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ABSTRACT

This report formulates a multiple discrete-continuous probit (MDCP) land-use model within a 

spatially explicit economic structural framework for land-use change decisions. The spatial 

MDCP model is capable of predicting both the type and intensity of urban development patterns 

over large geographic areas, while also explicitly acknowledging geographic proximity-based 

spatial dependencies in these patterns. At a methodological level, the report focuses on 

specifying and estimating a spatial MDCP model that allows the dependent variable to exist in 

multiple discrete states with an intensity associated with each discrete state. The formulation also 

accommodates spatial dependencies, as well as spatial heterogeneity and heteroscedasticity, in 

the dependent variable, and should be applicable in a wide variety of fields where social and 

spatial dependencies between decision agents (or observation units) lead to spillover effects in 

multiple discrete-continuous choices (or states). A simulation exercise is undertaken to evaluate 

the ability of the proposed maximum approximate composite marginal likelihood (MACML) 

approach to recover parameters from a cross-sectional spatial MDCP model. The results show 

that the MACML approach does well in recovering parameters. An empirical demonstration of 

the approach is undertaken using the city of Austin parcel level land use data.
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EXECUTIVE SUMMARY

This report formulates a spatial multiple discrete-continuous probit (SMDCP) model that should 

be applicable in a wide variety of fields where social and spatial dependencies lead to spillover 

effects in multiple discrete-continuous choices (or states). The report also accommodates spatial 

heterogeneity in response to exogenous covariates and heteroscedasticity in the dependent 

variable. The resulting model formulation becomes too cumbersome to be estimated using 

existing estimation methods, including the frequentist recursive importance sampling (RIS) 

estimator and the Bayesian Markov Chain Monte Carlo (MCMC) estimator. Instead, we propose 

the use of a maximum approximate composite marginal likelihood (MACML) estimation method 

for the proposed SMDCP model. As we demonstrate, the MACML method is easy to implement, 

requires no simulation, and involves only univariate and bivariate cumulative normal distribution 

evaluations.  

The report undertakes a simulation exercise to evaluate the ability of the MACML 

approach to recover model parameters. The simulation results show that, irrespective of the 

magnitude of spatial and temporal dependences, the MACML estimator recovers the parameters 

of the model very well. The MACML estimator also seems to be quite efficient, and the 

approximation error due to the use of the analytic approximation is very small. Additionally, the 

simulation study demonstrates that ignoring error covariance across the baseline utility of 

alternatives within spatial units, or spatial heterogeneity, or spatial dependence, when present but 

ignored, will introduce substantial bias in model parameters.  

The model system proposed in the current report is applied in a demonstration exercise 

to examine urban land development intensity levels using grid-level data from Austin, Texas.  

The empirical results provide important insights regarding land-use investment in multiple types 

of land-uses simultaneously. The results also indicate the superiority, in terms of data fit, of the 

SMDCP model relative to its restrictive variants. Future efforts need to continue to undertake 

simulation experiments to evaluate the performance of the MACML approach for estimating 

models with spatial dependence, and should also focus on harnessing the potential of the 

proposed SMDCP model for analyzing multiple discrete-continuous contexts in a wide variety of 

disciplines.
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CHAPTER 1: INTRODUCTION

Land-use change models are used in a variety of fields such as planning, urban science, 

ecological science, climate science, geography, watershed hydrology, environmental science, 

political science, and transportation to examine future land-use scenarios as well as to evaluate 

the potential effects of policies directed toward engendering a socially or economically or 

ecologically desirable pattern of future land-use that minimizes negative externalities. More 

recently, there has been substantial attention in the scientific literature on biodiversity loss, 

deforestation consequences, and carbon emissions increases caused by patterns of urban and 

rural land-use development, and associated climate change impacts (for example, see Lewis et 

al., 2011). This is not surprising, since one of the most important "habitat" elements 

characterizing Earth's terrestrial and aquatic ecosystems is the land use pattern (another is 

climate pattern, which is increasingly becoming closely related to the land use pattern). In this 

report, we contribute to the vibrant and interdisciplinary literature on land-use analysis by 

proposing a new econometric approach to specify and estimate a model of land-use change that 

is capable of predicting both the type and intensity of urban development patterns over large 

geographic areas, while also explicitly acknowledging geographic proximity-based spatial 

dependencies in these patterns. As such, the motivations of this report stem both from a 

methodological perspective as well as an empirical perspective. At a methodological level, the 

report focuses on specifying and estimating a spatial multiple discrete-continuous probit 

(MDCP) model that allows the dependent variable to exist in multiple discrete states with an 

intensity associated with each discrete state. The formulation also accommodates spatial 

heterogeneity and heteroscedasticity in the dependent variable, and should be applicable in a 

wide variety of fields where social and spatial dependencies between decision agents (or 

observation units) lead to spillover effects in multiple discrete-continuous choices (or states). At 

an empirical level, the report models land-use in multiple discrete states, along with the area 

invested in each land-use discrete state, within each spatial unit in an entire urban region. The 

model is a hybrid of three different strands of model types used in the land-use analysis 

literature.  

The next section discusses the econometric context for the current report, while the 

subsequent section presents the empirical context.
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1.1. The Econometric Context 

In the past decade, there has been increasing interest and attention on recognizing and explicitly 

accommodating spatial (and social) dependence among decision-makers (or other observation 

units) in urban and regional modeling, agricultural and natural resource economics, public 

economics, geography, sociology, political science, and epidemiology. The reader is referred to a 

special issue of Regional Science and Urban Economics entitled "Advances in spatial 

econometrics" (edited by Arbia and Kelejian, 2010) and another special issue of the Journal of 

Regional Science entitled "Introduction: Whither spatial econometrics?" (edited by Patridge et 

al., 2012) for a collection of recent papers on spatial dependence, and to Elhorst (2009), Anselin 

(2010), Ferdous and Bhat (2013) and Brady and Irwin (2011) for overviews of recent 

developments in the spatial econometrics field. Within the past few years, there has particularly 

been an explosion in studies that recognize and accommodate spatial dependency in discrete 

choice models. The typical way this is achieved is by applying spatial lag and spatial error-type 

structures developed in the context of continuous dependent variables to the linear (latent) 

propensity variables underlying discrete choice dependent variables (see reviews of this literature 

in Fleming, 2004, Franzese and Hays, 2008, LeSage and Pace, 2009, Hays et al., 2010, Brady 

and Irwin, 2011, and Sidharthan and Bhat, 2012). The two dominant techniques, both based on 

simulation methods, for the estimation of such spatial discrete models are the frequentist 

recursive importance sampling (RIS) estimator (which is a generalization of the more familiar 

Geweke-Hajivassiliou-Keane or GHK simulator; see Beron and Vijverberg, 2004) and the 

Bayesian Markov Chain Monte Carlo (MCMC)-based estimator (see LeSage and Pace, 2009).  

However, both of these methods are confronted with multi-dimensional normal integration, and 

are cumbersome to implement in typical empirical contexts with even moderate estimation 

sample sizes (see Bhat, 2011 and Franzese et al., 2010). Recently, Bhat and colleagues have 

suggested a maximum approximate composite marginal likelihood (MACML) inference 

approach for estimating spatial multinomial probit (MNP) models and a composite marginal 

likelihood (CML) inference approach for estimating spatial binary/ordered probit models. The 

MACML approach uses the CML approach, but also makes an additional analytic approximation 

to evaluate the multivariate normal cumulative distribution (MVNCD) function during 

estimation. These methods are easy to implement, require no simulation, and involve only 

univariate and bivariate cumulative normal distribution function evaluations, regardless of the

2



number of alternatives, or the number of choice occasions per observation unit, or the number of 

observation units, or the nature of social/spatial dependence structures.  

At the same time that spatial considerations are receiving widespread attention in the 

discrete choice literature, multiple discrete-continuous (MDC) models have also seen substantial 

application in different disciplines, including regional science (Kaza et al., 2012), transportation 

(Bhat, 2005, 2008, Bhat et al., 2012), time use (Habib and Miller, 2008, Pinjari and Bhat, 2010), 

marketing and retailing (Kim et al., 2002, Allenby et al., 2010, Satomura et al., 2011), energy 

economics (Ahn et al., 2008), environmental economics (see von Haefen et al., 2004, Kuriyama 

et al., 2010), and tourism (LaMondia et al., 2008, Van Nostrand et al., 2013). In MDC situations, 

consumers choose to consume multiple alternatives at the same time, along with the continuous 

dimension of the amount of consumption. Equivalently, the dependent variable exists in multiple 

discrete states, with an intensity associated with each discrete state. Examples of such MDC 

contexts include land-use type and intensity of land-use over a spatial unit, household vehicle 

type holdings and usage, consumer brand choice and purchase quantity, and recreational 

destination location choice and number of trips. While a variety of modeling approaches have 

been used in the literature to accommodate MDC choice contexts, the one that has dominated the 

recent literature is based on a utility maximization framework that assumes a non-linear (but 

increasing and continuously differentiable) utility structure to accommodate decreasing marginal 

utility (or satiation) with increasing investment in an alternative. Consumers are assumed to 

maximize this utility subject to a budget constraint. The optimal consumption quantities 

(including possibly zero investments in some alternatives) are obtained by writing the Karush

Kuhn-Tucker (KKT) first-order conditions of the utility function with respect to the investment 

quantities. Researchers from many disciplines have used such a KKT approach, and several 

additively separable and non-linear utility structures have been proposed. Of these, the general 

utility form proposed by Bhat (2008) subsumes other non-linear utility forms as special cases, 

and allows a clear interpretation of model parameters. In Bhat's utility function form and other 

more restrictive utility forms, stochasticity is introduced in the baseline preference for each 

alternative to acknowledge the presence of unobserved (to the analyst) factors that may impact 

the utility of each alternative (the baseline preference is the marginal utility of each alternative at 

the point of zero consumption of the alternative). As in traditional discrete choice models, the 

most common distributions used for the kernel stochastic error term (across alternatives) are the 

generalized extreme value (GEV) distribution (see Bhat, 2008, Pinjari, 2011, Castro et al., 2012)
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and the multivariate normal distribution (see Kim et al., 2002 and Bhat et al., 2013). The first 

distribution leads to a closed-form MDC generalized extreme value (or MDCGEV) model 

structure, while the second to a MDC probit (or MDCP) model structure. In both these structures, 

the analyst can further superimpose a mixing random distribution of coefficients in the baseline 

preference to accommodate unobserved heterogeneity across consumers (or observation units).  

Assuming a normal mixing error distribution, the use of a GEV kernel error term leads to a 

mixing of the normal distribution with a GEV kernel (leading to the mixed MDCGEV model or 

MMDCGEV structure), while the use of a probit kernel leads back to an MDCP model structure 

(because of the conjugate nature of the multivariate normal distribution in terms of addition). In 

this report, we will use the MDCP structure because it allows us to use the MACML inference 

approach even in the presence of spatial dependence. This is the first such formulation and 

application of a spatial MDCP model in the econometric literature. 1 

1.2. The Empirical Context 

There are several approaches to studying and modeling land-use change. Irwin and Geoghegan 

(2001) and Irwin (2010) provide a good taxonomy of these approaches. In the current report, we 

derive our empirical discrete choice model based on drawing elements from three different types 

of models proposed and applied in the literature.  

The first type of models, usually referred to as pattern-based models and developed by 

geographers and natural scientists, is well suited for land-use modeling over relatively large 

geographic extents (such as urban regions or entire states or even countries). The unit of analysis 

in these pattern-based models is typically an aggregated spatial unit (such as a large grid or a 

traffic analysis zone or a Census tract or a County or a State). One basis for these models 

originates from the mathematical representations of the discrete state of a cell (a very fine 

disaggregate unit of space) as a deterministic or probabilistic function of the states of 

neighboring cells in an earlier time period (see, for example, Wu and Webster, 1998, Clarke et 

al., 1997, Engelen and White, 2008). In these cellular automata-based models, the analyst 

hypothesizes the nature of the deterministic or probabilistic updating functions, simulates the 

states of cells over many "virtual" time periods, and aggregates up the states of the cells at the 

A couple of recent studies using an MDC structure have accommodated spatial effects in the systematic component 

of utility (see Kaza et al., 2012 and Richards et al., 2012). However, these models are no different from aspatial 
MDC models from a formulation and estimation standpoint, since the resulting model is the closed-form MDCEV 
model.
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end to obtain land-use patterns. While such models may be able to "fit" the land-use patterns at 

the aggregated spatial unit level, the imposed updating functions are not based on actual data.  

Thus, there is no direct evidence linking the updating mechanism at the cell level to the spatial 

evolution of land-use patterns at the aggregate spatial unit level. Also, since such models do not 

use exogenous variables such as sociodemographic characteristics of spatial units, transportation 

network features, and other environmental features as the basis for explaining land-use, the 

policy value of these models is limited. An alternative basis of pattern-based models is to use 

empirical models estimated at the aggregate spatial unit level that relates variables such as 

distance to urban center, pedoclimatic or biophysical factors of the land in the spatial unit (such 

as slope, water content, aeration, and elevation), and transportation network and accessibility 

variables to land-use patterns (see, for example, Landis and Zhang, 1998a,b, Brown et al., 2000, 

Parker et al., 2003, Brown and Duh, 2004, Robinson and Brown, 2009). Once estimated, these 

models can be used in a simulation setting to predict land-use patterns in response to different 

exogenously imposed policy scenarios. Unfortunately, these empirical models have not been 

formulated in a manner that appropriately recognizes the multiple discrete-continuous nature of 

land-use patterns in the aggregated spatial units. Further, these models typically do not 

adequately consider population characteristics of spatial units in explaining land-use patterns 

within that unit.  

