

TECHNICAL REPORT 5-4563-01-1

TXDOT PROJECT NUMBER 5-4563

ConcreteWorks Implementation: Final Report

Corey Meeks Kevin Folliard

CENTER FOR TRANSPORTATION RESEARCH BUREAU OF ENGINEERING RESEARCH THE UNIVERSITY OF TEXAS AT AUSTIN

www.utexas.edu/research/ctr/pdf_reports/5_4563_01_1.pdf

	I connear r	Report Docur		<u> </u>		
1. Report No.		2. Governm		3. Recipient's Catalog No.		
FHWA/TX-12/5-4563-01-1		Accession N	No.			
4. Title and Subtitle				5. Report Date		
			-			
ConcreteWorks Implementati	on: Final Report	-		November 2011, Published Janu	ary 2013	
				6. Performing Organization Code		
7. Author(s)				8. Performing Organization Report No.		
Corey Meeks and Dr. Kevin I	Folliard			5-4563-01-1		
9. Performing Organization Nam	e and Address			10. Work Unit No. (TRAIS)		
Center for Transportation Res	search			11. Contract or Grant No.		
The University of Texas at A				5-4563-01		
1616 Guadalupe St., Suite 4.2	202					
Austin, TX 78701						
12. Sponsoring Agency Name an	d Address			13. Type of Report and Period Covered		
Texas Department of Transpo	ortation			Technical Report		
Research and Technology Im	plementation Of	fice		September 2009–August 2011		
P.O. Box 5080			-	14. Sponsoring Agency Code		
Austin, TX 78763-5080						
15. Supplementary Notes Project performed in coopera Administration.	tion with the Tex	kas Departme	ent of Ti	ransportation and the Federal Highw	/ay	
16. Abstract						
Under TxDOT Project 0-4562 software package known as C contractors a tool that combir TxDOT to better designs. Alt levels, it has not yet been imp implementation support, the g TxDOT.	ConcreteWorks, v les concrete desig hough Concrete lemented into sta	vhich gives la gn, analysis, Works has be andard TxDC ct will be to s	aboraton and per een very OT pract spur the	exas at Austin developed an innovat ry technicians, engineers, inspectors formance prediction to improve and well received at the national and in tice. Through a combination of train implementation of ConcreteWorks	, and guide ternational ing and	
17. Key Words 18. Dist			. Distrit	ribution Statement		
ConcreteWorks No restrictions. This document is available			le to the			
	public through the National Technical Information Service, Springfield, Virginia 22161; www.ntis.go					
19. Security Classif. (of report)	20. Security Cla	assif. (of this	page)	21. No. of pages	22. Price	
Unclassified	Unclassified			204		

Technical Report Documentation Page

.

•

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized

· · · •

ConcreteWorks Implementation: Final Report

Corey Meeks Dr. Kevin Folliard

CTR Technical Report:	5-4563-01-1
Report Date:	November 2011
Project:	5-4563-01
Project Title:	Development of Training Module for Concrete Works
Sponsoring Agency:	Texas Department of Transportation
Performing Agency:	Center for Transportation Research at The University of Texas at Austin

Project performed in cooperation with the Texas Department of Transportation and the Federal Highway Administration.

Center for Transportation Research The University of Texas at Austin 1616 Guadalupe St., Suite 4.202 Austin, TX 78701

www.utexas.edu/research/ctr

Copyright (c) 2011 Center for Transportation Research The University of Texas at Austin

All rights reserved Printed in the United States of America

Disclaimers

Author's Disclaimer: The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official view or policies of the Federal Highway Administration or the Texas Department of Transportation (TxDOT). This report does not constitute a standard, specification, or regulation.

Patent Disclaimer: There was no invention or discovery conceived or first actually reduced to practice in the course of or under this contract, including any art, method, process, machine manufacture, design or composition of matter, or any new useful improvement thereof, or any variety of plant, which is or may be patentable under the patent laws of the United States of America or any foreign country.

Notice: The United States Government and the State of Texas do not endorse products or manufacturers. If trade or manufacturers' names appear herein, it is solely because they are considered essential to the object of this report.

Engineering Disclaimer

NOT INTENDED FOR CONSTRUCTION, BIDDING, OR PERMIT PURPOSES.

Project Engineer: Dr. David W. Fowler Professional Engineer License State and Number: Texas No. 27859 P. E. Designation: Researcher

Acknowledgments

The authors express appreciation to the TxDOT Project Director (Ralph Browne), members of the Project Monitoring Committee, and the staff at the Concrete Durability Center.

Table of Contents

Chapter 1. Introduction	
1.1 Background	1
1.2 Research Objective	
1.3 Scope of Report	2
Chapter 2. ConcreteWorks Training	2
2.1 Austin Pilot Course	
2.2 Standard Training Course	
Chapter 3. Laboratory Testing Results	
3.1 Field Testing Program	
3.2 Environmental Cycle	
3.2.1 Weather Station	6
3.3 Hydration Model	
3.3.1 Blaine Fineness	9
3.3.2 Bogue Composition	9
3.3.3 X-Ray Diffraction	
3.3.4 Calorimetry	
3.3.5 Hydration Property Results	12
3.4 Heat Transfer Model	13
3.4.1 Thermal Conductivity and Heat Capacity	
3.5 Mechanical Testing	
Chapter 4. Precast Concrete Temperature Prediction	19
Chapter 4. Precast Concrete Temperature Prediction	
4.1 Research Significance	19
4.1 Research Significance4.2 Case Study: Bexar Concrete Works	19 20
 4.1 Research Significance	
 4.1 Research Significance	19 20 20 21
 4.1 Research Significance	19 20 20 21 22
 4.1 Research Significance	19 20 20 21 22 23
 4.1 Research Significance	19 20 20 21 22 23 30
 4.1 Research Significance	19 20 20 21 22 23 30 30
 4.1 Research Significance	19 20 20 21 22 23 30 30 30
 4.1 Research Significance	19 20 20 21 22 30 30 30 30 31
 4.1 Research Significance	19 20 21 22 23 30 30 30 31 33
 4.1 Research Significance	19 20 20 21 22 23 30 30 30 30 33 33 33
 4.1 Research Significance	19 20 20 21 22 30 30 30 30 30 31 33 38 38
 4.1 Research Significance	19 20 20 21 22 30 30 30 30 31 33 38 38 38 38
 4.1 Research Significance	19 20 20 21 22 30 30 30 30 31 33 38 38 38 39 41
 4.1 Research Significance	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
 4.1 Research Significance	19 20 20 21 22 30 30 30 30 30 30 30 31 33 38 38 38 41 43
 4.1 Research Significance	19 20 20 21 22 30 30 30 30 30 31 33 38 38 38 43 45

5.2.1 Project Details	
5.2.2 Materials and Mixture Proportions	
5.2.3 Instrumentation	
5.2.4 Field Observations	
5.2.5 Observed and Predicted Temperatures	
5.3 Case Study: IH 35/SH 71 WBSB Column 9	54
5.3.1 Project Details	
5.3.2 Materials and Mixture Proportions	
5.3.3 Instrumentation	
5.3.4 Field Observations	
5.3.5 Observed Predicted Temperatures	
5.4 Discussion	
5.5 Conclusion and Recommendations	64
Chapter 6. Chloride Service Life	
6.1 Case Study: Copano Bay Bridge	65
6.1.1 Field Observations	
Chapter 7. Conclusion	
Appendix A: ConcreteWorks Training	
Appendix B: Bexar Concrete Works	
Appendix C: Valley Prestress Products	
Appendix D: IH35/SH71 WBSB Column 8	
Appendix E: IH35/SH71 WBSB Column 9	

List of Figures

Figure 3.1: Temperature Prediction Processes	5
Figure 3.2: Levels of Detail (LOD) in Process Characterization	6
Figure 3.3: Mix-specific Heat Signature	8
Figure 3.4: Hydration Parameters	8
Figure 3.5: Mathis Thermal Conductivity Sensor	. 14
Figure 3.6: Polished Course Aggregate Samples	15
Figure 4.1: Installation of U54 Male Formwork	. 19
Figure 4.2: Cross Section of a Typical U Beam	20
Figure 4.3: Bexar Precast—Approximate Location of Sensors	21
Figure 4.4: Bexar Precast—End Block Instrumentation Schematic	. 22
Figure 4.5: Maximum Observed Temperature (Alamo vs. Capitol)	. 23
Figure 4.6: Capitol ConcreteWorks Analysis (Sensor B1)	. 24
Figure 4.7: Capitol ConcreteWorks Analysis (Sensor B2)	. 24
Figure 4.8: Capitol ConcreteWorks Analysis (Sensor M1)	. 25
Figure 4.9: Capitol ConcreteWorks Analysis (Sensor M2)	. 25
Figure 4.10: Capitol ConcreteWorks Analysis (Sensor T1)	. 26
Figure 4.11: Capitol ConcreteWorks Analysis (Sensor T2)	. 26
Figure 4.12: Alamo ConcreteWorks Analysis (Sensor B1)	. 27
Figure 4.13: Alamo ConcreteWorks Analysis (Sensor B2)	. 27
Figure 4.14: Alamo ConcreteWorks Analysis (Sensor M1)	. 28
Figure 4.15: Alamo ConcreteWorks Analysis (Sensor M2)	. 28
Figure 4.16: Alamo ConcreteWorks Analysis (Sensor T1)	. 29
Figure 4.17: Alamo ConcreteWorks Analysis (Sensor T2)	. 29
Figure 4.18: Eagle Lake Temperature Bars	. 32
Figure 4.19: Installed Sensor Locations	. 32
Figure 4.20: Eagle Lake—End Block Instrumentation Schematic	. 33
Figure 4.21: Eagle Lake—ConcreteWorks Analysis (Sensor B1)	. 34
Figure 4.22: Eagle Lake—ConcreteWorks Analysis (Sensor B2)	. 34
Figure 4.23: Eagle Lake—ConcreteWorks Analysis (Sensor B3)	35
Figure 4.24: Eagle Lake—ConcreteWorks Analysis (Sensor M1)	35
Figure 4.25: Eagle Lake—ConcreteWorks Analysis (Sensor M2)	36
Figure 4.26: Eagle Lake—ConcreteWorks Analysis (Sensor M3)	36
Figure 4.27: Eagle Lake—ConcreteWorks Analysis (Sensor T1)	. 37
Figure 4.28: Eagle Lake—ConcreteWorks Analysis (Sensor T2)	. 37

•	
Figure 4.29: Eagle Lake—ConcreteWorks Analysis (Sensor T3)	
Figure 4.30: Eagle Lake—Water Cooled Beam	
Figure 4.31: Eagle Lake—Observed Temperature (Water Cooled Beam)	
Figure 4.32: Diaphragm iButton	
Figure 4.33: Diaphragm iButton	
Figure 4.34: Eagle Lake—Observed Temperature (Diaphragm)	
Figure 4.35: Exterior Formwork—Bexar (Left) and Eagle Lake (Right)	
Figure 5.1: WBSB 8 Site Layout	
Figure 5.2: WBSB 8 Design Drawing	
Figure 5.3: Looking up from Inside WBSB 8	
Figure 5.4: Column 8 Instrumentation Schematic	49
Figure 5.5: Diagonal Temperature Bar in WBSB 8	
Figure 5.6: WBSB 8 Temperature Bar	50
Figure 5.7: WBSB 8 Observed Data (Temperature Bar D—South)	52
Figure 5.8: WBSB 8 Observed Data (Temperature Bar D-North)	
Figure 5.9: WBSB 8 Sensor C Comparison	53
Figure 5.10: WBSB 9 Site Plan	54
Figure 5.11: WBSB 9 Inset Formwork	
Figure 5.12: WBSB 9 Design Drawing	56
Figure 5.13: Column 9 Profile View	56
Figure 5.14: Fabrication of New Temperature Bar	
Figure 5.15: WBSB 9 Detailed Instrumentation Scheme	58
Figure 5.16: WBSB 9 Completed Instrumentation	59
Figure 5.17: WBSB 9 Instrumentation	59
Figure 5.18: WBSB 9 Observed Data (Temperature Bar F—South)	61
Figure 5.19: WBSB 9 Observed Data (Temperature Bar F-North)	61
Figure 5.20: WBSB 9 Observed Data (Temperature Bar D—South)	62
Figure 5.21: WBSB 9 Observed Data (Temperature Bar D—North)	62
Figure 5.22: WBSB 9 Sensor C Comparison	
Figure 6.1: Copano Bay Bridge (Looking Northeast)	
Figure 6.2: Corrosion of Tie Beam and Column	
Figure 6.3: Cracking of Tie Beam and Column	66
Figure 6.4: Cracking of Tie Beam	
Figure 6.5: Corrosion of Precast Concrete Piling	
Figure 6.6: Corrosion of Concrete Slab and Girder Span	
Figure B-1 – Ambient Temperature	
Figure B-2 – Wind Speed	

-

Figure B-3 – Bexar Precast Solar Radiation	. 146
Figure B-4 – Bexar Precast Relative Humidity	. 146
Figure B-5 – Alamo General Inputs	. 147
Figure B-6 – Capitol General Inputs	. 147
Figure B-7 – Bexar Mixture Proportions	. 148
Figure B-8 – Alamo Material Properties (LOD 1)	. 148
Figure B-9 – Alamo Material Properties (LOD 2)	. 149
Figure B-10 – Capitol Material Properties (LOD 2)	. 149
Figure B-11 – Alamo Material Properties (LOD 3)	. 150
Figure B-12 – Capitol Material Properties (LOD 3)	
Figure B-13 – Bexar Construction Inputs	. 151
Figure B-14 – Bexar Environmental Inputs (Temperature)	. 151
Figure B-15 – Bexar Environmental Inputs (Wind Speed)	. 152
Figure B-16 – Bexar Environmental Inputs (Cloud Cover)	. 152
Figure B-17 – Bexar Environmental Inputs (Relative Humidity)	. 153
Figure B-18 – Alamo Input Check (LOD 1)	. 153
Figure B-19 – Capitol Input Check (LOD 1)	. 154
Figure B-20 – Alamo Input Check (LOD 2)	. 154
Figure B-21 – Capitol Input Check (LOD 2)	. 155
Figure B-22 – Capitol Input Check (LOD 3)	. 155
Figure B-23 – Capitol Input Check (LOD 3)	. 156
Figure C-1 – Eagle Lake Temperature	. 157
Figure C-1 – Eagle Lake Wind Speed	. 157
Figure C-3 – Eagle Lake Solar Radiation	. 158
Figure C-4 – Eagle Lake Relative Humidity	. 158
Figure C-5 – Eagle Lake General Inputs	. 159
Figure C-6– Eagle Lake Mixture Proportions	. 159
Figure C-7 – Material Properties (LOD 1)	. 160
Figure C-8 – Material Properties (LOD 2)	. 160
Figure C-9 – Material Properties (LOD 3)	
Figure C-10 – Material Properties (LOD 4)	. 161
Figure C-11 – Eagle Lake Construction Inputs	. 162
Figure C-12 – Eagle Lake Environmental Inputs (Temperature)	. 162
Figure C-13 – Eagle Lake Environmental Inputs (Wind Speed)	. 163
Figure C-14 – Eagle Lake Environmental Inputs (Cloud Cover)	
Figure C-15 – Eagle Lake Environmental Inputs (Relative Humidity)	
Figure C-16 – Eagle Lake Input Check (LOD 1)	
Figure C-17 – Eagle Lake Input Check (LOD 2)	. 165

Figure C-18 – Eagle Lake Input Check (LOD 3)	165
Figure C-19 – Eagle Lake Input Check (LOD 4)	166
Figure D-1 – WBSB 8 Temperature	167
Figure D-2 – WBSB 8 Wind Speed	167
Figure D-3 – WBSB 8 Solar Radiation	168
Figure D-4 – WBSB 8 Relative Humidity	168
Figure D-5 – WBSB 8 General Inputs	169
Figure D-6 – WBSB 8 Member Dimensions	169
Figure D-7 – WBSB 8 Mixture Proportions	170
Figure D-8 – WBSB 8 Material Properties (LOD 1)	170
Figure D-9 – WBSB 8 Material Properties (LOD 2)	171
Figure D-10 – WBSB 8 Material Properties (LOD 3)	171
Figure D-11 – WBSB 8 Material Properties (LOD 4)	172
Figure D-12 – WBSB 8 Construction Inputs	172
Figure D-13 – WBSB 8 Environment Inputs (Temperature)	173
Figure D-14– WBSB 8 Environment Inputs (Wind Speed)	173
Figure D-15 – WBSB 8 Environment Inputs (Cloud Cover)	174
Figure D-16 – WBSB 8 Environment Inputs (Relative Humidity)	174
Figure D-17 – WBSB 8 Input Check (LOD 1)	175
Figure D-18 – WBSB 8 Input Check (LOD 2)	
Figure D-19 – WBSB 8 Input Check (LOD 3)	176
Figure D-20 – WBSB 8 Input Check (LOD 4)	176
Figure E-1 – WBSB 9 Temperature	177
Figure E-2 – WBSB 9 Wind Speed	177
Figure E-3 – WBSB 9 Solar Radiation	178
Figure E-4 – WBSB 9 Relative Humidity	178
Figure E-5 – WBSB 9 General Inputs	179
Figure E-6 – WBSB 9 Member Dimensions	179
Figure E-7 – WBSB 9 Mixture Proportions	180
Figure E-8 – WBSB 9 Material Properties (LOD 1)	180
Figure E-9 – WBSB 9 Material Properties (LOD 2)	181
Figure E-10 – WBSB 9 Material Properties (LOD 3)	181
Figure E-11 – WBSB 9 Material Properties (LOD 4)	182
Figure E-12 – WBSB 9 Construction Inputs	182
Figure E-13 – WBSB 9 Environment Inputs (Temperature)	183
Figure E-14 – WBSB 9 Environment Inputs (Wind Speed)	183
Figure E-15 – WBSB 9 Environment Inputs (Cloud Cover)	
Figure E-16 – WBSB 9 Environment Inputs (Relative Humidity)	184

•

(

Figure E-17 – WBSB 9 Input Check (LOD 1)	185
Figure E-18 – WBSB 9 Input Check (LOD 2)	185
Figure E-19 – WBSB 9 Input Check (LOD 3)	186
Figure E-20 – WBSB 9 Input Check (LOD 4)	186

ir.

List of Tables

.

Table 3.1: Blaine Fineness for Case Study Cements	9
Table 3.2: Cement Bogue Composition by Case Study	9
Table 3.3: Cement Rietveld Analysis by Case Study	10
Table 3.4: Alamo Hydration Model by LOD	12
Table 3.5: Capitol Hydration Model by LOD	12
Table 3.6: Eagle Lake Hydration Model by LOD	12
Table 3.7: WBSB 8 Hydration Model by LOD	
Table 3.8: WBSB 9 Hydration Model by LOD	13
Table 3.9: Heat Transfer Results	15
Table 3.10: Alamo Mechanical Properties	16
Table 3.11: Capitol Mechanical Properties	16
Table 3.12: Eagle Lake Mechanical Properties	16
Table 3.13: WBSB 8 Mechanical Properties	16
Table 3.14: WBSB 9 Mechanical Properties	17
Table 4.1: Bexar Precast Mix Design	21
Table 4.2: Bexar Precast Weather Station Data	23
Table 4.3: Eagle Lake Weather Station Data	30
Table 4.4: Eagle Lake Mix Design	31
Table 4.5: Maximum Temperature (Alamo vs. Capitol)	42
Table 5.1: WBSB 8 Mix Design	47
Table 5.2: WBSB 8 Weather Station Data	51
Table 5.3: WBSB 8 Maximum Temperature Summary	53
Table 5.4: WBSB 8 Maximum Thermal Gradients (°F/inch)—Temperature Bar D	53
Table 5.5: WBSB 8 Maximum Thermal Gradients (°F/inch)—Temperature Bar F	54
Table 5.6: WBSB 9 Mix Design	57
Table 5.7: WBSB 9 Weather Station Data	60
Table 5.8: WBSB 9 Thermal Performance Summary	63
Table 5.9: Maximum Thermal Gradients (°F/inch)—Temperature Bar F	63
Table 5.10: WBSB 9 Absolute Max Gradients (°F/inch)—Temperature Bar D	64

ł

Chapter 1. Introduction

1.1 Background

The hydration of cement and water is an exothermic reaction capable of generating significant amounts heat. During curing, excessive temperatures can prevent the normal formation of a hydration product known as ettringite, only to allow its formation once the concrete has already hardened. While somewhat rare in the field, this condition is known as Delayed Ettringite Formation (DEF). Concrete expansion caused by DEF is substantially greater than any other concrete durability-related issue. A more common problem during curing is the development of large thermal gradients capable of cracking the concrete. Thermal gradients can arise out of rapidly increasing internal temperatures or even by stripping forms in cold weather. While thermal cracks aren't nearly as large as those caused by DEF, they allow chlorides to quickly and easily penetrate deep into the concrete to the rebar. For these reasons, controlling early-age temperatures is a critical part of ensuring long term durability. The current TxDOT mass concrete temperature specification is TxDOT Item 420.4.G14:

Mass placements are defined as placements with a least dimension greater than or equal to 5 ft., or designated on the plans. For monolithic mass placements, develop and obtain approval for a plan to ensure the following during the heat dissipation period:

- The temperature differential between the central core of the placement and the exposed concrete surface does not exceed 35°F and the temperature at the central core of the placement does not exceed 160°F.
- Base this plan on the equations given in the Portland Cement Association's Design and Control of Concrete Mixtures. Cease all mass placement operations and revise the plan as necessary if either of the above limitations is exceeded. Include a combination of the following elements in this plan:
- Selection of concrete ingredients including aggregates, gradation, and cement types, to minimize heat of hydration;
- Use of ice or other concrete cooling ingredients;
- Use of liquid nitrogen dosing systems;
- Controlling rate or time of concrete placement;
- Use of insulation or supplemental external heat to control heat loss;
- Use of supplementary cementing materials; or
- Use of a cooling system to control the core temperature.

Furnish and install 2 sets of temperature recording devices, maturity meters, or other approved equivalent devices at designated locations. Use these devices to simultaneously measure the temperature of the concrete at the core and the surface. Maintain temperature control methods for 4 days unless otherwise approved. Maturity meters may not be used to predict strength of mass concrete. While the specification recognizes that concrete temperature and durability are related, it does very little to help prevent excessive temperatures. The calculations found in the Portland Cement Association's *Design and Control of Concrete Mixtures* are difficult, guidance is vague, and the result is inaccurate. Information in literature regarding temperature rise of materials is dispersed and irrelevant to local materials. The problem becomes even more difficult when cracking tendency is considered, which the specification does not even address.

In light of the deficiencies of the TxDOT mass concrete temperature specification, researchers at The University of Texas at Austin developed an innovative software package under TxDOT Project 0-4563. Known as ConcreteWorks, the software gives laboratory technicians, engineers, inspectors, and contractors a tool to improve and guide TxDOT to better designs. ConcreteWorks is a free stand-alone Microsoft Windows based software suite capable of assisting with ACI211 mix design, temperature prediction, cracking probability classification, and chloride-diffusion service-life analysis.

1.2 Research Objective

Although ConcreteWorks has been very well received at the national and international levels, it has yet to be integrated into standard TxDOT practices. The goal of this research is to spur the implementation of ConcreteWorks within TxDOT by accomplishing four objectives: (1) develop training materials for ConcreteWorks, (2) deliver training courses to selected TxDOT districts, (3) implement ConcreteWorks on TxDOT projects, and (4) make minor modifications to ConcreteWorks.

1.3 Scope of Report

Following this introductory chapter, Chapter 2 briefly covers the development of a curriculum and training materials to teach TxDOT engineers, inspectors, and contractors how to incorporate ConcreteWorks into their standard design and construction practices.

Chapter 3 provides an explanation of the laboratory and field testing that was performed to characterize each of the case studies in ConcreteWorks.

Chapter 4 presents two unique case studies in precast concrete temperature prediction. Instrumentation and laboratory testing results for each case study are explained and used to compare observed temperatures with ConcreteWorks analyses. Observations made while in the field are also discussed.

Chapter 5 presents two case studies in mass concrete temperature prediction. Instrumentation and laboratory testing results for each case study are explained and used to compare observed temperatures with ConcreteWorks analyses.

Chapter 6 discusses work performed in anticipation of a future case study in chloride diffusion service-life prediction.

Chapter 7 presents conclusions regarding the results of this research and provides recommendations for future research related to early-age temperature prediction.

Chapter 2. ConcreteWorks Training

The first task of this research was to develop a curriculum and training course that would train TxDOT employees how to use the ConcreteWorks software program. The course was designed to teach the basic principles of ACI 211 mix design, temperature prediction, cracking probability classification, and chloride-diffusion service-life analysis. While the goal was to keep ConcreteWorks from being a black box, trainees needed to be able to leave the classroom feeling comfortable with understanding the inputs and using the program.

2.1 Austin Pilot Course

The ConcreteWorks curriculum originated as an 8-hour course consisting of seven modules. The typical format of the modules was approximately 45 minutes of presentation-based instruction followed by a 15-minute demonstration of the actual program relating to the material taught in the module. One module consisted of a 1-hour hands-on case study in which trainees were to design a concrete element to meet several performance specifications outlined in the assignment. Overall, the Austin pilot course was determined to be too long, too hands-off, and too difficult to follow due to its emphasis on teaching the theory behind ConcreteWorks. What was needed was an interactive course that would engage trainees and get them comfortable with using the program. The Austin Pilot Course slides can be found in Appendix A.1.

2.2 Standard Training Course

Several drastic changes were made to the ConcreteWorks curriculum based on the outcome of the Austin Pilot course. Two modules were removed from the course and the remaining modules were redesigned to emphasize hands-on use of the program. The general format of each module was 10 minutes of instruction-based presentation followed by 25 minutes of instructor-led demonstration and hands-on exercise. In total, the course consisted of approximately 1 hour of lecture-style training and 3 hours of hands-on use of the program. This new format kept trainees fully engaged and enabled them to ask questions rather than be buried in complex theory.

