ARCHAEOLOGICAL SURVEY WITHIN

THE CITY OF AZLE'S

CENTRAL PARK

TARRANT AND PARKER COUNTIES, TEXAS

Texas Antiquities Permit Number 4539

Jesse Todd, MS, MA

Submitted to:

THE CITY OF AZLE
613 Southeast Parkway
Azle, Texas 76020

Prepared by

AR CONSULTANTS, INC.
11020 Audelia Road, Suite C105
Dallas, Texas 75243-9085

Cultural Resources Report 2007-20
June 7, 2007
ARCHAEOLOGICAL SURVEY WITHIN

THE CITY OF AZLE'S

CENTRAL PARK

TARRANT AND PARKER COUNTIES, TEXAS

Texas Antiquities Permit Number 4539

Jesse Todd, MS, MA

Submitted to:

THE CITY OF AZLE
613 Southeast Parkway
Azle, Texas 76020

Prepared by

AR CONSULTANTS, INC.
11020 Audelia Road, Suite C105
Dallas, Texas 75243-9085

Cultural Resources Report 2007-20
June 7, 2007

AR CONSULTANTS INC.
ABSTRACT

In late May and early June of 2007, AR Consultants, Inc. conducted an intensive pedestrian archaeological survey of approximately 27 acres within the proposed Central Park for the City of Azle which is located in northwestern Tarrant County and northeastern Parker County, Texas. The city intends to construct two soccer fields, two basketball courts, a parking lot and a narrow trail along Ash Creek. Although portions of the park site west of Ash Creek will not be impacted, they also were surveyed. The proposed park is west of Main Street and north of Stewart Street. No cultural materials older than 50 years were found on the ground surface during the pedestrian archaeological survey nor were any uncovered in 23 shovel tests.

Based upon the results of the archaeological survey, AR Consultants, Inc. recommends that further archaeological investigations are unwarranted. If cultural materials are encountered during construction, work should immediately stop in that area and the Archeology Division of the Texas Historical Commission and the Fort Worth District of the US Army Corps of Engineers should be notified. Work should not continue until consultations with the above agencies have been conducted.
TABLE OF CONTENTS

Abstract... .. i
Table of Contents.. ii
List of Figures.. ii
List of Tables.. ii
Introduction... 1
Natural Environment.. 4
Cultural History... 5
Research Design & Methodology.. 8
Results... 9
Recommendations.. 16
References Cited.. 17

LIST OF FIGURES

Figure 1. Study area plotted on a portion of the Azle, Texas 7.5' USGS map... 2
Figure 2. Forested area on gentle slope to Ash Creek. Forested area in background is along Ash Creek. View is to the northwest..... 9
Figure 3. Disturbed area along proposed trail east of Ash Creek. View is to the south... 10
Figure 4. Ash Creek. View is to the south.. 10
Figure 5. Shovel test locations plotted on an enlarged (400%) portion of the Azle, Texas 7.5' USGS map... 12

LIST OF TABLES

Table 1. Shovel test information.. 14
INTRODUCTION

The City of Azle, which is located in northwestern Tarrant County and northeastern Parker County, Texas, intends to construct two soccer fields, two basketball courts, a parking lot and a narrow trail along Ash Creek within the City’s Central Park. The odd-shaped study area contains approximately 27 acres and is located west of Main Street and north of Stewart Street (Figure 1). AR Consultants, Inc. conducted an intensive pedestrian archaeological survey of approximately 27 acres within the park in late May and early June of 2007. Although approximately one-third of the park west of Ash Creek will not be impacted, this area also was surveyed.

The purpose of this investigation was to locate any cultural resources present within the area of potential affect along the proposed trail and other construction areas and make recommendations about their significance and how they might be impacted by construction. The Antiquities Code of Texas applies since the City of Azle is a political entity of the State of Texas. The Archeology Division of the Texas Historical Commission issued Texas Antiquities Permit Number 4539 for the survey. In addition, since the proposed trail is to be placed along Ash Creek which contains Waters of the United States, relevant federal legislation includes Section 404 Permit for the Clean Water Act, the National Historic Preservation Act of 1966, as amended (PL-96-515), the National Environmental Policy Act of 1969 (PL-90-190), the Archeological and Historical Preservation Act of 1974, as amended (PL-93-291), Executive Order No. 11593 “Protection and Enhancement of the Cultural Environment,” and Procedures for the Protection of Historic and Cultural Properties (36CFR800), Appendix C. The Archeology Division of the Texas Historical Commission will act as both the state and federal review agency.

