<"/;"<<endl;

 system("/usr/local/gams/23.5.2/gams TabuGams lo=2");

 ifstream opt("optimal.txt");

 opt>>zstar[0];

 65

 cout<<zstar[0]<<endl;

 BEST = zstar[0];

 zoptimal[OUTCOUNT-2] = BEST;

 //zoptimal[OUTCOUNT - 2] = BEST;

 for (int q = 0; q < SETSIZE; q++) {

 bestset[q][OUTCOUNT-1] = r[q][0];

 carry[q][OUTCOUNT] = bestset[q][OUTCOUNT-1];

 roptimal[q][OUTCOUNT-2] = bestset[q][OUTCOUNT-1];

 }

 }

/*An initial feasible solution in r[][0] has been constructed. This will

serve as the starting point for the tabu search algorithm. From this point

onward the focus of the algorithm is to smartly search over the neighborhood

and update the best current solution.*/

/*Declare and initialize the tabu parameters.*/

 cout<<"--------Begin Tabu--------"<<endl;

 int zcount = 0;

 int iter = 0;

 if (OUTCOUNT < 3) {

 while (iter < 10) {

 iter++;

 66

//Set the current set for all neighborhoods to the best from the previous

iteration

 for (i = 0; i < SETSIZE; i++){

 for (j = 1; j < ID; j++) {

 r[i][j] = r[i][0];

 }

 }

 int added[NUMSTOPS] = {0};

 int removed[NUMSTOPS] = {0};

 int infeasible[NUMSTOPS] = {0};

 int temp4;

//Select a leaving node

check2 = 0;

 do {

 check = 0;

 leave = rand()%(SETSIZE - 1) + 2;

 int temp2 = r[leave - 1][0];

 if (added[temp2-1] < 1) {

 removed[temp2-1] = SETSIZE;

 check++;

 }

 67

 else if (added[temp2 - 1] >= 1) {

 check2++;

 }

 if(check2 > (SETSIZE -1)) {

 leave = rand()%(SETSIZE - 1) + 2;

 check++;

 check2 = 0;

 }

 }while (check < 1);

 cout<<"Original set r(i) /";

 for (i = 0; i < SETSIZE; i++) {

 cout<<r[i][0];

 if (i < (SETSIZE - 1)) {

 cout<<", ";

 }

 }

 cout<<"/;"<<endl;

 int flag3[NUMSTOPS] = {0};

//Select the four neighborhood solutions

 for (j = 1; j < ID; j++) {

 //a small do-loop to check that the entering node is not already in the

set r

 int totdist = 0;

 68

 for (i = 1; i < NUMSTOPS; i++) {

 for (int v = 1; v < SETSIZE; v++) {

 totdist = totdist + lambda[i][r[v][0]-1];

 }

 ratio1[i] = demand[i]/totdist;

 totdist = 0;

 }

 cout<<"ratio1 [";

 for (i=0; i<NUMSTOPS; i++) {

 cout<<" "<<ratio1[i];

 }

 cout<<"]"<<endl;

 do{

 redo = 0;

 int remainder = iter % 2;

 if (remainder > 0) {

 enter[j] = n[maxIndex(ratio1, NUMSTOPS, flag3)];

 int temp7 = maxIndex(ratio1, NUMSTOPS, flag3);

 flag3[temp7] = 1;

 temp4 = enter[j];

 }

 69

 else if (remainder == 0) {

 enter[j] = rand()%(NUMSTOPS - 1) + 2;

 temp4 = enter[j];

 }

 for (t = 1; t < ID; t++) {

 for (i=0; i < SETSIZE; i++){

 if (r[i][t] == temp4 || added[temp4-1] > 0 ||

removed[temp4-1] > 0 || infeasible[temp4-1] > 0) {

 redo++;

 }

 }

 }

 }while(redo > 0);

 cout<<"Leaving Stop Index: "<<leave<<" Entering Stop:

"<<enter[j]<<endl;

 r[leave-1][j] = enter[j];

//to ensure that neighborhoods are distince from each other

 cout<<"Neighborhood "<<j<<" set r(i) /";

 for (i = 0; i < SETSIZE; i++) {

 cout<<r[i][j];

 if (i < (SETSIZE - 1)) {

 cout<<", ";

 }

 }

 cout<<"/;"<<endl;