In total, the course was delivered to six districts including Austin, Corpus Christi, Dallas, El Paso, Fort Worth, Houston, and Lubbock. Although the course was custom tailored to meet the needs of each individual district, a standard course guide with the presentation slides and hands-on assignments can be found in Appendix A.2.

Chapter 3. Laboratory Testing Results

Temperature prediction of a concrete member involves several interrelated mechanisms, none of which have a closed-form solution. Each mechanism must be modeled, and a solution determined iteratively. As seen in Figure 3.1, the analysis may be divided into three main components: heat generation from the hydration process, heat transfer through the concrete, and heat exchange between the element and the outside environment (Riding, 2007). Characterizing each process and comparing the results with field observations requires a complex laboratory and field testing program.

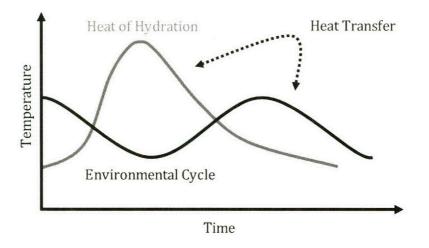


Figure 3.1: Temperature Prediction Processes

3.1 Field Testing Program

One of the concerns that arose early in the project was that of a sensitivity analysis. After all, ConcreteWorks allows each process to be described to varying degrees of accuracy. If very little is known about a certain process, ConcreteWorks has a built-in predictive or statistical model to calculate the variables it needs to perform the calculations. Some examples include the built-in 30-year historical weather model, the use of cement chemistry typical of the cement type, the ability to calculate hydration parameters from the cement chemistry, and finally the model for calculating heat transfer constants based on aggregate classification. In all cases, the program allows for overwriting programmatically determined values with results attained from laboratory testing. Doing so should theoretically improve the overall accuracy of the resulting temperature prediction. One of the objectives of field implementation was to determine how much accuracy could be gained by putting in the effort to determine these inputs.

A systematic method for gauging ConcreteWorks' response to various inputs was created with the development of four levels of detail as outlined in Figure 3.2. Each level of detail (LOD) represents an increase in effort to characterize the case studies. What follows is an explanation of the laboratory testing performed for each LOD.

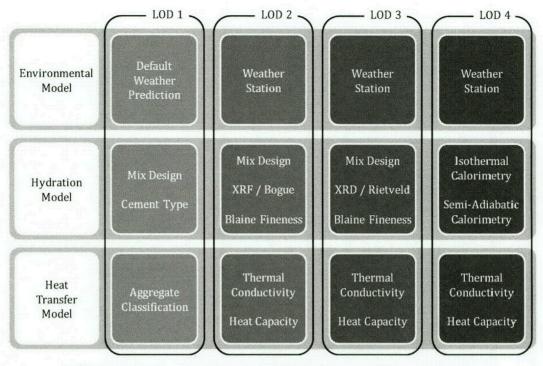


Figure 3.2: Levels of Detail (LOD) in Process Characterization

3.2 Environmental Cycle

The default ConcreteWorks weather prediction is based on hourly 30-year average weather data calculated from the National Climatic Data Center (NCDC) Solar and Meteorological Surface Observational Network (SAMSON) CDs (Riding, 2007). With weather data for almost every major city in all 50 states, selecting the closest city to the project site is usually sufficient to get an accurate prediction of the weather. At LOD 1, the time, date, and location of each case study were specified, allowing ConcreteWorks to refer to its built-in 30-year historic weather data to determine the environmental cycle.

3.2.1 Weather Station

For the purposes of this research, a commercial weather station was installed at the site of each case study to generate the same environmental cycle in ConcreteWorks as observed in the field. The weather station was programmed to record temperature, relative humidity, solar radiation, and wind speed on 15-minute intervals for the duration of each case study. By removing the environmental cycle as a variable, a fair comparison could be made between LOD 2, 3, and 4.

Analyzing the results of the weather station to produce a table of inputs was fairly straightforward aside from one small caveat. The weather station measures solar radiation, whereas ConcreteWorks uses percent cloud cover as an input to calculate solar radiation. A conversion to back-calculate percent cloud cover was necessary and so was a deeper understanding of how ConcreteWorks determines solar radiation.

ConcreteWorks assumes a linear relationship between solar radiation and cloud cover according to Equation 3.1 (Riding 2007):

$$E_{H} = (0.91 - (0.7 \cdot C)) \cdot E_{TOA}$$
(3.1)

where E_{TOA} is the horizontal solar radiation at the top of earth's atmosphere (W/m²) and E_{H} is the surface horizontal solar radiation (W/m²). Radiation is defined as "energy emitted by matter that is at a finite temperature" (Riding, 2007); thus the total daily solar radiation would appear to capture the total energy emitted by mechanisms of solar radiation. Percent cloud cover was calculated on the basis that the total daily solar radiation (W/m²/day) predicted by ConcreteWorks should equal that measured by the weather station. As the relationship in Equation 3.1 is linear, ConcreteWorks was used to predict solar radiation based on zero percent cloud cover. Assuming zero percent cloud cover, Equation 3.1 becomes:

$$E_{TOA} = \sum \frac{E_{H_0\% CC}}{0.91}$$
(3.2)

where $E_{H,0\%CC}$ is ConcreteWorks' predicted daily total surface horizontal solar radiation (W/m²/day) with zero percent cloud cover and E_{TOA} is now the total daily horizontal solar radiation at the top of the earth's atmosphere (W/m²/day). Substituting Equation 3.2 back into Equation 3.1 and solving for percent cloud cover, C, yields:

$$C = 1.3 \cdot \left(1 - \frac{\sum E_{OBS}}{\sum E_{H_{0\% CC}}} \right)$$
(3.3)

where E_{OBS} is the total daily surface horizontal solar radiation (W/m²/day) observed by the weather station. Equation 3.3 was used to directly calculate the daily cloud cover based on the total daily solar radiation predicted by Concrete Works at zero percent cloud cover and that observed in the field.

3.3 Hydration Model

The heat evolution of a particular concrete mixture can be modeled by an S-shaped curve requiring only three parameters to describe. It is important to realize that heat produced by any given concrete mixture is mix specific, so any changes to the mix proportions, cement, or other materials will alter the shape of the heat signature curve, seen in Figure 3.3.

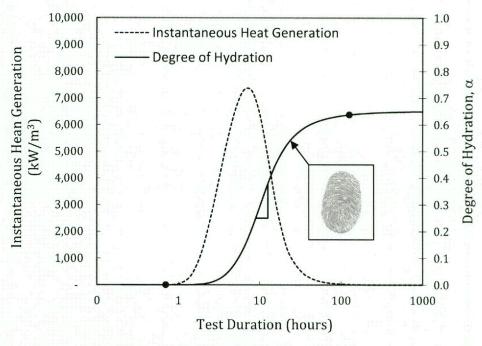


Figure 3.3: Mix-specific Heat Signature

The parameters describing the shape of the heat signature curve are α , β , and τ . In the order they are shown in Figure 3.4, these parameters describe the ultimate degree of hydration, the reaction rate, and the timing of the reaction.

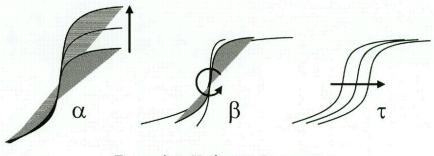


Figure 3.4: Hydration Parameters

As α , β , and τ are merely shape factors, a few additional variables are necessary to define the actual heat output of the concrete mixture. Hu, with units of J/gram of cementitious materials, defines total heat available in a concrete mixture based on the cement chemical composition as well as the addition of any supplementary cementitious materials (SCMs). Activation Energy, E_a, defines the temperature dependency of the hydration reaction. Essentially, Activation Energy is used to scale the hydration reaction based on the concrete temperature.

What follows is an explanation of the laboratory testing performed to characterize the heat generation properties for each case study as well as the empirical formulas used by ConcreteWorks to determine E_a , α , β , τ , and Hu.

3.3.1 Blaine Fineness

Blaine fineness was performed on each of the cements sampled from case studies using ASTM C204 (2007). Table 3.1 summarizes the results.

Blaine Fineness, m ² /kg				
Bexar (Alamo)	Type III	486.3		
Bexar (Capitol)	Type III	519.8		
Eagle Lake	Type III	517.5		
WBSB 8	Type I/II	385.2		
WBSB 9	Type I/II	389.3		

Table 3.1: Blaine Fineness for Case Study Cements

3.3.2 Bogue Composition

Cement crystalline phases were determined using Bogue calculations according to ASTM C150 (2011). While Bogue isn't the most reliable method of determining the cement phases, it is readily available on cement mill certificates. Mill certificates, however, are usually only a monthly estimation of the cement properties. To improve the relevance of the ConcreteWorks simulations, X-Ray Fluorescene (XRF) was performed to more accurately determine the chemical composition of the cements. The Alamo cement used at Bexar ConcreteWorks in San Antonio as well as Eagle Lake contained limestone additions, necessitating a Thermal Gravimetric Analysis (TGA) to determine the amount of free lime. The product of these results is shown in Table 3.2.

	Alamo	Capitol	Eagle Lake	WBSB 8	WBSB 9
C ₃ S	46.39%	61.47%	60.33%	32.56%	48.77%
C ₂ S	24.64%	10.82%	14.31%	38.60%	23.36%
C ₃ A	6.39%	10.76%	6.20%	12.16%	11.42%
C ₄ AF	11.28%	4.63%	10.64%	5.81%	5.20%
Free Lime	0.90%	0.00%	1.47%	0.00%	0.00%
SO ₃	3.56%	4.37%	0.66%	3.72%	3.80%
MgO	0.66%	1.30%	3.57%	1.33%	1.27%
Na ₂ O	0.06%	0.11%	0.03%	0.14%	0.13%
K ₂ O	0.66%	0.48%	0.68%	0.53%	0.54%

Table 3.2: Cement Bogue Composition by Case Study

With the mix design, Blaine fineness, and Bogue composition available, ConcreteWorks derives $E_{a, \tau}$, β , α , and Hu using the following empirical formulas developed from previous research (Poole, 2007):

$$41,230 + 8,330 \cdot [(p_{C_{3}A} + p_{C_{4}AF}) \cdot p_{cement} \cdot p_{gypsum}]$$

$$E_{a} = -3,470 \cdot Na_{2}O_{eq} - 19.8 \cdot Blaine + 2.96 \cdot p_{FlyAsh} \cdot p_{FlyAsh-Ca0} + 162 \cdot p_{GGBFS} - 516 \cdot p_{SF} - 30,900 \cdot WRRET - 1,450 \cdot ACCL$$
(3.4)

$$= exp \begin{pmatrix} 2.68 - 0.386 \cdot p_{C_{3}S} \cdot p_{cem} + 105 \cdot p_{Na_{2}O} \cdot p_{cem} + 1.75 \cdot p_{GGBFS} \\ -5.33 \cdot p_{FA} \cdot p_{FA-CaO} - 12.6 \cdot ACCL + 97.3 \cdot WRRET \end{pmatrix} (3.5)$$

$$\beta = exp \begin{pmatrix} -0.494 - 3.80 \cdot p_{C_{3A}} \cdot p_{cem} - 0.594 \cdot p_{GGBFS} \\ +96.8 \cdot WRRET + 39.4 \cdot LRWR + 23.2 \cdot MRWR \\ +38.3 \cdot PCHRWR + 9.07 \cdot NHRWR \end{pmatrix}$$
(3.6)

$$\alpha_{u} = \frac{1.031 \cdot w/cm}{0.194 + w/cm} + exp \begin{pmatrix} -0.885 - 13.7 \cdot p_{C_{4}AF} \cdot p_{cem} \\ -283 \cdot p_{Na_{2}O_{eq}} \cdot p_{cem} \\ -9.90 \cdot p_{FA} \cdot p_{FA-CaO} \\ -339 \cdot WRRET - 95.4 \cdot PCHRWR \end{pmatrix}$$
(3.7)

$$H_u = H_{cem} \cdot p_{cem} + 550 \cdot p_{GGBFS-120} + 1800 \cdot p_{FA-CaO} \cdot p_{FA}$$
(3.8)

$$H_{cem} = \frac{500 \cdot P_{C_3S} + 260 \cdot p_{C_2S} + 866 \cdot p_{C_3A} + 420 \cdot p_{C_4AF}}{+624 \cdot p_{SO_3} + 1186 \cdot p_{FreeCa} + 850 \cdot p_{MgO}}$$
(3.9)

where p_{C3S} , p_{C2S} , p_{C3A} , p_{C4AF} , p_{FreeCa} , p_{S03} , p_{MgO} , p_{Na2O} , p_{gvpsum} are the respective percent C₃S, C₂S, C₃A, C₄AF, Free Lime, SO₃, MgO, Na₂O, and gypsum in the Portland cement; p_{Na2Oeq} is the percent Na₂O_{eq} (Na₂O + 0.658 · K₂O) in the Portland cement; p_{cem} , p_{FlvAsh} , $p_{GGBFS-120}$, and p_{SF} are the respective percent Portland cement, fly ash, slag, and silica fume of the total cementitious materials content; $p_{CaO-FlvAsh}$ is the percent CaO in the fly ash; *Blaine* is the Blaine fineness of the Portland cement [m²/kg]; LRWR is an ASTM Type A water reducer, MRWR is a mid-range water reducer, NHRWR is a Type F naphthalene high range water reducer, PCHRWR is an ASTM Type F polycarboxylate based high range water reducer, *WRRET* is an ASTM Type A&D water reducer/retarder, and *ACCL* is an ASTM Type C calcium-nitrate based accelerator (Riding, 2007). The chemical admixture dosages are in percent solids by weight of cementitious materials; however, they aren't specified in the mixture proportions. Instead, ConcreteWorks assumes typical dosages for each type of admixture indicated in the mixture proportions.

3.3.3 X-Ray Diffraction

τ

Quantitative X-Ray Diffraction (XRD) was performed on each cement sample in order to fulfill the needs of the LOD 3 ConcreteWorks simulation. Rietveld analysis was then used to define the cement chemical composition, as summarized in Table 3.3

Table 5.5. Cement Retvelu Analysis by Case Study					
	Alamo	Capitol	Eagle Lake	WBSB 8	WBSB 9
Alite	55.0%	70.0%	65.0%	64.4%	59.0%
Belite	8.6%	5.7%	11.0%	5.3%	6.1%
Aluminate	5.2%	9.9%	4.2%	10.4%	10.3%
Ferrite	8.0%	2.3%	8.8%	2.0%	2.5%
Gypsum	6.9%	9.4%	10.7%	17.3%	14.5%

Table 3.3: Cement Rietveld Analysis by Case Study

Using the results of the Rietveld analysis, ConcreteWorks determines the hydration parameters according to Equations 3.10 through 3.15:

$$E_{a} = \frac{39,200 + 107 \cdot \left[\left(P_{Aluminate} \right) \cdot p_{cem} \cdot \left(p_{CaSO_{4}xH20} + p_{Arcanite} \right) \cdot p_{cem} \right]}{-12.2 \cdot Blaine + 1.24 \cdot p_{FlyAsh} \cdot p_{FlyAsh-CaO} + 120 \cdot p_{GGBFS} - 533 \cdot p_{SF} - 30,100 \cdot WRRET - 1,440 \cdot ACCL}$$

$$(3.10)$$

$$\tau = exp \begin{pmatrix} 2.95 - 0.972 \cdot p_{Alite} \cdot p_{cem} + 152 \cdot p_{Na_20} \cdot p_{cem} + 1.75 \cdot p_{GGBFS} \\ -4.00 \cdot p_{FA} \cdot p_{FA-Ca0} - 11.8 \cdot ACCL + 95.1 \cdot WRRET \end{pmatrix} (3.11)$$

$$\beta = exp \begin{pmatrix} -0.418 - 2.66 \cdot p_{Aluminate} \cdot p_{cem} - 0.864 \cdot p_{GGBFS} \\ +108 \cdot WRRET + 32.0 \cdot LRWR + 13.3 \cdot MRWR \\ +42.5 \cdot PCHRWR + 11.0 \cdot NHRWR \end{pmatrix}$$
(3.12)

$$\alpha_{u} = \frac{1.031 \cdot w/cm}{0.194 + w/cm} + exp \begin{pmatrix} -0.297 - 9.73 \cdot p_{Ferrite} \cdot p_{cem} \\ -325 \cdot p_{Na_{2}o_{eq}} \cdot p_{cem} \\ -8.90 \cdot p_{FA} \cdot p_{FA-CaO} \\ -331 \cdot WRRET - 93.8 \cdot PCHRWR \end{pmatrix}$$
(3.13)

$$H_u = H_{cem} \cdot p_{cem} + 550 \cdot p_{slag} + 1800 \cdot p_{FA-CaO} \cdot p_{FA} + 330 \cdot p_{SF}$$
(3.14)

$$H_{cem} = \frac{500 \cdot p_{Alite} + 260 \cdot p_{Belite} + 866 \cdot p_{Aluminate} + 420 \cdot p_{Ferrite}}{+624 \cdot p_{Sulfate} + 1186 \cdot p_{Lime} + 850 \cdot p_{Periclase}}$$
(3.15)

where p_{Alite} , p_{Belite} , $p_{Aluminate}$, $p_{Ferrite}$, $p_{Periclase}$, p_{Lime} , and $p_{Sulfate}$ are the respective percent alite, belite, aluminate, ferrite, periclase, and sulfate in the Portland cement; p_{Na2Oeq} is the percent Na_2O_{eq} ($Na_2O + 0.658 \cdot K_2O$) in the Portland cement; $CaSO_4 \cdot xH_2O$ is the total percent by mass of gypsum, hemihydrates, and anhydrite; p_{cem} , p_{FlvAsh} , $p_{GGBFS-120}$, and p_{SF} are the respective percent Portland cement, fly ash, slag, and silica fume of the total cementitious materials content; p_{CaO} . FlvAsh is the percent CaO in the fly ash; *Blaine* is the Blaine fineness of the Portland cement [m²/kg]; LRWR is an ASTM Type A water reducer, MRWR is a mid-range water reducer, NHRWR is a Type F naphthalene high range water reducer, PCHRWR is an ASTM Type F polycarboxylate based high range water reducer, *WRRET* is an ASTM Type A&D water reducer/retarder, and *ACCL* is an ASTM Type C calcium-nitrate based accelerator (Poole, 2007).

3.3.4 Calorimetry

Rather than rely on a derivation of the hydration parameters for LOD 4, E_a , α , β , and τ were directly obtained using isothermal and semi-adiabatic calorimetry. As with the previous simulations, Hu was still calculated using Equation 3.8.

Activation energy (E_a) was calculated based on a modified ASTM 1074 approach using isothermal calorimetry. Isothermal calorimetry was performed on paste samples at 15, 38, and 60 °C (59, 100, and 140 °F) over 72 hours using an eight-channel isothermal calorimeter.

Semi-adiabatic calorimetry was performed on a sample of the concrete from each case study to determine α , β , and τ . Semi-adiabatic calorimetry is a very simple test in which a 6 inch x 12 inch cylinder of fresh concrete is placed in an insulated drum that measures the temperature of the concrete as well as the outside environment. Because the calorimeter is not completely adiabatic, some heat is lost to the outside environment. This is accounted for by using a calibrated correction factor to determine the actual heat generated by the concrete. The calorimeter was place in an air-conditioned space shortly after sampling and samples were run for approximately 120 hours.

3.3.5 Hydration Property Results

A summary of the hydration parameters produced at each LOD for each case study is presented in Table 3.4 through Table 3.8.

Table 5.4. Alamo Hydration Woder by LOD						
		LOD 1	LOD 2	LOD 3	LOD 4	
Ea	J/mol	33636	34240	37236	26335	
τ	hours	18.568	18.032	15.463		
β	-	1.026	0.962	0.975		
α_{u}	-	0.665	0.667	0.674		
Hu	J/kg	456649	413390	392056	392056	

Table 3.4: Alamo Hydration Model by LOD

Table 3.5: Capitol Hydration Model by LOD

		LOD 1	LOD 2	LOD 3	LOD 4
Ea	J/mol	33636	34018	41343	27416
τ	hours	18.568	17.177	13.862	
β	-	1.026	1.076	1.071	
α_{u}	-	0.665	0.709	0.694	
Hu	J/kg	456649	450276	460635	460635

Table 3.6: Eagle Lake Hydration Model by LOD

		LOD 1	LOD 2	LOD 3	LOD 4
Ea	J/mol	29157	26774	32719	29573
τ	hours	16.013	14.050	12.321	23.669
β	-	1.026	0.958	0.956	0.940
$\alpha_{\rm u}$	-	0.649	0.654	0.656	0.687
Hu	J/kg	456736	452389	438586	438586

	and an	LOD 1	LOD 2	LOD 3	LOD 4
Ea	J/mol	35958	36594	48838	27122
τ	hours	16.231	19.801	13.481	18.480
β	-	0.965	1.138	1.097	1.032
α_{u}		0.748	0.768	0.782	0.806
Hu	J/kg	448602	410244	469159	469159

Table 3.7: WBSB 8 Hydration Model by LOD

Table 3.8: WBSB 9 Hydration Model by LOD

		LOD 1	LOD 2	LOD 3	LOD 4
Ea	J/mol	35959	36332	46722	26914
τ	hours	16.207	17.786	14.034	18.494
β	-	0.965	1.116	1.095	0.812
α _u	-	0.748	0.772	0.780	0.932
Hu	J/kg	448776	436329	443901	443901

3.4 Heat Transfer Model

The transfer of heat through a concrete element is defined by two properties: thermal conductivity and heat capacity. Thermal conductivity, k [W/m/°C], is the ability of a material to transfer heat. Heat capacity, Cp [J/kg/°C], dictates the energy required to raise the temperature of a material. Based on literature, ConcreteWorks automatically adjusts both values according to the mix design and the course and fine aggregate types. Like the hydration model, however, they may also be overwritten with values acquired from testing.

3.4.1 Thermal Conductivity and Heat Capacity

Heat transfer was characterized by separately measuring the thermal conductivity and effusivity of paste, coarse aggregate, and fine aggregate samples from each mix. Each component's thermal properties were then multiplied by its respective mass fraction of the total concrete mixture. Summing the results yielded the heat transfer characteristics of the concrete.

Testing was performed with a Mathis TCi Thermal Conductivity Analyzer. Samples were polished smooth and then placed on the sensor using water as a contact agent. The instrument was then set to subject the samples to a series of 3-second heating cycles followed by 57-second cooling cycles. By measuring the temperature of the sample at the end of each cycle, the instrument determines its thermal conductivity and effusivity. Figure 3.5 shows the sensor.

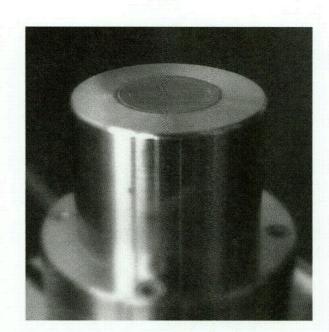


Figure 3.5: Mathis Thermal Conductivity Sensor

Heat capacity was calculated using Equation 3.16. Because the Mathis TCi requires water as a contact agent, samples were stored in water and tested in the fully saturated state. Density of the coarse and fine aggregates was determined according to ASTM C127 and C128 respectively and the saturated density was used as the basis for the calculation of Cp in equation 3.16. Density of the paste samples was determined gravimetrically.

$$C_P = \frac{e^2}{k \cdot \rho} \tag{3.16}$$

Coarse aggregates were prepared by sampling approximately 10 stones large enough to cover the surface of the heating surface. As evidenced by the difficulty of finding suitable samples from the precast plant aggregates, 3/4-inch maximum sized aggregate is the smallest feasible sample size for normal testing. Stone selected for testing were ground flat on one side and then polished to a glassy finish.

Figure 3.6: Polished Course Aggregate Samples

Paste samples were prepared by combining 30 grams (~ 1 oz.) of materials in a 10-oz. epoxy mixing cup. After 12 hours of curing, the paste samples were removed from the cups and polished smooth for testing. In the event that solids had settled, both the top and bottom of the samples were tested and averaged to determine the heat transfer properties.

Fine aggregates were too small to be tested individually and were prepared as mortars instead. Similar to the paste samples, mortar samples were also prepared in 10-oz. epoxy mixing cups. Once cured, they were ground and polished. Both sides were analyzed and the result was averaged to account for any settling of the fine aggregate within the paste. As the thermal properties of the paste component of the mortar mix was already known, the properties of the fine aggregate were back calculated from the mortar test result. Table 3.9 summarizes the results of the heat transfer testing.

	k	Ср
Alamo	1.67	0.20
Capitol	1.67	0.20
Eagle Lake	1.91	0.20
WBSB 8	2.46	0.20
WBSB 9	2.45	0.20

Table 3.9: Heat Transfer Results

3.5 Mechanical Testing

From each case study, 4-inch x 8-inch inch cylinders were cast for mechanical testing. The aim of the testing program was to gather compressive strength, maturity, elastic modulus, and splitting tensile strength at $\frac{1}{2}$, 1, 3, 7, 14, and 28 days after concrete placement. Mechanical properties for each case study can be seen in Table 3.10 through Table 3.14.