This report was written in accordance with the guidelines for reports developed by the Council of Texas Archeologists (ND). The following report contains a brief description of the natural environment and then the cultural history of North Central Texas. This is followed by the research design and the methodology used. The results of the field investigation make up the body of the report. The last chapter presents recommendations that arise from the study. A list of references cited concludes the report.
Figure 1. Study area plotted on a portion of the Azle, Texas 7.5' USGS map.
Administrative Information:

Sponsor: City of Azle
Review Agency: Texas Historical Commission, Archeology Division
Principal Investigator: Jesse Todd, MS, MA
Field Crew: Cody Davis and Todd
Fieldwork Dates: May 24 and June 6, 2007
Acres Surveyed: approximately 27
Sites Investigated:
 Prehistoric: None
 Historic: None
NATURAL ENVIRONMENT

Parker and Tarrant Counties are located in North Central Texas. The counties consist mainly of undulating to hilly land and vegetation consists of tall grasses and various species of trees such as mesquite, elm, oak, pecan and walnut. The sandy loams in the Western Cross Timbers, in which the study area lies, drain into the West Fork of the Trinity River. Streams in the Fort Worth Prairie drain into the upper tributaries of the Clear Fork of the Trinity River (Dyksterhuis 1946:Figure 1). The southern portions of the counties drain into the Brazos River (Dyksterhuis 1948:Figure 1; Echeverria 2004:1).

The study area is underlain by the Lower Cretaceous-aged Paluxy Formation which consists of sandstone, mudstone and limestone (Bureau of Economic Geology 1988). The sandstone weathers yellowish-brown as does the clay. In Tarrant County, soils within the study area belong to the Windthorst-Weatherford-Nimrod Association and are gently sloping to sloping upland loams and sands (Ressell 1981:General Soils Map). Specific soils within the study area are Weatherford fine sandy loam with 1 to 3 percent slopes and Ash Creek is mapped as containing frequently flooded Pulexas fine sandy loam (Ressel 1981:Sheet 14). In Parker County, the soil association is Windthorst-Duffau-Weatherford which contains gently sloping to sloping upland loams and sands (Greenwade et al. 1971:General Soils Map). Soils in the study area in Parker County consist of Windthorst loamy fine sand with 1 to 5 percent slopes, eroded Duffau and Weatherford soils with 2 to 5 percent slopes. The area where the soccer fields are to be constructed consists of occasionally flooded Bunyan fine sandy loam and Ash Creek is mapped as containing frequently flooded Yahola and Bunyan soils (Greenwade et al.:1971:Sheet 20).

Ash Creek is shown as perennial on the USGS map but as intermittent on the soils maps for Parker and Tarrant Counties.

Since the study area is in the Cross Timbers, trees such as oak and walnut were present along with abundant understory vegetation consisting of briars and various grasses. Animals hunted consisted of deer, squirrel and turkey which fed on the mast and other prey consisted of raccoon, turtle, mussels, fish and a variety of birds such as duck that lived either in or adjacent to perennial streams. Nearby prairies would have supported quail, rabbits, bison and antelope. The mast from the oak and walnut trees probably was used also by Native Americans to make seasoning as well as bread (Todd 2000).

Some of the animals that once could have found in the area are deer, raccoon, rabbit, squirrel, turkey, quail and land turtles. Lynott (1979) and other authors believe that bison and antelope, now extirpated from the area, roamed the prairies and woodlands of North Central Texas.
CULTURAL HISTORY

The following prehistoric culture history is derived largely from the Elm Fork survey monograph (Prikryl 1990). We have added a Historic European period.

- **Historic European**: AD 1800 to Present
- **Protohistoric**: AD 1600 to AD 1800 [Historic Native American]
- **Late Prehistoric**: AD 700 to AD 1600
- **Archaic**: 6,500 BC to AD 700
- **Paleo-Indian**: pre-6,500 BC

Using the above temporal framework, the following paragraphs present a brief description of the culture history of the area.

The Paleo-Indian period is distinguished by distinctive projectile point styles attributed to this period. Many of the points are made of cherts that are not native to North-Central Texas. The Lewisville site and the Aubrey Clovis site in Denton County are the only reported excavated Paleo-Indian sites in the region (Crook and Harris 1957; Ferring 1989, 1990, 1995), and both are in the Elm Fork floodplain. However, unpublished at this time, the Carr site (41PR26) has been excavated and Paleo-Indian materials recovered from it. It is the subject of Johnny Byar’s thesis. Paleo-Indian style artifacts are frequently found on the surface or in more recent geological deposits on stream terraces above the level of the active floodplain along the Trinity River (Meltzer and Bever 1995). During this period, large mammals became extinct, and their extinction is attributed in part to a general environmental drying.