 }

 70

 for (j = 1; j < ID; j++) {

 for (i = 0; i < SETSIZE; i++) {

 b[i] = r[i][j];

 }

 qsort(b, SETSIZE, sizeof(int), compare);

 for (i = 0; i < SETSIZE; i++) {

 r[i][j] = b[i];

 }

 cout<<"Neighborhood "<<j<<" Sorted set r(i) /";

 for (i = 0; i < SETSIZE; i++) {

 cout<<r[i][j];

 if (i < (SETSIZE - 1)) {

 cout<<", ";

 }

 }

 cout<<"/;"<<endl;

 }

 for (j = 1; j < ID; j++) {

 ofstream file("combinations.inc", ios::out | ios::trunc);

 file<<"set r(i) /";

 for (i = 0; i < SETSIZE; i++) {

 file<<r[i][j];

 71

 if (i < (SETSIZE - 1)) {

 file<<", ";

 }

 }

 file<<"/;"<<endl;

 system("/usr/local/gams/23.5.2/gams TabuGams lo=2");

 ifstream opt("optimal.txt");

 opt>>zstar[j];

 cout<<"Neighborhood "<<j<<" Iteration "<<iter<<" Optimal Solution:

"<<zstar[j]<<endl;

 if (zstar[j] < 1) {

 infeasible[enter[j] - 1] = 2;

 zcount++;

 cout<<zcount<<endl;

 }

 if (zstar[j] > 0 && zstar[j] < BEST) {

 BEST = zstar[j];

 zoptimal[OUTCOUNT-2] = BEST;

 for (int q = 0; q < SETSIZE; q++) {

 bestset[q][OUTCOUNT-1] = r[q][j];

 carry[q][OUTCOUNT] = bestset[q][OUTCOUNT-1];

 72

 roptimal[q][OUTCOUNT-2] = bestset[q][OUTCOUNT-1];

 }

 }

 if ((zstar[j] > 0) && (zstar[j] < zstar[0])) {

 zstar[0] = zstar[j];

 added[enter[j] - 1] = SETSIZE;

 zcount = 0;

 cout<<zcount<<endl;

 for (int p = 1; p < SETSIZE; p++) {

 r[p][0] = r[p][j];

 }

 cout<<"do I get here?"<<endl;

 }

 else if ((zstar[j] > 0) && (zstar[j] > zstar[0])) {

 zcount++;

 cout<<zcount<<endl;

 cout<<"do I get here?"<<endl;

 if (zcount > (SETSIZE+SETSIZE)) {

 int temp5 = rand()%(ID-1) + 1;

 for (int o = 1; o < SETSIZE; o++) {

 r[o][0] = r[o][temp5];

 }

 73

 zcount = 0;

 }

 }

 }

 cout<<"Added[]: [";

 for (t = 0; t < NUMSTOPS; t++) {

 cout<<" "<<added[t];

 }

 cout<<"]"<<endl;

 cout<<"Removed[]: [";

 for (t = 0; t < NUMSTOPS; t++) {

 cout<<" "<<removed[t];

 }

 cout<<"]"<<endl;

 cout<<"Infeasible[]: [";

 for (t = 0; t < NUMSTOPS; t++) {

 cout<<" "<<infeasible[t];

 }

 cout<<"]"<<endl<<endl;

 for (t = 0; t < NUMSTOPS; t++) {

 if (added[t] > 0){

 added[t] = added[t] - 1;

 74

 }

 if (removed[t] > 0){

 removed[t] = removed[t] - 1;

 }

 if (infeasible[t] > 0){

 infeasible[t] = infeasible[t] - 1;

 }

 }

 }

 }

 if (OUTCOUNT > 2) {

 while (iter < 10) {

 iter++;

 //Set the current set for all neighborhoods to the best from the

previous iteration

 for (i = 0; i < SETSIZE; i++){

 for (j = 1; j < ID; j++) {

 r[i][j] = r[i][0];

 }

 }

 cout<<"Original set r(i) /";

 for (i = 0; i < SETSIZE; i++) {

 cout<<r[i][0];

 if (i < (SETSIZE - 1)) {

 cout<<", ";

 75

 }

 }

 cout<<"/;"<<endl;