Table 3.10: Alamo Mechanical Properties

Test	fc	f'st	Е	CTE
Time	psi	psi	ksi	10 ⁻⁶ /°C
12-hr	2432	and a strain and a strain of the second strain of t		
1-Day	5984		-	
3-Day	8676	1086	4563	3.18
7-Day	9853	1279	4796	
14-Day	10391	1043	5227	

Table 3.11: Capitol Mechanical Properties

Test	f'c	f'st	E	CTE
Time	psi	psi	ksi	10 ⁻⁶ /°F
12-hr	3479		-	
1-Day	6111	-	-	
3-Day	8347	1031	4296	3.16
7-Day	9557	1103	4819	
14-Day	10170	1079	4948	

Table 3.12: Eagle Lake Mechanical Properties

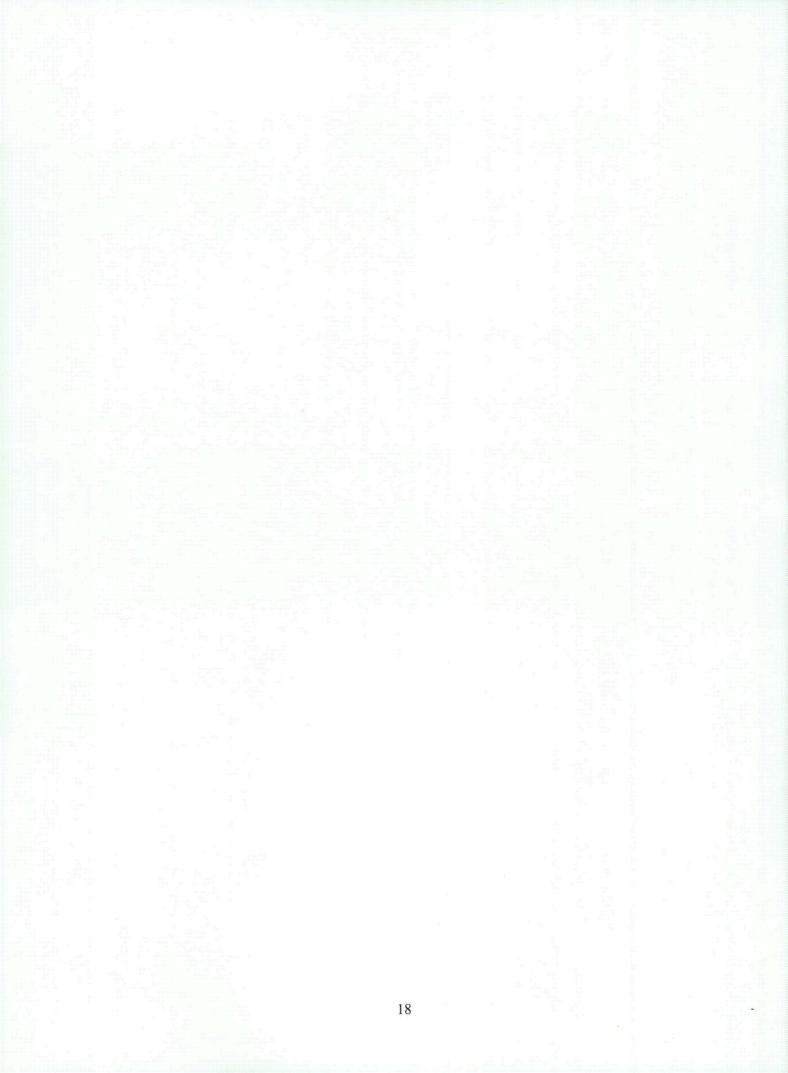

Test	f'c	f'st	E	СТЕ
Time	psi	psi	ksi	10 ⁻⁶ /°C
1-Day	7047	999	5109	
3-Day	8550	1048	5336	6.03
7-Day	9916	1191	5701	
14-Day	10904	1240	6025	
28-Day	11910	1236	6214	

Table 3.13: WBSB 8 Mechanical Properties

Test	f'c	f'st	Е	CTE
Time	psi	psi	ksi	10 ⁻⁶ /°C
12-Hr	164	53	11	
1-Day	1712	476	3485	
3-Day	4235	794	4826	4.01
7-Day	4990	839	5116	4.91
14-Day	5643	961	5432	
28-Day	6634	978	5739	

Test	f'c	f'st	E	CTE
Time	psi	psi	ksi	10 ⁻⁶ /°C
12-Hr	292	90	796	
1-Day	2117	463	3536	
3-Day	4039	821	4768	F 00
7-Day	4879	899	4916	5.08
14-Day	5748	967	5250	
28-Day	6454	1102	5641	

Table 3.14: WBSB 9 Mechanical Properties

Chapter 4. Precast Concrete Temperature Prediction

4.1 Research Significance

Concrete mixtures in the precast industry are designed around maximizing production. The primary objective is to achieve release strength as soon as possible so that forms can be stripped and prepared for the next beam. Accomplishing this objective usually means utilizing a combination of high cement content, highly reactive Type III cement, and accelerating admixtures to ensure high early strength. However, accelerating hydration also accelerates heat generation and excessive temperatures are a common problem that can lead to delayed ettringite formation, cracking, and other durability related issues.

U-beams are particularly prone to overheating due to the solid-concrete end blocks at each end of the beam. While the end blocks are typically only 18 to 24 inches thick, they are usually lined with foam on one side which insulates the concrete and retains heat. The thickness of the foam varies depending on the length of the beam, but it is usually between 2 and 6 inches. In addition to making minor adjustments to the thickness of the end blocks possible, the foam also provides a compliant barrier for easy removal of the formwork.

ConcreteWorks predicts temperatures on a vertical plane through the center of the end block, where temperatures are the highest. Figure 4.1 shows the installation of a U54. Figure 4.2 illustrates the cross section of a typical U54 beam as well as where ConcreteWorks predicts temperatures.

Figure 4.1: Installation of U54 Male Formwork

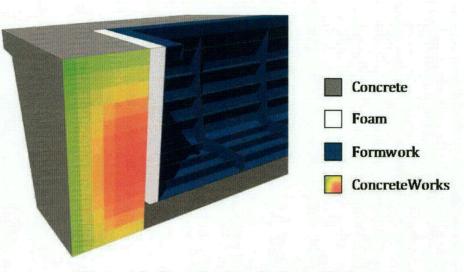


Figure 4.2: Cross Section of a Typical U Beam

4.2 Case Study: Bexar Concrete Works

Two 54-inch-tall U-beams were instrumented with temperature sensors at Bexar Concrete Works on September 27, 2010. Located on Loop 1604 north of downtown San Antonio, Bexar Concrete Works is an impressive operation. At the time of this project, the company sourced its aggregates from Vulcan Materials, located on the west side of Bexar Concrete's property. On the east side of the property is Alamo Cement, one of their primary sources of cement. Bexar Concrete was also sourcing cement from Capitol Aggregates, located just a few miles south of the precast plant.

This project presented a unique research opportunity because two identical beams with identical mixture proportions were poured within approximately 1 hour of each other on the same day. The only difference between the beams was the source of cement. One beam contained Type III cement produced by Alamo. The other beam employed Type III cement produced by Capitol Aggregates. The two cements have significantly different chemical properties. The plant had reported temperatures varying by 20 degrees simply by switching the cement. The goal of this project was to monitor the two beams and replicate the field observations using ConcreteWorks' temperature prediction software.

4.2.1 Materials and Mixture Proportions

The paste fraction entailed a reasonable cementitious content of 815 pounds, 25% of which was Class F fly ash. Both the fine and course aggregates were crushed limestone manufactured by Vulcan Materials. Sika products were used for workability and set retardation. The mix design used for the beams is presented in Table 4.1. Samples of all the raw materials used in the concrete mixtures were collected on the day following the pour and brought back to the Concrete Durability Center for laboratory testing.

		0	
Raw	Materials	Amount	
Cement	Type III	611.0 lb	
SCM	Class F Fly Ash	204.0 lb	
Water	.32 W/C	256.0 lb	
Coarse Aggregate	3/4" Limestone	1817.0 lb	
Fine Aggregate	Limestone	1089.0 lb	
Adı	mixtures	Amount	
Water Reducer	Sika ViscoCrete 4100	5.50 fl oz/cwt	
Retarder	Sika Plastiment	2.50 fl oz/cw	

Table 4.1: Bexar Precast Mix Design

4.2.2 Instrumentation

Thermochron iButtons made by Dallas Semiconductor were used to collect temperature data in the beams. An iButton consists of an onboard thermocouple, battery, and a memory chip capable of storing over 2,000 data points and is capable of logging temperature readings every 5 minutes for a period of 7 days. Each beam was instrumented with 12 temperature sensors, all of which were placed on one side of the end block. Six sensors were placed as close as possible to the center of the end block for comparison with ConcreteWorks. Six more sensors were placed near the sides to get a better idea of the temperature distribution throughout the end block. For the purposes of this research, discussion will focus on the six sensors placed near the end block as measured after installation.

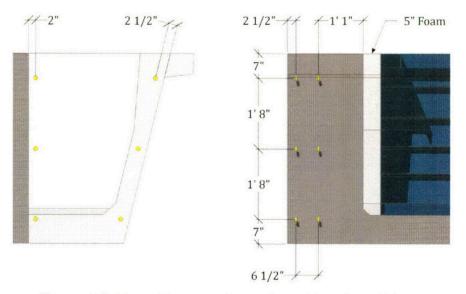


Figure 4.3: Bexar Precast—Approximate Location of Sensors

Comparing the installed location of the sensors with the output file generated by ConcreteWorks raised a few questions concerning the dimensions of the end block as modeled by the software program. Unless there is an error in the output file, it appears as if a 54-inch U

beam end block is modeled as 48-inches tall. Whereas typical end blocks range between 18 and 24 inches thick, the modeled end block is 27 inches thick. The beams instrumented on site were approximately 22 inches thick. There is no option in ConcreteWorks to specify the thickness of the end block.

Despite these complications, an analysis was conducted of the temperatures observed in the field and those predicted by ConcreteWorks. The output for ConcreteWorks, illustrated by Figure 4.4, consists of a two-dimensional array of points in the end block at which temperatures are predicted on a 5-minute interval. To produce predicted temperatures at the same locations at which iButtons were installed, bilinear interpolation of predicted temperatures surrounding each iButton was performed. This was done for each time step and plots of the observed and predicted temperatures were developed. Figure 4.4 also presents a naming scheme for the sensors, with B, M, and T representing the bottom, middle, and top rows of sensors respectively.

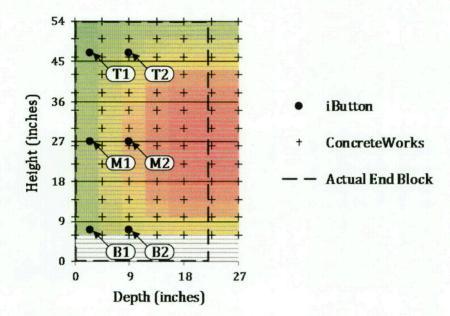


Figure 4.4: Bexar Precast—End Block Instrumentation Schematic

4.2.3 Field Observations

A commercial weather station was set up on site the morning of the pour and programmed to record temperature, relative humidity, solar radiation, and wind speed on a 15minute interval. Table 4.2 summarizes the observed weather conditions at the site. A detailed comparison between the observed weather and ConcreteWorks predicted weather can be found in Appendix B.1.

Data	Temperature		Wind	Cloud	Relative Humidity	
Date	Max	Min	Speed	Cover	Max	Min
	°F	°F	m/s	%	%	%
9/27/2010	80.1	58.0	5.3	22	86.0	28.4
9/28/2010	87.3	50.3	5.3	22	91.7	24.9
9/29/2010	91.4	56.1	6.7	25	89.9	23.2
9/30/2010	88.1	55.7	6.7	25	87.3	27.0

Table 4.2: Bexar Precast Weather Station Data

Casting of the Alamo beam began at approximately 3:30 p.m., soon followed by the Capitol beam at 5:00 p.m. Both mixtures arrived at approximately 88 °F. The fast setting time of the concrete allowed for only 26 cylinders to be collected from each beam. Q-Drums were prepared and placed in an office on site for the next several days. Both beams were stripped of their forms at approximately 25 hours.

Data was collected from the sensors 7 days after casting. The Capitol beam reached 180.5 °F and maintained above 170 °F for approximately 12 hours. The Alamo beam reached a maximum temperature of 162.5 °F. Despite almost identical conditions for both beams, the Capitol beam reached 18 °F higher than the Alamo beam.

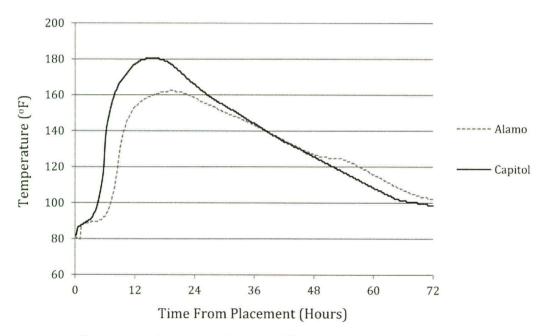


Figure 4.5: Maximum Observed Temperature (Alamo vs. Capitol)

4.2.4 Observed and Predicted Temperatures

ConcreteWorks was used to simulate the beams for each of the levels of detail outlined in Chapter 3. What follows is a plot of each of the six central iButtons compared with ConcreteWorks' predicted temperatures (Figures 4.6–4.17). The figures begin with the bottom temperature sensors and progressing, with the Capitol beam being presented first.

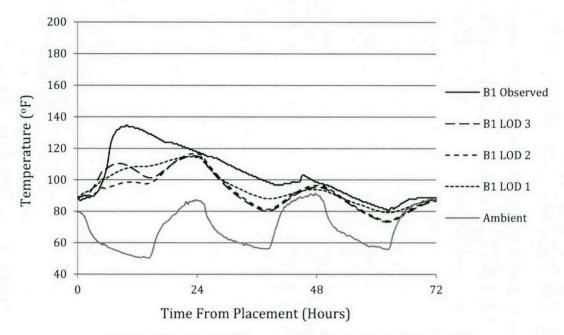


Figure 4.6: Capitol ConcreteWorks Analysis (Sensor B1)

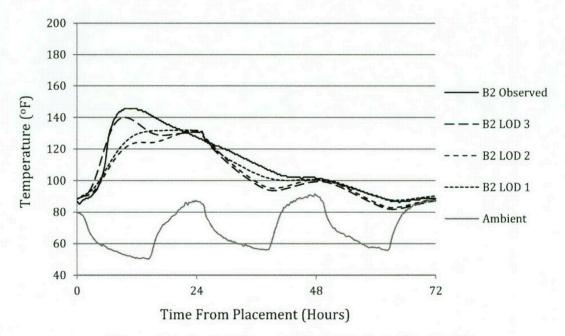


Figure 4.7: Capitol ConcreteWorks Analysis (Sensor B2)

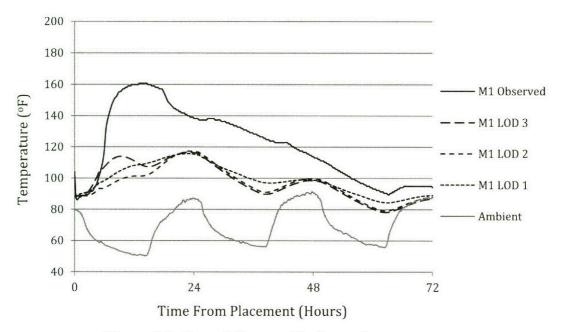


Figure 4.8: Capitol ConcreteWorks Analysis (Sensor M1)

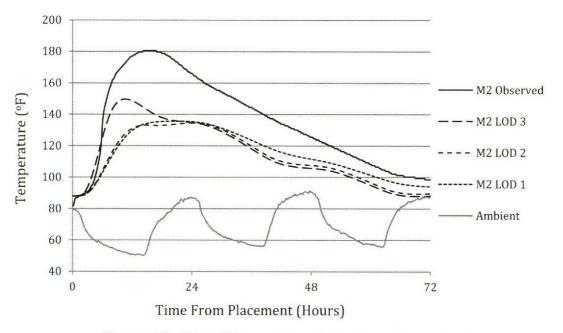


Figure 4.9: Capitol ConcreteWorks Analysis (Sensor M2)

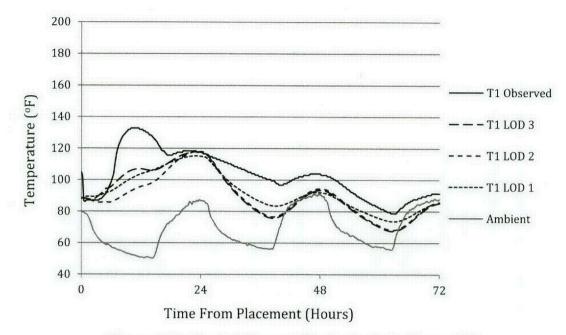


Figure 4.10: Capitol ConcreteWorks Analysis (Sensor T1)

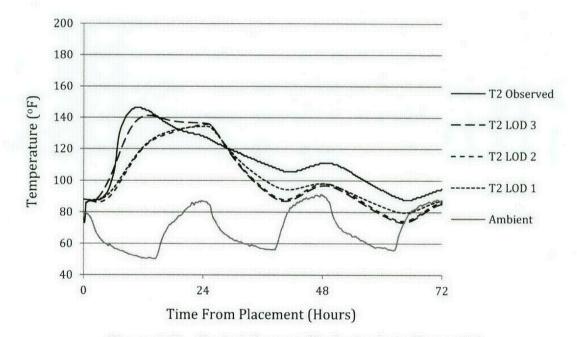


Figure 4.11: Capitol ConcreteWorks Analysis (Sensor T2)

Figure 4.13: Alamo ConcreteWorks Analysis (Sensor B2)

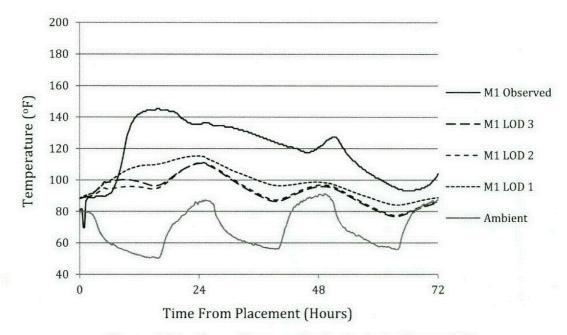


Figure 4.14: Alamo ConcreteWorks Analysis (Sensor M1)

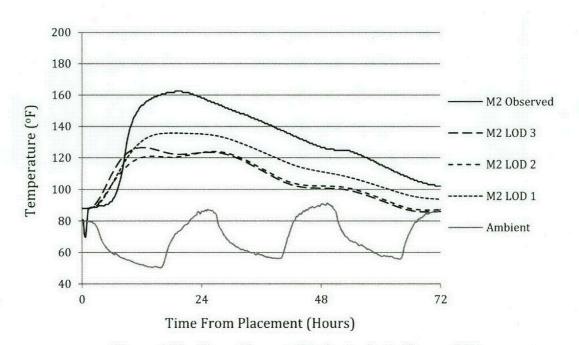


Figure 4.15: Alamo ConcreteWorks Analysis (Sensor M2)

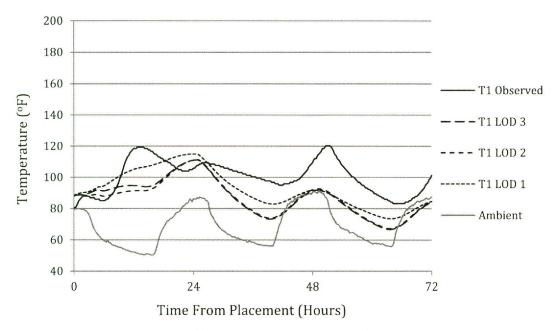


Figure 4.16: Alamo ConcreteWorks Analysis (Sensor T1)

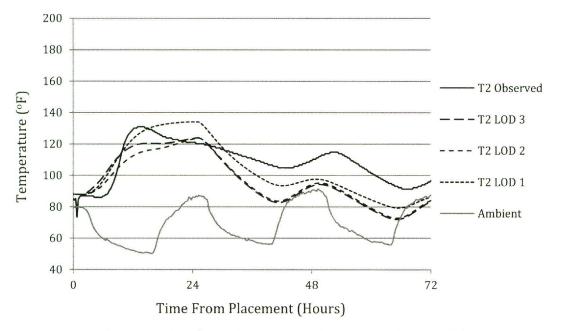


Figure 4.17: Alamo ConcreteWorks Analysis (Sensor T2)

4.3 Case Study: Valley Prestress Products

Maintaining adequate temperatures is so difficult that some precast producers install water cooling pipes in the end blocks of U-beams. Valley Precast, located in Eagle Lake, Texas, recently began installing water cooling pipes to control temperatures. Although ConcreteWorks is currently unable to model cooling pipes, both a water-cooled and a non-water-cooled beam were instrumented.

4.3.1 Structural Plans

A commercial weather station was set up at the precast plant at approximately 10:00 a.m. on the day of the pour. Located just a few hundred yards away from the beams, the station was programmed to record temperature, relative humidity, solar radiation, and wind speed on a 15-minute interval. For unknown reasons, the weather station failed to collect relative humidity, in which case daily relative humidity statistics were acquired from a nearby weather station in Wharton, TX. Aside from a brief afternoon shower on the first two days of the monitoring period, conditions were consistent with southeast Texas weather: hot and humid. A summary of the observed conditions may be seen in Table 4.3. For a detailed comparison between the weather observed at Eagle Lake and ConcreteWorks predicted weather, see Appendix C.1.

		-				
Data	Temp	erature	Wind	Cloud	Relative	Humidity
Date	Max	Min	Speed	Cover	Max	Min
	°F	°F	m/s	%	%	%
7/1/2011	94.8	75.0*	10.1	45	94.0*	39.0*
7/2/2011	97.6	76.5	5.9	19	94.0*	30.0*
7/3/2011	97.0	74.9	4.6	24	94.0*	27.0*
7/4/2011	96.0	74.5	4.4	27	94.0*	32.0*

Table 4.3: Eagle Lake Weather Station Data

* collected from wunderground.com

4.3.2 Materials and Mixture Proportions

The same mix design, summarized in Table 4.4, was used for both the water-cooled and non-water-cooled beam. The mix was a high-performance self-consolidating concrete (SCC). To characterize the concrete, cylinders were taken on site during construction for mechanical testing and raw materials were acquired from the batch plant on the day of the pour for laboratory testing.

Raw	Materials	Amount
Cement	Alamo Type III	700.0 lb
SCM	Class F Fly Ash	233 lb
Water	0.30 W/C	
Coarse Aggregate 1/2" River Gravel		1527 lb
Fine Aggregate	River Sand	1269 lb
Adı	nixtures	Amount
Water Reducer	Sika ViscoCrete 2110	5.25 fl oz/cwt
Retarder	Sika Plastiment	1.25 fl oz/cwt
Accelerator	Sika CNI	16.44 fl oz/cwt
VMA	A Sika 4R	

Table 4.4: Eagle Lake Mix Design

4.3.3 Instrumentation

To speed up instrumentation, six temperature bars (see Figure 4.18) were fabricated for each end block using 1/4-inch diameter steel tubing and three iButtons evenly spaced at 8 1/8 inches. Because the end block thickness wasn't known at the time of fabricating the temperature bars, they were made longer than necessary. Once on site, the bars were cut to size and the ends were injected with fast curing epoxy for waterproofing. While the cutting and capping of temperature bars added a little more complication to the instrumentation process, the benefits were invaluable. The temperature bars ensured precise placement of sensors in the end block as well as a rigid point of attachment to the surrounding rebar. The temperature bars also make it very easy to have several sensors grouped to a single multi-conductor wire, which greatly reduces confusion regarding which wire belongs to which sensor after the concrete has been poured.

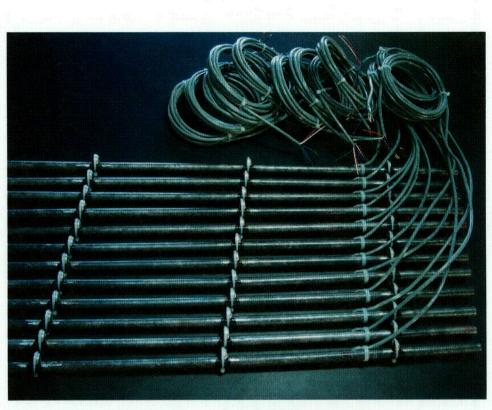


Figure 4.18: Eagle Lake Temperature Bars

Similarly to the Bexar Precast beams, half the sensors were placed as close as possible to the center of the end block for comparison with ConcreteWorks. The remaining nine sensors were placed near the sides to get a better idea of the temperature distribution throughout the end block. Figure 4.19 shows the approximate location of the sensors within the end block as measured after installation.

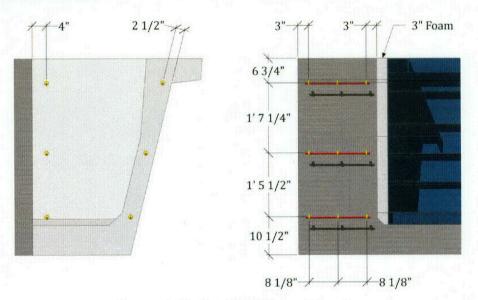


Figure 4.19: Installed Sensor Locations

The same complications regarding the modeled end block size apply to the modeling of the Eagle Lake beam. A 54-inch U beam end block is modeled as 48 inches tall and 27 inches thick. The beams instrumented on site were approximately 22 inches thick. There is no option in ConcreteWorks to specify the thickness of the end block.

An analysis was conducted of the temperatures observed in the field and those predicted by ConcreteWorks. The output for ConcreteWorks, illustrated by Figure 4.20, consists of a twodimensional array of points in the end block at which temperatures are predicted on a 5-minute interval. To produce predicted temperatures at the same locations at which iButtons were installed, bilinear interpolation of predicted temperatures surrounding each iButton was performed. This was done for each time step and plots of the observed and predicted temperatures were developed. Figure 4.20 also presents a naming scheme for the sensors, with B, M, and T representing the bottom, middle, and top rows of sensors respectively.