The second type of models, usually referred to as process-based models and considered 

by economists, is based on explicitly modeling landowners' decisions of land-use type choice for 

their parcels. The most important aspect of these process-based models is that they explicitly 

consider the human element in land-use modeling; that is, landowner decisions (regarding the 

type of land-use to invest their parcel in), as influenced by a suite of economic, biophysical, 

accessibility, and policy variables, are acknowledged as the fundamental drivers of land-use 

patterns. The emphasis is on using the land-owner as the unit of analysis, rather than a piece of 

land. To elucidate, landowners are considered as economic agents who make forward-looking 

inter-temporal land use decisions based on profit-maximizing behavior regarding the conversion 

of a parcel of land to some other economically viable land use (for example, see Capozza and Li, 

1994 and Towe et al., 2008). The stream of returns from converting a parcel from the current 

land-use to some other land-use is weighed against the costs entailed in the conversion from the 

current land-use to some other land-use. The premise then is that the land use at any time will 

correspond to the land use type with the highest present discounted sum of future net returns
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(stream of returns minus the cost of conversion). Such process-based models allow for the 

analysis of a rich set of policy scenarios, by enabling the modeling of individual-level behavioral 

changes to exogenously imposed policy scenarios. However, in addition to difficulties associated 

with incorporating spatial considerations at this micro-level, the data and computing demands 

can be very high when using process-based models, especially when the analysis is being 

conducted at the level of entire urban regions or states in a country (see Kaza et al., 2012).  

Further, individual landowners may not have carte blanche authority to develop their land any 

way they want to, because of the presence of land-use and zoning regulations. Besides, multiple 

parcels in very close proximity tend to get similarly developed, because multiple parcels can be 

under the purview of a single decision-making agent such as a county board or a community 

board (see McMillen and McDonald, 1991, Mayer and Somerville, 2000, Munroe et al., 2005).  

The third type of models, referred to as spatial-based models, puts emphasis on spatial 

dependence among spatial units (in pattern-based models) or among landowners (in process

based models), as caused by diffusion effects, or zoning and land-use regulation effects, or social 

interaction effects, or observed and unobserved location-related influences (see Jones and 

Bullen, 1994, and Miller, 1999). Indeed, as expressed by Tobler's (1970) first law of geography, 

"everything is related to everything else, but close things more so". While some of these 

proximity-based spatial effects may be accommodated through the appropriate construction of 

spatial variables (such as accessibility to city centers and market places), there will inevitably be 

unobserved spatial variables (such as say neighborhood soil quality or attitudes/politics) that will 

create unobserved dependencies in land-use patterns of proximally located spatial units. Several 

different spatial formulations have been considered in land-use modeling to accommodate such 

spatial dependencies, though the two most dominant remain the spatial lag and spatial error 

formulations. Of these, the spatial lag structure is more appealing. 2 The spatial lag formulation 

also generates spatial heteoscedasticity. In addition to the spatial lag-based and resulting 

heteroscedasticity effects just discussed, it is also likely that there is spatial heterogeneity (i.e., 

2 As emphasized by McMillen (2010), it is much easier to justify a parametric spatial lag structure when 

accommodating spatial dependence, while the use of a parametric spatial error structure is "troublesome because it 
requires the researcher to specify the actual structure of the errors". Beck et al. (2006) also find theoretical and 
conceptual issues with the spatial error model and refer to it as being "odd", because the formulation rests on the 
"hard to defend" position that "space matters in the error process but not in the substantive portion of the model". As 
they point out, the implication is that if a new independent variable is added to a spatial error model "so that we 
move it from the error to the substantive portion of the model", the variable magically ceases to have a spatial 
impact on neighboring observations. Of course, the procedure developed here can also be extended to Spatial Durbin 
and other spatial specifications, but we leave these for future application efforts. The basic concepts we propose here 
to accommodate spatial dependence in MDCP models are the same regardless of the spatial dependence structure.

6



differences in relationships between the dependent variable of interest and the independent 

variables across decision-makers or spatial units in a study region (see, Fotheringham and 

Brunsdon, 1999, Bhat and Zhao, 2002, Bhat and Guo, 2004). Thus, it behooves the analyst to 

accommodate local variations (i.e., recognize spatial non-stationarity) in the relationship across a 

study region rather than settle for a single global relationship.  

In the current study, we adopt an aggregate spatial unit of analysis of a quarter-of-a-mile 

square grid cell to study land-use over an entire urban region of Austin, Texas, with each grid 

having the "option" of investing (and converting) from one package of land-uses to another 

alternative package of land-uses. In doing so, some grids can invest entirely in a single land-use.  

The grid-level land-use is obtained by aggregating underlying parcel-level land-use information.  

However, we supplement this pattern-based modeling view with a process-based modeling view.  

Specifically, while the clear linkage between parcels and their human landowners in typical 

process-based models is admittedly not present, we consider a rich set of population 

demographics of the citizenry of each aggregate grid to approximate a collective decision

making process for that grid. In addition, the land-use in a grid may also be determined by 

community or county boards through zoning regulations. Besides, by using a grid size that is not 

too aggregate, we retain some of the process-based model characteristics of having a connection 

between the spatial unit of analysis and human decision-makers. But since there is no clear label 

possible for the decision-maker of a grid, we will use the terminology of the "grid" both as a 

spatial unit of analysis as well as the decision-maker for the spatial unit of analysis. The hybrid 

model just discussed is further enhanced by considering all the spatial analysis aspects 

considered in spatial-based models. Thus, while Kaza et al. (2012) also consider a hybrid land

use model based on Bhat's (2008) MDCEV model, we consider the important spatial issues of 

dependence and heterogeneity due to unobserved as well as observed factors, as well as the 

resulting spatial heteroscedasticity, in our modeling approach. We also accommodate a general 

covariance matrix for the utilities of grid investments in the land-use categories. In 

accommodating all these effects, we adopt an MDCP model rather than the MDCEV model, 

since it is next to impossible to incorporate global spatial issues within the MDCEV structure 

when dealing with even a moderate number of spatial units.
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CHAPTER 2: MODELING METHODOLOGY 

2.1. Model Formulation 

We derive the spatial MDCP model in the empirical context of the type and intensity of land-use 

over a grid, though the same formulation can be used in the many other multiple discrete

continuous contexts identified in Section 1.1. Also, in the discussion in this section, we will 

assume that each grid has the potential to invest in all possible land-uses. The case when some 

grids cannot be developed for specific land-use purposes (say, due to zoning or hazard mitigation 

restrictions) poses no complications whatsoever, since the only change in such a case is that the 

dimensionality of the integration in the likelihood contribution changes from one grid to the next.  

The next section presents the set-up for the aspatial MDCP model in a way that makes it 

convenient to extend to the spatial MDCP set-up discussed in the subsequent section.  

2.2. The Aspatial MDCP Model 

Let q (q =1,2,..., Q) be the index for grids and let k (k =1,2,..., K) be the index for land use 

types. In the empirical context of this report, the alternative land use types include (1) residential 

land-use (including single family, duplexes, three/four-plexes, apartments, condominiums, 

mobile homes, group quarters, and retirement housing), (2) commercial land-use (including 

commercial, office, hospitals, government services, educational services, cultural services, and 

parking), (3) industrial land-use (including manufacturing, warehousing, resource extraction 

(mining), landfills, and miscellaneous industrial), and (4) undeveloped land-use (including open 

and undeveloped spaces, preserves, parks, golf courses, and agricultural open spaces). The last 

among these alternatives serves as an "essential outside good" in that all grid cells inevitably will 

have at least some of their land area that remains undeveloped. 3 

3 The presence of the "undeveloped" land use category as an outside good ensures that each grid is invested in at 
least one of the alternatives. This is in the spirit of the Hicksian composite commodity approach in consumer theory 
in that one replaces all the elementary alternatives that are not of primary interest (for example, the non-built up 
land-use types in the empirical analysis of the current report) by a single composite "undeveloped" land use. The 
analysis proceeds then by considering the composite good as an "outside" good and modeling consumption in this 
outside good as well as in the more finely categorized "inside" goods representing the group of main interest to the 
analyst (in this case, the alternatives other than the undeveloped land-use category). This approach is very general, 
and can be used to study any categorization of land-use types. For example, in some land-use and climate change 
studies, the amount of area in dense vegetation may be the focus of interest, in which case the area in dense 
vegetation may be included as an "inside" land use category, while still maintaining other kinds of undeveloped land 
and perhaps even built-up land uses as an "outside" category. Finally, we should note that the model developed in 
this report can be easily modified to the case when there is no outside category, and zero investment is possible in all 
land-use categories.
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Following Bhat (2008), grid q's allocation of its land area Eq among the K alternative land-uses 

is assumed to be based on a utility-maximizing function subject to the binding land area 

constraint: 

max Uq(xq)= 2'I Yqk +1 qK -1 + y KXqK + yqK)aqK (1) 
k=1 aqk Yqk aqK 

K 

S.t.*Lx*qk =Eq 
k=1 

where the utility function Uq (Xq) is quasi-concave, increasing and continuously differentiable, 

Xq 0 is the land-use investments for grid q (vector of dimension K x1 with elements xqk), and 

Yqk, aqk, and Yqk are parameters associated with land-use type k and grid q. The utility function 

form in Equation (1) allows corner solutions (i.e., zero consumptions) for the land-use 

alternatives 1 through K -1 through the parameters Yqk, which allow corner solutions for these 

land-use alternatives while also serving the role of satiation parameters 

(Yqk >0: k =1, 2,...,K-1;q=1, 2,...,Q).On the other hand, the functional form for the final 

land-use alternative (the undeveloped land-use alternative) ensures that some land in each grid is 

in an undeveloped state. The magnitude of YK may be interpreted as the lower bound of the land 

in an undeveloped state (Bhat, 2008). In the above formula, we need Yk >0 and for 

k =1, 2,...,K -1 and YK 0. Also, we need xK+YK >0. The role of aqk is to capture satiation 

effects, with smaller value of aqk implying higher satiation for land-use alternative k. 'rqk 

represents the stochastic baseline marginal utility; that is, it is the marginal utility at the point of 

zero parcel area under land use k.  

The utility function in Equation (1) constitutes a valid utility function if, in addition to the 

constraints on the Yqk parameters as discussed above, aqk< 1, and 'qk 0for all q and k. Also, 

as indicated earlier, Yqk and aqk influence satiation, though in quite different ways: Yqk controls 

satiation by translating consumption quantity, while aqk controls satiation by exponentiating 

consumption quantity. Empirically speaking, it is difficult to disentangle the effects of Yqk and 

aqk separately, which leads to serious empirical identification problems and estimation
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breakdowns when one attempts to estimate both parameters for each good. Thus, Bhat (2008) 

suggests estimating a y -profile (in which aqk ->÷0 for all goods and all consumers, and the yqk 

terms are estimated) and an a -profile (in which the yqk terms are normalized to the value of one 

for all goods and consumers, and the aqk terms are estimated), and choose the profile that 

provides a better statistical fit.4 However, in this section, we will retain the utility form of 

Equation (1) to keep the presentation general. But, for notational simplicity, we will drop the 

index "q" from the Yqk and aqk terms in the rest of this report.5 

To complete the model structure, the baseline utility Y'qk, which has to be non-negative, 

is parameterized as follows for each alternative: 

VIqk = exp(Zk, qk) = exp(fJqqk + qk) or k= n(ylqk) = fl~qk + ~qk' (2) 

where i,, is a D-dimensional vector of attributes that characterizes land-use type k and grid q 

(including a dummy variable for each alternative except the last outside alternative, to capture 

intrinsic preferences for each alternative relative to the last alternative), f3q is a grid-specific 

vector of coefficients (of dimension D x 1), and qk captures the idiosyncratic (unobserved) 

characteristics that impact the baseline utility of land-use type k and grid q. We assume that the 

error terms qk are multivariate normally distributed across land-use alternatives for a given grid 

q: q= ( q1 -q2-...,I qK) MVNK (OK ,A), where MVNK (OK, A) indicates a K-variate normal 

distribution with a mean vector of zeros denoted by OK and a covariance matrix A. Further, to 

allow heterogeneity in responsiveness to exogenous variables across grids (i.e., spatial 

heterogeneity), we consider flq as a realization from a multivariate normal distribution with 

mean vector b and covariance Q = LL'. That is, flq MVND (b, 1). It is not necessary that all 

4 The y-profile equivalent of Equation (1) is Uq (Xq) = Yqkgk k n +1 + Y'qK lfl{XqK + yqK }, and the a-profile 
k=1 

aK 

equivalent is Uq (Xq) = K-i 1 {(Xqk +k IqKX 
k=1 aqk +qK 

5 In practice, if a y-profile is used, the parameter yqk can be allowed to vary across grid by parameterizing it as an 

exponential function of relevant grid-specific variables. On the other hand, if an a-profile is used, the parameter 
aqk can be parameterized as one minus the exponential function of relevant grid-specific attributes.
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elements of flq be random; that is, the analyst may specify fixed coefficients on some 

exogenous variables in the model, though it will be convenient in presentation to assume that all 

elements of flq are random. The vectors fq and q are assumed to be independent of each 

other. For future reference, we also write /3q = b + /q,, where /lq MVND (OD, 1 '6 

As in the multinomial probit model, only differences in the logarithm of the baseline 

utilities matter, not the actual logarithm of the baseline utility values (see Bhat, 2008). Thus, it 

will be easier to work with the logarithm of the baseline utilities of'the first K -1 alternatives, 

and normalize the logarithm of the baseline utility for the last alternative to zero. That is, we 

write: 

Y -qk /* - '* ~ qk qKq qk-qK 

='Zk+8Eqk, Zqk Zqk-ZqK kqk =( qk qK)V k # K (3) 

YqK K -qK =0 fork = K.  

It should be clear from above that only the covariance matrix, say A of the error differences 

Sqk = @qk - qK), is estimable, and not the covariance matrix A of the original error terms.  