 //Select an exchanging pair, that is a leaving node and an

entering node

 int totdist = 0;

 int * leaverow;

 leaverow = new int [ID];

 int * entercol;

 entercol = new int [ID];

 int temp, temp1, temp2, temp3;

 int tabu[NUMSTOPS][NUMSTOPS] = {0};

 for (i=0; i<SETSIZE; i++) {

 for (j=1; j<NUMSTOPS; j++){

 if (j == r[i][0] - 1){

 for (o = 1; o < NUMSTOPS; o++) {

 for (v = 1; v < SETSIZE; v++) {

 if (j != r[v][0] - 1) {

 totdist = totdist +

lambda[o][r[v][0]-1];

 }

 }

 ratio[j][o] = demand[o]/totdist;

 76

 totdist = 0;

 }

 }

 }

 }

 cout<<"ratio {{";

 for (i = 0; i < NUMSTOPS; i++) {

 for (j = 0; j < NUMSTOPS; j++) {

 cout<<ratio[i][j];

 if (j < (NUMSTOPS - 1)){

 cout<<",";

 }

 }

 if (i < (NUMSTOPS - 1)) {

 cout<<"},"<<endl<<endl;

 cout<<"{";

 }

 }

 cout<<"}};"<<endl;

 double tempratio[NUMSTOPS*NUMSTOPS] = {0};

 for (i = 0; i < NUMSTOPS; i++) {

 for (o = 0; o < NUMSTOPS; o++) {

 tempratio[i*NUMSTOPS + o] = ratio[i][o];

 }

 77

 }

 cout<< "tempratio/";

 for (int o = 0; o < NUMSTOPS*NUMSTOPS; o++) {

 cout<< tempratio[o];

 if (o < (NUMSTOPS*NUMSTOPS -1)) {

 cout<<",";

 }

 }

 cout<<"/;"<<endl;

 int flag[NUMSTOPS*NUMSTOPS] = {0};

 //Select the neighborhood solutions

 for (j = 1; j < ID; j++) {

 do {

 redo = 0 ;

 int remainder = iter%2;

 if (remainder > 0) {

 temp = maxIndex(tempratio,NUMSTOPS*NUMSTOPS,flag);

 double max = tempratio[temp];

 cout<<"temp:"<<temp<<endl;

 cout<<"max:"<< max<<endl;

 flag[temp] = 1;

 entercol[j] = (temp+1)%NUMSTOPS;

 leaverow[j] = ((temp+1)-entercol[j])/NUMSTOPS + 1;

 temp1 = leaverow[j];

 temp2 = entercol[j];

 78

 }

 if (remainder == 0) {

 temp3 = rand()%(SETSIZE - 1) + 2;

 leaverow[j] = r[temp3 - 1][0];

 entercol[j] = rand()%(NUMSTOPS - 1) + 2;

 temp1 = leaverow[j];

 temp2 = entercol[j];

 }

 for (i = 0; i < NUMSTOPS; i++){

 for (v = 0; v < NUMSTOPS; v++){

 if (tabu[temp1-1][temp2-1] > 1) {

 redo++;

 }

 }

 }

 for (i = 0; i < SETSIZE; i++) {

 if (r[i][0] == temp2) {

 redo++;

 }

 }

 }while(redo > 0);

 79

 cout<<"leaving stop:"<< leaverow[j]<< " Entering

Stop:"<<entercol[j]<<endl;

 for (i = 0; i < SETSIZE; i++) {

 if (r[i][j] == leaverow[j]) {

 r[i][j] = entercol[j];

 }

 }

 //to ensure that neighborhoods are distince from each other

 cout<<"Neighborhood "<<j<<" set r(i) /";

 for (i = 0; i < SETSIZE; i++) {

 cout<<r[i][j];

 if (i < (SETSIZE - 1)) {

 cout<<", ";

 }

 }

 cout<<"/;"<<endl;

 }

 for (j = 1; j < ID; j++) {

 for (i = 0; i < SETSIZE; i++) {

 b[i] = r[i][j];

 }

 qsort(b, SETSIZE, sizeof(int), compare);

 for (i = 0; i < SETSIZE; i++) {

 r[i][j] = b[i];

 80

 }

 cout<<"Neighborhood "<<j<<" Sorted set r(i) /";

 for (i = 0; i < SETSIZE; i++) {

 cout<<r[i][j];

 if (i < (SETSIZE - 1)) {

 cout<<", ";

 }

 }

 cout<<"/;"<<endl;