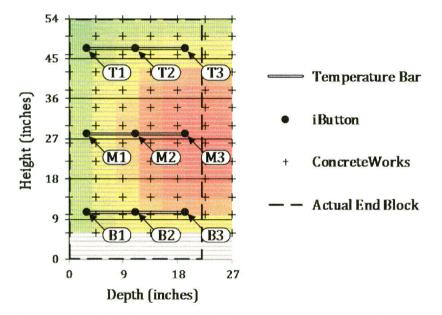


Figure 4.20: Eagle Lake—End Block Instrumentation Schematic

4.3.4 Observed and Predicted Temperatures

The following figures (Figure 4.21 through Figure 4.29) present the temperatures observed in the field by each of the nine sensors at the center of the end block as well as their corresponding temperatures predicted by ConcreteWorks.

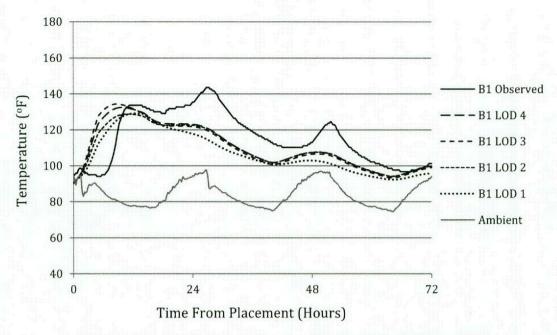


Figure 4.21: Eagle Lake—ConcreteWorks Analysis (Sensor B1)

Figure 4.22: Eagle Lake—ConcreteWorks Analysis (Sensor B2)

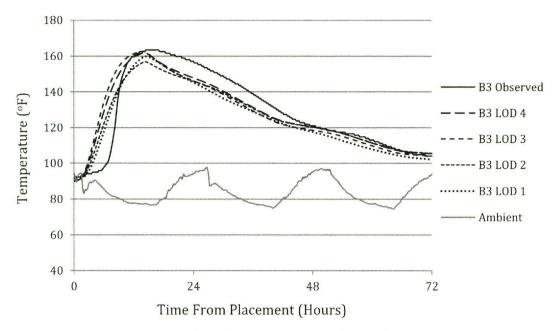


Figure 4.23: Eagle Lake—ConcreteWorks Analysis (Sensor B3)

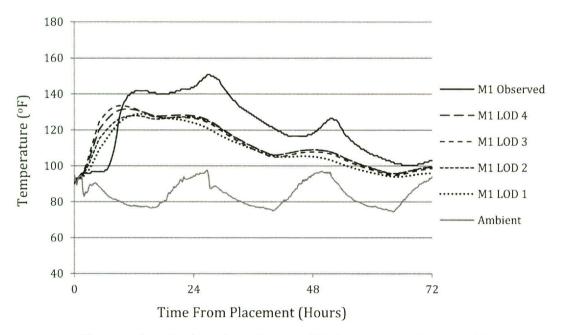


Figure 4.24: Eagle Lake—ConcreteWorks Analysis (Sensor M1)

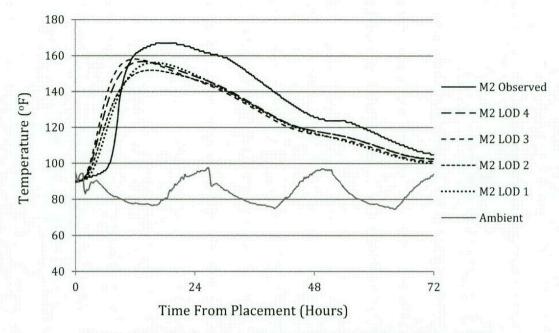


Figure 4.25: Eagle Lake—ConcreteWorks Analysis (Sensor M2)

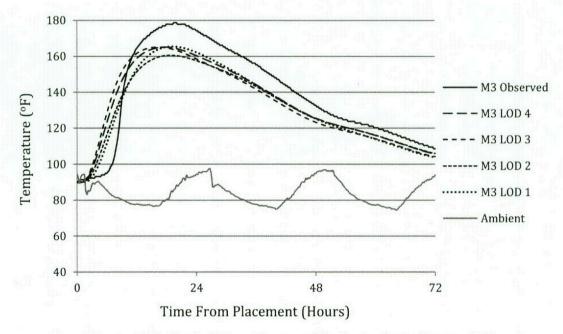


Figure 4.26: Eagle Lake—ConcreteWorks Analysis (Sensor M3)

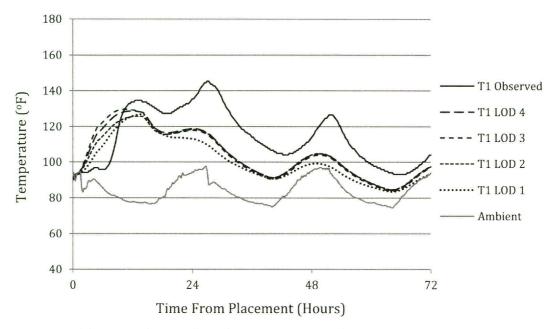


Figure 4.27: Eagle Lake—ConcreteWorks Analysis (Sensor T1)

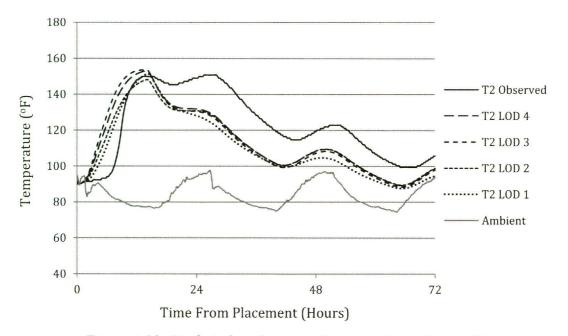


Figure 4.28: Eagle Lake—ConcreteWorks Analysis (Sensor T2)

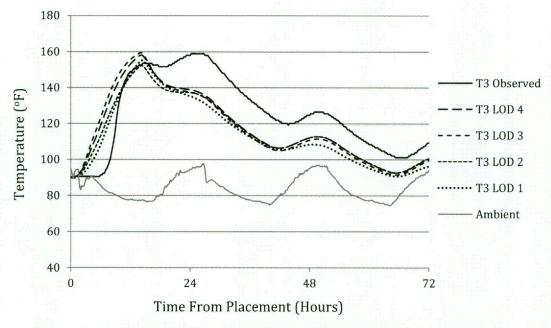


Figure 4.29: Eagle Lake—ConcreteWorks Analysis (Sensor T3)

4.3.5 Additional Observations

Although ConcreteWorks does not model water cooling pipes, a water-cooled beam was instrumented to document the effects on thermal behavior and the results certainly make a strong case for adding this functionality to the software program.

4.3.6 Water Cooled End Block

In addition to instrumenting a regular U 54 beam, an identical water cooled beam was also instrumented using the same mix design and poured within an hour of the non-water cooled beam. The beam was cooled by installing a 4-inch pipe straight down the center of the end block, illustrated in green in Figure 4.30.

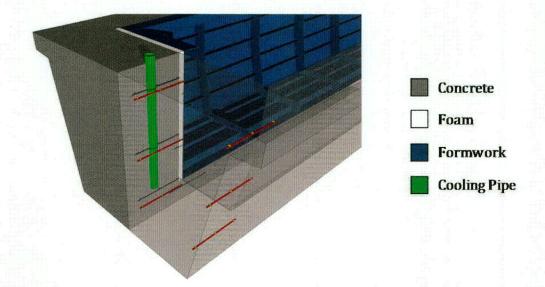


Figure 4.30: Eagle Lake—Water Cooled Beam

Rather than allow the water to run through one end of the pipe and out the other like a typical water cooling system, the pipe was capped at the bottom end and a hose was dropped into the top. The water simply fills the pipe and overflows out of the top, carrying excess heat away from the center of the end block. The design is brilliant because it's very easy to install, unobtrusive, and targets the hottest part of the end block. The instrumentation of the two beams showed that the water cooling pipe reduced the maximum temperature 21.6 °F. Whereas the non-water-cooled beam reached a maximum temperature of 178.7 °F, the water-cooled beam only reached 157.1 °F. A plot of the two hottest sensors (M2 and M3) is shown in Figure 4.31. Sensor M2 WC is particularly interesting as it is located just 2 inches away from the water cooling pipe. At 14 hours, the water was turned off and forms were stripped. The concrete responded with rapid temperature rise as the hydration reaction was in full swing. Cooling the end block for the first 14 hours, however, had already ensured the beam was in no danger of overheating.

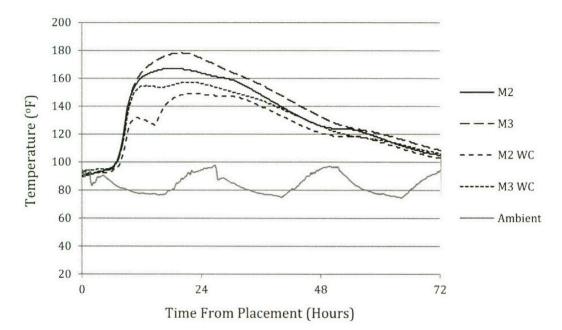
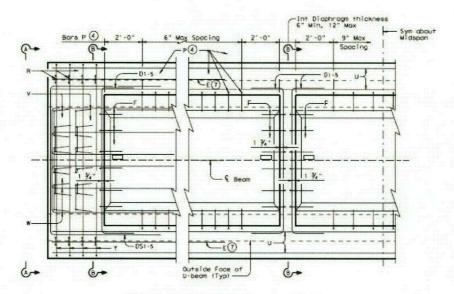
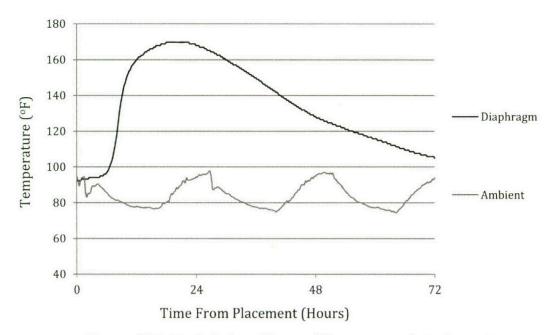


Figure 4.31: Eagle Lake—Observed Temperature (Water Cooled Beam)

4.3.7 Diaphragm Temperature

A few spare iButtons were brought along in anticipation of any sensor failures detected before concrete casting. After instrumentation, all 36 sensors installed in the two beams were confirmed functional. With no need for the spares, one was installed at the center of a diaphragm in the beam. Diaphragms are concrete bulkheads poured between the beam's midpoint and each end. As seen in the design drawing in Figure 4.32, the diaphragms may range between 6 and 12 inches thick. The instrumented diaphragm was 7 inches thick.




Figure 4.32: Diaphragm iButton

Although a 7-inch thick concrete section seems very unlikely to overheat, it was sandwiched between a layer of 3-inch thick foam on one side and 2-inch thick foam on the other side. Figure 4.33 illustrates the instrumentation of the diaphragm. No dimensions are available as the sensor was very rudimentarily placed by eye.

Figure 4.33: Diaphragm iButton

Despite the insulation provided by the foam, what the iButton captured was nothing short of surprising. As seen in Figure 4.34, concrete temperatures in the diaphragm behaved semi-adiabatically, rising to a temperature of 169.7 °F. That's 12.6 °F higher than the maximum concrete temperature observed in the water cooled end block!

Figure 4.34: Eagle Lake—Observed Temperature (Diaphragm)

4.4 Discussion

The temperature predictions developed for each of the precast case studies reveal much information regarding the difficulty in replicating observed temperatures. While a large portion of the error is likely due to the incorrect size of the modeled end block as discussed earlier, it has always been known that ConcreteWorks' Achilles heel is temperature prediction near the surface of the concrete. Temperatures near the surface can be very erratic depending on ambient weather conditions, stripping of the forms, and changes to the boundary conditions caused by curing. This doesn't bode well for an element in which the greatest dimension along a viable path of heat transfer is only two feet. Essentially, almost any point in a precast element is near an exterior surface.

Despite some of the difficulties with modeling smaller elements, the case studies provide good indicators of opportunities for improvement in the software. One discrepancy between the temperature models and the iButton data was the end block's response to the stripping of forms. When the forms were stripped, the iButton data for all three beams shows the concrete responded with a decrease in temperature as heat was lost to the environment. The same effect is seen with the modeled temperatures, however, to a much greater degree. The top sensors installed in the Eagle Lake beam illustrate this behavior particularly well as the forms were stripped at the coolest point in the day at only 14 hours after placement. ConcreteWorks assumes that curing blankets are placed on top of the beam until forms are stripped. Once that occurs, the curing blankets are assumed to be removed unless specified otherwise in the construction inputs. In the field trials, curing blankets were permanently removed once the beam was taken off the production line. The predicted rapid temperature decrease with form removal indicates that the heat conduction between the exposed concrete and the surrounding environment is overestimated by ConcreteWorks. Consequently, this could also explain why the predicted maximum temperatures are significantly lower than the observed maximum temperatures. One example of varying construction methods observed in the field was the formwork used for the exterior face of the end blocks. With the opposite side of the end block completely insulated with foam, the exterior face is one of the primary locations of heat transfer to the environment. Accurately defining the boundary conditions here could result in much better modeling of the thermal behavior of the system. Figure 4.35 shows the reinforced plywood formwork used by Bexar Concrete Works on the left and the structural steel formwork used by Eagle Lake on the right. Another example seen in the case studies was the varying thicknesses of foam used on the end blocks. Currently, ConcreteWorks has no options to specify the foam thickness or the type of formwork used on the exterior face of the end block.

Figure 4.35: Exterior Formwork—Bexar (Left) and Eagle Lake (Right)

While near-surface thermal prediction will never be perfect, the software program had a chance to highlight its greatest strength with the Alamo vs. Capitol comparison: hydration. The most impressive result of precast thermal predictions was the software program's ability to replicate the difference in maximum temperature between the Alamo and Capitol beams cast at Bexar Concrete Works. This effect can't be captured by LOD 1 as there were no specified inputs with which to differentiate the two cements. LOD 2, however, specified the Bogue-calculated cement composition for the cement used in each beam and yielded a 10.5° difference as seen in Table 4.5. LOD 3, in which the cement composition was more accurately defined by Rietveld analysis, achieved a correspondingly higher accuracy in predicting the difference, with a predicted temperatures varying by 23 °F.

				· · · · · · · · · · · · · · · · · · ·
	Observed	LOD 3	LOD 2	LOD 1
Capitol	180.5	149.7	134.5	135.6
Alamo	162.5	126.5	124.0	135.7
Difference	18.0	23.2	10.5	-0.1

Table 4.5: Maximun	Temperature ((Alamo vs. Capitol)	
--------------------	---------------	---------------------	--

4.5 Conclusion and Recommendations

A reliable method was developed for instrumenting precast elements and four U54 beams were outfitted with several sensors each. Various methods of characterizing the case studies were compared in ConcreteWorks using the observed temperatures as a baseline. Some recommendations for future research are as follow:

- Investigation into the importance of adding inputs to specify the type of formwork used on the exterior face of the end block as well as a comparison between the modeling of varying foam thicknesses
- Corrections to ConcreteWorks modeled end block dimensions

.

ſ

44

Chapter 5. Mass Concrete Temperature Prediction

5.1 Research Significance

It is well known that freshly poured concrete in the central portion of a large column is capable of reaching very high temperatures. The center of the column is well insulated by surrounding concrete and temperatures behave semi-adiabatically. At the exterior of the column, temperatures closely mimic the outside air temperature. The difference in temperature between the center of the column and its outer reaches presents internal stresses caused by variations in thermal expansion. A very large temperature difference isn't enough to crack concrete, however. The temperature variation has to occur over a short enough distance. In other words, the temperature gradient causes the stresses. Thermal gradients can occur for several reasons. If the concrete is particularly hot or very fast reacting, the center of the column can heat up enough to cause an excessive gradient. Alternatively, gradients can be caused by stripping forms in a cold environment. Similar to dropping an ice cube in a glass of water, quickly subjecting a hot concrete element to cold surroundings can present a thermal shock capable of severe cracking. If a gradient is large enough, the induced thermal stresses may results in severe cracking.

The maximum thermal gradient is likely to occur at two locations. One possible location is the center of a column's widest face as this point represents the shortest path from the center of the column to the exterior. At the corners of the column, two surfaces are available to transfer heat to the outside environment, making for rapid heat loss and consequently high potential for crack inducing thermal gradients.

5.2 Case Study: IH 35/SH 71 WBSB Column 8

The Interstate Highway 35/State Highway 71 (IH 35/SH 71) is located in southeast Austin. This construction project is a phase 2 effort that adds remaining connector ramps not included in the original highway interchange construction in 2002/2003. The structures being built are of particular interest to this research as they qualify as mass concrete placements. The westbound SH71 to southbound IH35 connector, the tallest flyover at the site, has several columns exceeding 5 feet least dimension and standing 100 feet tall.

Coincidentally, some of the original columns of the IH 35/SH 71 interchange were used as a test bed for the initial development of ConcreteWorks. Unfortunately, history often repeats itself and some of the same instrumentation problems faced by Kyle Riding and Jonathan Poole reoccurred several years later.

5.2.1 Project Details

The structure of interest is Column 8, located at the northeast corner of the interchange. Column 8 connects westbound SH 71 to southbound IH 35. While it's not the largest structure on the site, Column 8 was chosen for instrumentation due to its simple rectangular geometry and safe and easy access from the surrounding frontage roads. Temperature sensors were to be installed in the upper half of the column and the frontage road provided access at about mid height. Figure 5.1 shows the site layout surrounding Column 8. The column measures 10' 2" x 7' 6" as shown by Figure 5.2.

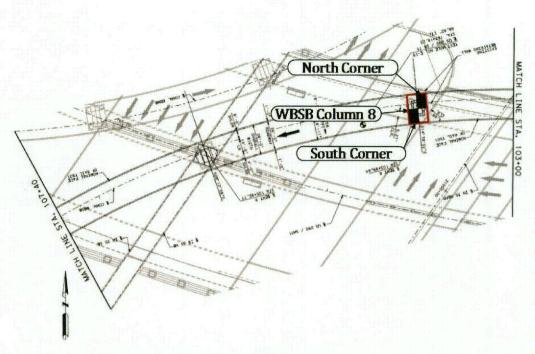


Figure 5.1: WBSB 8 Site Layout

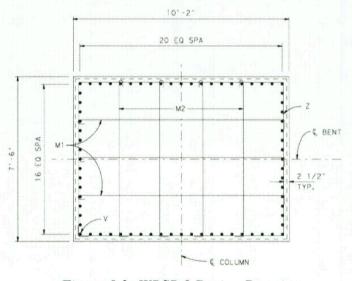


Figure 5.2: WBSB 8 Design Drawing

Column 8 was poured in two stages. Stage 1 occurred on Saturday November 13, and involved the placement of approximately 45 feet of concrete. Stage 2, which occurred on Thursday, November 18, saw the placement of the remaining 63 feet of the column, bringing it to its final height of 108 feet. Sensors were installed before Stage 2, at approximately 55 feet off the ground.

5.2.2 Materials and Mixture Proportions

Concrete was supplied by Lauren Concrete, specifically from batch plant #1 located on McKinney Falls Parkway, just a few miles southeast of the site. The paste fraction involved a mixture of Type I/II cement manufactured by Capitol, 25% Class F fly ash, and water-tocementitious-materials ratio of 0.42. Coarse aggregate was a manufactured dolomitic limestone originating from Marble Falls, Texas, and the fine aggregate was siliceous river sand. Sika 2100 high range water reducer was added for workability and Sika 930 for set retardation. A copy of the batch sheet was acquired for the concrete specifically placed at the height of the sensors. Table 5.1 summarizes the mix design.

	U.S.	
Raw	Materials	Amount
Cement	Capitol Type I/II	428.0 lb
SCM	Class F Fly Ash	107.5 lb
Water	0.42 W/C	231.2 lb
Coarse Aggregate	1 1/2" Dolomitic Lime	1934.0 lb
Fine Aggregate	River Sand	1356.0 lb
Ad	mixtures	Amount
Water Reducer	Sika ViscoCrete 2100	3.70 fl oz/cwt
Retarder	Sikatard 930	2.60 fl oz/cwt

Table 5.1: WBSB 8 Mix Design

5.2.3 Instrumentation

Installation of the sensors took place after the entire 100 feet of the formwork and steel rebar cage had been erected. At this point, approximately 45 feet of the column had been poured below, leaving 53 feet of column in addition to a 10 foot capitol remaining. The column was accessed by taking a man lift to the top of the formwork and climbing down 60 feet to a location approximately 10 ft above the concrete surface created by the placement of Stage 1. The purpose of placing the sensors so high in the column was to eliminate the effects of the shade created by the northbound deck of IH 35. The communication wires were routed through a hole in the steel formwork, allowing the sensors to be programmed and read at any time from a safe location on the ground. Figure 5.3 presents a view from half way up inside the column.

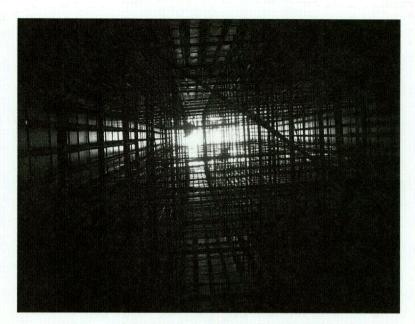


Figure 5.3: Looking up from Inside WBSB 8

The temperature sensors used were Thermochron iButtons, made by Dallas Semiconductor. With an onboard thermocouple, battery, and a memory chip capable of storing over 2,000 data points, the iButtons are capable of logging temperature readings every 5 minutes for a period of 7 days. The only downside of utilizing these iButtons is that they must be installed in the concrete where they are exposed to the construction environment and rendered irretrievable. Great consideration was put into protecting the sensors from being stepped on by construction workers, being battered by concrete vibrators, and having water forced into openings (consequently short-circuiting the electronics). In the interest of making the sensors durable as well as minimizing installation time on site, the temperature sensors were preinstalled on four short lengths of rebar. With seven iButtons per rebar length, the sensors were then coated with epoxy for waterproofing.

In the event of sensor failures, two opposite quadrants of the column were instrumented for redundancy. The placement of sensors can be seen in Figure 5.4.

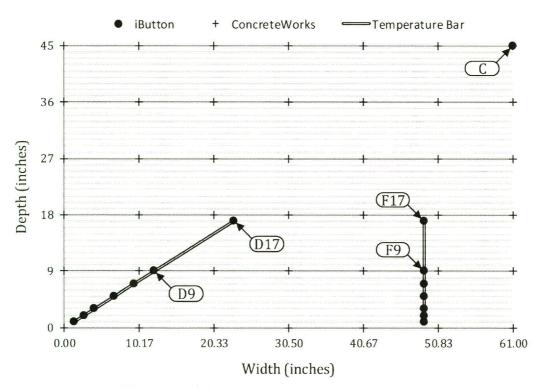


Figure 5.4: Column 8 Instrumentation Schematic

Figure 5.4 illustrates the instrumentation of one quadrant of the column where the axes form the outside faces of the column with point (0,0) representing the corner and point (61,45) representing the center of the column. Two strings of sensors are present, showing the installed location of the iButtons. The diagonal string of sensors, aligned radially from the center of the column straight towards the corner, is temperature bar D. This temperature bar was intended to measure thermal gradients resulting from heat loss through the corner of the column. The second string of sensors extending toward the widest face of the column is temperature bar F. Sensors are named according to the bar on which they are located: D for the diagonal bar and F for the bar extending towards the face of the column. The number following the bar label indicates the sensors depth from the widest face of the column. Sensor D17, for example, is located on the diagonal temperature bar 17 inches from the face of the column. Finally, a single sensor was placed at the center of the column to measure the maximum temperature. The figure also shows how ConcreteWorks divides an element up into a grid, reporting predicted temperatures at evenly spaced nodes represented by the + symbols.

To prevent the concrete from segregating during placement, it was poured into a chute at the top of the column. The chute was installed at the right where the central temperature bars (bar F) were intended to go. As a result, the temperature bars had to be offset by about a foot from the centerline of the column. Figures 5.5 and 5.6 show the temperature bars in WBSB 8.

Figure 5.5: Diagonal Temperature Bar in WBSB 8

Figure 5.6: WBSB 8 Temperature Bar

Despite measures to protect the sensors against the construction environment, the temperature bars had a few flaws. First of all, wires running the length of the temperature bars made it difficult to completely seal the sensors from water intrusion. The epoxy did not bond well to the wire insulation; under enough pressure, it's possible the connecting wires actually acted as a direct path for water intrusion into the sensors. Additionally, the epoxy exhibited very brittle behavior; if brought into contact with a concrete vibrator, the epoxy could have chipped, leaving the sensor completely exposed to the surrounding elements.

5.2.4 Field Observations

A commercial weather station was set up on site prior to the concrete pour and programmed to record temperature, wind speed, solar radiation, and relative humidity on a 15-minute interval. The daily conditions are summarized in Table 5.2. Refer to Appendix D.1 for a

detailed comparison of the observed weather data with ConcreteWorks' default weather model as well as the model adjustments based on the observed conditions.

Date	Tempe	erature	Wind Speed	Cloud Cover		itive iidity
	MAX	MIN	MAX	AVG	MAX	MIN
11/18/2010	65.2	44.7	12.6	14%	69.7	28.4
11/19/2010	70.8	43.6	7.1	18%	74.2	23.8
11/20/2010	76.0	49.1	8.0	74%	93.5	51.6
11/21/2010	81.6	68.1	11.0	66%	88.0	47.8
11/22/2010	82.3	69.6	11.9	69%	84.6	48.9
11/23/2010	82.6	70.8	7.3	69%	85.8	52.4
11/24/2010	84.4	71.7	12.2	53%	84.9	45.6
11/25/2010	79.1	45.5	14.2	99%	82.6	29.0

Table 5.2: WBSB 8 Weather Station Data

On November 18, 2010, at 2:00 a.m., all 29 sensors were confirmed operational. An hour and a half later at 3:30 a.m., concrete was placed at the sensor location, the semi-adiabatic calorimeter was prepared, and cylinders were cast for mechanical testing. At 6:00 a.m., cementitious materials were obtained from the batch plant and taken to the Concrete Durability Center for testing.