Further, with the formulation as in Equation (1), where the sum of the investments across land

use types (which constitute the dependent variables) is equal to the total land area in the grid, an 

additional scale normalization needs to be imposed (see Bhat, 2008). A convenient normalization 

is to set the first element of A (that is, A 11 to one). Further, technically speaking, the fully 

unrestricted substitution pattern implied by the full covariance matrix for A comes at the 

expense of rendering the estimated parameters of the A matrix completely uninterpretable (see 

Train, 2009; page 113 for a similar discussion in the case of traditional multinomial probit 

models). The approach we adopt in this report to make the parameters behaviorally interpretable 

is to impose the not-so-implausible structure that, for each grid, the error term of the "outside" 

alternative qK is independent of the error terms of the inside alternatives qk (k =1, 2,..., K -1).  

With this assumption, each covariance matrix element of A can then immediately be interpreted 

6 Note, however, that the parameters (in the fq vector) on the dummy variables specific to each alternative (except 
the last) have to be fixed parameters in the cross-section model, since their randomness is already captured in the 

covariance matrix A.
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as a direct indicator of the extent of variance and covariance in the utilities of the inside 

alternatives.7 

The analyst can solve for the optimal consumption allocations corresponding to Equation 

(1) by forming the Lagrangian and applying the Karush-Kuhn-Tucker (KKT) conditions. The 

Lagrangian function for the problem, after substituting Ygqk exp(yiik) (equal to 

exp(flzqk + Sqk) for k =1, 2,..., K -i and equal to exp(0) =1 for k = K) in Equation (1) is: 

Lq = KYk exp(b'zqk +f;Zqk +6qk{ ( +1 -1+1 ,K+K a , k _- E (4) 
k=1 ak k aK _k=1 

where 29 is the Lagrangian multiplier associated with the land area constraint (that is, it can be 

viewed as the marginal utility of total land area). The KKT first-order condition for the "optimal" 

investment xqK in undeveloped land (which is always positive for each grid) implies the 

following: (xK + YK )aK-1 - A1q=0; that is, Aq = (X;K + YK )aK1. The KKT first-order conditions 

for the optimal land investments for the inside alternatives (the xk values for k =1, 2,..., K -1) 

are given by: 

a 

exp(b'zk +fz+qk+8qk) xk+1 -- q =0 ,if Xk > 0, k =1,2,..., K -1 (5) 

exp(b'zqk+fl zqk +Sqk) ij+1 -Aq<O, if xqk =0, k=1,2,...,K-1 
Yk 

Substituting Zq = (xK+ YK )aKl into the above Equation, and taking logarithms, we can rewrite 

the KKT conditions as: 

7 To be precise, assume that the variance of qK is 0.5. Then, to normalize A 11 to one, we should have that the 

variance of q1 is also 0.5. Let the variance of qk (k =2,3,..., K -1) be ou and the covariance between qk and 

xqk,(k =1, 2, 3,..., K -1; k # k') be kk,. Then, the matrix A of the error differences -qk = ( qk - qK) is: 

1 0.5+a12  
0 .5+O 3  ... 0.5+Jl,K-1 

0.5+612  0.5+U 2  0.5+62 3  ... O.5+a2K-1 

A= 0.5+613 0.5+623  0.5+ 3  -..- 0.5+03,K-1 

0.5+071,K-1 0.5+ +2,K-1 0.5+ 63,K-1 -... 0.5+ 6K 1
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Yqk =(Vk-VqK) +qk =0, if Xqk > 0, k =1, 2,..., K -1 (6) 

yqk =(Vqk--VqK) + qk <0if Xqk =0 , k =1, 2,..., K -1 

where Vqk=b'Z+-(ak1){In k +1 for k=1,2,...,K-1, VqK=(aKK-1)ln(x +yK), and 

6qk = flqZqk + 8 qk* 

2.3. The Spatial MDCP (or SMDCP) Model 

We retain all notations from the aspatial model, and begin the formulation of the spatial model 

from Equation (3), and write the logarithm of the baseline utilities (taken as the difference from 

the logarithm of the baseline utility of the last alternative) for the alternatives as follows: 

'Wk = Zk++qk + 8k Wqq,, @qk' for k =1,2,...,K-1 

q' (7) 
WqK =0 for k = K.  

The only difference from Equation (3) is the presence of the component 8k Wq, ,k in the 
q 

logarithm of the baseline utilities for the inside alternatives. This component takes the typical 

spatial lag specification used extensively in spatial econometrics, and causes the logarithm of the 

baseline utilities to be spatially interdependent across grids based on the spatial proximity of 

grids. In particular, w9, is a distance-based spatial weight corresponding to grids q and q' (with 

wqq =0 and Y Wqq, =1) for every q, and 8 k (0< (k <1) is the spatial lag autoregressive 
q' 

parameter specific to land-use type k (k =1, 2, ... , K -1) .8 

8 Unlike other spatial econometric studies in the context of traditional unordered discrete choice (such as Sener and 

Bhat, 2012 and Sidharthan and Bhat, 2012) that do not allow the spatial lag parameter to vary across alternatives, we 
allow this parameter to vary across alternatives in the current study, as should be obvious from the subscript k in bk.  
This is because of an important nuance. In the current study, the spatial dependence patterns for the first K-1 
alternatives effectively determine the spatial pattern for the last Kth alternative (because of the land-use constraint).  
We expressly acknowledge this "identification" problem in spatial dependence by not allowing the spatial lag on the 
Kth alternative (that is using this Kth alternative as the base for introducing spatial dependence effects). Of course, 
this Kth alternative is easily identified in the current report as the "outside" alternative that is always chosen.  
However, in traditional discrete choice models where only one "inside" alternative can be chosen (and a similar 
identification problem arises because only utility differences matter), deciding which alternative to use as the base 
for introducing spatial dependence is not at all clear. Importantly, the determination of the base alternative for spatial 
dependence effects is not innocuous, since different results would be obtained by using different alternatives as the 
base (this exchangeability problem has seldom been discussed in the literature). This is the reason that earlier studies

14



We now set out additional notation to write the baseline utility in a compact form. Define 

the following: 

Wq = ( q1,Yq2,--,q,K-1)" ,q = ( ql, q2, "', q,K-1)' [(K -1) x 1 vectors] 

W =(i',, = =(l',**2,..., eg)' [Q(K -1) x 1 vectors] 

Zq = (zqi, Zq2,..., zq,K-1)' [(K -1) x D matrix], z = (z', z',..., z)' [Q(K -1) x D matrix], and 

/=(/3,,i ,..,//Q)' (QD x vectorr.  

Let EDEN K be the identity matrix of size K. Also, define the following matrices: 

Z, 0 0 ... 0 

0 z2  0 ... 0 

i= 0 0 z3  ... 0 [Q(K -1) x QD matrix ], and (8) 

0 0 0 ... ZQ 

81 0 0 ... 0 

0 82 0 ... 0 

b= 0 0 83 ... 0 [(K -1)x (K -1) matrix] (9) 

0 0 ... 8K-1 

Let W be the (Q x Q) weight matrix with weight W, as its elements, and let leg be a 

(Q x Q) matrix with each element taking the value of one. Next, define 

W = (lg K0).*i(W)IDENK-), where "0" is the kronecker product and ".*" stands for the 

element-by-element multiplication of two matrices. Let 

S = IDEN Q(K1) - WY1 [Q(K -1) x Q(K -1) matrix]. Then, we can write Equation (7) for all 

alternatives k (k =1, 2,...., K -1) and all grids q =1, 2, ... , Q in matrix notation as: 

S= S(zb+z +E)= Szb+S(zfl+c) [Q(K-1)x1 vector] (10) 

Let [.], indicate the eth element of the column vector [.], and let dqk = (q -1)K + k. Equation 

(10) can be equivalently written as: 

of traditional unordered discrete choice models impose the same spatial lag parameter for all alternatives, which 
resolves the identification problem as well as does not have the problem of non-unique results.
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Y'qk = [SZb]dq+ d+ +'k=12,...,K -1. (11) 

Using the same approach as for the aspatial case, the KKT conditions for the land-use pattern for 

each grid q take the same form for yqk as in Equation (6) with the new definitions of 

Vq (k=1,2,...,K-1), VK, and 6qk as follows: 

Vq =[Szb]dq k-(ak k-1) n Yk+1 for k=1,2,...,K-1, (12) 

VqK (cKKK1)ln x>+Kand qk[SI+8)].  

Now, stack the elements yk (k =1, 2, ... , K -1) in the following order: 

Yq = (Yqi'Yq2,"-,Yq,K-1), a (K -1) xl1vector, and (13) 

y* = (Y, y* ,..., y*)' a (Q x (K -1)) x vector 

Define the following additional matrices: 

Bq = (Vq --VqK, Vq2-qK,...'q,K-1 ~qK)j' [(K -1) x 1 vector], (14) 

B =(B',B',..., B)' [Q(K -1) xl vector] 

It is easy to see that y* has a mean vector of B. To determine the covariance matrix of y*, define 

the following additional matrices: 

A = IDEN Q0O A [Q(K-1)xQ(K-1)matrix], 

S= (IDENQ 0 f2)z' [Q(K -1) x Q(K -1) matrix], and (15) 

w= S[X+h]S' [Q(K -)x Q(K-1)matrix].  

Then, we obtain that y* ~ MVNQx(K-1) (B,1I).
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CHAPTER 3: MODEL ESTIMATION

3.1. Development of the Maximum Likelihood Estimator 

Let a=(a,a2,...,aK) and = (7 '72'"K)'. The parameters to estimate in the spatial MDCP 

model include the a parameter vector (if an a -profile is used) or the y parameters vector (if a 

y -profile is used), the b vector, the elements of the spatial lag parameter matrix 6 , and the 

covariance matrices - A and A . Let 0 be the collection of these parameters: 

0 = [a' or y;b',Vech(S),Vech(A),Vech(A)], where Vech(A) and Vech (S) represents the 

column vector of upper triangle elements of A and fl, respectively, and Vech (b) represents the 

column vector of diagonal element of b6.  

Next, partition the vector y * into a sub-vector yNc of length LNCX1 

([0 LNC Q(K- 1)]) corresponding to the grid and land-use type combinations in which there 

is no land investment, and another sub-vector 1j* of length LC x 1 ([0 _ LC Q(K -1)]) for the 

grid and land-use type combinations in which there is land investment ([LNC +LC =Q(K -1)]).  

In forming the sub-vector j* , the outside alternative is not included. Let j* = Iv I, ,I> 

which may be obtained from y* as y* = Ry* , where R is a re-arrangement matrix of 

dimension Q(K -1) x Q(K -1) with zeros and ones. For example, consider the case of three grids 

and five land-use alternatives. The last alternative is the "undeveloped" land-use state, which is 

the outside alternative. Among the remaining four alternatives, let grid 1 be invested in 

alternatives 1 and 4 (not invested in alternatives 2 and 3), let grid 2 be invested in alternatives 2 

and 3 (not invested in alternatives 1 and 4), and let grid 3 be invested in alternative 1 (not 

invested in alternatives 2, 3, and 4). In this case, LNC =7 and Lc = 5. Then, the re-arrangement 

matrix R is:
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0 1 0 0 0 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 1 0 0 0 0 

0 0 0 0 0 0 0 0 0 1 0 0 

R -0 0 0 0 0 0 0 0 0 0 1 0 RNC (6 

0 0 0 0 0 0 0 0 0 0 0 1 R 

1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 

0 0 0 0 0 1 0 0 0 0 0 0 

0 0 0 0 0 0 1 0 0 0 0 0 

0 0 0 0 0 0 0 0 1 0 0 0 

where the upper sub-matrix RNC corresponds to the grid and land-use alternative combinations 

with no land investment (of dimension LNC x Q(K -- 1)) and the lower sub-matrix RC 

corresponds to the grid and land-use alternative combinations (excluding the outside alternative 

for each grid) with positive land investment (of dimension L c x Q(K -1) ). Note also that 

YNC = R NCy* and y* = Rcy* 

Consistent with the above re-arrangement, define II= RB , HNC = RNCB, 

$c =RCBand E = RER' . Let x * be the vector of investment amounts in each of the land

use alternatives for grid q: x* = (x;*,x2,---xK1)'. Define x*_ =[x*],[x* ,...Ix ] . Then, the 

maximum likelihood function may be obtained as: 

LNC_ 

L ML (O) = Prob(X ) = det(J)f fQ(K-1) (h NC 90 L B, ihNC , 17 

hNCo00 

where det(J) is the determinant of the Jacobian of the transformation from y* to the 

consumption quantities x* (see Bhat, 2008). The matrix J of dimension (Lc x Lc) is block

9 RNC has as many rows and columns as the number of grid and land-use alternative combinations with no land 

investment (each column corresponds to an alternative except the Kh alternative). Then, for each row, RNC has a 

value of "1" in one of the columns corresponding to a grid- alternative combination that is not invested in (starting 

from the first alternative that is not invested in for the first grid and working down to the last alternative that is not 

invested in for the last grid). Each row has strictly one column with a value of "1" and the value of "0" everywhere 

else. A similar construction is involved in creating the Rc matrix.
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diagonal with each block matrix Jq of size (LqC x LqC) corresponding to a specific grid q (LqC is 

the number of inside alternatives in which grid q is invested in). The block diagonality of J 

ay*k 
arises because = 0 for all q # q' and k,h e LqC (Lqc is the set of inside alternatives in 

axq q 
q'h 

which grid q is invested, so that LqC is the cardinality of the set Lqc ; for future use, we will also 

define LqNC as the set of alternatives in which grid q is not invested in, with LqNC being the 

cardinality of the set LqNC). Let LqC be the set of all land-use alternatives in which grid q is 

invested in (that is, those in the set Lqc plus the outside alternative K). Using the derivation 

approach in Bhat (2005) for each block matrix J q, and due to the block-diagonality of the larger 

matrix J, we are able to write: 

det(J)= fl f 72 {k x K +L17 4(18) 
q=1 keLqc qk + Yk kELgc 1 k 

The likelihood function in Equation (17) involves integration of dimension LNC . This is of very 

high dimensionality in the typical case of sample sizes of 500 grids or more. The lower bound of 

LNC is equal to zero, corresponding to the case when each grid is invested in each land-use 

alternative. The upper bound is equal to (K -1) * Q, corresponding to the case when each grid is 

invested in only the undeveloped (outside) land-use alternative state. Of course, in practice, the 

situation will be somewhere between these two extreme values for LNC, but the value for LNC will 

be sufficient to render maximization of the likelihood function using traditional simulation 

methods almost impractical. In particular, existing estimation methods, including the Maximum 

Simulated Likelihood (MSL) method and the Bayesian Inference method, become cumbersome 

and encounter convergence problems even for moderately sized Q (Bhat et al., 2010). In this 

report, we instead use Bhat's Maximum Approximate Composite Marginal Likelihood 

(MACML) inference approach for estimation.  