 }

 for (i = 0; i < NUMSTOPS; i++) {

 for (j = 0; j< NUMSTOPS; j++) {

 if (tabu[i][j] > 0) {

 tabu[i][j] = tabu[i][j] - 1;

 }

 }

 }

 for (j = 1; j < ID; j++) {

 ofstream file("combinations.inc", ios::out | ios::trunc);

 file<<"set r(i) /";

 for (i = 0; i < SETSIZE; i++) {

 81

 file<<r[i][j];

 if (i < (SETSIZE - 1)) {

 file<<", ";

 }

 }

 file<<"/;"<<endl;

 system("/usr/local/gams/23.5.2/gams TabuGams lo=2");

 ifstream opt("optimal.txt");

 opt>>zstar[j];

 cout<<"Neighborhood "<<j<<" Iteration "<<iter<<" Optimal Solution:

"<<zstar[j]<<endl;

 if (zstar[j] < 1) {

 tabu[leaverow[j]-1][entercol[j] - 1] = 2;

 zcount++;

 cout<<zcount<<endl;

 }

 if (zstar[j] > 0 && zstar[j] < BEST) {

 BEST = zstar[j];

 zoptimal[OUTCOUNT-2] = BEST;

 for (int q = 0; q < SETSIZE; q++) {

 bestset[q][OUTCOUNT-1] = r[q][j];

 82

 carry[q][OUTCOUNT] = bestset[q][OUTCOUNT-1];

 roptimal[q][OUTCOUNT-2] = bestset[q][OUTCOUNT-1];

 }

 }

 if ((zstar[j] > 0) && (zstar[j] < zstar[0])) {

 zstar[0] = zstar[j];

 tabu[entercol[j]-1][leaverow[j] - 1] = SETSIZE + 1;

 zcount = 0;

 cout<<zcount<<endl;

 for (int p = 1; p < SETSIZE; p++) {

 r[p][0] = r[p][j];

 }

 cout<<"do I get here?"<<endl;

 }

 else if ((zstar[j] > 0) && (zstar[j] > zstar[0])) {

 zcount++;

 cout<<zcount<<endl;

 cout<<"do I get here?"<<endl;

 if (zcount > (SETSIZE+SETSIZE)) {

 int temp5 = rand()%(ID-1) + 1;

 for (int o = 1; o < SETSIZE; o++) {

 r[o][0] = r[o][temp5];

 83

 }

 tabu[entercol[temp5]-1][leaverow[temp5] - 1] = SETSIZE

- 1;

 zcount = 0;

 }

 }

 }

 cout<<"tabu {{";

 for (i = 0; i < NUMSTOPS; i++) {

 for (j = 0; j < NUMSTOPS; j++) {

 cout<<tabu[i][j];

 if (j < (NUMSTOPS - 1)){

 cout<<",";

 }

 }

 if (i < (NUMSTOPS - 1)) {

 cout<<"},"<<endl<<endl;

 cout<<"{";

 }

 }

 cout<<"}};"<<endl;

 }

 }

 cout<<"Best Solution: "<<BEST<<endl;

 cout<<"Best Solution Stop Set: ";

 cout<<"r(i) /";

 84

 for (int v = 0; v < SETSIZE; v++) {

 cout<<bestset[v][OUTCOUNT-1];

 if (v < (SETSIZE - 1)) {

 cout<<", ";

 }

 }

 cout<<"/;"<<endl<<endl;

 cout<<OUTCOUNT<<"YUYAO"<<endl;

 cout<<zoptimal[OUTCOUNT-2]<<endl;

}

 cout<<"YUYAO";

 cout<<"zoptimal(6) /";

 for (v = 0; v < 6; v++) {

 cout<<zoptimal[v];

 if (v < 5) {

 cout<<",";

 }

 }

 cout<<"/;"<<endl<<endl;

 int mark = 0;

 int mark1[6] = {0};

 mark = minIndex(zoptimal, 6, mark1);

 cout<<mark<<endl<<endl;

 85

 cout<<"Final Best Solution:"<<zoptimal[mark]<<endl;

 cout<<"Final Best Solution Stop Set:";

 cout<<" /";

 for (v = 0; v < NUMSTOPS; v++) {

 cout<<roptimal[v][mark];

 if (v < (NUMSTOPS - 1)) {

 cout<<", ";