5.2.5 Observed and Predicted Temperatures

For several reasons already discussed, 22 of 29 sensors installed in the column failed prematurely. Of those 22 sensors, 16 failed to even read, thus providing no data. As a result, no data was collected from the sensors located at the faces of the column and several sensors on the diagonal temperature bars failed a few days into the monitoring period. In total, only seven sensors survived the full 7-day period. Figures 5.7 and 5.8 present the majority of the data that was collected. The sensors that failed during the monitoring period can be seen dropping off of the plot.

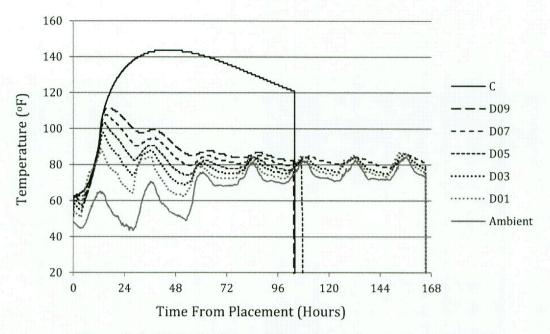


Figure 5.7: WBSB 8 Observed Data (Temperature Bar D—South)

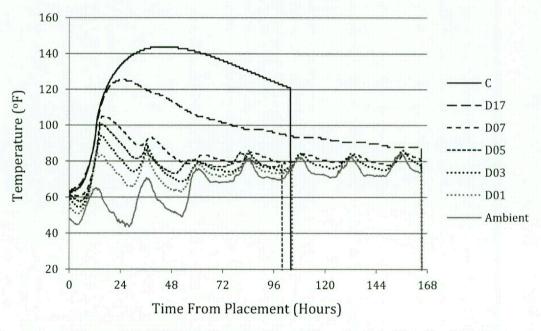


Figure 5.8: WBSB 8 Observed Data (Temperature Bar D-North)

ConcreteWorks simulations were performed for each LOD and compared with the observed data. For a detailed look at the ConcreteWorks simulations, refer to the screen prints documented in Appendix D.2. Bilinear interpolation of ConcreteWorks' temperature output was used to solve for the temperature at each iButton based on its location and the predicted temperatures of the four surrounding nodes. This method was performed at each 5-minute time step and allowed ConcreteWorks' prediction to be directly compared with data gathered from the field.

Maximum Temperature

The maximum temperature recorded in Column 8 was 143.6 °F. The most accurate ConcreteWorks simulation was LOD 3, which came within 5.8 °F of the observed maximum temperature. Figure 5.9 and Table 5.3 present the results.

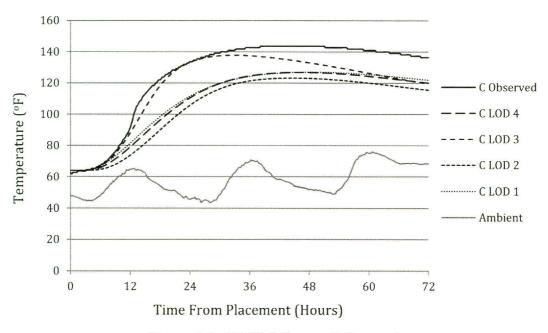


Figure 5.9: WBSB 8 Sensor C Comparison

Table 5.3:	WBSB 8	Maximum	Temperature	Summary

MAX	OBS	LOD 4	LOD 3	LOD 2	LOD 1
Temperature, °F	143.6	126.9	137.8	123.2	127.0
Differential, °F	81.0	59.9	71.9	56.2	63.0

Thermal Gradients

Tables 5.4 and 5.5 present thermal gradient data.

Table 5.4: WBSB 8 Maximum Therr	nal Gradients (°F/inch)—Temperature Bar D
---------------------------------	---

REGION	OBS (S)	OBS (N)	LOD 4	LOD 3	LOD 2	LOD 1
C - D17	-	0.76	0.57	0.65	0.53	0.59
D17 - D09		-	1.26	1.67	1.19	1.35
D09 - D07	2.67	-	1.71	2.24	1.61	1.66
D07 - D05	2.67	3.74	1.93	2.54	1.81	1.87
D05 - D03	2.94	2.94	1.67	2.19	1.57	1.59
D03 - D02	3.74	3.74	1.48	1.93	1.39	1.37
D02 - D01	4.27	3.21	1.35	1.76	1.27	1.23

REGION	OBS (S)	OBS (N)	LOD 4	LOD 3	LOD 2	LOD 1
C - F17	-	-	0.62	0.70	0.57	0.64
F17 - F09	-	-	1.46	1.85	1.36	1.63
F09 - F07	-	-	2.37	3.14	2.23	2.54
F07 - F05	-	-	2.37	3.14	2.23	2.54
F05 - F03			2.37	3.14	2.23	2.54
F03 - F02	-	-	2.37	3.14	2.23	2.54
F02 - F01	all the growth of		2.37	3.14	2.23	2.54

Table 5.5: WBSB 8 Maximum Thermal Gradients (°F/inch)—Temperature Bar F

5.3 Case Study: IH 35/SH 71 WBSB Column 9

The Interstate Highway 35/State Highway 71 (IH 35/SH 71) interchange is located in southeast Austin. The original interchange was constructed in 2003. This construction project is a phase 2 effort that adds remaining connector ramps not included in the original highway interchange. The WBSB ramp connects westbound SH 71 to southbound IH 35. It's the tallest ramp on site, with several mass-concrete columns exceeding 100 feet in height. At the center of this ramp and at the very center of the entire interchange is Column 9. Situated between the northbound and southbound lanes of IH 35 as well as the eastbound and westbound lanes of SH 71, Column 9 is a massive 11' 10" x 7' 6" column that rises 111 feet from its base.

5.3.1 Project Details

Similarly to Column 8, two quadrants of the column were instrumented for redundancy. As seen in Figure 5.10, Column 9 is oriented such that the south corner gets significantly more solar radiation than any other corner. To compare the impact this had on temperatures, the southern-most and northern-most quadrants were chosen for instrumentation.

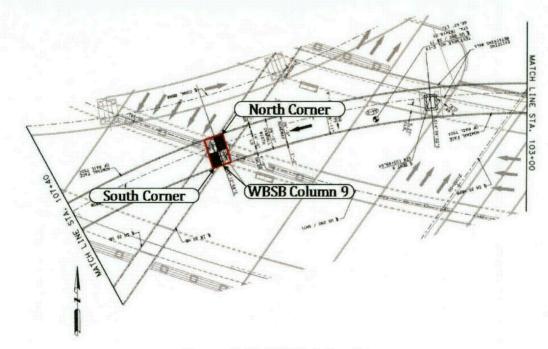


Figure 5.10: WBSB 9 Site Plan

Column 9 differs from Column 8 in that it isn't a simple rectangular column. Each of the two widest faces has a 3-foot wide x 3-inch deep architectural inset. Unfortunately, ConcreteWorks does not model complex shapes, so a decision had to be made on how model the insets most accurately. The formwork for the insets, as seen in Figure 5.11, is important because, as will be seen from the sensor data, it provided significant insulation and caused even the concrete near the surface to behave semi-adiabatically.

Figure 5.11: WBSB 9 Inset Formwork

Two possibilities were available for trying to model the impact of the insets in ConcreteWorks. The actual dimensions of the column, as shown in Figure 5.12, are 11' 10" x 7' 6". One option was to model the structure as an 11' 10" x 7' column with architectural form liners across the width. Form liners, just like the insets, tend to minimize the exchange of heat between the concrete and the environment. On the actual column, the insets cover a relatively small portion of the width. By modeling the column with the full width insulated, the entire column would behave semi-adiabatically, the maximum predicted temperature would be artificially high, and thermal gradients would be significantly reduced. The simplest solution, and probably the best representation of the actual column, was to ignore the insets and model the structure as an 11' 10" x 7' 6" rectangular column.

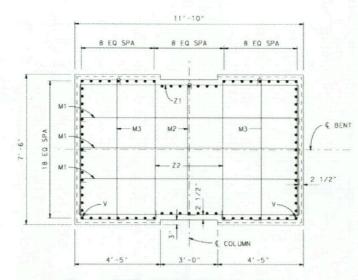


Figure 5.12: WBSB 9 Design Drawing

As seen in Figure 5.13, access to the upper half of the column was available from the roadway deck of IH 35. Concrete barriers were installed along the left shoulder of the southbound deck, allowing for a well-protected workspace. The structure was poured in three stages: 0 to 50 feet for Stage 1, 50 to 100 feet for Stage 2, and the capitol on Stage 3. To minimize pressure head from the concrete poured above, sensors were installed midway up Stage 2 at approximately 75 feet from the base of the column. This also eliminated the effects of the shade created by the IH 35 roadway decks.

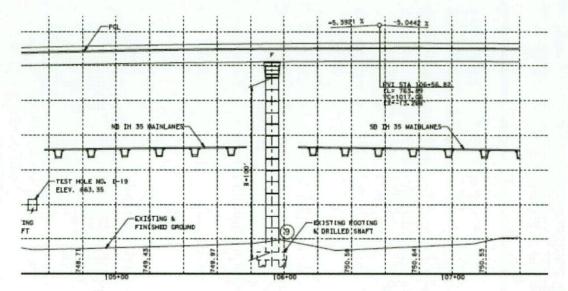


Figure 5.13: Column 9 Profile View

5.3.2 Materials and Mixture Proportions

Concrete was supplied by Lauren Concrete batch plant #1, located just a few miles southeast of the site on McKinney Falls Parkway. The mix design used for Column 9 is essentially the same as that used for Column 8. The paste fraction involved a mixture of Type I/II cement produced by Capitol, 25% Class F fly ash, and a water-to-cement ratio of 0.42. Coarse

aggregate was a manufactured dolomitic limestone originating from Marble Falls, Texas, and the fine aggregate was siliceous river sand. Sika 2100 high range water reducer was added for workability and Sika 930 for set retardation. Table 5.6 summarizes the mixture proportions as per the batch sheet acquired for the concrete placed at the location of the sensors.

Raw	Materials	Amount
Cement	Capitol Type I/II	431.5 lb
SCM	Class F Fly Ash	107.5 lb
Water	0.42 W/C	231.2 lb
Coarse Aggregate	1 1/2" Dolomitic Lime	1906.0 lb
Fine Aggregate	River Sand	1348.0 lb
Ad	mixtures	Amount
Water Reducer	Sika ViscoCrete 2100	3.00 fl oz/cwt
Retarder	Sikatard 930	2.60 fl oz/cwt

Table 5.6: WBSB 9 Mix Design

5.3.3 Instrumentation

Due to the problems experienced with Column 8, an entirely new approach was taken to the fabrication of temperature bars. Instead of using rebar, 1/4-inch diameter hollow steel tubing was adopted as the new platform. Overall, the hollow steel tubing provided many advantages. It was easier to cut and shape. The notches, which provide a stable place to seat the iButtons, were very easily cut and widened in either direction to accurately place sensors at exactly 1, 2, 3, 5, 7, 9, and 17 inches. All of the communication wires were routed internally through the tube. The notches were cut slightly large, providing access for the wires to be soldered to the sensors. Finally, a much tougher epoxy was found. To prevent water intrusion, the sensors were coated with the epoxy on the outside and the tubes were injected with epoxy at each end. The result of all these changes was a very lightweight and rugged system with very few potential entry points for water. The only downside to the hollow tubes is that they bend easier if stepped on. This risk was mitigated by installing the temperature bars on the underside of rebar whenever possible. Figure 5.14 shows one of the temperature bars being assembled.

Figure 5.14: Fabrication of New Temperature Bar

Temperature bars were strategically placed to capture the maximum thermal gradient and a single sensor was placed at the center of the column to measure the maximum temperature. Placement of the temperature bars is depicted by Figure 5.15, which illustrates one quadrant of the column. The axes represent the exterior faces of the column, where point (0,0) is the corner and point (71,45) is the center of the column. ConcreteWorks predicted temperatures are reported at the nodes indicated by the + symbols. The iButton locations as installed in the column are also illustrated.

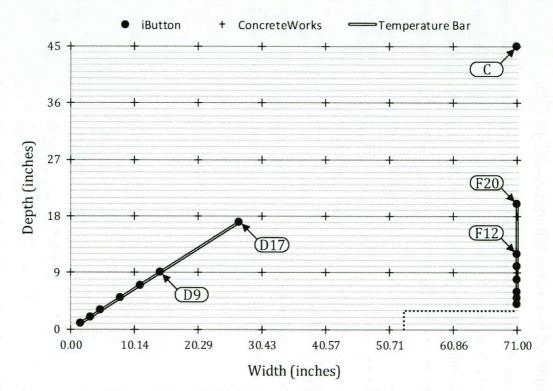


Figure 5.15: WBSB 9 Detailed Instrumentation Scheme

The same naming scheme used for Column 8 also applies to Column 9. D represents the diagonal temperature bar extending toward the corner of the column, where sensor D7, for example, designates the sensor on the diagonal temperature bar located 7 inches away from the column's widest face. F represents the temperature bar extending toward the widest face, where sensor F4, for example, denotes the sensor on the central temperature bar located 4 inches from the concrete surface. It's important to note that with the architectural insets, F4 is only located one inch from the concrete surface of the actual column. The naming scheme applies to the column as it is modeled. To avoid confusion, the architectural insets are shown as a dotted line on the figure above. Finally, C represents the single sensor placed at the center of the column. Figures 5.16 and 5.17 show the completed installation of sensors in one quadrant of the column.

Figure 5.16: WBSB 9 Completed Instrumentation

Figure 5.17: WBSB 9 Instrumentation

5.3.4 Field Observations

A commercial weather station was set up on site prior to the pour and programmed to record temperature, wind speed, relative humidity, and solar radiation on a 15-minute interval. The daily conditions are summarized in Table 5.7. For detailed comparisons between the actual weather, ConcreteWorks' predicted weather, and adjustments made to ConcreteWork's predicted weather, refer to Appendix E.1.

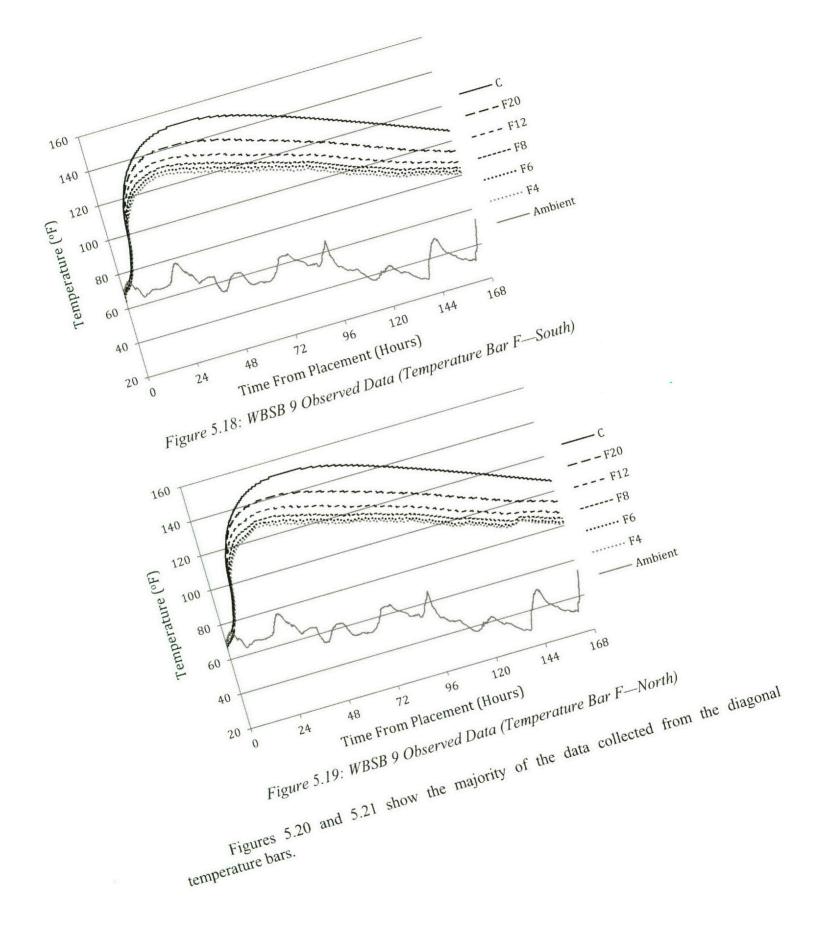

Date	Tempe	erature	Wind Speed	Cloud Cover		itive idity
	MAX	MIN	MAX	AVG	MAX	MIN
12/20/2010	74.9	51.1	9.8	55%	90.7	50.6
12/21/2010	77.3	62.6	9.0	56%	88.4	52.9
12/22/2010	64.7	53.7	8.5	100%	93.0	48.1
12/23/2010	64.9	52.7	7.9	99%	71.0	53.8
12/24/2010	65.9	45.5	14.4	100%	93.1	71.5
12/25/2010	45.8	35.5	14.2	56%	80.2	50.4
12/26/2010	50.3	29.0	6.2	17%	80.8	32.8
12/27/2010	59.1	31.8	9.5	32%	85.2	44.2

Table 5.7: WBSB 9 Weather Station Data

On December 20, 2010, at 8:00 a.m., Stage two of the concrete pour began and raw materials were acquired from the batch plant for laboratory testing. At 12:30 p.m., concrete was placed at the sensors, cylinders were cast for mechanical testing, and the semi-adiabatic calorimeter was setup and taken to a climate controlled space at the Pickle Research Campus in North Austin. Cement and fly ash were acquired from the batch plant on the morning of the pour for physical and chemical analysis.

5.3.5 Observed Predicted Temperatures

Figures 5.18 and 5.19 show the effect of the architectural insets, as temperatures behaved semi-adiabatically.

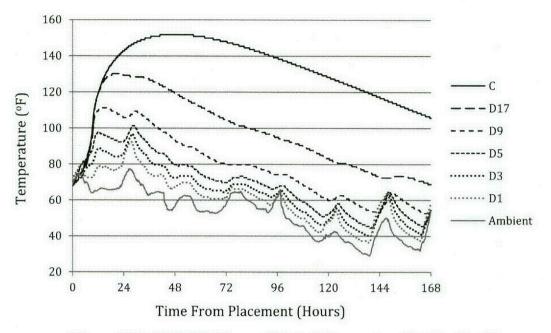


Figure 5.20: WBSB 9 Observed Data (Temperature Bar D—South)

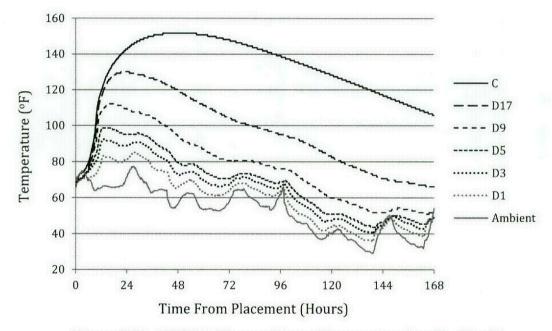


Figure 5.21: WBSB 9 Observed Data (Temperature Bar D—North)

Predicted Maximum Temperature

Figure 5.22 and Table 5.8 present sensor comparison and thermal performance data.

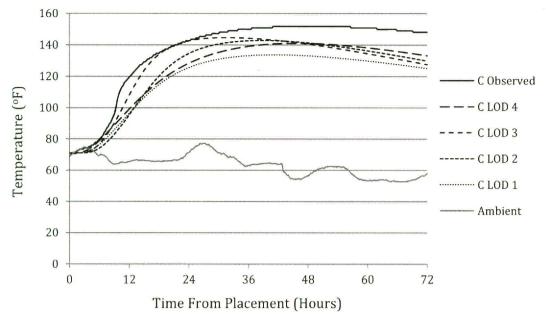


Figure 5.22: WBSB 9 Sensor C Comparison

Table 5.8: WBSB 9 Thermal Performance Summary

MAX	OBS	LOD 4	LOD 3	LOD 2	LOD 1
Temperature, °F	151.7	141.1	144.6	142.8	133.7
Differential, °F	89.1	71.3	70.7	69.9	75.7

Thermal Gradients

The maximum temperature difference recorded by the iButtons was 89.1 °F. The maximum gradient measured between any two sensors was 6.30 °F/inch (Tables 5.9 and 5.10). In relation to tables discussing gradients, the "region" column represents C for center, D for diagonal, and F for Face. The numbers following the prefix are the distance (inches) from the widest face of the column.

Table 5.9: Maximum Thermal Gradients (°F/inch)—Temperature Bar F

REGION	OBS (S)	OBS (N)	LOD 4	LOD 3	LOD 2	LOD 1
C - F20	0.61	0.65	0.68	0.65	0.66	0.71
F20 - F12	1.13	1.13	1.66	1.65	1.63	1.80
F12 - F10	1.35	1.35	1.81	1.83	1.81	2.00
F10 - F08	1.35	1.80	2.19	2.25	2.25	2.50
F08 - F06	1.80	1.80	2.67	2.71	2.73	3.04
F06 - F05	1.80	2.25	2.67	2.71	2.73	3.04
F05 - F04	1.80	4.05	2.67	2.71	2.73	3.04

REGION	OBS (S)	OBS (N)	LOD 4	LOD 3	LOD 2	LOD 1
C - D17	0.88	0.89	0.63	0.61	0.61	0.65
D17 - D09	1.81	1.75	1.36	1.40	1.40	1.51
D09 - D07	2.17	2.17	1.64	1.68	1.68	1.80
D07 - D05	2.17	1.93	1.82	2.02	1.90	2.01
D05 - D03	2.89	2.17	1.71	1.93	1.79	1.87
D03 - D02	2.89	2.89	1.50	1.70	1.57	1.61
D02 - D01	2.89	3.37	1.36	1.54	1.42	1.43

Table 5.10: WBSB 9 Absolute Max Gradients (°F/inch)—Temperature Bar D

5.4 Discussion

Temperatures predicted by ConcreteWorks were a little lower than temperatures observed in the field. However, there is concern that cementitious materials were contaminated during collection from the batch plant.

Whereas the mass concrete specification limits temperature differences to 35 °F or less, both observed columns as well as the ConcreteWorks models produced temperature differences varying between 70 °F and 80 °F. Regardless, structures in the field exhibited no signs of cracking.

5.5 Conclusion and Recommendations

Recommendations are as follows:

- Investigation into the implications of a maximum thermal gradient instead of a maximum temperature difference.
- A better method of acquiring cementitious materials from a batch plant is needed. Cross contamination is too likely when collecting materials from the primary chute. It is believed that cementitious materials collected for Column 8 and Column 9 were contaminated with fairly high amounts of fly ash, very likely causing a significant impact on the results for XRF, XRD, and isothermal calorimetry testing.

Chapter 6. Chloride Service Life

6.1 Case Study: Copano Bay Bridge

The Copano Bay Bridge is located on SH 35, just a few miles north of Fulton, Texas (Figure 6.1). Constructed in 1967, the causeway was the replacement of a narrow two-lane structure built of timber and concrete around 1930. After 45 years, the new structure is the latest casualty to be claimed by the harsh coastal environment. With construction of the third structure soon underway, the purpose of this portion of the research is to provide guidance on the selection of materials and mixture proportions to achieve a 75-year minimum design life.

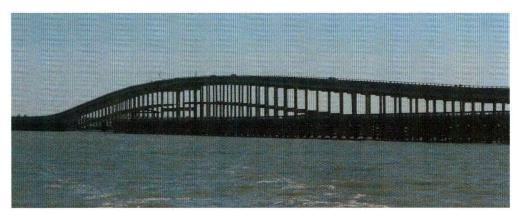


Figure 6.1: Copano Bay Bridge (Looking Northeast)

On April 12, 20011, 6 concrete cores were extracted from the Copano Bay Bridge. Three different zones were targeted with two cores each: the tidal zone, splash zone, and spray zone. Specifically, two cores were pulled below the tie beams at water level (tidal zone); two cores were pulled from the tie beam a couple feet above the water level (splash zone); and two cores were pulled from the roadway (spray zone). Two additional cores were taken from the concrete deck of the original causeway, which is currently used as a fishing pier.

6.1.1 Field Observations

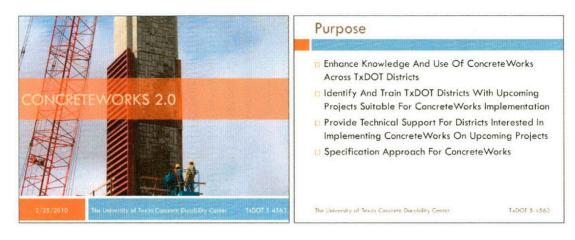
Access to the piers was made possible by boat. The opportunity was taken while on the boat to survey some of the degradation of the causeway's substructure, seen in Figures 6.2–6.6.