3.2. The MACML Approach 

The MACML approach combines a composite marginal likelihood (CML) estimation approach 

with an approximation method to evaluate the multivariate standard normal cumulative
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distribution (MVNCD) function. The composite likelihood approach replaces the likelihood 

function with a surrogate likelihood function of substantially lower dimensionality, which is then 

subsequently evaluated using an analytic approximation method rather than simulation 

techniques. This combination of the CML with the specific analytic approximation for the 

MVNCD function is effective because it involves only univariate and bivariate cumulative 

normal distribution function evaluations, regardless of the spatial and/or temporal complexity of 

the model structure. The approach is able to recover parameters and their covariance matrix 

estimates quite accurately and precisely because of the smooth nature of the first and second 

derivatives of the approximated analytic log-likelihood function (unlike the non-smooth first and 

second derivatives that arise in simulation approaches). The MVNCD approximation method is 

based on linearization with binary variables (see Bhat, 2011).  

The MACML approach, similar to the parent CML approach, maximizes a surrogate 

likelihood function that compounds much easier-to-compute, lower-dimensional, marginal 

likelihoods (see Varin et al., 2011 for a recent extensive review of CML methods; Lindsay et al., 

2011, Bhat, 2011, and Yi et al., 2011 are also useful references). The CML approach, which 

belongs to the more general class of composite likelihood function approaches (see Lindsay, 

1988), may be explained in a simple manner as follows. In the SMDCP model, instead of 

developing the likelihood function for the entire set of Q observations, as in Equation (17), one 

may compound (multiply) pairwise probabilities of grid q having the land-use pattern x*, grid 

q' having the land-use pattern x,, grid q" having the land-use pattern x,*, and so on. The 

CML estimator (in this instance, the pairwise CML estimator) is then the one that maximizes the 

compounded probability of all pairwise events. The properties of the CML estimator may be 

derived using the theory of estimating equations (see Cox and Reid, 2004, Yi et al., 2011).  

Specifically, under usual regularity assumptions (Molenberghs and Verbeke, 2005, page 191, Xu 

and Reid, 2011), the CML estimator is consistent and asymptotically normal distributed (this is 

because of the unbiasedness of the CML score function, which is a linear combination of proper 

score functions associated with the marginal event probabilities forming the composite 

likelihood; for a formal proof, see Yi et al., 2011 and Xu and Reid, 2011).  

To write the pairwise CML function, let LqqNC = Lq,Nc +Lq,NC and Lq,c = Lc +Lqc

Define a vector yq, of size [2(K -1) x 1] as follows:
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y,*, = 1y*I, [y,*, ,(19) 

Let Aqq' be a selection matrix of size 2 x Q. This matrix has the value of "1" in the top row and 

the column q, and the value of "1" in the bottom row and column q'. All other cells of this 

matrix are filled with values of zero. Then, Yqq', ~ VN2x(K-1) (Bqq,, Eqq), where 

Bqq, =(Aqq IDEN K-1)B, and qq=(Aqq0 IDEN K-1 ) ,' EK-1)'. Next, define the 

re-arrangement matrices Rqq, (of dimension 2(K -1) x 2(K -1)), Rqq',NC (of dimension 

Lqq,NC x 2(K -1)), and Rqq,,C (of dimension Lq,,C x 2(K -1)) similar to the corresponding re

arrangement matrices defined on the entire sample for the maximum likelihood approach. Also, 

define ;,,NC= qq',NCB qq, qq',C = RqqC Bqq andY qq = R qq qqR'q, = qq',NC qq',NC,C 

Lqq',NC,C qq',C ] 

where iqq',NC- qqq',NC qq' gqqNC, qq',C- Rqq',C qq' qq',Ca qq',NC,C Rqq',NC qq' qq',C . Let 

,,',NC -qNC + qq',NC,C (Iqq',C) (B'q,C qq',NC ~ qq',NC q',NC,C qq',C q',NC,C 

BqqC = 2 C - c ,B'q,NC ( q', NC ,'NC qq',NC = CO qq',NC ',and 

*qq'C= q w1 where co is the diagonal matrix of standard deviations of Eqq',NC 
Lq Cqq' , C iqq,C qq',NC q'N 

and ov is the diagonal matrix of standard deviations of EqqC Let (Ai be the product of the ~qq',C qq ,C 

diagonal elements of o, , and write the determinant of the Jacobian corresponding to grids 

q and q' as det(Jqq)= J[ 10 } K xk +7k Then, using the marginal and 
l=q,q' kELic Xlk+Yk keLic 1 - ak 

conditional distribution properties of the multivariate normal distribution, the pairwise CML 

function for the SMDCP model can be written as: 

LCML () = Prob(xx ) 

-11 [J det(Jqq,) x ( wEc) kLqc (Bq,,,*q',C xf Lqq'NC ,'qNC,qq,NC 
q=1 q'qJ 

The CML function above requires the computation of the multivariate normal cumulative 

distribution (MVNCD) function that is utmost of dimension (K -1) * 2 integrals (instead of
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(K -1) * Q in the full maximum likelihood case). Such integrals may be computed easily using 

the MVNCD approximation method embedded in the MACML method (the MVNCD function 

approximates the pairwise probabilities in Equation (20) using only univariate and bivariate 

cumulative normal distribution functions; see Bhat, 2011).  

The CML estimator is obtained by maximizing the logarithm of the function in Equation 

(20). Since the CML estimator entails only the computation of bivariate cumulative normal 

distribution functions, it is extremely quick to evaluate. The covariance matrix in the CML 

approach is given by the inverse of Godambe's (1960) sandwich information matrix (see Zhao 

and Joe, 2005). Bhat (2011) exploits the fading spatial dependence pattern implied by the spatial 

lag structure (due to the decaying nature of the distance weight matrix, combined with the spatial 

lag parameter being less than 1) to propose a specific implementation of Heagerty and Lumley's 

(2000) windows sampling procedure to estimate this sandwich information matrix.  

The pairwise CML function of Equation (20) comprises Q(Q -1) /2 grid pairs of 

probability computations. To further accelerate the estimation, one can reduce the number of grid 

pairs because spatial dependency drops quickly with inter-grid distance. In fact, as demonstrated 

by Bhat et al. (2010) and Varin and Czado (2010), retaining all pairs not only increases 

computational costs, but may also reduce estimator efficiency. We examine this issue by creating 

different distance bands and, for each specified distance band, we consider only those pairings in 

the CML function that are within the spatial distance band. Then, we develop the asymptotic 

variance matrix Vc (0) for each distance band and select the threshold distance value that 

minimizes the total variance across all parameters as given by tr[VcA(O)] (i.e., the trace of the 

matrix [VcA(0)]).  

A final issue regarding estimation. The analyst needs to ensure the positive definiteness 

of the two covariance matrices A and A. Once this is ensured, and as long as 0 < 8 k <1 V k, 

E will be positive definite. In our estimation, the positive-definiteness of each of the 

1 and A. matrices is guaranteed by writing the logarithm of the pairwise-likelihood in terms of 

the Cholesky-decomposed elements of these matrices, and maximizing with respect to these 

elements of the Cholesky factor. Essentially, this procedure entails passing the Cholesky 

elements as parameters to the optimization routine, constructing the covariance matrix internal to 

the optimization routine, then computing Y, and finally picking off the appropriate elements of 

the matrix for the pairwise likelihood components. To ensure the constraints on the
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6k (k=1,2,..., K -1)autoregressive terms, we parameterize these as =1 /[1 + exp (8,)]. Once 

estimated, the 6k estimates can be translated back to estimates of 8 k.
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CHAPTER 4: SIMULATION STUDY 

There are two objectives of this simulation study. The first is to examine the ability of the 

MACML estimator to recover parameters from finite samples in the spatial MDCP model by 

generating simulated data sets with known underlying model parameters. The second is to 

examine the effects of (a) imposing a restrictive independent and identically distributed 

covariance among the baseline utilities of the alternatives, (b) ignoring spatial heterogeneity, and 

(c) ignoring spatial dependence.  

4.1. Experimental Design 

We consider a four alternative case in the simulation exercise, as in the empirical analysis of the 

current study. The last alternative, as in the earlier sections, is assumed to be the outside 

alternative. Assume three independent variables in the zqk vector in the baseline utility. The 

values of each of the three independent variables for the alternatives are drawn from a standard 

univariate normal distribution, and a synthetic sample of 2000 realizations of the exogenous 

variables is generated, corresponding to Q=2000 grids. The spatial pattern of the grids as well as 

the total land area of each grid is based on an actual grid configuration obtained from the 2010 

land use survey data for Austin, Texas (this is the data set also used in the empirical analysis of 

this report in Chapter 5; the use of an actual grid configuration lends more credibility to the 

simulation exercise rather than generating a synthetic grid configuration). For the weight matrix 

(W), we use a continuous inverse of distance specification in the simulation analysis based on 

the line distance (in kilometers) between the centroids of the grids on the coordinate system.10 

Once generated, the independent variable values, the grid configuration and weights, and the grid 

total area are held fixed in the rest of the simulation exercise.  

The coefficient vector flq is allowed to be random according to a bivariate normal 

distribution for the first two variables, but set to be fixed for the third variable. The mean vector 

10 More generally, the spatial weight matrix may be based on a continuous representation of distance (such as the 
inverse distance, or the inverse of the square of distance, or the inverse of exponential distance) or on a discrete 
representation of distance (such as a simple contiguity indicator of whether or not two grids are adjacent), or on a 
hybrid representation of distance (such as the shared boundary length between two contiguous grids). These 
different representations and functional forms for the weight matrix may be tested in any empirical context, as we 
undertake in our empirical analysis in Section 5.
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for flq is assumed to be b = (0.5, -1, 1). The covariance matrix n for the two random 

coefficients is specified as follows: 

0.81 0.54~ 0.90 0.0010.90 0.60 

0.54  1.00] - L0.60 0.80 0.00 0.80] 

The Cholesky decomposition of n guarantees the positive definiteness of n. In the estimations, 

the likelihood function is reparameterized in terms of the lower Cholesky factor L a, and the 

three associated Cholesky parameters lei =0.9, 12M= 0.6, and n3 = 0.8 are estimated.  

Collectively, these three parameters, stacked vertically into a column vector, will be referred to 

as l. Next, the covariance matrix A for q= ( qi ,q2 q3)' is specified as follows (see also 

Section 3).  

1.00 0.50 +0.20 0.50 +0.40 1.00 0.70 0.901 
A = 0.50+0.20 0.50+0.80 0.50+0.31 = 0.70 1.30 0.81 

0.50o+0.40 0.50+0.31 0.50+0.99 0.90 0.81 1.49 

1.00 0.00 0.00 1.00 0.70 0.901(22) 

= LAL' = 0.70 0.90 0.00 0.00 0.90 0.20 

0.90 0.20 0.8O 0.00 0.00 0.80j 

In the above matrix, the first element is normalized (and fixed) to the value of 1. There are five 

Cholesky matrix elements to be estimated in LA ('Al = 0.7, 'A2 =0-9, 'A3 = 0-9, 'A4 = 0.2, 

and lA5 = 0.8). Collectively, these elements, vertically stacked into a column vector, will be 

referred to as .  

In the simulations, we use a y -profile, and set the yk parameters for the first three 

alternatives to the value of one. The parameter 74 should be non-positive, and we fix this to the 

value of zero. 1 The three yk parameters to be estimated are collected in the vector l, . Finally, to 

examine the potential impact of different levels of spatial dependence on the ability of the CML 

approach to recover model parameters, we consider two sets of values of the spatial 

" As indicated earlier, we will need that y4  0, and (Xq4 + y4 > 0). Adhering to both these restrictions can be tricky, 
especially because xq4 itself is based on the model parameters. Thus, it is typical to fix the value of the y parameter 

for the essential outside good (in our case, alternative 4) to zero, since this simultaneously and immediately satisfies 
both y 0, and (xq4 + y4 > 0). Y4 is thus not estimated, but fixed a priori.
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autoregressive coefficients corresponding to low dependence (8, = 0.1, 82 = 0.2, 63 =0.3) and 

high dependence (S, = 0.6, 82 = 0.7, 83 =0.8).  

The set-up above is used to develop the [Q(K -1) x 1] vector Szb and the covariance 

matrix . (see Section 2.3). Since 'i~ MVNQ(K-1)(Szb,E), a specific realization of the 

[Q(K -1) x 1] vector for i is drawn from the multivariate normal distribution with mean Szb 

and covariance structure E. Then, using subsets of this i vector corresponding to each grid, and 

the specified y vector, we generate the investment quantity vector x*, using the forecasting 

algorithm proposed by Pinjari and Bhat (2011). The above data generation process is undertaken 

30 times with different realizations of the i vector to generate 30 different data sets each for the 

low spatial dependence case and the high spatial dependence case.  