 }

 }

 cout<<"/;"<<endl<<endl;

 int mark2=0;

 for(i = 0; i < NUMSTOPS; i++) {

 if(roptimal[i][mark] > 0) {mark2++;}

 }

 int * routput;

 routput = new int [mark2];

 for(i = 0; i < mark2; i++) {

 routput[i] = roptimal[i][mark];

 }

 ofstream file("combinations.inc", ios::out | ios::trunc);

 file<<"set r(i) /";

 for (i = 0; i < mark2; i++) {

 file<<routput[i];

 if (i < (mark2 - 1)) {

 86

 file<<", ";

 }

 }

 file<<"/;"<<endl;

 system("/usr/local/gams/23.5.2/gams xfix lo=2");

 system("/usr/local/gams/23.5.2/gams evaluation lo=2");

 t2 = time (NULL);

 double diff = t2 - t1;

 cout<<"Computation Time: "<<diff<<endl;

 return(0);

}

//=== maxIndex

// From algorithms/arrayfuncs.cpp

// Returns the index of the maximum value in an array.

int maxIndex(double a[], int size, int check[]) {

 int maxIndex = 0;

 for (z=1; z<size; z++) {

 if (a[z] > a[maxIndex] && check[z] < 1) {

 maxIndex = z;

 }

 }

 return maxIndex;

}//end maxIndex

//=== minIndex

 87

// From algorithms/arrayfuncs.cpp

// Returns the index of the minimum value in an array.

int minIndex(double a[], int size, int check[]) {

 int minIndex = 0;

 for (z=1; z<size; z++) {

 if (a[z] < a[minIndex] && check[z] < 1) {

 minIndex = z;

 }

 }

 return minIndex;

}//end minIndex

 88

 89

REFERENCES

Adamski, A. (1992). Probabilistic Models of Passengers Service Processes at Bus Stops.

Transportation Research Part B, , 253-259.

Andersson, P., & Scalia-Tomba, G. (1981). A Mathematical Model of an Urban Bust Route.

Transportation Research Part B: Methodological , 249-266.

Baaj, M., & Mahmassani, H. (1990). TRUST: A Lisp Program for the Analysis of Transit Route

Configuration. Transportation Research Record , 125-135.

Barnes, J., Laguna, M., & Glover, F. (1995). An Overview of Tabu Search Approaches to

Production Scheduling Problems. Intelligent Scheduling Systems , 101-127.

Battiti, R. (1994). Simulated Annealing and Tabu Search in the long run: A Comparison on QAP

Tasks. Computers & Mathematics with Applications , 1-8.

Ceder, A. (1986). Methods for Creating Bus Timetables. Transportation Research Part A , 59-83.

Ceder, A. (2001). Operational Objective Functions in Designing Public Transport Routes.

Journal of Advanc Transportation , 125-144.

Ceder, A. (1991). Transit Scheduling. Journal of Advanced Transportation , 137-160.

Ceder, A., & Israeli, Y. (1998). User and Operator Perspectives in Transit Network Design.

Transportation Research Record: Journal of the Transportation Research Board , 3-7.

Ceder, A., & Wilson, N. (1986). Bus Network Design. Transportation Research Part B , 20B,

331-344.

Chakroborty, P. (2003). Genetic Algorithms for Optimal Urban Transit Network Design.

Computer-Aided Civil and Infrastructure Engineering , 184-200.

Chang, S. a. (1991b). Optimization Models for Comparing Conventional and Subscription Bus

Feeder Services. Transportation Science , 281-298.

Chang, S., & Schonfeld, P. (1991). Multiple Period Optimization of Bus Transit Systems.

Transportation Research Part B , 25B, 453-478.

Chien, S., & Schonfeld, P. (1998). Joint Optimization of a Rail Transit Line and its Feeder Bus

System. Journal of Advanced Transportation , 32, 253-284.

Chien, S., & Schonfeld, P. (1997). Optimization of Urban Grid Transit System in Heterogeneous

Urban Environmental. Journal of Transportation Engineeing , 28-35.

Chien, S., & Yang, Z. (2000). Optimal Feeder Bus Routes with Irregular Street Networks.

Journal of Advanced Transportation , 213-248.

 90

Chien, S., Dimitrijevic, B., & Spasovic, L. (2001). Bus Route Planning in Urban Grid Commuter

Networks. Transportation Research Board 80th Annual Meeting. Washington, D.C.