During the Early Archaic, the general drying continued, and sites are found on stream terraces. There is a hint of population increase and Lynott (1981:103) suggests that there was increased emphasis on the use of bottomland food resources. On the Elm Fork, Prikryl (1990:71) reports fewer bottomland sites than during the previous period. Middle Archaic sites are predominantly found on the first terrace above stream floodplains. As earlier, sites tend to be along the Elm Fork rather than along the smaller tributaries. The population density continued to be low. Late Archaic sites increased in number over the previous period, and sites are found both along the Elm Fork and its tributaries. There appears to have been a strong shift in site location to tributary streams, and a pronounced population explosion. Local Ogallala quartzite was being used prominently at this time, and this observation is taken by some authors (Skinner 1981; Prewitt 1983; Prikryl 1990) as evidence of increased territorial constriction.

During the subsequent Late Prehistoric period, the bow, arrow, and pottery appear in artifact assemblages. Houses and probable evidence of agriculture first appear during this period, as shown at the Cobb-Pool site on Mountain Creek (Raab and Woosley 1982), and at site 41DL12 if a mussel-shell hoe indicates farming (Hughes and Harris 1951). Site locations mirror those of the Late Archaic, and quartzite continued as the common material for chipped stone projectiles and tools. The West Fork Paleosol is tentatively dated to this period, although it has been dated earlier than AD 800 in some places.
Drying continued into the subsequent period. Buffalo bones are common in later prehistoric sites (Dillehay 1974; Lynott 1979), and along with tools normally expected to occur at sites on the High Plains. It also appears that sites were again located on sandy terraces above the floodplains.

Almost no archaeological evidence of historic Native American occupation has been found anywhere in the Tarrant/Parker Counties area. This is a pattern seen throughout much of North-Central Texas (Skinner 1988; Peter, Cliff and Green 1996:3). It is assumed that Tonkawas and Hasinai Caddo were in the area, but by the late 1700s, Comanches, Kiowas and Wichitas had moved into Tarrant County (Hightower 2003).

Beginning in the 1830s and continuing into the 1840s, the aboriginal inhabitants continued to play a role in the history of the region. Garrett (1972:24) states “Indian hostilities almost depopulated North Texas (of Anglo dwellers) after 1839. It dwindled to less than half.” Hostilities continued until the Treaty of 1843 was signed by the State of Texas and ten Native American tribes. This treaty provided the needed impetus for settlement of several North-Central Texas counties.

The earliest Anglo settlements in Tarrant County were Bird’s Fort, established around 1840, and Lonesome Dove, settled in 1845. Lonesome Dove, located near present-day Grapevine, was the first permanent settlement in Tarrant County (Garrett 1972:55). The county was organized in 1850, but it was not until 1860 that Fort Worth was officially named the county seat, that designation having been transferred from Birdville (Webb 1952:708). Settlers, however, had been steadily arriving in the county during these 20 years. Many came from through the auspices of Peters Colony land grants, although only 160 families and single pioneers took advantage of the grants (Garrett 1972:57).

In 1849, Major Ripley Allan Arnold was assigned to build a military post on the upper Trinity in the largely uninhabited geographical region of the Grand Prairie and the Eastern Cross Timbers. This encampment was established on a high bluff overlooking the confluence of the West and Clear Forks of the Trinity River. Major Arnold named the post Camp Worth, and the camp was officially named Fort Worth (Hightower 2003).

The Civil War took its toll on Fort Worth’s population, as most of the able-bodied men left to fight for the Confederacy. The young town’s renaissance was motivated by growth of the cattle industry and the arrival of the railroad. By 1870, it is estimated that 300,000 head of cattle had been driven through Fort Worth. By the end of the nineteenth century, Fort Worth had shed its “six-shooter” culture for a more refined cow town culture which still exists today (Garrett 1972).

What today is the City of Azle was first settled in 1846 and later settlers established residences along Ash, Silver and Walnut Creeks. The first post office was opened in 1881 and the town was named O’Bar for the person who obtained the postal service. However, after a request by Mr. Steward, who first settled the area and donated the land for the town site, the name was changed to Azle. Agriculture has been the main economic staple for the area, but recently, manufacturing has made inroads into the economic base. In
addition, since Azle is the "Gateway to Eagle Mountain Lake", it has been a popular place to live and the city continues to grow and thrive (Hightower 1997:1).