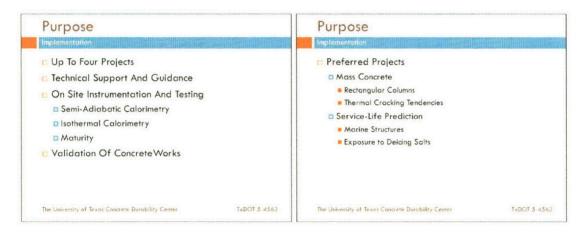
Figure 6.2: Corrosion of Tie Beam and Column

Figure 6.3: Cracking of Tie Beam and Column

Figure 6.4: Cracking of Tie Beam

Figure 6.5: Corrosion of Precast Concrete Piling

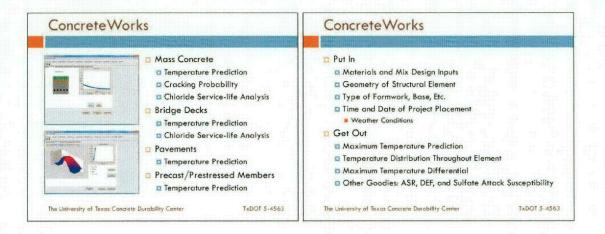

Figure 6.6: Corrosion of Concrete Slab and Girder Span

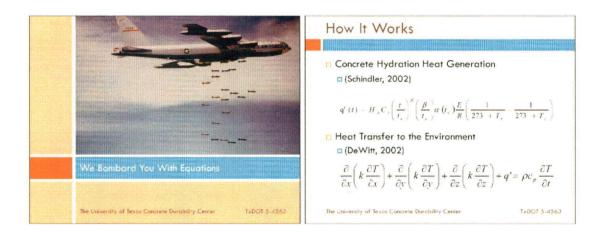

Chapter 7. Conclusion

The ability exists to engineer concrete to achieve not only strength and workability requirements, but thermal requirements as well. Materials and mixture proportions can be specifically selected to attenuate early age heat evolution or minimize it altogether. Aggregates can be selected based on their ability to minimize thermal gradients at the expense of maximum temperature or vice versa. Materials and mixture proportions have major implications on the heat evolution of a concrete mixture as well as the transfer of heat through the structure during curing. ConcreteWorks has the capability to model these variables and more, however it still needs more exposure within the Texas Department of Transportation to gain traction. A 4-hr ConcreteWorks training course was developed and delivered to TxDOT engineers, inspectors, and contractors throughout the state of Texas. Additionally, this research equates to a complete guide on how to use ConcreteWorks to compare the results. If ConcreteWorks is to succeed as a critical component of the mass concrete specification, it needs more opportunities to be applied in the field by TxDOT employees.

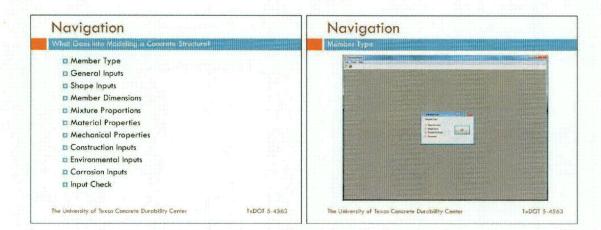
Appendix A: ConcreteWorks Training

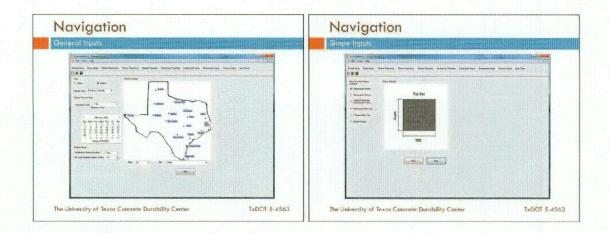
Austin Pilot Class

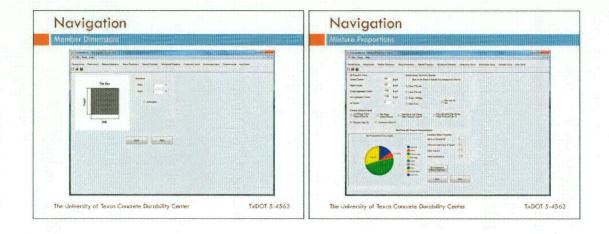


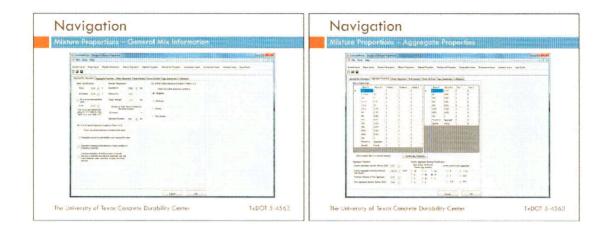

Start End	Торіс	
9:00 AM - 9:25 AM	Concrete Works Overview	
9:25 AM + 10:10 AM	Mix Design and Proportioning	ConcreteWorks 2.0 Overview
10.10 AM - 10.25 AM	Break	Concrete Works 2.0 Greatiew
10:25 AM + 10:45 AM	Demonstration	
10:45 AM - 11:30 PM	Heat of Hydration and Thermal Stress Analysis	
11:30 PM - 12:00 PM	Demonstration & Questions	
12:00 PM + 1:00 PM	Lunch	
1:00 PM - 1:45 PM	Chloride Service-Life Modeling	
1:45 PM + 2:00 PM	Demonstration	
2:00 PM - 2:20 PM	Other Durability Related Issues	
2:20 PM · 2:30 PM	Group Project - Overview and Instructions	
2:30 PM + 3:00 PM	Group Project - Case Study	
3:00 PM - 3:15 PM	Breok	
3:15 PM - 3:30 PM	Group Project - Presentations	
3:30 PM - 4:00 PM	Implementation of ConcreteWorks	

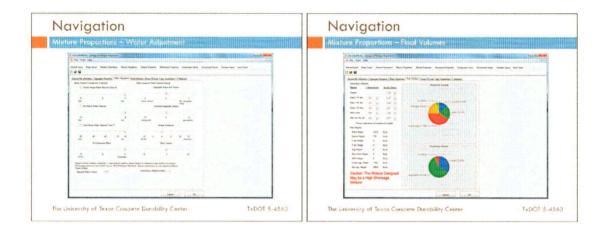
Item 420.4.G4 (2004)	Why All The Trouble?		
Mats placements are defined as placements with a least dimension greater than an expert to 5 ft, or designated on the plans. For more statements, develop and obtain approved for a plan to ensure the two requires and the statement of the st	 and why the specification? Concrete temperature and concrete dura related ConcreteWorks can help provide high qu crack-free concrete 		
The University of Texos Concrete Durability Center TxDOT 5-4563	The University of Texas Concrete Durobility Center	TxDOT 5-45	

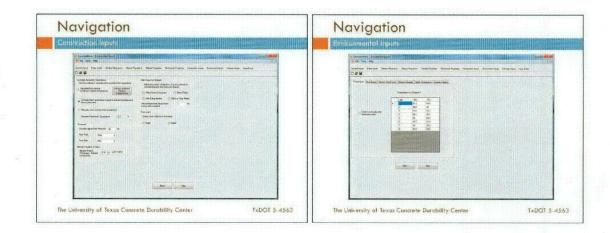

Why Do We Need A Program?	ConcreteWorks
 The calculations are difficult Guidance provided by ACI and PCA is vague Information in literature concerning temperature rise of various materials is dispersed The problem becomes even more difficult when cracking tendency is considered. The specification does not even address this! 	 User-friendly software package for the design, analysis, and performance prediction of structural concrete Mass Concrete Bridge Decks Concrete Pavements Precast Concrete Members
The University of Texos Concrete Durability Center TxDOT 5-4563	The University of Texas Concrete Durability Center TxDOT 5-4562

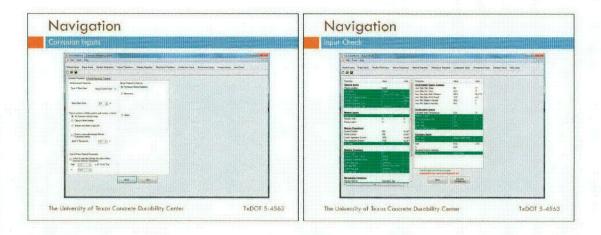


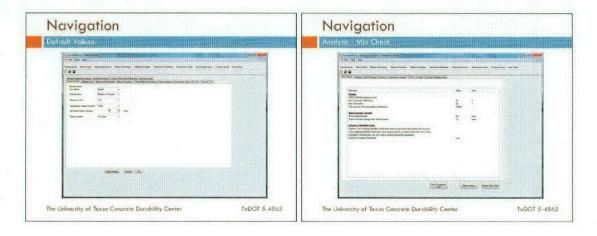

ConcreteWorks		ConcreteWorks	
 Advantages Evaluation of Concrete Before Poured Prevent Problems Before they Occur No Need to Repair Later Save Consultant Fees \$\$\$\$ Program Development Paid Now Software is Intended to be Free Save Mix Designs Digitally Forever No Need for Keeping Bulky Paperwork 		How Do We Do It?	
The University of Texas Concrete Durability Center	TxDOT 5-4563	The University of Texas Concrete Durability Center	TxDOT 5-456

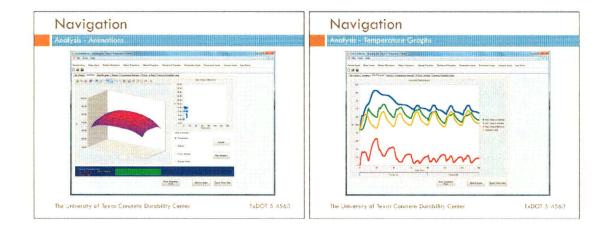


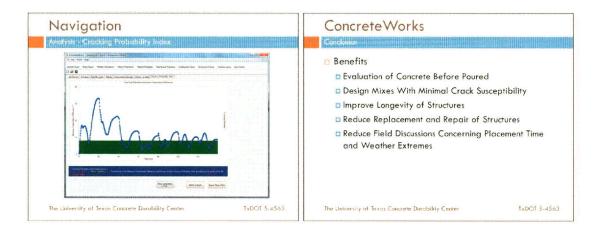

How It Works	How It Works
 Numerical Approximation Methods Finite Difference/Control Volume → Energy Balance (Patankar, 1980) Add Rate of Energy Entering the Control Volume Subtract Rate of Energy Leaving the Control Volume Result? Change in Stored Energy ΔE_{STORED} = E_{IN} - E_{OUT} 	Image: specific control on the specif
The University of Texas Concrete Durability Center TxDOT 5-4563	The University of Texas Concrete Durability Center TxDOT 5-456

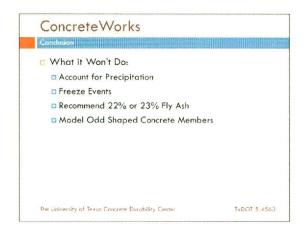


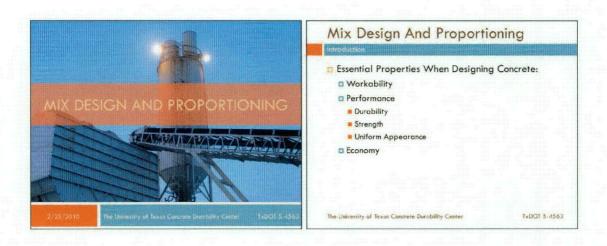


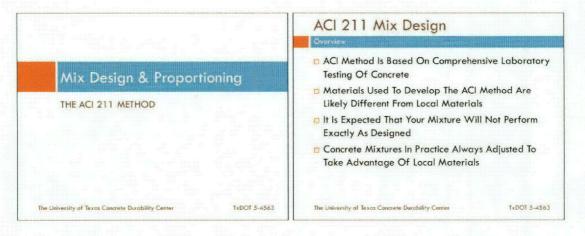


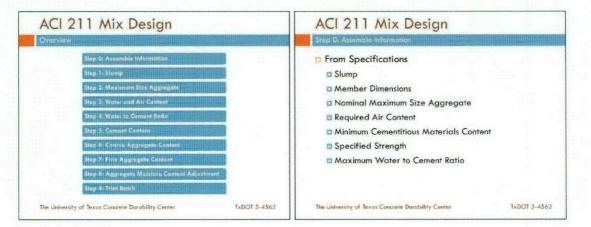


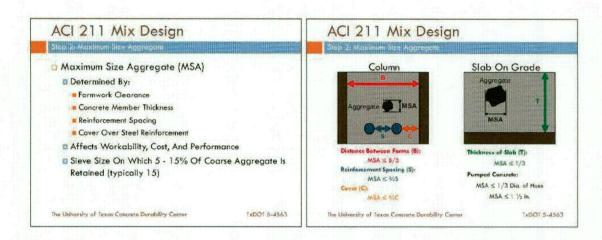

Material Properties	Machonicol Properties
	$\begin{array}{c} \begin{array}{c} \\ \hline \\ $

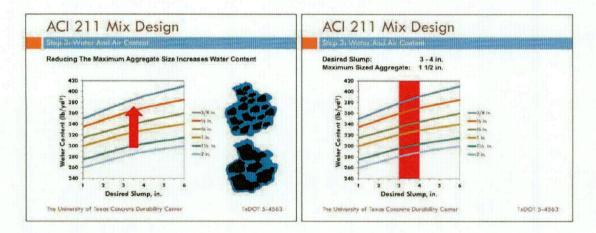


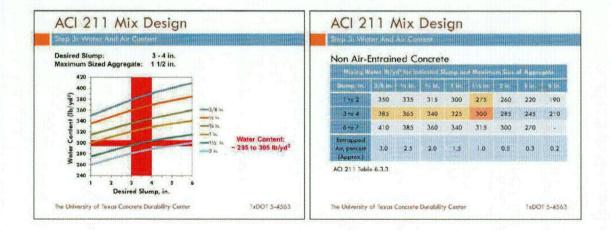




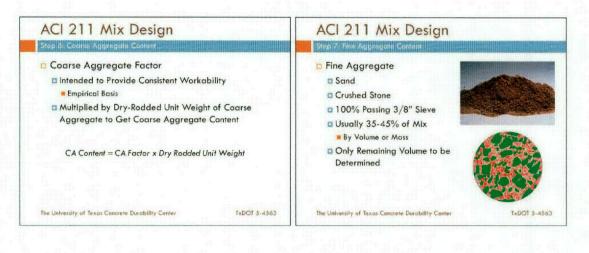


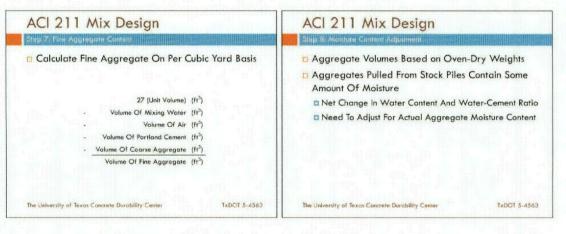


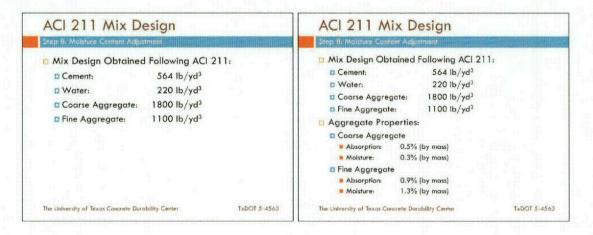



ACI 211 Mix Design		ACI 211 Mix Design		
Step 0: Assemble information		Step 0: Assemble Information		
 Exposure Conditions Freeze-Thaw Marine Environment Sulfates 		 Materials Specific Gravities of Cementitious Materials Bulk Specific Gravities of Aggregates Dry-Rodded Unit Weights of Aggregate Aggregate Gradations and Maximum Fineness Modulus of Fine Aggregate Aggregate Absorption Aggregate Moisture Content 	ites	
The University of Texos Concrete Durability Center	TxDOT 5-4563	The University of Texas Concrete Durability Center	1xDO1 5-456	

ACI 211 Mix Design		ACI 211 Mix Design		
Minimize Slump While Maintaining: Ease Of Placement		Step 1: Slump Types of Construction	Shum Mex	p. in. Min
Workability		Reinforced Foundation Walls and Footings	3	1
Finishability		Plain Faotings, Caissons, and Substructure Walls	3	1
		Beams and Reinforced Walls	4	1
		Building Columns	4	
		Pavements and Slabs	3	1
		Mass Concrete	2	
		ACI 211 Toble 6.3.1 Rule of Thumb: 1" of Slump \approx 1	0 lb/yd³ a	of Water
The University of Texas Concrete Durability Center	TxDOT 5-4563	The University of Texas Concrete Durability Center		TxDOT 5-456

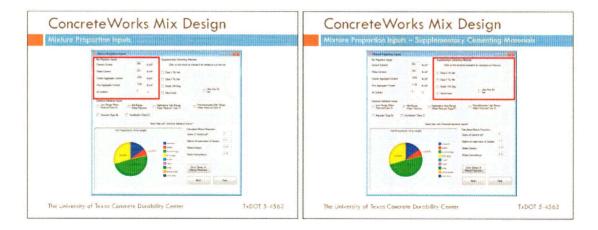


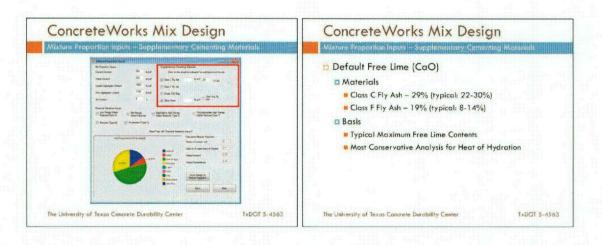


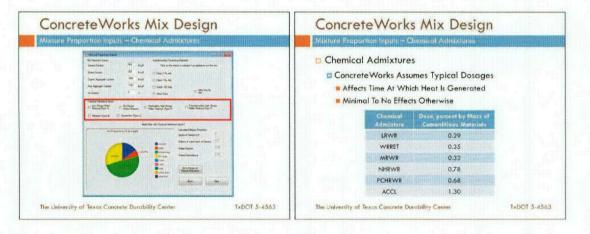

Step 3, Wo	ter And	Air Can	itent						Step 4	teater To Cement	Ratio		
Air-Entra	ined C	oncre	te										
Mixing W	ater 167 ₂			unve lant	Maximu	m Sava e	A Aggire	gate	I	28-Ouv Compressiv	woter-Cement R	atea by Weight	
Stemp, in.	3/8 in.	14 in	- 94 in	1 in.	1 A IS	2 in.	U IN	6 10		Strangels, prin-	Non-AR-Entreland	Air-Entrained	
1 10 2	305	295	280	270	250	240	205	180		6000	0.41		
3 to 4	340	325	305	295	275	265	225	200		5000	0.48	0.40	
6 to 7	365	345	325	310	290	280	260			4000	0.57	0.48	
Exposition		2.		ed Total	Air Contr		45			3000	0.68	0.59	
Mild	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0		2000	0.82	0.74	
Moderate	6.0	5.5	5.0	4.5	4.5	4.0	3.5	3.0	,	ACI 211 Toble 6.3.4[0)		
Severe	7.5	7.0	6.0	6.0	5.5	5.0	4.5	4.0					

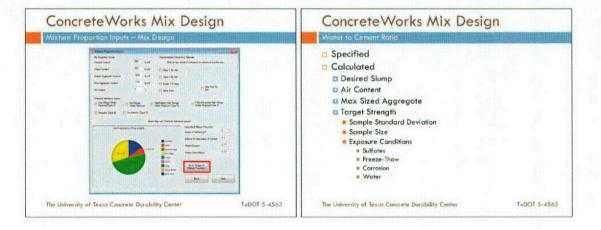
ACI 211 Mix Design		ACI 211 Mix Design	
Step 4. Water To Cement Ratio		Step 5: Cement Content	
 Supplementary Cementitious Materials (SC/ Accounted for by Converting the W/C Ratio B the SCM Content and SCM Specific Gravity Weight Equivalency (ACI 211 6.3.4.1) Same Weight of Cementitious Materials Larger Total Volume (Due to Lower SG of SCMs) Absolute Volume Equivalency (ACI 211 6.3.4.2) Same Volume of Cementitious Materials Lower Total Weight of Cementitious Lower Total Weight of Cementitious Lower Total	ased on	 Calculate Based On Selected Water Water-Cement Ratio Cement (lb/yd³) = Water (lb/yd³) 	
The University of Texas Concrete Durability Center T	xDOT 5-4563	The University of Texas Concrete Durability Center	TxDOT 5-456

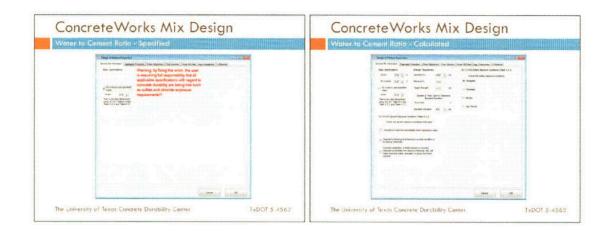
ACI 211 Mix Design Step 6. Control Aggregate Covent	ACI 211 Mix				
Coarse Aggregate	Volume of Coarse Nominal Maximum		ager Unit Ve Ageregiste f		
Up to 6" or More	Site of Aggregate	2,40	2 50	2.60	300
	3/8 in.	0.50	0.48	0.46	0.44
Usually 30-40% of Mix	1/2 in.	0.59	0.57	0.55	0.53
By Volume or Mass	3/4 in.	0.66	0.64	0.62	0.60
Gravel	lin.	0.71	0.69	0.67	0.65
Typically Round or Subangular	11/2 in.	0.75	0.73	0.71	0.69
Crushed Stone	2 in.	0.78	0.76	0.74	0.72
	3 in.	0.82	0.80	0.78	0.76
angular	6 in. ACI 211 Toble 6.3.6	0.87	0.85	0.83	0.81
The University of Texas Concrete Durability Center TxDOT 5-4563	The University of Texas Concret	e Durobility	y Center		TxDOT 5-45

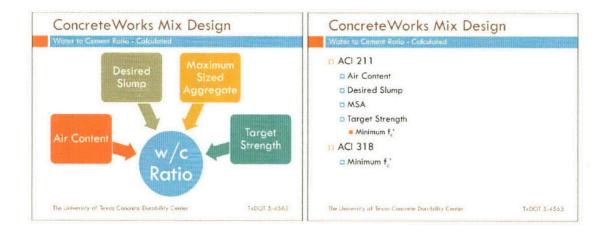


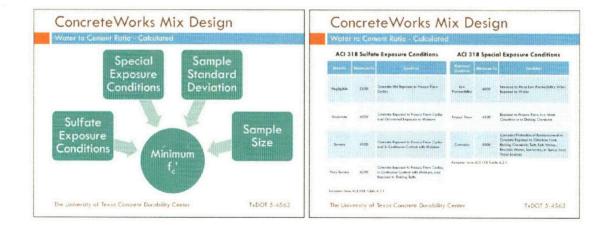


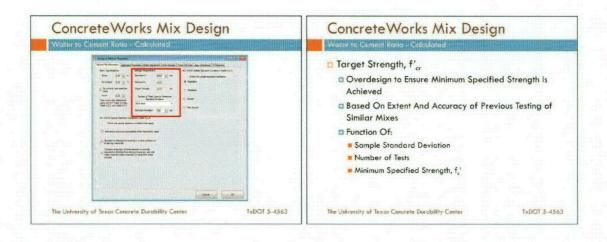


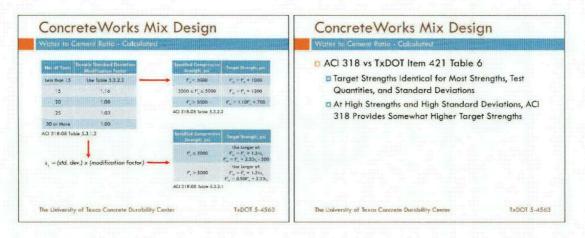

ACI 211 Mix Design		ACI 211 Mix Design	
Step 8: Moisture Content Adjustment		Step 9: Irloi Sarch	
 Aggregate Water Contribution CA (0.3% - 0.5%) x 1800 lb/yd = -3 FA (1.3% - 0.9%) x 1100 lb/yd = +4 Net Result 4.4 - 3.6 = 0.8 lb water added by a Adjusted mix water = 220 - 0.8 = 21 	4.4 lb water ggregates	 ACI 211 Mix Design Process is Inten Batch Only You Are Responsible for Making Ne Adjustments 	
The University of Texas Concrete Durability Center	TxDOT 5-4563	The University of Texcs Concrete Durability Center	TxDOT 5-456