Corberan, A., Fernandez, E., Lagunay, M., & Marti, R. (2000). Heuristic Solutions to the

Problem of Routing School Buses with Multiple Objectives. Journal of the Operational

Research Society , 427-435.

Crainic, T., Malucelli, F., Nonato, M., & Guertin, F. (2005). Meta-Heuristics for a Class of

Demand-Responsive Transit Systems. . INFORMS Journal on Computing , 10-24.

Dial, R. (1967). Transit Pathfinder Algorithm. Highway Research Record , 67-85.

Ding, Y., & Chien, S. (2001). Improving Transit Service Quality and Headway Regularity with

Real-time Control. Transportation Research Board. Washington, D.C.

Dubois, D., Bel, G., & Llibre, M. (1979). A Set of Methods in Transportation Synthesis and

Analysis. The Journal of the Operational Research Society , 30, 797-808.

Dufourd, H., Gendreau, M., & Laporte, G. (1996). Locating a Transit Line Using Tabu Search.

Location Science , 1-19.

ECONorthwest and Parsons Brinckerhoff Quade & Douglas, I. (2002). Estimating the Benefits

and Costs of Public Transit Projects: A Guidebook for Practitioners. Washington, D.C.:

Transportation Research Board, National Research Council.

Fan, W. (2004). Optimal Transit Route Network Design Problem: Algorithms, Implementations,

and Numerical Results. Doctoral Report, Department of Civil Engineering,The

University of Texas at Austin, Austin, Texas .

Fan, W., & Machemehl, R. B. (2008). Tabu Search Strategies for the Public Transportation

Network Optimizations with Variable Transit Demand. Computer-Aided Civil and

Infrastructure Engineering , 502-520.

Fan, W., & Machemehl, R. B. (2006). Using a Simulated Annealing Algorithm to Solve the

Transit Route Network Design Problem . Journal of Transportation Engineeing , 122-132.

FTA. (2011). Annual Report on Funding Recommendations Fiscal Year 2012.

http://www.fta.dot.gov/documents/Annual_Report_main_text_FINAL_2_11_11%281%2

9.pdf.

Glover, F. (1986). Future Paths for Integer Programming and Links to Artificial Intelligence.

Computers and Operations Research , 533-549.

Glover, F. (1977). Heuristics for Integer Programming Using Surrogate Constraints. Decision

Sciences , 8, 156-166.

Glover, F. (1997). Tabu Search and Adaptive Memory Programming - Advances, Applications

and Challenges. INTERFACES IN COMPUTER SCIENCE AND OPERATIONS

RESEARCH , 1-75.

 91

Glover, F. (1989). Tabu search-part I. ORSA Journal on Computing , 190-206.

Glover, F. (1990). Tabu search-part II. ORSA Journal on Computing , 4-32.

Glover, F., & Laguna, M. (1997). Tabu Search. Boston: Kluwer Academic Publishers.

Goczyla, K., & Cielatkowski, J. (1995). Optimal Routing in a Transportation Network. European

Journal of Operational Research , 214-222.

Grava, S. (2003). Urban Transportation Systems: Choices for Communities. McGraw-Hill.

Han, A., & Wilson, N. (1993). Efficient Search Algorithms for Route Information Services of

Direct and Connecting Transit Trips. Transportation Research Record , 1-5.

Henk, R., & Hubbard, S. (1996). Developing an Index of Transit Service Availability.

Transportation Research Record , 12-19.

Hennan, B., & Ardekani, S. (1984). Characterizing Traffic Conditions in Urban Areas.

Transportation Science , 101-140.

Hickman, M., & N.H.M., W. (1995). Passenger Travel Time and Path Choice Implications of

Real-time Transit Information. Transportation Research Part C: Emerging Technologies ,

211-226.

Hsu, J., & Surti, V. (1975). Framework of Route-Selection in Bus Network Design.

Transportation Research Record , 44-57.

Jerby, S., & Cedar, A. (2006). Optimal Routing Design for Shuttle Bus Service. Transportation

Research Record: Journal of the Transportation Research Board , 14-22.

Kuah, G., & Perl, J. (1987). A Methodology for Feeder-Bus Network Design. Transportation

Research Record: Journal of the Transportation Research Board , 40-51.

Kuah, G., & Perl, J. (1988). Optimization of Feeder Bus Routes and Bus-stop Spacing. Journal of

Transportation Engineering , 114.