Previous Investigations

No archaeological sites are listed on the Texas Archeological Sites Atlas (2007) and no historic residences are shown on Sam Street's map of Tarrant County (1895). An archaeological survey of the Cross Timbers Golf Course (formerly the Azle Municipal Golf Course) by AR Consultants, Inc. (Skinner and Whorton 1993), located on Reynolds Creek, south of the study area recorded three historic sites and one prehistoric site. Of importance was the discovery of the Coho and Mary Jane Smith site (Whorton and Skinner 1995). The site consists of a mid-eighteenth century house with a two-room foundation, a rock-lined well, a spring house and an unusual shaped root cellar.
RESEARCH DESIGN AND METHODOLOGY

Research Design

The following research design was to insure that fieldwork made a contribution to the better understanding of the prehistory and history of Tarrant and Parker Counties and the State of Texas.

First,

It was believed that if prehistoric sites were found they would be along Ash Creek or else on elevations above flooding in its floodplain.

Second,

It was believed that historic occupation of the study area was unlikely due to the seasonal flooding of the creek.

Although the construction easement (discussed below) is narrow, significant discoveries can be made in these types of surveys which provide information about the local, county and state prehistory and history.

Methodology

The study area was investigated in two manners. The area northeast of Ash Creek where the soccer fields and other facilities are to be constructed, elevations above flooding were shovel tested. However, where the trail and the non-impacted portions of the study area are adjacent to Ash Creek, shovel tests were excavated approximately 100 m apart as recommended by the Council of Texas Archeologists (2002). Although the planned construction essentially will maintain the present level grade and no excavations are planned below three feet, shovel tests were supplemented by augering to below a meter where possible. However, shovel tests were not excavated in disturbed areas. Clay matrices were not screened but were broken manually and visually examined for cultural materials as were the pit walls. The sandy loam and sand matrices were screened through a 1/4-inch hardwire screen and the pit walls were examined visually for cultural materials. Notes about the topography, vegetation, animals, soils and other relevant material were taken. Photographs also were taken.

Backhoe trenching was deemed unnecessary because of the shallow depth to the subsoil.
RESULTS

The results chapter includes a description of the survey area, the archaeological survey and conclusions derived from the investigation. Shovel tests are discussed in the text, but detailed descriptions of the sediments are provided in Table 1 at the end of the chapter. Shovel test locations and various areas discussed in the text are shown on Figure 5.

The Study Area

The study area ranges from level to gently to moderately sloping terrain. Most of the study area consists of unimproved pasture (Figure 2) but forested areas were adjacent to Ash Creek. Trees include hackberry, American elm, winged elm and eastern red cedar. Understory vegetation includes johnson grass, daisy, poison ivy, poison oak, grape vine and saw greenbriar. Ground visibility ranged from less than 10 to 40 percent except for the disturbed area where the ground visibility was 100 percent (Figure 3).

The Ash Creek channel is approximately 3 m deep and 10 m wide. Clear water was flowing over a sandy clay substrate that contained limestone gravel and cobbles (Figure 4). Limestone ledges occasionally jutted out from the banks and massive sandstone layers could be seen in the bank profile. No knappable lithic resources were found on bars along the creek nor were buried cultural materials were seen in the creek’s vertical banks.

Figure 2. Forested area on gentle slope to Ash Creek. Forested area in background is along Ash Creek. View is to the northwest.
Figure 3. Disturbed area along proposed trail east of Ash Creek. View is to the south.

Figure 4. Ash Creek. View is to the south.
The Survey

Mr. Kurt Culwell, Parks and Recreation Director for the City of Azle, met the archaeologists at the park and gave the surveyors a brief walking tour of the study area. After the brief introduction to the survey area, the archaeologists began the survey west of Main Street. The first portion of the study area consisted of mowed pasture on a gentle slope. Ground visibility was greater than 30 percent so it was not shovel tested. Between the mowed area and the unimproved pasture shown in Figure 2 is a small forested area. Ground visibility was greater than 70 percent in the forested area so no shovel tests were excavated. No cultural materials were seen on the ground surface in either of the two locations.

Four shovel tests (1 through 4) were excavated on elevations above flooding in the unimproved pasture northeast of Ash Creek. Shovel test (hereafter ST) 1 uncovered 26 cm of loamy clay overlying loamy clay subsoil that extended to 49 cm. This loamy clay overlaid clay that ranged to 146 cm below which another clay extended to 157 cm below the ground surface at which the shovel test was terminated. The same type of soil matrices were uncovered in ST 2 except that the contacts were at 38, 69 and 123 cm below the ground surface and the shovel test was terminated at 135 cm below the ground surface. Shovel test 3 uncovered 21 cm of loamy clay overlying clay subsoil which in turn overlaid a different clay at 47 cm. The shovel test was terminated at 115 cm below the ground surface. The upper three soil zones found in STs 1 and 2 were found in ST 3 and the contacts were at 23 and 110 cm. However, the lower soil zone consisted of sandy clay and extended to 115 cm below the ground surface. No cultural materials were seen on the ground surface or uncovered in the four shovel tests within the unimproved pasture east of Ash Creek.