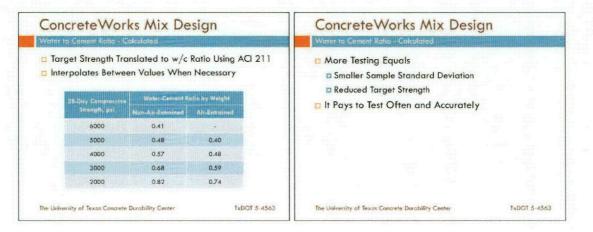


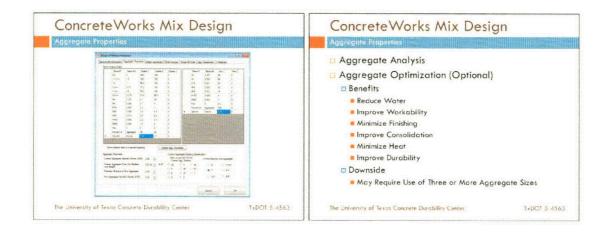


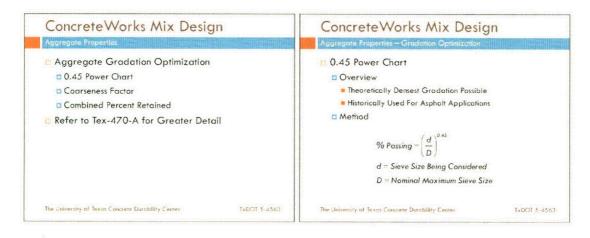


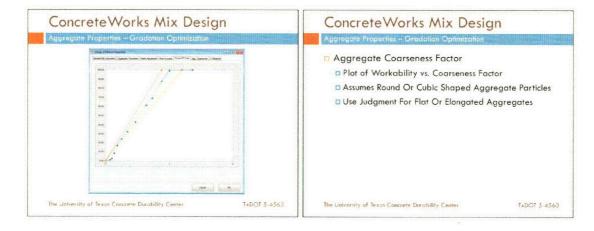


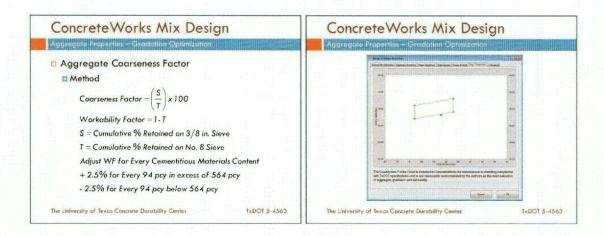


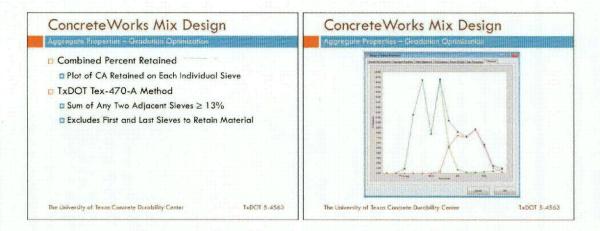


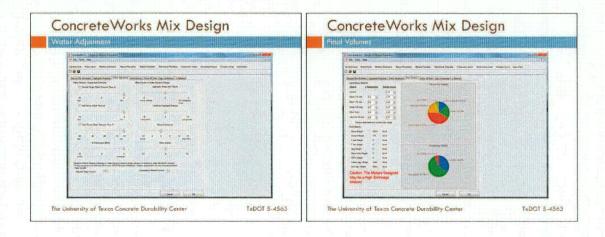


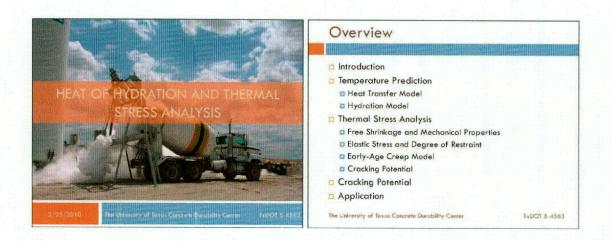


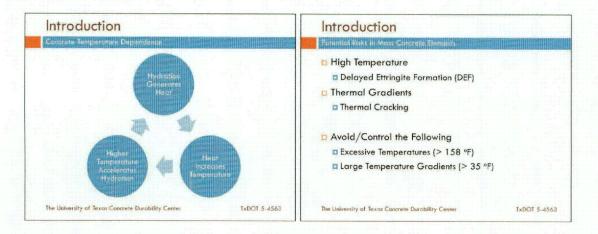


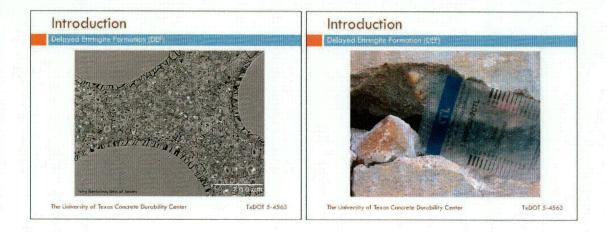


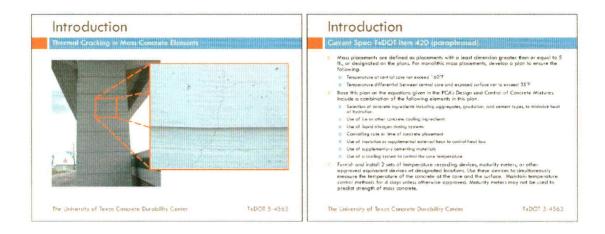




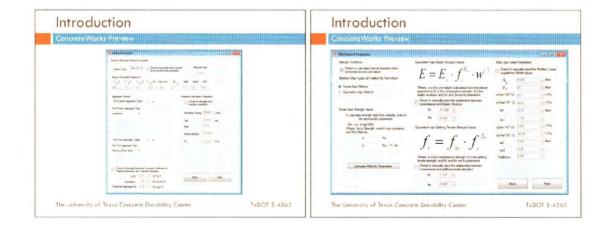


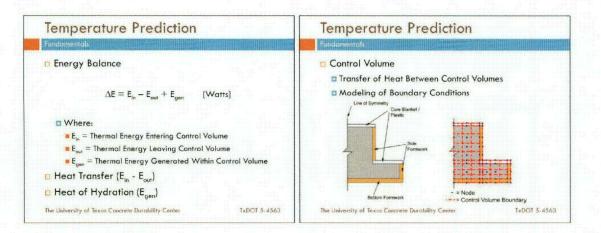


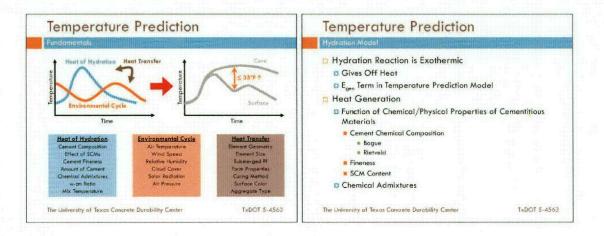

ConcreteWorks Mix Design


- 🖪 Again Mix Design is Intended for Trial Batch Only
- You Are Responsible for Making Necessary Adjustments
- Hopefully ConcreteWorks Resulted in a More Satisfactory Result the First Time Around

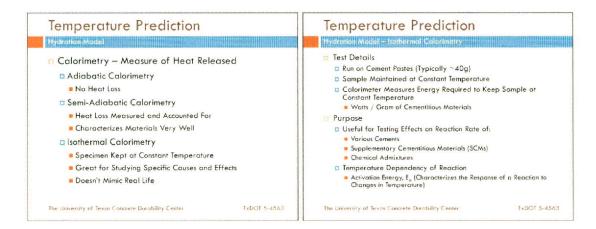
The University of Texas Concrete Durability Center TxDQT 5-4563

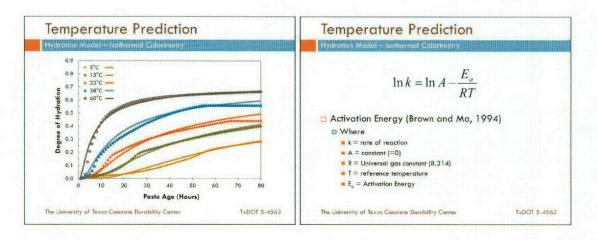


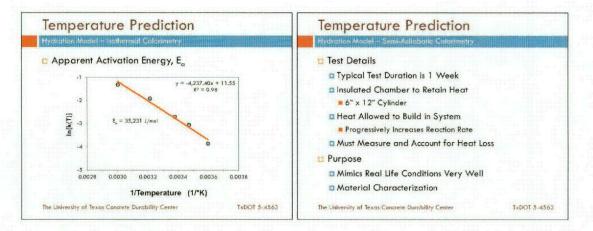


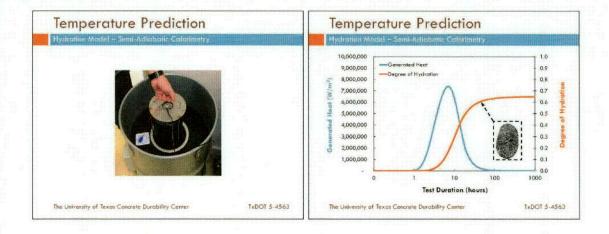


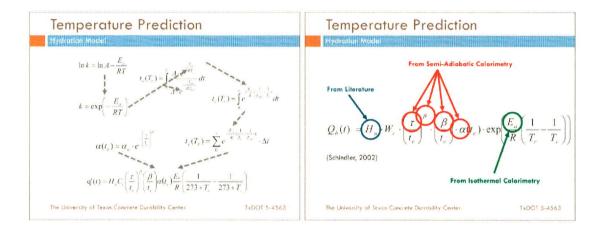
Introduction	Introduction
Wilty Do We Need a Program?	Concrete Works Accounts For
 The Calculations are Difficult Guidance Provided by ACI and PCA is Vague Information Regarding Thermal Properties of Different Materials is Dispersed Problem Becomes Even More Difficult When Cracking Tendency is Considered Not Even Addressed by the Spec 	 Variable Concrete Properties Temperature Sensitivity of Hydration Material Hydration Properties Environment Conditions Construction Process Boundary Conditions
The University of Texos Concrete Durability Center TxDOT 5-4563	The University of Texas Concrete Durobility Center TxDOT 5-456

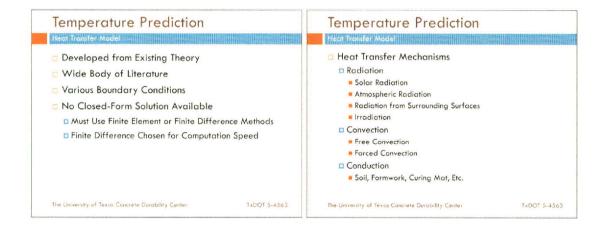


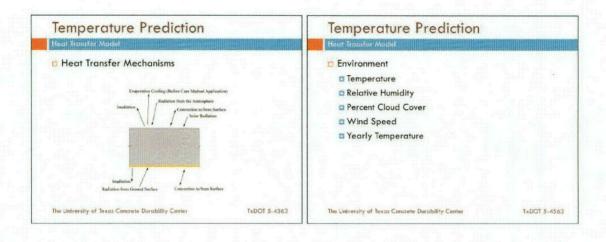


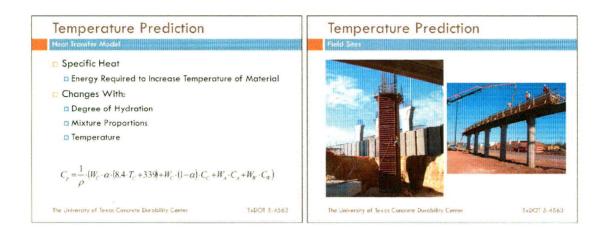


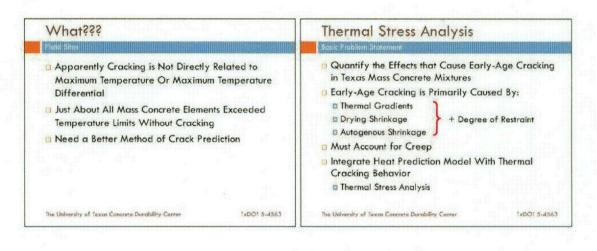


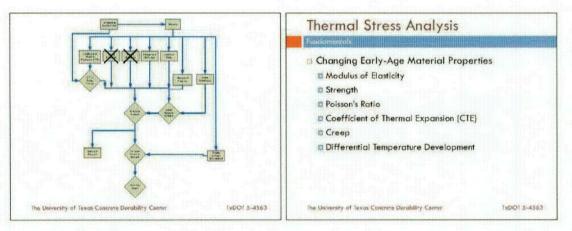


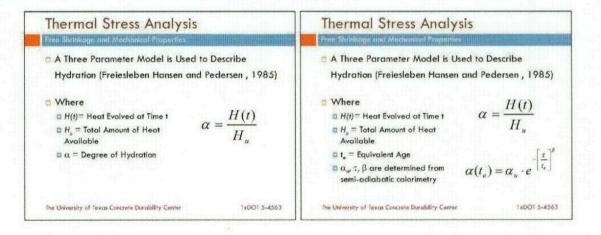




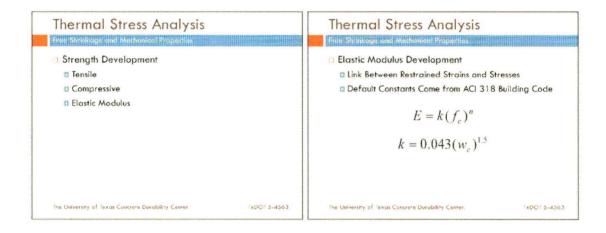


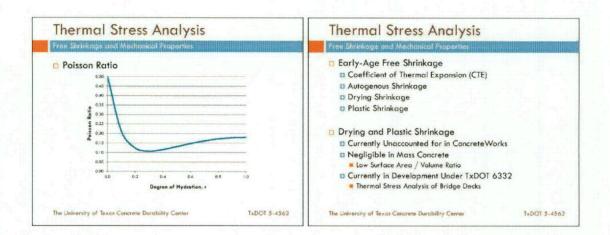

Temperature Prediction		Temperature Prediction	
Heat Transfer Model		Heet Transfer Model	
Member Geometry		Construction	
🗉 Bridge Deck		Concrete Placement Temperature	
Column		Formwork Type/Material	
Footing		Form Liners	
Bent Cap		Time at Which Forms are Stripped	
		Blanket Insulation R-Value	
The University of Texos Concrete Durability Center	TxDOT 5-4563	The University of Texas Concrete Durability Center	TxDOT 5-456

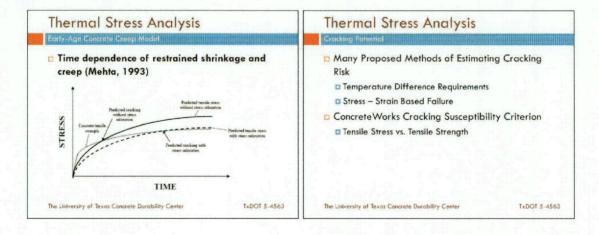

Temperature Prediction	Temperature Prediction
Heat Transfer Model	Heat Transfer Model
 Concrete Thermal Properties Thermal Conductivity Ability of a Material to Transfer Heat Specific Heat Characterization of the Energy Required to Increase the Temperature of a Material Must Be Updated Every Time Step 	 Thermal Conductivity Ability of a Material to Conduct Heat Changes With: Aggregate Content Aggregate Type Porosity Density Moisture Content Temperature
The University of Texos Concrete Durability Center TxDOT 5:4563	The University of Texas Concrete Durability Center TxDOT 5-4563

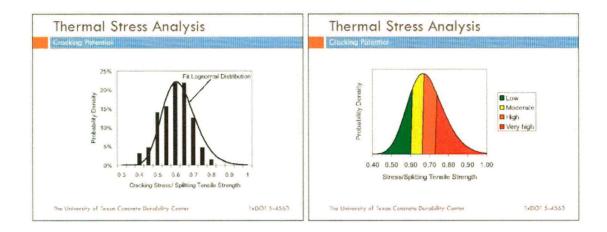


Temperature Prediction	Temperature Prediction
	 Hydration Model Based On (To Date): Semi-Adiabatic Calorimetry - 139 Tests Isothermal Calorimetry - 630 Tests Field Calibrated With: 33,626 Hrs of Temperature Data 137 Temperature Sensors from 12 Concrete Members Average R² Value of 0.90
The University of Texas Concrete Durability Center TxDOT 5-4563	The University of Texas Concrete Durability Center TxDOT 5-4563

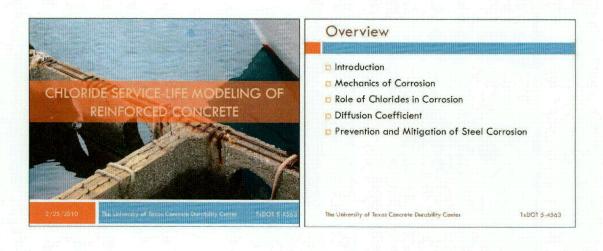

Field Site	6						Field Siles		
	2.esper	Den	(Area	See GarWalt	ferenaet	Arritory	Generate Marchae	Matalinem Temperature Recorded (19)	Moximum Temperature
Autor	0571/135	Dec 03	Colono	7x12x50	Steel	Divisions	Column 1	154.0	Biffeenace Recordsof (*7) 86.0
Aurin	Long 1/3H 45	iun 03	Colima	6x10x30	Steel	Unextone	Column 2	136.0	35.0
Auster.	Loop 1,5H 45	tun GQ	Facting	24x26x7.3	Steel	Lienaptore	Column 3	136.0	40.0
Auto	Losa 1/20143	.u-03	Colore	6×10×67	Steel	Usrentone	Column 4	163.4	60.3
Auto	Loop 1/5H 45	Aug.01	Fooring	10x10x6	Soli	Linesfore.	Footing 1	161.0	72.0
South Fodre	Queer trobello Cruze voy	Feb-04	Delphe	16x16x9	Swel/PCC	River Grovel	Faoting 2	133.0	45.0
Works Falls	Scott Si, & FW/&D Roihead	Mar 0.4	Bert Cap	3343.3	boow	Grave	Footing 3	135.5	41.4
Autor	Loop 1/5H 45	suis-Gal	Colume	6.5x10x80	Steel	Unerfore	Dolphin 1	145.4	72.0
Pure III	Leop 1/3H 45	Jun Gel	Focting	9.6x10.5x5.3	Steel	Linertone	Dolphin 2	123.8	45.9
Austin	Loogi 1/SH 45	ium-Gal	Bert Cap	Mar 2'	Sieel	Lineatone	Rect. Bent Cop	128.3	27.9
Golvesen	Galveran Cauterny	Aug-04	Roosing	66x13x6.5	Steel	River Grove?	T Bent Cap	153.5	65.7
South Fodre	Queen trabello Couseway	Sep-04	Delprin	15+16+9	Stand/PCC	Piver Grovet	Pedestal	165.2	43.2




Thermal Stress Analysis	Thermal Stress Analysis
Tree Shrinkoge and Machanical Properties	Fine Sinakceje olid Mechanical Pleperhet
$\begin{split} H_u &= H_{com} \cdot p_{com} + 461 \cdot p_{slag} + 1800 \cdot p_{FA-CaO} \cdot p_{FA} \\ \text{From Kishi and Maekawa (1994), Schindler (2004)} \\ H_{com} &= 500 \cdot p_{C_3S} + 260 \cdot p_{C_5S} + 866 \cdot p_{C_5A} + 420 \cdot p_{C_6AF} \\ &+ 624 \cdot p_{SO_4} + 1186 \cdot p_{FreeCa} + 850 \cdot p_{lagO} \\ \text{From Bague (1955), Schindler (2004)} \end{split}$	 Equivalent Age Time-Temperature History Semi-Adiabatic Colorimetry α_φτ, β What Does it Mean Allows Us to Compare Apples to Apples Concrete Cured for 10 Hours Under HOT Conditions May Have a Theoretical Age of 14 Hours
The University of Texas Concrete Durability Center 1500: 5-4363	The University of Taxos Concrete Decability Center TxDOT 5-456



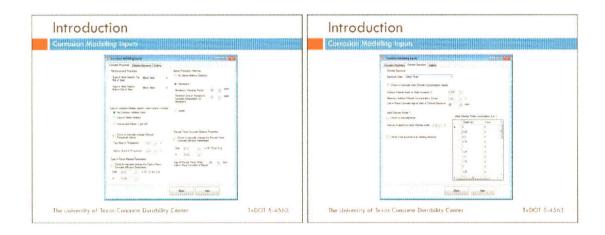
Thermal Stress Analysis	Thermal Stress Analysis
Free Shinkeye and Machania Progenias Concrete Maturity Maturity Functions Norse-Soul Method Used by TxDOT Equivalent Age Method Mix Specific Required for Cracking Prediction	 Poisson Ratio Poisson Ratio Necessary for Modeling Stresses in Two and Three Dimensional Elements Decreases with Hydration Equivalent in Tension and Compression Assumed to be Independent of State of Stress
The University of Texces Concrete Durability Center TxDOT 5-	4563 The University of Texos Concrete Durability Center TxDOT 5+456

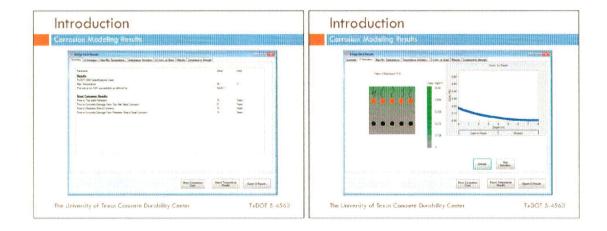


Summary

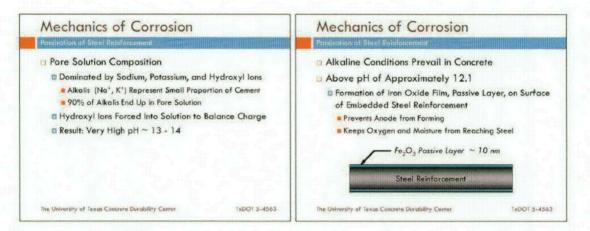
- ConcreteWorks has been shown to accurately predict thermal distributions in field structures.
- Concrete can be used to predict cracking susceptibility – needs to be validated in the field!
- More information later on how to implement ConcreteWorks and incorporate into TxDOT specifications...

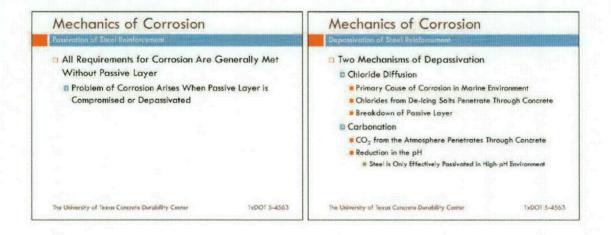
The University of Texas Concrete Durability Center

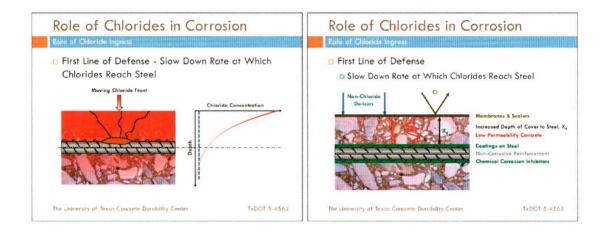

TxDO1 5-4563

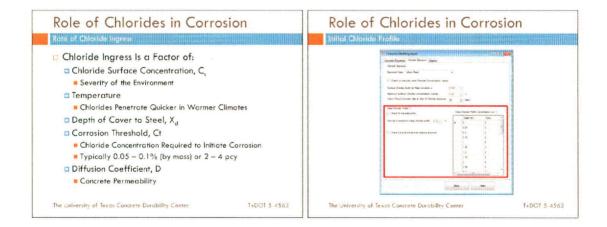


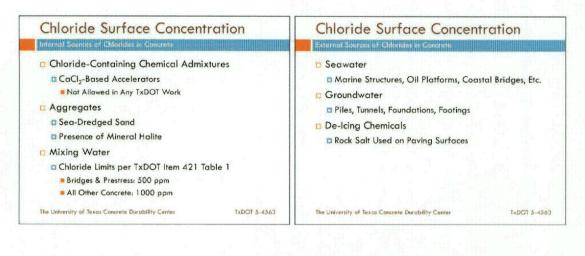
Introduction	Introduction	
Bosic Medicinism of Corrosion	Basic Mechanism of Corrosion	
Why Does Steel Corrode?		
Steel is Not Naturally Occurring		
Manufactured from Iron Ore	Sec. Sec.	
Prefers to Revert Back to Natural State in Form of Iron	Reinforcement * Granking	
Oxide (Rust)	a for the former	
Speed Governed by Rate of Ionic Solution Movement	6. 8 8	
Rust Occupies Greater Volume than Original Steel	Restorcement Spating	
Induced Tensile Stresses	······································	
Why is This a Problem for Concrete?	the second second	
Cracking, Spalling, and Delamination of Concrete	Peintorement Desamination	
The University of Texas Concrete Durability Center TxDOT 5-4563	The University of Texas Concrete Durability Center 15	DOT 5-4563

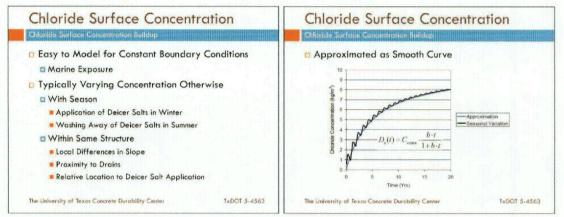

Introduction	Introduction
Bost Mechanism of Corroson	Basic Mechanism of Correston
Stages of Corrosion	Stages of Corrosion (ConcreteWorks)
Penetration and Accumulation of Chlorides	Penetration and Accumulation of Chlorides
Chloride Threshold Reached – Initiation of Corrosion	Chloride Threshold Reached – Initiation of Corrosion
Corrosion Induced Tensile Stress Build	Degradation of Reinforcement
Cracking, Spalling, and/or Delamination Occurs	For Rebar: 6 Years
Structure Loses Load-Carrying Capacity	For Prestress: Immediate Failure
The University of Texas Concrete Durability Center TxDOT 5-4563	The University of Texos Concrete Durability Center TxDOT 5-4563

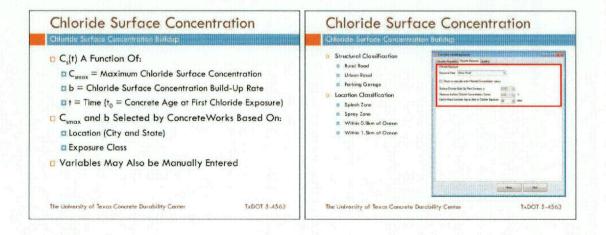

Introduction	Introduction
 Corrosion Protection Strategies Non-Corrosive Reinforcement Coatings on Steel Membranes or Sealers Chemical Corrosion Inhibitors Non-Chloride De-Icers Increased Concrete Cover Low Permeability Concrete 	Supported Member Types Critical Structures Bridge Decks Parking Garages Marine Structures Supported Members Mass Concrete Bridge Decks
The University of Texas Concrete Durability Center TxDOT 5:4563	The University of Texas Concrete Durability Center TxDOT 5-4.