The MACML estimator is applied to each data set to estimate data specific values of 

b,ln, lA', and 3. A single random permutation is generated for each individual (the random 

permutation varies across individuals, but is the same across iterations for a given individual) to 

decompose the multivariate normal cumulative distribution (MVNCD) function into a product 

sequence of marginal and conditional probabilities (see Section 2.1 of Bhat, 2011).12 All the 

Q(Q -1)/2 pairings of grids are considered in the MACML estimator. The estimator is applied 

to each dataset 10 times with different permutations to obtain the approximation error, computed 

as the standard deviation of estimated parameters among the 10 different estimates on the same 

data set.  

4.2. Performance Evaluation 

The performance of the MACML inference approach in estimating the parameters of the spatial 

MDCP model and the corresponding standard errors is evaluated as follows: 

(1) Estimate the MACML parameters for each data set and for each of 10 independent sets of 

permutations. Estimate the standard errors (s.e.) using the Godambe (sandwich) estimator.  

(2) For each data set s, compute the mean estimate for each model parameter across the 10 

random permutations used. Label this as MED, and then take the mean of the MED values 

1 Technically, the MVNCD approximation should improve with a higher number of permutations in the MACML 
approach. However, when we investigated the effect of different numbers of random permutations per individual, 
we noticed little difference in the estimation results between using a single permutation and higher numbers of 
permutations, and hence we settled with a single permutation per individual.
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across the data sets to obtain a mean estimate. Compute the absolute percentage (finite 

sample) bias (APB) of the estimator as: 

APB = mean estimate - true value x 100 (23) 
true value 

(3) Compute the standard deviation of the MED values across datasets, and label this as the 

finite sample standard error or FSEE (essentially, this is the empirical standard error).  

(4) For each data set, compute the mean standard error for each model parameter across the 10 

draws. Call this MSED, and then take the mean of the MSED values across the 30 data sets 

and label this as the asymptotic standard error or ASE (essentially this is the standard 

error of the distribution of the estimator as the sample size gets large).  

(5) Next, to evaluate the accuracy of the asymptotic standard error formula as computed using 

the MACML inference approach for the finite sample size used, compute the relative 

efficiency of the estimator as: 

Relative efficiency = ASE (24) 
FSEE 

Relative efficiency values in the range of 0.8-1.2 indicate that the ASE, as computed using 

the Godambe matrix in the CML method, does provide a good approximation of the FSSE. In 

general, the relative efficiency values should be less than 1, since we expect the asymptotic 

standard error to be less than the FSSE. But, because we are using only a limited number of 

data sets to compute the FSSE, values higher than one can also occur. The more important 

point is to examine the closeness between the ASE and FSEE, as captured by the 0.8-1.2 

ranger for the relative efficiency value.  

(6) Compute the standard deviation of the parameter values around the MED parameter value for 

each data set, and take the mean of this standard deviation value across the data sets; label 

this as the approximation error (APERR).  

4.3. Additional Restrictive Model Comparisons with the Proposed Model 

The main purpose of the methodology proposed here is to accommodate (1) a full covariance in 

the baseline utilities (within each grid), (2) spatial heterogeneity (across grids) in the 

responsiveness to exogenous variables, and (3) spatial dynamics that generate dependency 

effects in the land-use types and intensities (across grids). To examine the implications of 

ignoring these considerations when they are actually present, we estimate three additional 

models on the 30 data sets generated for the high spatial dependence level. The first model,
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which we will refer to as the spatial IID MDCP (or SIMDCP) model, assumes a restrictive 

independent and identically distributed specification for the error terms in the baseline utilities; 

that is, for the qk(k =1,2,..., K) terms. This translates to the following restrictive covariance 

matrix for the sq vector: 

1.00 0.50 0.50 

A = 0.50 1.00 0.50 

0.50 0.50 1.00 

1.000 0.000 0.000 1.000 0.500 0.5001(25) 

= LAL' = 0.500 0.866 0.000 0.000 0.866 0.287 

0.500 0.287 0.816j0.000 0.000 0.816 

The second model, which we will refer to as the spatial homogenous MDCP (or SHMDCP) 

model assumes away any spatial heterogeneity; that is, it assumes that all the elements of the 

covariance matrix Q (and, therefore, the elements of the l vector) are identically zero. The third 

model, which we will refer to as the aspatial MDCP (or simply the MDCP) model, restricts all 

the spatial autocorrelation coefficients to zero; that is, it assumes that all the 6 parameters are 

identically zero. We compare these three restrictive formulations with the proposed SMDCP, 

based on the APB measure for all non-constrained parameters and the.adjusted composite log

likelihood ratio test (ADCLRT) value (see Pace et al., 2011 and Bhat, 2011 for more details on 

the ADCLRT statistic, which is the equivalent of the log-likelihood ratio test statistic when a 

composite marginal likelihood inference approach is used; this statistic has an approximate chi

squared asymptotic distribution).  

For the comparisons, we use a single replication per data set (the replication is the same 

one for the SMDCP model and all the restrictive models; that is, we use a single permutation per 

individual that varies across individuals but is held fixed across the SMDCP and other models).  

We do so rather than run 10 replications for each of the SMDCP and the more restrictive models 

because, as we will present in the next section, the approximation error in the parameters is 

negligible for any given data set. The ADCLRT statistic needs to be computed for each data set 

separately, and compared with the chi-squared table value with the appropriate degrees of 

freedom. In this report, we identify the number of times (corresponding to the 30 model runs, 

one run for each of the 30 data sets) that the ADCLRT value rejects the SIMDCP, SHMDCP, 

and MDCP models in favor of the SMDCP model.
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4.4. Simulation Results 

4.4.1. Recoverability of Parameters in the SMDCP Model 

Tables la and lb present the results for the first part of the simulation exercise focusing on 

parameter recoverability. Table la corresponds to the low spatial dependence case, while Table 

lb corresponds to the high spatial dependence case. As indicated earlier, there are four 

alternatives (K = 4), leading to up to a six [=(K -1) *2] dimensional integral in the CML 

function.  

The parameter estimate results in Tables la and lb indicate that the MACML method 

does very well in recovering the parameters, as can be observed by comparing the mean 

estimates of the parameters with the true values. The absolute percentage bias (APB) is no more 

than 5% for any parameter (see column titled "Absolute Percentage Bias") in the low 

dependence case, with an overall mean value of 1.90% across all parameters, as indicated at the 

bottom of the table (see the row labeled "overall mean value across parameters"). The APB 

values are somewhat higher for the high dependence case (Table lb), with an overall mean value 

of 3.4% across all parameters. This is not surprising, since the high dependence case generates 

high interdependence between grids, and leads to a much more non-linear surface of the CML 

function over which to optimize. Between the low and high dependence cases, there are no 

substantial differences in recovery ability for the mean value of coefficients on the exogenous 

variables in the baseline utility function and the covariance matrix of these coefficients (i.e., the 

b vector elements and the l vector elements). However, there are differences in the recovery 

ability for the other parameters, with the APB values being relatively high for the y vector values 

in the high dependence case. This result is a reflection of somewhat greater difficulty in pinning 

the satiation parameters in the presence of spatial autoregressive parameters. As indicated earlier, 

a higher spatial autoregressive parameter causes the logarithm of the baseline utilities to be more 

spatially interdependent across grids, thus increasing the non-linearity in the baseline utility 

function (see Equation 11). At the same time, the satiation parameters (captured by the elements 

of the y vector) generate non-linearity in the overall utility function (see Equation 1). Both these 

non-linearities come together in the probability expression through their combined presence in 

the Vqk component in Equation (12), which manifests itself in the mean of the distribution over 

which there is an integration in the CML function of Equation (20). Thus, as one form of non

linearity (i.e., generated by the spatial autoregressive parameter vector S) increases, it becomes 

difficult to estimate the y parameter vector contributing to another form of non-linearity.
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Table la: Simulation results for the four-alternative case with 30 datasets for low spatial 
dependency (based on a total of 30x10 runs/dataset=300 runs) 

Parameter Estimates Standard Error Estimates 

Te Ma s Absolute Fin Asymptotic Approximation 
Parameter True Mean Abs. Aslt Sample StRr. eficie AER 

Value Est. Bias Percentage St. Err. St. Err. Efficiency Error 
Bias (APB) (FSSE) (ASE) (APERR) 

b 0.5 0.48 0.02 4.00 0.024 0.030 1.25 0.001722 

b2 -1.0 -1.02 0.02 2.00 0.029 0.028 0.97 0.001781 

b3 1.0 0.99 0.01 1.00 0.023 0.024 1.04 0.001225 

lo 0.9 0.86 0.04 4.44 0.024 0.021 0.88 0.002232 

0.6 0.58 0.02 3.33 0.024 0.029 1.21 0.001310 

13 0.8 0.78 0.02 2.50 0.028 0.031 1.11 0.001480 

Yl 1.0 0.98 0.02 2.00 0.038 0.038 1.00 0.003031 

Y2 1.0 0.97 0.03 3.00 0.048 0.039 0.82 0.003029 

Y3 1.0 0.96 0.04 4.00 0.049 0.042 0.86 0.003965 

l 0.7 0.70 0.00 0.00 0.025 0.019 0.76 0.001797 

'A2 0.9 0.91 0.01 1.11 0.023 0.016 0.70 0.001309 

1A3 0.9 0.90 0.00 0.00 0.021 0.018 0.86 0.002493 

'A4 0.2 0.21 0.01 5.00 0.014 0.016 1.14 0.002852 

/A5 0.8 0.80 0.00 0.00 0.016 0.012 0.75 0.002362 

0.1 0.10 0.00 0.00 0.005 0.004 0.80 0.000065 

2 0.2 0.20 0.00 0.00 0.008 0.006 0.75 0.000175 

b3 0.3 0.30 0.00 0.00 0.011 0.008 0.73 0.000324 

Overall mean value across 0.01 1.90 0.024 0.022 0.92 0.001832 
parameters _______ _____________ _________________________ ___________
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Table 1b: Simulation results for the four-alternative case with 30 datasets for high spatial 
dependency (based on a total of 30x10 runs/dataset=300 runs) 

Parameter Estimates Standard Error Estimates 

Absolute Finite Asymptotic . Approximation 
Parameter True Mean Abs. Percentage Sample St. Err. Relative Error Value Est. Bi B ias (APB) St. Err. (ASE) Efficiency (APERR) 

(FSSE) 

bl 0.5 0.48 0.02 4.00 0.041 0.052 1.27 0.000943 

b2 -1.0 -1.04 0.04 4.00 0.038 0.047 1.24 0.000792 

b3 1.0 0.98 0.02 2.00 0.022 0.028 1.27 0.000704 

151 0.9 0.87 0.03 3.33 0.019 0.023 1.21 0.000866 

1Q2 0.6 0.58 0.02 3.33 0.053 0.047 0.89 0.001881 

/03 0.8 0.80 0.00 0.00 0.041 0.046 1.12 0.001093 

y 1.0 0.94 0.06 6.00 0.081 0.082 1.01 0.002657 

Y2 1.0 0.96 0.04 4.00 0.085 0.081 0.95 0.001008 

Y 1.0 0.89 0.11 11.00 0.070 0.054 0.77 0.000640 

'Al 0.7 0.71 0.01 1.43 0.017 0.017 1.00 0.001736 

'A2 0.9 0.90 0.00 0.00 0.009 0.012 1.33 0.002966 

'A3 0.9 0.89 0.01 1.11 0.020 0.018 0.90 0.002270 

'A4 0.2 0.19 0.01 5.00 0.037 0.029 0.78 0.002260 

'AS 0.8 0.83 0.03 3.75 0.019 0.015 0.79 0.001317 

0.6 0.60 0.00 0.00 0.048 0.037 0.77 0.000842 

2 0.7 0.69 0.01 1.43 0.109 0.105 0.96 0.001897 

0.8 0.74 0.06 7.50 0.110 0.129 1.17 0.005074 

Overall mean value across 0.03 3.40 0.048 0.049 1.03 0.001703 
parameters
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The APB values for the parameters of the Cholesky decomposition of the covariance 

matrix associated with the error term (i.e., the lA values) are generally small and lower than 5%.  

The highest APB is for the 1A4 parameter, though this could also be attributed to the low true 

value of this parameter (which inflates the absolute percentage bias value). Finally, the recovery 

of spatial autoregressive parameters is exceptionally good in the low dependence case, with all 

three parameters having an associated APB value of zero (simply a remarkable happenstance).  

The parameters are also quite well recovered in the high dependence case, though not as well as 

in the low dependence case, a result of the additional non-linearity generated in the CML 

function.  

The standard error estimates of the parameters indicate good empirical efficiency of the 

MACML estimator. Across all parameters, the finite sample standard error (FSEE) is a mere 2 % 

of the mean parameter estimate in the low spatial dependence case and 4.8% of the mean 

parameter estimate in the high spatial dependence case, indicating very good empirical efficiency 

of the MACML estimator for the SMDCP model. Another observation from the finite sample 

standard error estimates is that these estimates (as a percentage of the mean estimates) are 

generally higher for the y parameters relative to the other parameters, specifically for the high 

spatial dependence case, reinforcing the finding earlier that the y parameters are more difficult to 

recover than other parameters.  

The finite sample standard errors and the asymptotic standard errors obtained using the 

Godambe matrix in the CML method are also close, with the relative efficiency value between 

0.8-1.2 for most of the parameters in both the low dependence and high dependence cases. The 

efficiency values are outside the 0.8-1.2 range for some elements of the mean vector of flq, 

some of the Cholesky decomposition elements of the error covariance matrix (i.e., the elements 

of the lA vector) and some of the spatial autoregressive parameters (i.e., the elements of the S 

vector). However, even this is rather deceptive, since the values are simply an artifact of the low 

values of the finite sample error and asymptotic standard error for these parameters. In particular, 

the absolute differences in the finite sample error and asymptotic standard error are quite small 

even for these parameters. For instance, the relative efficiency values for the elements of the S 

vector in the low dependence case are consistently low, but the absolute difference between the 

finite sample error and asymptotic standard error ranges from 0.001 to 0.003. Overall, the 

average relative efficiency across all the parameters is 0.92 for the low dependency case and 1.03
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for the high dependency case, indicating that the asymptotic formula is performing well in 

estimating the finite sample standard error. Further, as for the FSEE values, the ASE estimate 

from the MACML procedure, on average across all parameters, is only 2.24% of the mean 

estimate in the low dependence case and 4.8% of the mean estimate in the high dependence case, 

indicating very good efficiency of the MACML procedure even using the ASE estimate for the 

FSEE.  