At this point, shovel testing began along the east bank of Ash Creek and went generally south. Shovel test 5 was placed approximately 110 m south of the northern boundary of the study area. The shovel test uncovered 39 cm of loamy sand overlying different loamy sand subsoil to 93 cm which overlaid clay that ranged to 127 cm, which, in turn, overlaid sandy clay that extended to 135 cm below the ground surface at which point the shovel test was terminated. One hundred cm of loamy sand overlying laminae of the same loamy sand and brown clay that extended to 125 cm below the ground surface were encountered in ST 6. The upper two soil zones of ST 7 were similar to ST 6 but the contact was at 79 cm. Clay subsoil was encountered at 86 cm and extended to 97 cm below the ground surface. Thirty cm of the laminae of sand and clay were uncovered in ST 9 and clay subsoil ranging from 30 to 72 cm underlaid the laminae and the final soil zone consisted of clay that ranged from 72 to 85 cm. No cultural materials were seen on the ground surface from the northern boundary to ST 9 despite the 30 percent ground visibility and no buried cultural deposits were uncovered in STs 5 through 9.
At ST 10, the archaeologist began investigating the trail that is to parallel the east bank of Ash Creek. The shovel test uncovered 30 cm of sandy loam overlying loamy clay subsoil that extended to 86 cm which overlaid clay that ranged to 123 cm below the ground surface. The upper 7 cm of ST 11 was forest duff. Beneath the duff was sandy clay that extended to 35 cm, below that was a different sandy clay subsoil that ranged to 78 cm where bedrock was encountered. No cultural materials older than 50 years were seen on the ground surface or found in ST 10 to ST 11.
Approximately 59 m south of ST 11, the area was disturbed as shown in Figure 3 for about 139 m. Shovel 12 was placed 50 m south of the disturbed area. The shovel test uncovered 41 cm of sandy loam overlying loamy sand subsoil that extended to 65 cm. The sand was underlain by sand that extended to 85 cm which overlaid clay that ranged to 120 cm below the ground surface. Shovel test 13 uncovered 33 cm of loamy clay that overlaid clay subsoil to 55 cm. The clay was underlain by a different clay that ranged to 112 cm which was underlain by laminated layers of sand and clay to 126 cm below the ground surface. In ST 14, 41 cm of sandy loam overlaid sandy clay subsoil that extended to 106 cm which overlaid a different sandy clay that extended to 120 cm below the ground surface. Thirty-three cm of sandy loam overlaid laminated sand and clay which extended to 57 cm. The laminated sediments were underlain by sandy loam subsoil that extended to 123 cm below the ground surface. Shovel test 16 was placed approximately 30 cm north of Stewart Street and uncovered 16 cm of sandy loam overlying impenetrable gravel. No cultural materials older than 50 years were seen on the ground surface from south of the disturbed area to Stewart Street and STs 12 through 16 were culturally sterile.

The archaeologists then crossed the Stewart Street bridge and went to the southern portion of the park west of Ash Creek. As previously mentioned, this area will not be impacted but was investigated as part of the survey. No shovel tests were placed on the slope to the creek due to the 50+ percent plus ground visibility. Two shovel tests (17 and 18) were excavated along the creek. Shovel test 17 uncovered 58 cm of sandy loam which overlaid different sandy loam subsoil that extended to 84 cm. This sandy loam was underlain by sandy clay that ranged to 95 cm which overlaid clay that extended to 103 cm below the ground surface. Laminae of sand and clay were uncovered in the upper 86 cm of ST 18. The laminated sediments were underlain by sand which ranged from 86 to 105 cm. The sand was underlain by laminated sediments similar to the upper layer to 106 cm below the ground surface where the shovel test was terminated. No cultural materials were seen on the ground surface or uncovered in this portion of the study area.