Laguna, M., Barnes, J., & Glover, F. (1993). Intelligent Scheduling with Tabu Search: An

application to Jobs with Linear Delay Penalties and Sequence-Dependent Setup Costs

and Times. Journal of Applied Intelligence , 159-172.

Laguna, M., Barnes, W., & Glover, F. (1991). Tabu Search Methods for a Single Machine

Scheduling Problem. Journal of Intelligent Manufacturing , 63-74.

Lampkin, W., & P.D., S. (1967). The Design of Routes, Service Frequencies and Schedules for a

Municipal Bus Undertaking: A Case Study. Operation Research Ouarterly , 375-397.

Leblanc, L. (1988). Transit System Network Design. Transportation Research Part (22), 383-

390.

Lee, Y.-J., & Vuchic, V. (2005). Transit Network Design with Variable Demand. Journal of

Transportation Engineering, ASCE , 131.

 92

Li, L., & Fu, Z. (2002). The School Bus Routing Problem: A Case Study. Journal of the

Operational Research Society , 552-558.

List, G. (1990). Toward Optimal Sketch-Level Transit Service Plans. Transportation Research

Part B , 325-344.

Lownes, N. (2007). The Commuter Rail Circulator Network Design Problem:Formulation,

Solution Methods, and Applications. Doctoral Report, Department of Civil

Engineering,The University of Texas at Austin, Austin, Texas .

Lownes, N., & Machemehl, R. (2010). Exact and heuristic methods for public transit circulator

design. Transportation Research Part B , 309-318.

Luenberger, D. (1984). Linear and Nonlinear Programming, Second Edition. Addison-Wesley

Publishers.

Martins, C. L., & Pato, M. V. (1998). Search Strategies for the Feeder Bus Network Design

Problem. European Journal of Operational Research , 425-440.

Martins, C., & Pato, M. (1998). Search Strategies for the Feeder Bus Network Design Problem.

European Journal of Operational Research , 425-440.

Moellering, H., Gauthier, H., & Osleeb, J. (1977). An interactive Graphic Transit Planning

System Based on Individuals. Urban Systems , 2, 93-103.

Newell, G. (1979). Some Issues Relating to the Optimal Design of Bus Routes. Transportation

Science , 13, 20-35.

Oldfield, R., & Bly, P. (1988). An Analytic Investigation of Optimal Bus Size. Transportation

Research Part B , 319-337.

Osuna, E., & Newell, G. (1972). Control Strategies for an Idealized Public Transportation

System. Transportation Science , 57-72.

Pattnaik, S., Mohan, S., & Tom, V. (1998). Urban Bus Transit Route Network Design Using

Genetic Algorithm. Journal of Transportation Engineering , 124, 368-375.

Raza, S. A., & AlTurki, U. (2007). A Comparative Study of Heuristic Algorithms to Solve

Maintenance Schedulling Problem. Journal of Quality in Maintenance Engineering , 398-

410.

Repoussis, P., & Tarantilis, C. (2010). Solving the Fleet Size and Mix Vehicle Routing Problem

with Time Windows via Adaptive Memory Programming. Transportation Research Part

C , 695-712.

Schrank, D., & Lomax, T. (2011). The 2011 Urban Mobility Report. College Station, Texas:

Texas Transportation Institute, Texas A&M University.

Spasovic, L., & Schonfeld, P. (1993). Method for Optimizing Transit Service Coverage.

Transportation Research Record , 28-39.

 93

Stein, D. M. (1978). An Asymptotic, Probabilistic Analysis of a Routing Problem. Mathematics

of Operations Research , 3, 89-101.

Tom, V. M., & Mohan, S. (2003). Transit Route Network Design Using Frequency Coded

Genetic Algorithm. Journal of Transportation Engineering , 186-195.

Van Nes, R., & Bovy, P. (2000). Importance of Objectives in Urban Transit Network Design.

Transportation Research Record , 25-34.

Van Nes, R., Hamerslag, R., & Immer, B. (1988). The Design of Public Transport Networks.

Transportation Research Record , 74-83.

Victor, D., & Santhakumar, S. (1986). Simulation study of bus transit. Journal of Transportation

Engineering , 199-211.

Willoughby, K. (2002). A Mathematical Programming Analysis of Public Transit Systems.

Omega , 137-142.

Wilson, N., & Gonzalez, S. (1982). Methods for Service Design. Transportation Research

Record , 74-83.