Finally, the last column of Tables la and lb present the approximation error (APERR) 

for each of the parameters, because of the use of different permutations. These entries indicate 

that the APERR is of the order of 0.005 or less, across both the low dependence and high spatial 

dependence cases. More importantly, the approximation error (as a percentage of the FSEE or 

the ASE), averaged across all the parameters, is of the order of 7.5% of the sampling error for the 

low dependence case and of the order of 3.5% of the sampling error for the high dependence 

case. This is clear evidence that even a single permutation (per observation) of the MACML 

estimator provides adequate precision, in the sense that the convergent values are about the same 

for a given data set regardless of the permutation used for the decomposition of the multivariate 

probability expression within the MACML approach. This is indeed a remarkable result.  

4.4.2. Comparison between the SMDCP Model and more Restrictive Models 

In this section, we compare the performance of the SMDCP model formulation with the more 

restrictive formulations, when the data generated actually conforms to the SMDCP (see Section 

4.3). This provides a sense of the biases that may accrue because of using a restrictive 

specification.  

The comparison of the SMDCP model with the spatial IID MDCP (or SIMDCP) model 

tests the restriction that there is no covariance in the unobserved determinants of the baseline 

utilities of the land-use types within each grid. The column panel entitled "SIMDCP model" in 

Table 2 presents the mean estimates and the APB values for the elements of the l, y, and S 

vector (the elements in the 'A vector are all constrained as shown in Equation (25)). As can be 

observed, the mean estimates are, in general, not as close to the true parameters as in the SMDCP 

model. This is particularly noticeable for the y vector elements, with the APB for the parameter 

y3 being as high as 42%.
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Table 2: Effects of ignoring error covariance, spatial heterogeneity and spatial 
autocorrelation when present (for the high spatial dependence case)

SIMDCP* SHMDCP+ MDCP# 

Parameters True Mean Absolute Mean Absolute Mean Absolute 
Percentage Bias Percentage Bias Percentage Bias 

Est. (APB) Est. (APB) Est. (APB) 

bi 0.5 0.42 16.00 0.36 28.00 0.48 4.00 

b2 -1.0 -1.07 7.00 -1.02 2.00 -1.01 1.00 

b3 1.0 0.98 2.00 0.88 12.00 1.01 1.00 

lo 0.9 0.89 1.11 -a - 0.89 1.11 

102 0.6 0.63 5.00 - 0.57 5.00 

1M30.8 0.79 1.25 - - 0.82 2.50 

Y1 1.0 0.85 15.00 0.73 27.00 0.66 34.00 

Y2 1.0 0.81 19.00 0.67 33.00 0.49 51.00 

Y3 1.0 0.58 42.00 0.26 74.00 0.24 76.00 

'Al 0.7 - - 0.85 21.43 0.69 1.43 

lA2 0.9 - - 1.25 38.89 0.91 1.11 

1A3 0.9 - - 0.99 10.00 0.90 0.00 

'A4 0.2 - - 0.32 60.00 0.21 5.00 

1A5 0.8 - - 1.20 50.00 0.85 6.25 

61 0.6 0.58 3.33 0.96 60.00 -

S2  0.7 0.71 1.43 0.80 14.29 -

63 0.8 0.78 2.50 0.64 20.00 

Overall mean value across 0.09 9.64 0.24 32.19 0.13 13.53 
parameters 

Mean composite log
likelihood value at -123728.0236 -127060.8099 -124231.3780 

convergence 

Number of times the All thirty times when All thirty times when All thirty times when 

adjusted composite compared with compared with compared with 

likelihood ratio test 25,.95 = 11.07 value (mean %3,0.99 = 11.34 value 3099 = 11.34 value 

(ADbLRT) statisic favors (mean ADCLRT statistic is (mean ADCLRT statistic is the SMDCP models ADCLRT statistic is 26.31) 53.95) 27.47) 
*SIMDCP: Spatial IID MDCP.  
+SHMDCP*: Spatial homogeneous MDCP.  
#MDCP: Aspatial MDCP.  
a A "-"entry in a cell indicates that the corresponding parameter is not estimated and is fixed to the value 
mentioned in Section 4.3.  
b The mean composite log-likelihood value for the SMDCP model at converged parameters is -122377.2998.
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The overall APB across all parameters is 9.64% relative to 4.05% in the SMDCP model, clearly 

indicating the biases that occur if one assumes a restrictive independent and identically 

distributed specification for the error terms in the baseline utilities when the data does not 

conform to such a specification (note that the overall APB of 4.05% for the SMDCP model is 

computed based on the 30 datasets and the same single set of replications as for the SIMDCP 

model; also, the overall APB value for the SMDCP model in this comparison is computed 

excluding the 'A vector elements that are constrained in the SIMDCP model). The superiority of 

the SMDCP model is further reinforced by the ADCLRT test with five degrees of freedom 

(corresponding to the five elements in the lA vector). The table chi-squared value with five 

degrees of freedom is 11.07 at the 95% confidence level, and the ADCLRT test value between 

the SMDCP and SIMDCP models exceeds this value for each of the 30 data sets used in our 

simulation. Thus, the ADCLRT clearly rejects the SIMDCP model in favor of the SMDCP 

model.  

The comparison of the SMDCP model with the spatial homogenous MDCP (or 

SHMDCP) model tests the restriction that there is no randomness across grids in the response to 

exogenous covariates; that is, the restriction that all elements of the covariance matrix 12 (and, 

therefore, the elements of the l vector) are identically zero. The column panel entitled 

"SHMDCP model" in Table 2 presents the mean estimates and the APB values for the elements 

of the b, 'A , y, and S vectors. As should be obvious, the APB values are very large across the 

board, with an average APB value of over 32% relative to 3.52% for the SMDCP models for the 

elements of the b, 'A, y, and 6 vectors. Clearly, there are large biases in the parameters when 

heterogeneity is ignored, as also reflected in the fact that the ADCLRT test value between the 

SHMDCP and SMDCP models is higher than the table chi-squared value with three degrees of 

freedom for each of the 30 datasets at even beyond the 99 % confidence level (the appropriate 

table chi-squared value is 11.34). Thus, ignoring spatial heterogeneity can lead to serious model 

misspecification and inferences.  

Finally, the comparison of the SMDCP model with the MDCP model tests the restriction 

that there are no spatial interdependence effects at play; that is, that all the elements of the S 

vector are identically zero. Again, the mean APB of 13.53% in the MDCP model is higher than 

the mean APB of 3.61% for the non- b parameters in the SMDCP model. The APB for the y 

vector elements are again the highest, with that for the 73 parameter being 76%. In particular,

36



there is a substantial underestimation in the y parameters. The table chi-squared value with three 

degrees of freedom is 11.34 at the 99% confidence level, and the ADCLRT test value between 

the SMDCP and MDCP models exceeds this value for each of the 30 data sets used in our 

simulation.  

Overall, the simulation results show that, irrespective of the magnitude of spatial and 

temporal dependences, the MACML estimator recovers the parameters of the proposed spatial 

MDCP very well. The MACML estimator also seems to be quite efficient based on the low 

FSEE estimates. Further, the asymptotic standard error formula estimates the FSEE quite well, 

and the approximation error due to the use of the analytic approximation is very small.  

Additionally, the results clearly highlight the bias in estimates if error covariance, or spatial 

heterogeneity, or spatial dependence is ignored when both are actually present. An interesting 

suggestion from our simulation study is that ignoring spatial heterogeneity is of much more 

serious consequence than ignoring error covariance effects or spatial lag dynamics. Further 

theoretical and empirical exploration of this finding is left for future work.
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CHAPTER 5: APPLICATION DEMONSTRATION

In this report, we demonstrate the application of the proposed SMDCP model by analyzing land

use patterns in Austin, Texas.  

5.1. The Data and the Context 

The data used in this study is drawn from parcel-level land-use inventory data for the year 2010, 

as obtained from the City of Austin, TX. This data is available in the Environmental Systems 

Research Institute's (ESRI's) shape file format. The land use type for each parcel is available at a 

fine level of detail; however, for the current study, the land use types are aggregated into the 

following four mutually exclusive land use categories: (1) commercial land-use (including 

commercial, office, hospitals, government services, educational services, cultural services, and 

parking), (2) industrial land-use (including manufacturing, warehousing, resource extraction 

(mining), landfills, and miscellaneous industrial uses), (3) residential land-use (including single 

family, duplexes, three/four-plexes, apartments, condominiums, mobile homes, group quarters, 

and retirement housing), and (4) undeveloped land-use (including open and undeveloped spaces, 

preserves, parks, golf courses, and agricultural open spaces). The last among these alternatives 

serves as an "essential outside good" in that all grid cells inevitably will have at least some of 

their land area that remains undeveloped 

For the current analysis, an area measuring 377.98 km2 (145.94 mi 2) covering the central 

business district and important surrounding areas is considered. As shown in Figure 1la, there are 

two major highways (Interstate Highway 35 and Loop-1 MoPac) in the study area, running 

roughly parallel to each other and from the northeast to southwest. In addition, several other 

major thoroughfares in the Austin area are also represented, including Ben-White Blvd (State 

Highway 71) that forms the southern boundary of the study region, US-290, US-183 that runs 

diagonally from the northwest to the southeast at the north end of the study area and then directly 

south at the south end of the study area, Loop 360, and FM-2222. Several major arterials also go 

through the study area, including Lamar Blvd (roughly parallel to IH-35 and MoPac, and 

between these two highways), Palmer lane (toward the north), Cesar Chavez (just south of the 

downtown area), Martin Luther King Jr (MLK) Blvd (just north of the downtown area), 

Congress Avenue, and Dessau Road.

39



if

0

0

1

....0 ..

.. ..........  

li4xl

Figure la: Highways, thoroughfares, and CBD location in the analysis area 

In the rest of this report, we will use the label "major thoroughfares" to refer to both the major 

thoroughfares as well as the major arterials identified above. Also, we will consider the Austin 

Central Business District (CBD) zone as the "square" bounded by Lamar Blvd. to the west, MLK 

Blvd. to the north, IH-35 to the east, and Cesar Chavez to the south (see Figure la).  

The study area is divided into 2383 square grids, each of size 0.25 mi x 0.25 mi. The use 

of grids as the unit of analysis is not new, and has been adopted earlier in, amongst many others, 

Kline (2003) and Kaza et al. (2012). Each grid can be in multiple land-uses, and we obtain the 

grid-level square footage in each of the four land-use types (that, together, constitute the 

multiple-continuous dependent variable in our model system) by aggregating the underlying 

parcel-level land-use inventory data obtained from the City of Austin. All the explanatory 

variables for the analysis are created through appropriate aggregation to the grid-level, using

40

,4 

isu 2 9 0 

0:...::::: 

080 

oIV 'b 

aEN3:.. <'

290

.,.c .. :.

18



geographic information system (GIS) data obtained from the City of Austin (except for the 

floodplains data, which were obtained from the Capital Area Council of Governments). 13 

The explanatory variables include (1) road access measures (distance to MoPac, distance 

to IH-35, distance to US-183, and distance to other nearest major thoroughfares), (2) distance to 

nearest school, (3) distance to the nearest hospital, (4) fraction of grid area that is under a 

floodplain, (5) an interaction term of proximity to road access with proximity to the floodplain 

(distance to nearest road divided by distance to the nearest floodplain), (6) average elevation of 

the grid, and (7) whether the grid is in the Austin CBD zone or not. To construct distances (in 

miles) from each grid to the roadways, a road network data in polyline format (obtained from the 

City of Austin) was overlaid on the analysis area, and the Euclidean distance from the grid 

centroid to the roadways was calculated. School and hospital data were available as point data, 

which were overlaid on the analysis area to obtain the distance from a grid centroid to the nearest 

school and hospital. To calculate the amount of area under a floodplain for each grid, the 

floodplain polygon shape file was intersected with the grid structure and the intersected area was 

obtained as the area under a floodplain for the corresponding grid. To construct distances from 

each parcel to the nearest floodplain, the floodplain data in polygon format (obtained from the 

Capital Area Council of Governments) was overlaid onto the analysis area, and Euclidean 

distances were computed from each grid centroid to the nearest floodplain polygon. To calculate 

the average elevation of a grid, all the contour lines passing through the grid were recorded, and 

their average was assigned as the average elevation of the grid. 14 Further, we classified each grid 

into whether or not it was a "high elevation" grid. In particular, grids with an average elevation 

greater than 0.10 miles were classified as high elevation grids. We tested both forms of the 

average elevation explanatory variable (i.e., as a continuous variable and categorical variable) in 

the utility specification and retain the specification which provides better data fit. The 

assignment of a grid as belonging to the CBD zone or not was based on whether any part of the 

grid was in the CBD zone.  