The northwestern portion of the park west of Ash Creek was investigated nest. Shovel test 19 was placed on a small bench overlooking the creek and uncovered 61 cm of sandy loam overlying sand that extended to 95 cm. From 95 to 106 cm below the ground surface was sand with sand inclusions and the shovel test was terminated at 106 cm below the ground surface. Shovel tests 20 through 22 were placed along the creek bank. Shovel test 20 uncovered 57 cm of laminated sediment overlying very fine sand that extended to 84 cm which overlaid sand with sandy inclusions that ranged to 125 cm below the ground surface. Five cm of forest duff overlaid sand that extended to 41 cm which overlaid sandy clay subsoil that ranged to 142 cm below the ground surface in ST 21. Fifteen cm of forest duff was encountered in ST 22. The forest duff was underlain by sandy clay that extended to 83 cm which was underlain by sand that ranged to 127 cm below the ground surface. Shovel tests 19 through 22 were culturally sterile and no cultural materials older than 50 years were seen on the ground surface in this part of the study area.
The last shovel test (23) was placed south of a bend of the creek. The shovel test uncovered forest duff overlying sandy clay that extended to 51 cm which overlaid different sandy clay to 121 cm below the ground surface at which point the shovel test was terminated. No cultural materials were seen on the ground surface in this part of the park or uncovered in the shovel test.

Conclusions

No cultural materials older than 50 years were found during the intensive pedestrian archaeological survey of the study area or uncovered in 23 shovel tests. The absence of historic sites is probably due to the creek’s seasonal flooding and the lack of prehistoric sites also may be for the same reason. If sites were present on the elevations in the floodplain, farming and erosion over 200 years may have removed any indications of their presence.

Table 1. Shovel test descriptions*

<table>
<thead>
<tr>
<th>ST NO</th>
<th>Depth (cm)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0-26</td>
<td>Dark yellowish-brown (10YR4/4) loamy clay</td>
</tr>
<tr>
<td></td>
<td>26-49</td>
<td>Brown (10YR4/3) loamy clay</td>
</tr>
<tr>
<td></td>
<td>49-146</td>
<td>Black (10YR2/1) clay</td>
</tr>
<tr>
<td></td>
<td>146-157+</td>
<td>Very dark grayish-brown (10YR3/2) clay</td>
</tr>
<tr>
<td>2</td>
<td>0-38</td>
<td>Dark yellowish-brown loamy clay</td>
</tr>
<tr>
<td></td>
<td>38-69</td>
<td>Brown loamy clay</td>
</tr>
<tr>
<td></td>
<td>69-123</td>
<td>Black clay</td>
</tr>
<tr>
<td></td>
<td>123-135+</td>
<td>Very dark grayish-brown clay</td>
</tr>
<tr>
<td>3</td>
<td>0-21</td>
<td>Brown loamy clay</td>
</tr>
<tr>
<td></td>
<td>21-47</td>
<td>Black clay</td>
</tr>
<tr>
<td></td>
<td>47-115+</td>
<td>Very dark grayish-brown clay</td>
</tr>
<tr>
<td>4</td>
<td>0-23</td>
<td>Yellowish-brown (10YR5/4) sandy loam</td>
</tr>
<tr>
<td></td>
<td>23-53</td>
<td>Yellowish-brown sandy loamy clay</td>
</tr>
<tr>
<td></td>
<td>53-110</td>
<td>Very dark grayish-brown clay</td>
</tr>
<tr>
<td></td>
<td>110-115+</td>
<td>Brown sandy clay</td>
</tr>
<tr>
<td>5</td>
<td>0-39</td>
<td>Pale brown (10YR6/3) very fine loamy sand</td>
</tr>
<tr>
<td></td>
<td>39-93</td>
<td>Brown sandy loamy clay</td>
</tr>
<tr>
<td></td>
<td>93-127</td>
<td>Very dark grayish-brown clay</td>
</tr>
<tr>
<td></td>
<td>127-135+</td>
<td>Dark grayish-brown (10YR4/2) sandy clay</td>
</tr>
<tr>
<td>6</td>
<td>0-100</td>
<td>Pale brown very fine sandy loam</td>
</tr>
<tr>
<td></td>
<td>100-125+</td>
<td>Same as above but with brown clay laminae</td>
</tr>
<tr>
<td>7</td>
<td>0-79</td>
<td>Pale brown very fine sandy loam</td>
</tr>
<tr>
<td></td>
<td>79-105</td>
<td>Same as above but with brown clay laminae</td>
</tr>
<tr>
<td></td>
<td>105-137+</td>
<td>Dark grayish-brown clay</td>
</tr>
<tr>
<td>8</td>
<td>0-63</td>
<td>Pale brown very fine sandy loam</td>
</tr>
<tr>
<td></td>
<td>63-86</td>
<td>Same as above but with brown clay laminae</td>
</tr>
<tr>
<td></td>
<td>86-97+</td>
<td>Dark grayish-brown clay</td>
</tr>
<tr>
<td>9</td>
<td>0-30</td>
<td>Pale brown very fine sandy loam</td>
</tr>
<tr>
<td></td>
<td>30-72</td>
<td>Brown clay</td>
</tr>
<tr>
<td></td>
<td>72-85+</td>
<td>Dark grayish-brown clay</td>
</tr>
<tr>
<td>10</td>
<td>0-30</td>
<td>Pale brown very fine sandy loam</td>
</tr>
<tr>
<td></td>
<td>30-86</td>
<td>Yellowish-brown loamy clay</td>
</tr>
</tbody>
</table>
Archeological Survey of the City of Azle's Central Park