Among the exogenous variables, we expect grids located in close proximity to the major 

highways and thoroughfares to be more likely to be developed. On the other hand, we expect 

grids located far from highways and thoroughfares to remain undeveloped, as there is no 

13A floodplain is an area susceptible to flooding. Such areas in the United States are identified by the Federal 
Emergency Management Agency (FEMA) in its Flood Insurance Rate Maps, which show spatial regions likely to be 
affected by a 100-year flood (1% chance of a flood of this magnitude during the year).  
14 A contour line is a line joining the points of equal elevation above a given level, such as mean sea level.
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incentive (less or no net returns) to convert the area into commercial, industrial or residential 

land use. This should also be obvious from Figures lb through Id that map developmental 

patterns to the location of roadways in the study area. The clustering of commercial development 

in and around the major highways and thoroughfares is very obvious in Figure lb. For the 

industrial land-use in Figure 1c, one can once again notice the clustering of industrial land-use in 

and around US-183, especially in the vicinity of US-183 and MoPac at the north end of the study 

area, around US-183 between Dessau Road and US-290 at the east end, and in the neighborhood 

of US-183 at the southeast end of the study area. The clustering of industrial land-use around 

US-183 is not surprising, since this thoroughfare is an important diagonal conduit in Austin that 

passes close to the airport at the southeast end, and has good connectivity to IH-35, while also 

being away from the downtown area of Austin that is expensive for the large amounts of land 

needed for industrial purposes. The pattern of residential development is less obvious from the 

figure, because of the dense development of residences all through the study area.  

Ai 

Figure 1b: Commercial land-use distribution
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Figure 1d: Residential land-use distribution 

The proximity to schools is likely to be associated with commercial and residential land

use development (see Li and Liu, 2007), while proximity to hospitals is likely to be an incentive 

for development of a grid into commercial land use. This latter effect may be attributable to the 

need for commercial outlets such as eateries and shopping places for hospital employees, and 

patients and guests. Additionally, we expect grids with a high percentage of area under a 

floodplain to be less likely to be built up. Further, we consider an interaction effect of distance 

to the nearest roadway divided by distance to the nearest floodplain. This captures the potential 

"push-pull" nonlinear positive effect generated by the interaction of distance from roadways and 

distance to a floodplain. Thus, grids that are distant from roadways may still be developed, - if 

the grids are also far away from floodplains. Similarly, grids that are close to a floodplain may 

still be developed, - if the grids are close to roadways. Such "push-pull" effects would be 

reflected by a negative sign on the "distance to nearest roadway divided by distance to the
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nearest floodplain" variable specific to the commercial, industrial, and residential alternatives.  

Next, grids at higher elevations are more likely (than those at lower elevation) to be in an 

undeveloped state or in residential land-use than in commercial and industrial land-uses, while 

we expect grids in the CBD zone to be primarily invested in commercial land-use (this is also 

reflected in Figures lb through ld). The CBD zone in Austin also has several running areas, 

parks, nature preserves, and picnic trails to promote outdoor activities and active living, and 

these are reflected in a higher intensity of land-use in the undeveloped state (relative to 

residential and industrial land-use) in the CBD zone (though this is not discernible from Figure 1 

because we have not shown the undeveloped land-use state in the study area). Finally, there is a 

distinct clustering pattern in the land-use development for each of the three land-use types, 

suggesting the importance of considering spatial dependency effects.  

Table 3a provides descriptive statistics on the dependent variable relating to the 

investment in each land-use type. The second and third columns indicate the number 

(percentage) of grids invested in each land-use type and the intensity of investment among those 

grids invested in the land-use type, respectively. As expected, all grids have some land area that 

is undeveloped, as reflected in the last row of the first numeric column. Among the other land

use types, the highest percentage (82%) of grids is invested in residential land-use, while only a 

small percentage (24%) of grids is invested in industrial land-use. A little more than half of all 

grids are invested in commercial land-use. The third column of the table indicates that, on 

average, a grid that is invested in residential land-use has a larger area invested in this land-use 

than the area investment in commercial or industrial land-uses among grids invested in these 

other land-use types. The last two columns in Table 3a provide information on the fraction of 

grids that are solely in undeveloped land, and the fraction of grids invested in multiple "inside" 

land-use types. In particular, the last row of these two columns indicates that only 8% of all grids 

are solely in an undeveloped state, while 92% of grids are invested in at least one of commercial, 

industrial, or residential land-uses in addition to having some land in an undeveloped state. The 

other rows indicate, for example, that only 8% of grids that are invested in the commercial land

use (in addition to having some land in an undeveloped state) are not also invested in any of the 

other two land-uses of industrial and residential land-uses, while 92% of such grids are invested 

in at least one of industrial or residential land-uses. The results also show, consistent with 

Figures lb through ld, that a grid is more likely to be invested solely in residential land-use than 

to be invested solely in commercial or industrial land-uses. Overall, these last two columns very
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clearly indicate that grids are likely to be invested in multiple land-use types at once, strongly 

supporting the use of a multiple discrete-continuous model for grid-level land-use modeling.  

Table 3a: Descriptive statistics of land-use type investment in the study area 

Number of grids 
(% of total number) invested....  

only in land-use 
Total number (%) of type and the in other (inside) 

grids invested in Mean land-use area undeveloped land- land-use types 
Land-use type land-use type invested (sq mi) use state too 

Commercial 1304 (55) 0.0136 103 (8) 1201 (92) 

Industrial 579 (24) 0.0134 52(9) 527 (91) 

Residential 1953 (82) 0.0267 744 (38) 1209 (62) 

Undeveloped 2383 (100) 0.0283 197 (8) 2186 (92) 

a Percentages across rows in the column do not sum to 100% because each grid can be invested in multiple land-use 

types simultaneously.  

5.2. Utility Form and Model Specification 

In the empirical context under study, we estimated both a y-profile as well as an a-profile (see 

Section 2.2). Between these, the y-profile consistently provided a much better data fit than the a

profile for a variety of different exogenous variable specifications, and so is the one used in the 

empirical analysis of the current report. Also, several weight matrix specifications were 

considered in our empirical analysis to characterize the nature of the dynamics of the spatial lag 

dependence. These included (1) a contiguity specification that generates spatial dependence 

based on whether or not two grids are contiguous, (2) another contiguity specification but based 

on shared boundary length, (3) the inverse of a continuous distance specification where the 

distance is measured as the Euclidean distance (crow fly distance) from the centroids of each 

grid, (4) the inverse of the square of the continuous distance specification, and (5) the inverse of 

the root of the continuous distance specification. For the last three continuous distance-based 

specifications, we also explored alternative distance bands to select the pairs of observations for 

inclusion in the composite marginal likelihood (CML) estimation. As indicated earlier, this 

distance band determination may be based on minimizing the trace of the variance matrix of 

parameters given by tr[Vc11(0)]. Our results did not show substantial variations in the trace
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value for different distance bands (regardless of the specific continuous functional form used to 

represent the distance separation and the variable specification used), though the best estimator 

efficiency was obtained at about 0.25 miles for all the three continuous distance specifications 

formulations and all variable specifications we attempted. Further, the results indicated that for 

all variable specifications, the best spatial weight matrix specification was consistently the 

inverse of the continuous distance specification with the 0.25 mile distance band. This 

determination was based on the composite likelihood information criterion (CLIC) statistic, 

which may be used to compare the data fit of non-nested formulations (see Varin and Vidoni, 

2005). This CLIC statistic takes the form shown below: 

CLIC = logLcmL(0) - tr[j(0)0)I(1] (26) 

where 0 is the estimated model parameter vector, and J(8) and H() are the "vegetable" and 

"bread" matrices used in the estimation of the asymptotic variance matrix VcM(0) (see Bhat, 

2011 for details of how these matrices may be estimated in a spatial context). In the current 

context, the weight specification that provides the highest value of the CLIC statistic is preferred 

over the other competing weight specifications. Of all the weight matrix specifications that were 

considered here, the best specifications and the corresponding CLIC statistics are presented in 

Table 3b. The results in the table clearly show the superiority of the inverse of the continuous 

distance specification over other weight matrix specifications. Thus, all subsequent results in this 

report correspond to the inverse distance weight specification with a 0.25 mile distance band.  

Table 3b: Model selection based on the weight matrix specification 

Weight Matrix Specification 

Inverse of the Inverse of the 
Inverse of square of root of 
continuous continuous continuous 

Shared distance distance distance 
Contiguous boundary (0.25 mile (0.25 mile (0.25 mile 

grid length distance band) distance band) distance band) 

Log-composite likelihood -76320.00 -149000.00 -76250.00 -78370.00 -76290.00 
at convergence 

Trace Value 628.20 3347.00 530.00 561.40 547.50 

CLIC statistics -76948.20 -152347.00 -76780.00 -78931.40 -76837.50

47



Concurrent with the weight matrix specification, we also explored several different 

variable specifications and functional forms of the variables, including linear and non-linear 

functional forms for continuous variables (such as the logarithm of distance, the square of 

distance, and spline variables that allow piece-wise linear effects of distance from grid centroid 

to roadways). In addition, we also considered dummy variables for different ranges of distance 

for these variables (for instance, grid is within 2 miles of IH-35). Further, various interactions of 

the many variables were also considered whenever adequate observations were available to test 

such interaction effects. The final specification was based on intuitive, data fit, and statistical 

significance considerations. Interestingly, all the distance variables were best reflected in linear 

continuous distance form. On the other hand, the average elevation variable was best reflected in 

categorical form. Table 3c provides descriptive statistics of the independent variables used in the 

final model specification. The results of the final specification themselves are discussed in the 

next section.  

Table 3c: Descriptive statistics of the independent variables used in the model 

Variable Minimum Maximum Mean Standard Deviation 

Distance to MoPac (mi) 0.002 7.782 2.52 1.70 

Distance toIH-35 (mi) 0.001 8.393 2.64 1.87 

Distance to US183 (mi) 0.004 7.892 2.55 1.88 

Distance to nearest thoroughfare (mi) 0.001 2.183 0.50 0.35 

Distance to nearest school (mi) 0.005 4.465 1.55 0.96 

Distance to nearest hospital (mi) 0.001 2.623 0.65 0.44 

Area under floodplain (fraction) 0.000 1.000 0.09 0.16 

Distance to nearest thoroughfare / 0.000 10.041 1.80 1.52 
Distance to nearest floodplain 

Average elevation (mi) 0.079 0.187 0.12 0.02 

High elevation indicator variable 0.000 1.000 0.82 0.38 

CBD indicator variable 0.000 1.000 0.02 0.12
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5.3. Model Estimation and Results 

Table 4a presents the results of the proposed SMDCP model. The entries provide the estimate of 

each "row" exogenous variable on the "column" baseline utility, along with the corresponding t

statistic of the estimate. Note that we have only three land-use alternatives listed in Table 4a 

because the "undeveloped" land-use alternative constitutes the base alternative. Also, in the case 

of a random coefficient on a specific variable, we provide both a mean estimate with the 

corresponding t-statistic as well as an estimate of the standard deviation of the distribution of the 

parameter with its corresponding t-statistic. In this regard, we attempted a (normally distributed) 

random coefficients specification for the variables through a general specification of the 9 
matrix. However, only the variance parameters corresponding to the constant specific to 

commercial land-use turned out to be statistically significant. Further, we could not reject the 

null hypothesis that the off-diagonal (covariance) elements of the Q matrix corresponding to 

these random coefficients were all zero.  

The first row of variables in Table 4a corresponds to the alternative specific constants for 

each land-use alternative. These constant terms do not have any substantive interpretations, and 

simply represent adjustments to the baseline utilities of alternatives after accommodating the 

other variables in the model. The presence of a statistically significant standard deviation for the 

commercial land use constant indicates that there is unobserved heterogeneity in grid 

investments in commercial land-use, attributable perhaps to such unobserved factors as zoning 

regulations and community perceptions regarding commercial development. In the following 

sections, we discuss the effects of the non-constant variables on the baseline utilities.
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Table 4a: Estimation results (mean estimates and t-statistics in parenthesis) 

Spatial Multiple Discrete Continuous Probit (SMDCP) Model 
Variables 

Commercial Industrial Residential 

Alternative specific constant -0.488 (-1.15) 1.283 (2.37) -1.715 (-1.79) 
Standard deviation 0.442 (4.49) -* 

Distance to MoPac (miles) -0.069 (-4.51) 0.169 (3.03) -0.063 (-5.47) 

Distance to IH-35 (miles) -0.115 (-3.52) -0.383 (-5.35) 0.039 (4.15) 
Standard deviation-- - 0.118 (4.42) 

Distance to US-183 (miles) - -0.323 (-7.95) 

Distance to nearest thoroughfare (miles) -0.325 (-2.27) -1.900 (-3.83) 0.251 (2.888) 
Standard deviation - 2.883 (6.45) 

Distance to School (miles) -0.216 (-3.49) 0.536 (3.33) -0.455 (-10.51) 

Distance to Hospital (miles) -0.255 (-7.11) 0.224 (3.44) 0.027 (1.58) 

Fraction of grid area under floodplain -0.015 (-8.92) -0.022 (-5.41) -0.010 (-9.70) 

Distance to nearest thoroughfare -0.358 (-8.88) -0.372 (-2.98) 0.090 (4.13) 
/Distance to floodplain 0.246 (2.15) 0.416 (2.13) 0.165 (6.42) 

Standard deviation 

High elevation indicator variable -0.265 (-4.51) -1.429 (-7.74) 0.180 (3.50) 
Standard deviation 0.989 (6.57) 

CBD indicator variable - -1.079 (-2.55) -0.776 (-6.84) 

Satiation parameter 8.873 (19.01) 3.502 (10.56) 44.939 (14.47) 

Spatial lag parameter 0.300 (2.36) 0.623 (2.09) 0.477 (4.95) 

A "-"entry in the table indicate that the variable is not statistically significant.
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5.3.1. Variable Effects on the Baseline Utility of Alternatives 

The results in Table 4a show that grids in the proximity of MoPac are more likely to be invested 

in commercial and residential land uses and less likely to be invested in industrial land use 

relative to being in an undeveloped state (technically, but equivalently, the results show that as 

distance from MoPac increases, grids are more likely to be invested in industrial land use and 

less so in commercial and residential land uses (relative to being undeveloped). This is not 

surprising, since MoPac connects the north of Austin directly to the CBD area of Austin. On the 

other hand, grids that are close to IH-35 have, on average, a higher propensity of being invested 

in commercial and industrial land use than residential land use. IH-35 is the major interstate 

highway passing through Austin, and serves as a main north-south conduit for both passenger 

and truck movement in the region and beyond. The low mean propensity for residential land use 

in the proximity of IH-35, may be attributable to a desire to live somewhat away from the traffic 

congestion and noise pollution problems that accompany living in and around IH-35, though the 

results indicate substantial heterogeneity in this effect. Also, as discussed in section 5.1, the 

majority of industrial areas are located in the proximity of US-183, which is captured in the 

model through the highly statistically significant negative coefficient on the baseline utility of 

the industrial land use alternative. As expected, the propensity to invest under commercial and 

industrial land uses decreases with increase in distance from thoroughfares (though there is 

substantial heterogeneity in this effect for the industrial land-use alternative). This is a reflection 

of the importance of ease of access to thoroughfares for commercial and industrial businesses 

(see Carri6n-Flores and Irwin, 2004 and Chakir and Parent, 2009 who also discuss how 

proximity to major roadways can impact land use decisions). On the other hand, the propensity 

to invest in residential land use increases with increase in distance to thoroughfares, perhaps 

because households would rather keep some distance from high traffic activity areas.  

Other results of the effects of variables on the baseline utilities are consistent with the 

hypotheses in Section 5.1, though there are substantial heterogeneity effects across grids in the 

push-pull influence of distance to thoroughfares divided by distance to floodplains, and the high 

elevation dummy variable effect specific to commercial land-use. As expected, the baseline 

utility for the commercial and undeveloped land-uses is higher than for the industrial and 

residential land-uses for grids contained within the CDB zone.  

Finally, in Table 4a, the satiation parameter estimates indicate that, when there is 

investment in each of the commercial, industrial, and residential land uses, the residential land
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use investment intensity in a grid (in terms of square miles) tends to exceed that of the 

commercial and industrial land use intensities (note that the yk parameter corresponding to 

residential land use is much higher than the corresponding parameters for the commercial and 

industrial land uses). This result is also consistent with the higher mean acreage (per grid) in 

residential land-use than the mean acreage in commercial and industrial land uses. The value of 

the proposed model is that, through the Yk parameters, the analyst can accommodate both the 

discrete and continuous components in a single integrated and microeconomic-consistent utility 

framework. Thus, the model should be valuable in land-use analysis as well as in many other 

substantive areas of research.  

5.3.2. Variance-Covariance Parameters 

The estimated variance-covariance structure among the baseline utilities (that is, the A matrix) 

is presented in Table 4b. The variance term (i.e., the diagonal element) indicates a high variance 

in the baseline utility of industrial land-use. There is also a significant and high covariance 

(implied correlation of 0.62) between the baseline utilities for commercial and industrial land 

use, indicating the presence of common unobserved grid-specific factors that increase (or 

decrease) the propensity of a grid to be invested in these two land-uses. A similar positive and 

significant covariance (implied correlation of 0.26) exists in the investments in residential and 

commercial land-uses, though there is little covariance (implied correlation of 0.08) in the 

industrial and residential baseline utilities.  

Table 4b: Estimation results 
(variance-covariance matrix and t-statistics in parenthesis)
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Land Use Commercial Industrial Residential 

1.000 1.445 0.204 Commercial (fixed) (4.33) (2.30) 

Industrial 5.375 0.138 
(3.22) (2.66) 

Residential 0.596 
_________(4.94)



5.3.3. Spatial Dependency Parameters 

The results indicate the presence of spatial dependence in land use development decisions.  

Specifically, the estimated spatial autoregressive coefficient 8 k is 0.300 for the commercial 

land-use alternative (t-statistic of 2.36), 0.623 for the industrial land-use alternative (t-statistic of 

2.09), and 0.477 for the residential land-use alternative (t-statistic of 4.95). These estimates 

strongly support the hypothesis of the presence of spatial dependency effects in the baseline 

utilities of proximally located spatial grids. That is, there is strong evidence of dyadic 

dependence between proximally located grids.  

5.3.4. Model Selection and Statistical Fit 

The statistically significant spatial autoregressive parameters are evidence of the presence of 

spatial dependency (across grids) in the baseline utility for each alternative. Another way to 

examine the role of spatial dependence is to compare the data fit of the proposed SMDCP model 

with an aspatial MDCP model that ignores spatial dependence. This can be undertaken using the 

adjusted composite likelihood ratio test (ADCLRT). In Particular, the composite log-likelihood 

value for the SMDCP model is -76250.00 (43 parameters estimated) and for the MDCP model is 

-76320.00 (40 parameters estimated). The ADCLRT statistic is 34.72, which is much higher than 

the corresponding critical chi-squared value with three degrees of freedom at any reasonable 

level of significance. This result clearly indicates the superiority of the SMDCP model relative to 

the MDCP model.  

5.4. Aggregate Elasticity Effects 

The estimated parameter coefficients in Table 4a provide a sense of the direction of variable 

effects on the baseline utilities of different land use types. However, these estimated parameters 

do not directly provide the magnitude of the impact of variables on the acreage investment in 

each land use category. To characterize the magnitude and direction of variable effects on 

acreage in each land use category, we compute the aggregate-level elasticity effects of variables.  

Specifically, we examine the effects of variables on the expected share of each land use 

alternative across all the grids. We achieve this by computing the share of each land use category 

in a grid and aggregating these shares across grids for each land use category.  

Specifically, for the SMDCP model, we simulate the Q(K -1) x 1 vector yi 1,000 times 

(from Equation 10), using the estimated values of b and 6, and by randomly drawing 1,000 times
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from the estimated normal distributions for f and u. Next, we use the Pinjari and Bhat (2011) 

forecasting algorithm to predict the share of each land use category for each grid (based on the 

baseline utilities for that grid, and the estimated satiation parameters) for each of the 1000 draws.  

We then compute the expected share of each land use alternative for each grid by averaging the 

predicted land use shares across the 1000 draws, and then obtain the average share of each land 

use alternative across all grids. A similar, but easier to implement, procedure is used to obtain the 

average share of each land-use alternative from the MDCP model. We also compute the standard 

errors of the elasticity effects by using 200 bootstrap draws from the sampling distributions of 

the estimated parameters.  

With the preliminaries above, we compute an aggregate "elasticity" effect for each 

variable. For dummy variables, the procedure is as follows: (1) set the value of the dummy 

variable to zero for all the grids in the sample and compute the expected share of each land use 

category, (2) set the value of the dummy variable to one for all the grids in the sample and 

compute the expected share of each land use category, and (3) compute the effective percentage 

change in the expected share of each land use category across all grids in the sample by taking 

the difference between the expected share obtained in step (2) and step (1) and dividing by the 

result from step (1). For continuous variables, we increase the value of the variable by 25% for 

each grid and compute the percentage change in the expected shares.  

The elasticity effects and their standard errors for the MDCP and SMDCP model are 

presented in Table 4c. The first entry in Table 4c indicates that a grid located 25% farther away 

from MoPac (than another otherwise observationally identical grid) is about 4.92% less likely to 

be in commercial land use than the grid closer to MoPac. Other entries may be similarly 

interpreted. The last sub-column within each land use alternative column provides the P value 

for the difference in elasticity estimates between the MDCP and SMDCP models. A"-" in this 

column implies that the difference is not statistically significant even at the 0.2 level of 

significance.
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Table 4c: Aggregate level elasticity effects of the MDCP and SMDCP models (standard- error in parenthesis) 

Scenario Commercial ___Industrial Residential Undeveloped 

IMDCP SMDCP P MDCP SMDCP P MDCP SMDCP P MDCP SMDCP P 

-4.92 -8.10 10.99 17.75 -4.60 -7.61 0.28 0.41 
A 25% increase in distance to MoPac (0.61) (1.53) 0.0005 (0.92) (4.94) 0.0005 (0.22) (0.62) 0.0005 (0.17) (0.34) 0.0400 

-2.86 -0.26 -10.95 -23.21 7.51 11.81 0.29 0.41 * 
A 25% increase in distance to IH35 (0.78) (5.49) 0.0240 (1.47) (4.16) 0.0005 (0.37) (1.87) 0.0005 (0.24) (0.73) 

A 25% increase in distance to US-183 .48 7.46 00030 -8.11 -20.44 1.46 3.32 00005 0.15 0.38 0.0400 A 5 nraei itnet S13 (0.78) (5.44) 0.03 (0.81) (2.66) 0.0005 (0.24) (0.90) 0.05 (0.22) (0.59) 000 

A 25% increase in distance to nearest -1.31 -3.04 0.1800 4.82 -13.24 0.0005 3.85 9.06 00005 0.14 0.06 
thoroughfare (0.63) (8.03) (1.64) (7.02) 00 (0.27) (1.66) (0.20) (0.86) 0.1700 

A 25% increase in distance to nearest -3.88 -6.79 5.05 9.62 -6.53 -12.70 0.60 1.02 

school (0.58) (2.15) (0.86) (2.89) 00 (0.22) (0.79) (0.17) (0.40) 

A 25% increase in distance to nearest -6.97 -11.30 00005 11.43 20.29 0.97 0.79 01300 0.07 0.01 _ 

hospital (0.36) (1.80) (1.63) (5.73) 0.0005 (0.22) (0.67) (0.13) (0.33) 

A 25% increase in fraction of grid -1.20 -1.00 -1.77 -5.59 0.0005 -1.23 -2.28 0.0005 0.34 0.63 0.0005 
area under floodplain (0.19) (1.11) (0.38) (1.16) (0.08) (0.36) (0.07) (0.22) 

A 25% increase in distance to nearest -5.38 -6.71 -0.99 -9.26 6.96 12.94 0.08 0.23 
thoroughfare and a 25% decrease in 0.55) (5.83) 0.1700 1.56) (6.15) 0.0005 0.34) (1.63) 0.0005 0.19) (0.68) 0.1900 

distance to floodplain 

A switch of the grid location from 36.72 143.40 0.0005 -42.46 -74.83 0.0005000 0.04 1.72 0.1800 
lower elevation to higher elevation (4.98) (19.66) (2.72) (2.37) (1.81) (22.67) (0.87) (7.51) 

A switch of the grid location from 19.05 34.67 -64.71 -88.63 0.0005 -50.55 -75.72 00005 6.87 10.89 
non CBD zone to CBD zone (1.24) (19.75) 0.005 (2.28) (3.04) 00 (0.57) (1.80) (0.53) (2.57) 0.0005 

*A "-" implies that the difference is not statistically significant even at the 0.2 level of significance.  
+P value of the difference.



The elasticity effects of both the MDCP and SMDCP models are in the same direction for 

most variables, and are consistent with the discussions in the previous section. However, the 

elasticity effects from the SMDCP model are generally higher in magnitude than those from the 

MDCP model, a consequence of the spillover effects in the SMDCP model that causes a spatial 

multiplier effect. Specifically, a change in a variable for one grid (say grid A) does not only 

directly influence the baseline utilities for this grid, but affects the baseline utility of neighboring 

grids as well due to the positive spatial autocorrelation parameters (this is captured by S matrix 

in Equation 10). The MDCP model ignores such spatial dependencies and assumes that a change 

in a variable at one grid impacts only the land use at that grid. The difference in the elasticity 

effects between the MDCP and SMDCP models are statistically significant for most of the 

variables. In addition, for a couple of variables, the elasticity effects from the MDCP and 

SMDCP models are even in the opposite directions. For example, the MDCP model predicts an 

increase (by 4.82%) in industrial land use share due to a 25% increase in the distance between a 

grid and the nearest thoroughfare, while the SMDCP model predicts, more in tune with 

expectations, a decrease (by13.24%) in industrial land use share for the same situation. So, 

overall, there are differences in the elasticity predictions between the MDCP and SMDCP 

models, both in terms of magnitude as well as direction of effect. Combined with the improved 

data fit offered by the SMDCP model, the elasticity effects highlight the importance of 

considering spatial dependency rather than a priori ignoring this dependency.
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CHAPTER 6: CONCLUSIONS

This report formulates a spatial multiple discrete-continuous probit (SMDCP) model that should 

be applicable in a wide variety of fields where social and spatial dependencies lead to spillover 

effects in multiple discrete-continuous choices (or states). The report also accommodates spatial 

heterogeneity in response to exogenous covariates and heteroscedasticity in the dependent 

variable. The resulting model formulation becomes too cumbersome to be estimated using 

existing estimation methods, including the frequentist recursive importance sampling (RIS) 

estimator and the Bayesian Markov Chain Monte Carlo (MCMC) estimator. Instead, we propose 

the use of a maximum approximate composite marginal likelihood (MACML) estimation method 

for the proposed SMDCP model. As we demonstrate, the MACML method is easy to implement, 

requires no simulation, and involves only univariate and bivariate cumulative normal distribution 

evaluations.  

The report undertakes a simulation exercise to evaluate the ability of the MACML 

approach to recover model parameters. The simulation results show that, irrespective of the 

magnitude of spatial and temporal dependences, the MACML estimator recovers the parameters 

of the model very well. The MACML estimator also seems to be quite efficient, and the 

approximation error due to the use of the analytic approximation is very small. Additionally, the 

simulation study demonstrates that ignoring error covariance across the baseline utility of 

alternatives within spatial units, or spatial heterogeneity, or spatial dependence, when present but 

ignored, will introduce substantial bias in model parameters.  

The model system proposed in the current report is applied in a demonstration exercise to 

examine urban land development intensity levels using grid-level data from Austin, Texas. The 

empirical results provide important insights regarding land-use investment in multiple types of 

land-uses simultaneously. The results also indicate the superiority, in terms of data fit, of the 

SMDCP model relative to its restrictive variants. Future efforts need to continue to undertake 

simulation experiments to evaluate the performance of the MACML approach for estimating 

models with spatial dependence, and should also focus on harnessing the potential of the 

proposed SMDCP model for analyzing multiple discrete-continuous contexts in a wide variety of 

disciplines.
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