Layer Descriptions

<table>
<thead>
<tr>
<th>Layer</th>
<th>Depth</th>
<th>Material Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>86-123+</td>
<td>Dark grayish-brown clay</td>
<td></td>
</tr>
<tr>
<td>11 0-7</td>
<td>Forest duff</td>
<td></td>
</tr>
<tr>
<td>7-35</td>
<td>Yellowish-brown (10YR5/6) sandy clay</td>
<td></td>
</tr>
<tr>
<td>35-78</td>
<td>Dark yellowish-brown (10YR4/6) sandy clay</td>
<td></td>
</tr>
<tr>
<td>78+</td>
<td>bedrock</td>
<td></td>
</tr>
<tr>
<td>12 0-41</td>
<td>Pale brown very fine sandy loam</td>
<td></td>
</tr>
<tr>
<td>41-65</td>
<td>Brown loamy sand</td>
<td></td>
</tr>
<tr>
<td>65-85</td>
<td>Light gray (10YR7/2) very fine sand</td>
<td></td>
</tr>
<tr>
<td>85-120+</td>
<td>Brown clay</td>
<td></td>
</tr>
<tr>
<td>13 0-33</td>
<td>Brown sandy loamy clay</td>
<td></td>
</tr>
<tr>
<td>33-55</td>
<td>Dark grayish-brown clay</td>
<td></td>
</tr>
<tr>
<td>55-112</td>
<td>Brown (10YR5/3) clay</td>
<td></td>
</tr>
<tr>
<td>112-126+</td>
<td>Laminae of brown clay and light brown (10YR6/4) sand</td>
<td></td>
</tr>
<tr>
<td>14 0-41</td>
<td>Light yellowish-brown (10YR6/3) fine sandy loam</td>
<td></td>
</tr>
<tr>
<td>41-106</td>
<td>Very dark brown (10YR2/2) slightly sandy clay</td>
<td></td>
</tr>
<tr>
<td>106-120+</td>
<td>Brown slightly sandy clay</td>
<td></td>
</tr>
<tr>
<td>15 0-33</td>
<td>Light yellowish-brown fine sandy loam</td>
<td></td>
</tr>
<tr>
<td>33-57</td>
<td>Laminae of light yellowish-brown fine sandy clay and brown clay</td>
<td></td>
</tr>
<tr>
<td>57-123+</td>
<td>Yellowish-brown fine sandy loam</td>
<td></td>
</tr>
<tr>
<td>16 0-16</td>
<td>Yellowish-brown fine sandy loam</td>
<td></td>
</tr>
<tr>
<td>16+</td>
<td>Impermeable gravel</td>
<td></td>
</tr>
<tr>
<td>17 0-58</td>
<td>Pale brown very fine sandy loam</td>
<td></td>
</tr>
<tr>
<td>58-84</td>
<td>Brown fine sandy loam</td>
<td></td>
</tr>
<tr>
<td>84-95</td>
<td>Brown sandy clay</td>
<td></td>
</tr>
<tr>
<td>95-103+</td>
<td>Dark yellowish-brown clay</td>
<td></td>
</tr>
<tr>
<td>18 0-86</td>
<td>Laminae of pale brown sand and brown clay</td>
<td></td>
</tr>
<tr>
<td>86-105</td>
<td>Pale brown very fine sand</td>
<td></td>
</tr>
<tr>
<td>105-121+</td>
<td>Laminae of pale brown sand and brown clay</td>
<td></td>
</tr>
<tr>
<td>19 0-61</td>
<td>Brown fine sandy loam</td>
<td></td>
</tr>
<tr>
<td>61-95</td>
<td>Very pale brown (10YR7/4) very fine sand</td>
<td></td>
</tr>
<tr>
<td>95-106+</td>
<td>Very pale brown sand containing 30% red (2.5YR5/8) sand inclusions</td>
<td></td>
</tr>
<tr>
<td>20 0-57</td>
<td>Laminae of light yellowish-brown and brown clay</td>
<td></td>
</tr>
<tr>
<td>57-84</td>
<td>Light yellowish-brown very fine sand</td>
<td></td>
</tr>
<tr>
<td>84-125+</td>
<td>Light gray very fine sand containing 40% red sand inclusions</td>
<td></td>
</tr>
<tr>
<td>21 0-5</td>
<td>Forest duff</td>
<td></td>
</tr>
<tr>
<td>5-41</td>
<td>Light yellowish-brown sand</td>
<td></td>
</tr>
<tr>
<td>41-142+</td>
<td>Yellowish-brown (10YR5/8) sandy clay</td>
<td></td>
</tr>
<tr>
<td>22 0-15</td>
<td>Forest duff</td>
<td></td>
</tr>
<tr>
<td>15-83</td>
<td>Brown very sandy clay</td>
<td></td>
</tr>
<tr>
<td>83-127+</td>
<td>Very pale brown very fine sand</td>
<td></td>
</tr>
<tr>
<td>23 0-7</td>
<td>Forest duff</td>
<td></td>
</tr>
<tr>
<td>7-51</td>
<td>Brown sandy clay</td>
<td></td>
</tr>
<tr>
<td>51-1221+</td>
<td>Yellowish-brown sandy clay</td>
<td></td>
</tr>
</tbody>
</table>

Note: Munsell Color Chart Numbers listed only first time used.
RECOMMENDATIONS

The purpose of this investigation was to determine if significant cultural resources were present within the proposed City of Azle’s Central Park. The area was inspected by pedestrian survey and 23 shovel tests were excavated. No prehistoric or historic cultural resources were found.

AR Consultants, Inc. recommends that further archaeological investigations are unwarranted. If cultural materials are encountered during construction, work should immediately stop in that area and the Archeology Division of the Texas Historical Commission and the Fort Worth District of the US Army Corps of Engineers should be notified. Work should not continue until consultations with the above agencies have been completed.
REFERENCES CITED

Anthony, Dana and David O. Brown

Brown, David O.

Bureau of Economic Geology
1988 Geologic Atlas of Texas, Dallas Sheet. The University of Texas at Austin.

Council of Texas Archeologists
ND Guidelines for the Content of Cultural Resource Management Reports. Manuscript on file with the membership.

Crook, Wilson W., II and R.K. Harris

Dillehay, Tom D.

Dyksterhus, E. K.

Echeverria, Jeri

Ferring, C. Reid
1990 Late Quaternary Geology and Geoarchaeology of the Upper Trinity River Drainage Basin, Texas. Geological Society of America, Field Trip #11 Guidebook.

Ferring, C. Reid and Bonnie C. Yates

Garrett, Julia Kathryn
1972 Fort Worth: A Frontier Triumph. The Encionn Press, Austin.

Greenwade, James M., J. David Kelley and Harold W. Hyde
1977 Soil Survey of Parker County, Texas. USDA, Soil Conservation Service in cooperation with Texas Agricultural Experiment Station.

Hawkins, H. W., Neal Gearreald and M. W. Beck
1920 Soils Map of Tarrant County, Texas. Bureau of Soils in conjunction with Texas Agricultural Experiment Station.

Hughes, Jack T. and R. King Harris

Humphrey, J. D. and C. Reid Ferring

Lynott, Mark J.
Meltzer, David J. and Michael R. Bever

Peter, Duane E., Maynard Cliff, and Melissa Green
1996 Draft Archeological Survey Standards: Blackland Prairie (Region 3) and the Cross Timbers (Region 4) North-Central Texas. Paper prepared for the Council of Texas Archeologists, Spring Meeting, Austin.

Prewitt, Elton R.

Prikryl, Daniel D.

Ressel, Dennis D.
1981 *Soil Survey of Tarrant County, Texas*. US Department of Agriculture, Soil Conservation Service, and Texas Agricultural Experiment Station.

Skinner, S. Alan

Skinner, S. Alan and Brenda B. Whorton

Street, Sam
1895 *Sam Street's Map of Tarrant County, Texas*. Texas Archeological Site Atlas
2007 Search for sites on the Azle, Texas 7.5' USGS map. Texas Historical Commission internet site.

Todd, Jesse

Webb, Walter Webb, Editor
1952 *The Handbook of Texas*. Volume II. Texas State Historical Association, Austin.

Whorton, Brenda B. and S. Alan Skinner