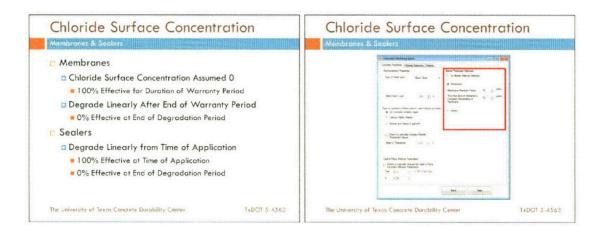


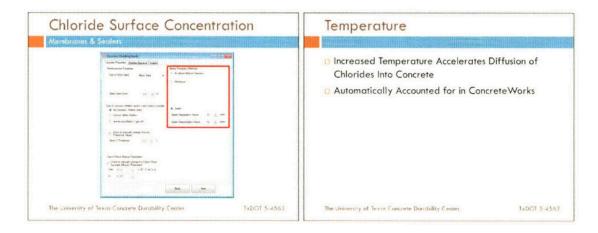


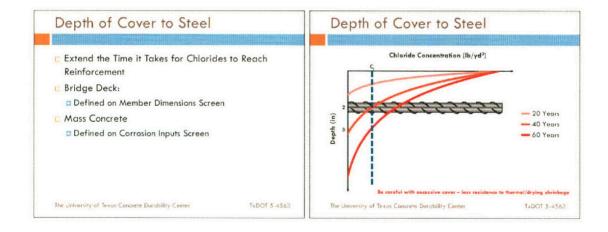


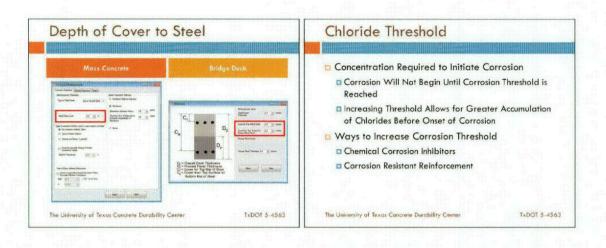


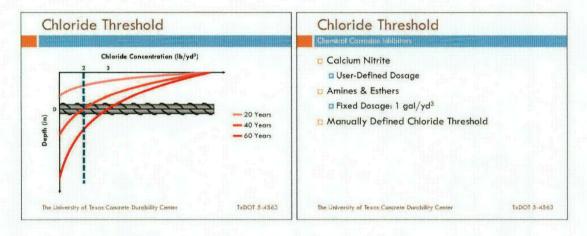

Mechanics of Corrosion	Role of Chlorides in Corrosion
Depassivation of Steel Reinforcement	Effect of Chlorides
 Two Mechanisms of Depassivation Chloride Diffusion Primary Cause of Corrasion in Marine Environment Chlorides from De-Icing Salts Penetrate Through Concrete Breakdown of Passive Layer Contamentos Contamentos Contamentos Contamentos Security Charles Environment Environment Contamentos Contamentos Contamentos Carbonation Not Considered in ConcreteWorks 	 Cl⁻ Ions Incorporate Themselves Into the Passive Film Replace Oxygen Increase Solubility Increase Ionic Conductivity A Local Phenomenon Chloride Ions Rarely Distributed Homogenously Over Steel Surface Random Imperfections in Passive Layer Large Cathode-Anode Ratios Resulting Pitting Corrosion
The University of Texas Concrete Durability Center TxDOT 5-4563	The University of Texas Concrete Durability Center TxDO7 5-456

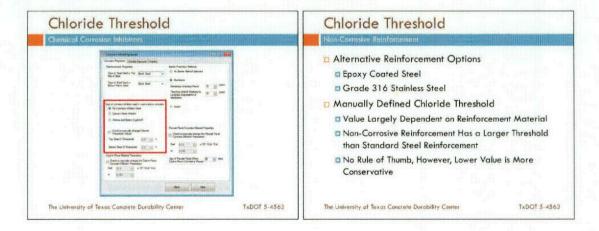


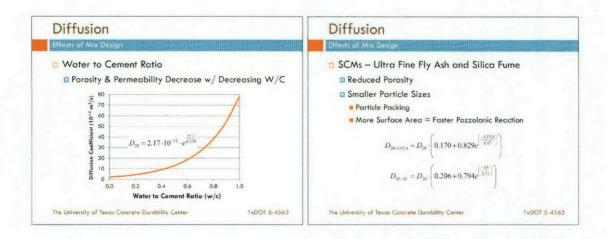


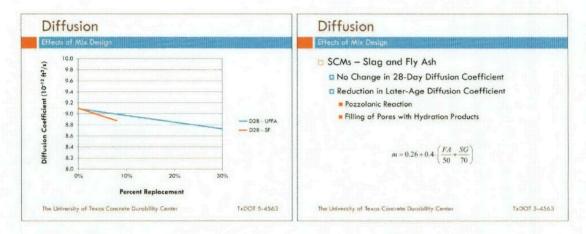


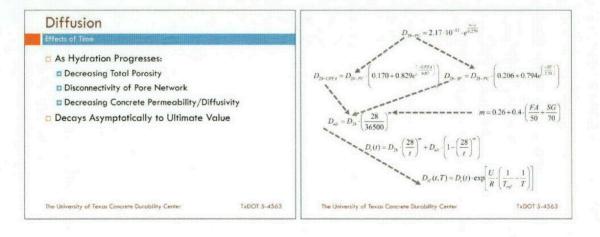


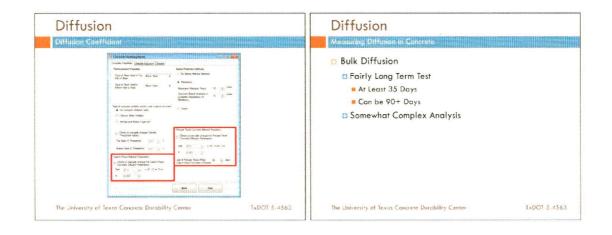


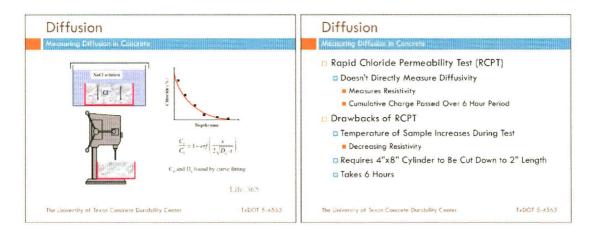


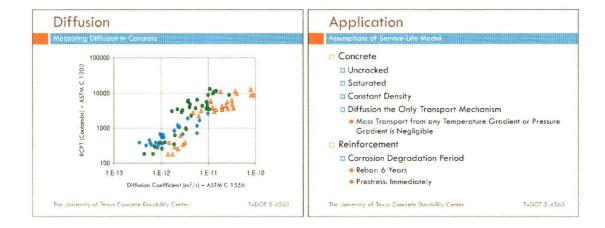


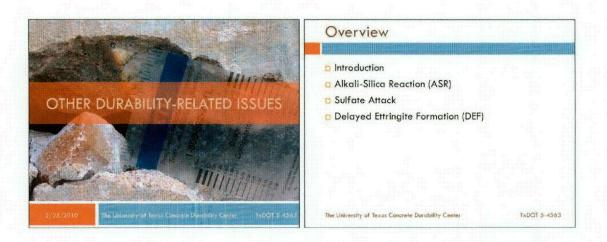


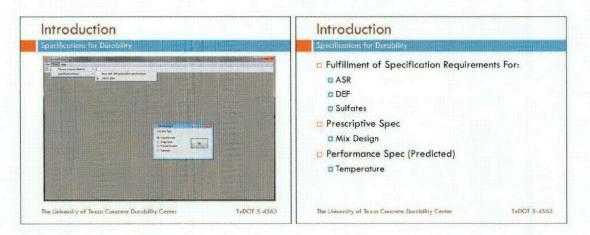

Chloride Threshold	Diffusion
	"lons Don't Fly, They Swim!!" -P.K. Mehta

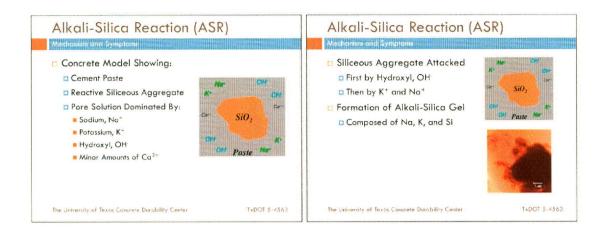


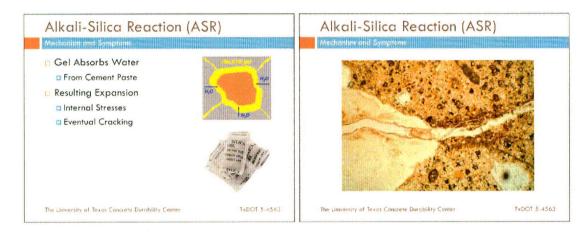


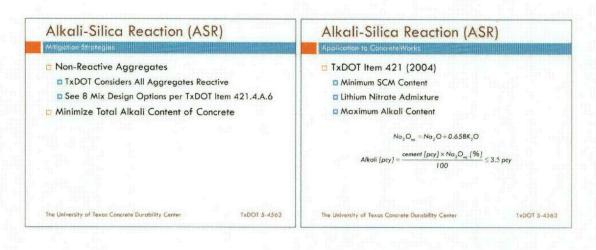


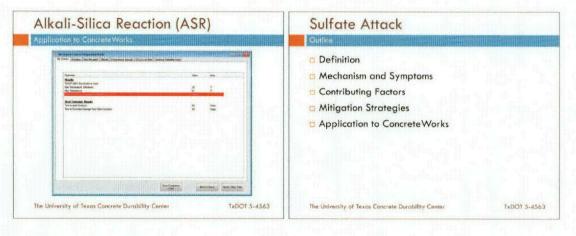


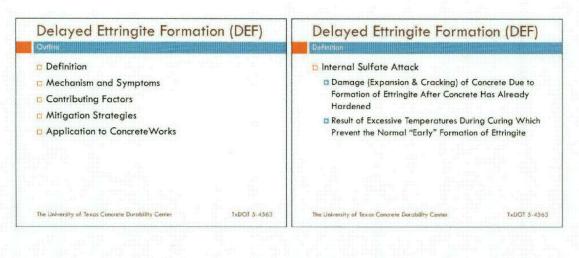


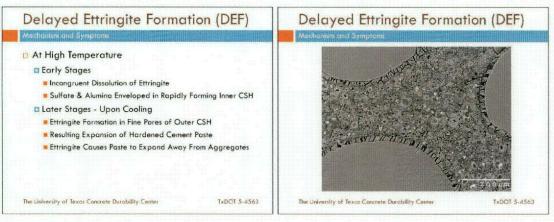


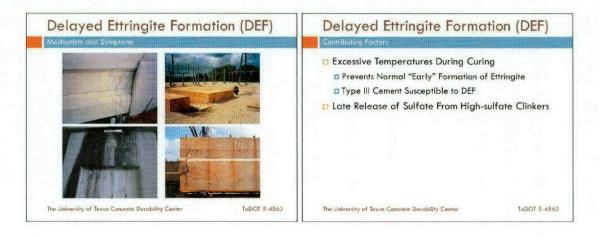




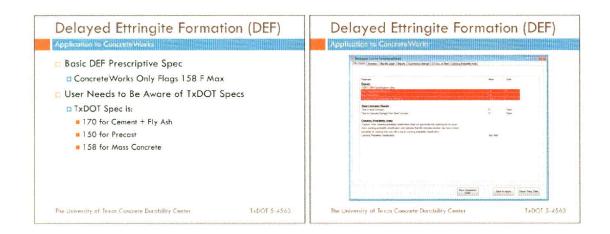

Alkali-Silica Reaction (ASR)		Alkali-Silica Reaction (AS	R)
 Definitions Mechanism and Symptoms Cantributing Factors Mitigation Strategies Application to ConcreteWorks 		 Reaction between the alkalis (sodiur potassium) in portland cement and a rocks or minerals present in some ag Products of the reaction may cause expansion and cracking of concrete 	certain siliceous ggregates abnormal
The University of Texas Concrete Durability Center	TxDOT 5-4563	The University of Texas Concrete Durability Center	TxDOT 5-456

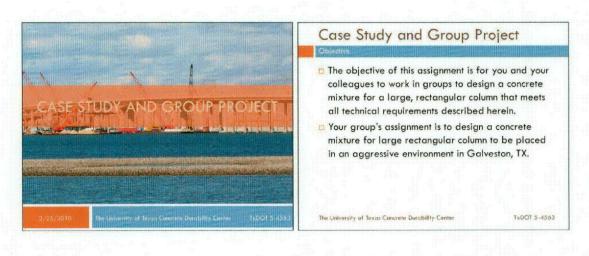



Sulfate Attack	Sulfate Attack
Definition	Mechanism and Symptoms - Physical
 Deterioration of Concrete Through the Actions of Sulfate Salts and/or Acids, Chemically or Physically Internal Source of Sulfate is Internal to Concrete External Source of Sulfate is External to Concrete Ground Water Soil Industry Waste Fertilizer Atmospheric SO3 	 Cyclical Transformation of Sodium Sulfate Between Anhydrous and Hydrous States With Change in Temperature and Humidity Similar in Nature to Freeze-Thaw Hydrous Form Occupies Much Greater Volume Induced Tensile Stresses on Concrete Fatigue
The University of Texas Concrete Durability Center TxDOT 5-4563	The University of Texas Concrete Durability Center TxDQT 5-456

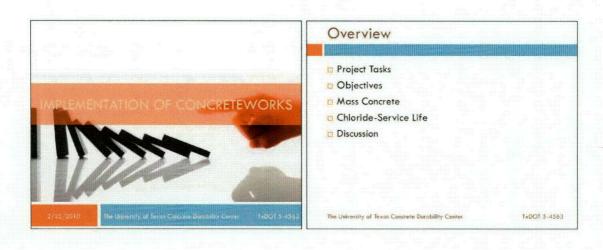

Sulfate Attack		Sulfate Attack	
Magatan Strangan Physical		 Mechanical and Symptotic Chemical Result of Chemical Reactions Involvin SO₄²⁻, Which Forms Ettringite and/c Ettringite Formation, Followed by Wat Leads to Expansion and Cracking Gypsum Formation Leads to Loss of C "Mushy" Consistency of Cement Paster 	er Gypsum er Absorption,
The University of Texos Concrete Durability Center:	TxDOT 5 4563	The University of Texos Concrete Durchility Center	1×DOI 5-456

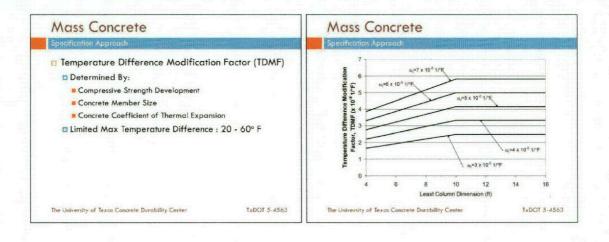
Sulfate Attack Contributing Factors - Otermical		Sulfate Attack	
 C₃A Content of Cement Chemistry/Minerology of Fly Ash Form of Sulfate Sulfate Concentration Sulfate Ion Availability to Reactants Availability of Moisture Inside Concrete Ions Don't Fly, They Swim! 		 Reduce Sulfate Penetration Lower C₃A With Type II or Type V C Incorporation of SCMs Good Construction Practice 	Cements
The University of Texas Concrete Durability Center	1xDOT 5-4563	The University of Texas Concrete Durability Center	1xDO1 5-456

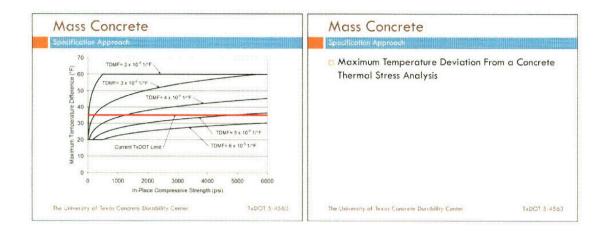

Melgiol	ios Strategie:		Application to ConcreteWorks
ACI	318 Sulfate Exposure	TxDOT 421 Sulfate Exposure	More relation frames Long All All and Tables Long All and Tables
Nagligible	2500 Concrete Not Exposed to Yveize- Theor Cycles	Replace 20 to 35% of the Cement With Class # Ry Auto	Construction and the second seco
Maderone	Concrete Expand to Preze-Thew 4005 Cycles and Occessional Exposere to Maisture	2 Replace 35 to 30% at the Cement Web COBPS	4070 Since have been been to the 10 B
Serere	Constrem Exposed to Presson Thom 4500 Cycles and in Contention Contact with Moleners	 Bephase 35 to 30% pit the Center With a Combination of Class Phyle Abi, CG PK, or Stato Parties Reviews All Notes Than 35% Nov 38 RF Aut, and No Mark Tean 10% May & Siles have 	Event They are the even and are an even matching of Even and an even and are an even matching of an even of the eve
Vory Savara	Contracte Exposed to Presize-Thow Cycles, in Continuous Contract with Molecure, and Exposed to Deking Salts	Use Type IP or Type IS Convert (3p to 1055 of a 4 Type IP or Type IS Convert Way be Replaced With Class F Hy Ash, GC3FS, or Silka Force)	
Adapted from	ACI 3 9 Table 4.3	'sDD' 421.4.4.6	and the second se



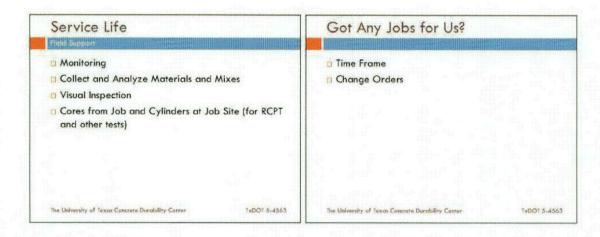
Delayed Ettringite Formation (DEF)	Delayed Ettringite Formation (DEF)
 Sulfate-Resistant Cement SCMs Good Construction Practice 	Application to Concerts Works □ TxDOT Item 421 (2004) □ Minimum SCM Content □ T _{max} Predicted ≤ 158° F □ ΔT _{max} Predicted ≤ 35° F
The University of Texas Concrete Durability Center. TxDOT 5-4563	The University of Texas Concrete Durability Center TxDO1 5-456

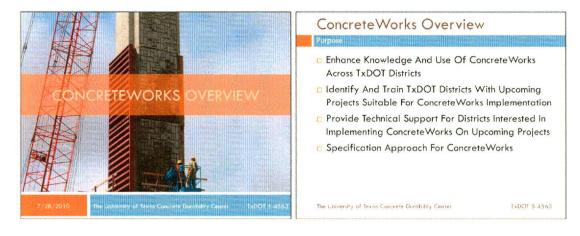



Case Study and Group Project	Case Study and Group Project
Objective	Construction Details
 Using ConcreteWorks, select an option that meets the technical requirements and also is practically and economically feasible. Each group will be asked to give a 10-15 minute presentation, briefly summarizing your proposed mixture proportion and construction plan. Be innovative and have fun!! Be sure to have a name for your group and maybe even a theme (e.g., sustainability, innovation, speed, technology, etc.). In your group presentation, please give justification for your group's approach and back this up with output from ConcreteWorks). 	 Casting date - December 29, 2010 Casting time - 7 am (but time of pour can be shifted five hours earlier or later, if necessary) Temperature analysis duration = 7 days Life cycle analysis duration = 75 years Column dimensions = 5' x 6' (non-submerged) Steel forms, stripped at 96 hours (you can try to strip earlier provided you meet mass concrete requirements for maximum temperature and maximum thermal gradient) Crushed ice and liquid nitrogen are available to reduce fresh concrete temperature
The University of Texos Concrete Durability Center TxDOT 5-4563	The University of Texas Concrete Durability Center TxDOT 5-4563


Case Study and Group Project	Case Study and Group Project
Exposere Conditions and Darability Requirements	Moss Constant - Specifications
 Exposure Classification: Splash Zone Use Default Values for Chloride Concentrations Corrosion of reinforcing steel must be avoided for 75 years!! 	 Maximum fresh concrete temperature = 75 °F Maximum temperature anywhere in column = 158 °F (to avoid Delayed Ettringite Formation or "DEF") Maximum temperature gradient in column = 35 °F (to avoid thermal cracking)
The University of Texos Concrete Durability Center TxDOT 5-4563	The University of Texas Concrete Durability Center TxDQT 5-45

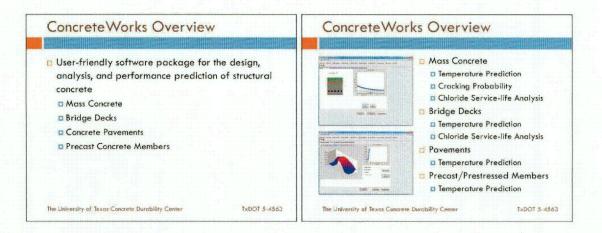
Case Study and Group Project	Case Study and Group Project
Available Materials	Available Melleriat
 Maximum cementitious materials content = 600 lbs/yd³ (as per DOT requirements for mass concrete) Portland cement (ASTM C 150) Type I Type I/II Type I/II Type III Fly ash (ASTM C 618) Class F fly ash (CaO = 5.0%) Class C fly ash (CaO = 25.0%) Ground granulated blast-furnace slag (Grade 120) 	 Chemical admixtures Water reducer Mid-range water reducer Retarder Accelerator Air-entraining agent Corrosion inhibitor – calcium nitrite (to raise chloride threshold value) Aggregates Siliceous river sand or manufactured sand (limestone) Siliceous river gravel or crushed limestone (1" max size)
Silica fume (densified) The University of Texas Concrete Derability Center TxDO1 5-4363	The University of Texas Concrete Durability Center 1xDQ1 5-456


Objectives Path Forward
 Implementation of Concrete Works Mass Concrete Pavement Applications
Sufficient Research Currently in Progress Service-Life Prediction
 Bridge Decks In Progress Under TxDOT 6332
Development of Specification Approach
The University of Texos Concrete Durability Center TxDOT 5

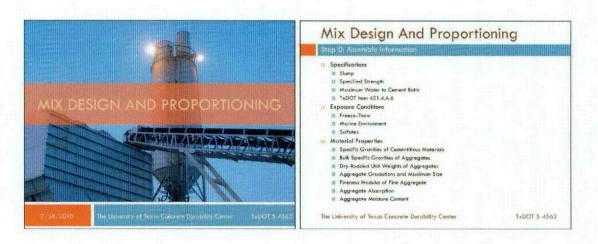


Mass Concrete	Mass Concrete
Specification Development	Tech Support
 Proof of Compliance With Job Specification Requisite Data Collection Instrumentation and Monitoring Format and Language Ensure Use of Accurate Analysis Parameters 	 Testing of Job-Specific Materials Isothermal Calorimetry Semi-Adiabatic Calorimetry Maturity Other Material Properties Essential to ConcreteWorks Preliminary Evaluation Modeling of Project in ConcreteWorks Instrumentation Plan Data to Collect Where to Put Sensors How Many Calibration/Validation of ConcreteWorks
The University of Texas Concrete Durability Center 1xDOT 5-4563	The University of Texos Concrete Durobility Center TxDOT 5-456

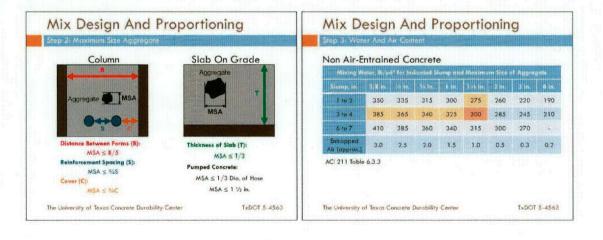
Service Life	Service Life
Objectives	Technical Support
 75-year Design Life Marine or Deicing Salt Exposure 	 Determination of Relevant Material Properties Diffusion Modeling Validation of Diffusion Modeling Correlation of Diffusion Coefficients with RCPT
The University of Texas Concrete Durability Center	TxDOT 5:4563 The University of Texos Concrete Durability Center TxDOT 5:456


Standard Class

ConcreteWorks Overview	ConcreteWorks Overview
 Up To Four Projects Technical Support And Guidance On Site Instrumentation And Testing Semi-Adiabatic Calorimetry Isothermal Calorimetry Maturity Validation Of Concrete Works 	 Preferred Projects Mass Concrete Rectangular Columns Thermal Cracking Tendencies Service-Life Prediction Marine Structures Exposure to Deicing Solts
The University of Texas Concrete Durability Center TxDDT 5	-4563 The University of Texas Concrete Durability Center TxDOT 5-4563


ConcreteWorks Overview	ConcreteWorks Overview
Agendo	Frem #25.4(G4 (2004)
Start End Topic 8/00 A/M 8.10 A/M Cencrete Works Overrelew 8/10 A/M 8/20 A/M Mix Design and Proportioning 8/20 A/M 8/45 A/M Demonstration and Hands-On Exercise 8/45 A/M 8/45 A/M Demonstration and Hands-On Exercise 8/45 A/M 8/45 A/M Demonstration and Hands-On Exercise 8/45 A/M 9/30 A/M Crack Frediction 9/20 A/M 9/30 A/M Crack Frediction 9/30 A/M 9/33 A/M Demonstration and Hands-On Exercise 9/35 A/M 10/10 A/M 15 Minute Breack 10/10 A/M 10/20 A/M Charles Sercise 10/20 A/M 10/45 A/M Demonstration and Hands-On Exercise 10/20 A/M 10/45 A/M Demonstration and Hands-On Exercise 10/20 A/M 11/20 A/M Crare Study — Overview K Instructions 11/20 A/M 11/20 A/M Crare Study — Presentations 11/20 A/M 12/200 P/M Crare Study — Presentations	 Mors observant are defined a absorber with a least inservice result is 5 ft, at the close of the product of the product for most placement, develop and obtain approach for a place to an electronic gluing (uning the least dispertice particle). Instrument, and theread larves the result are at the placement and net sequel as a ft, at a sequence of the placement develop and obtain approach are at the sequence of the placement and net sequence and according to the sequence of the placement develop and advect setting and the sequence of the placement develop and sequence of the sequence of the placement develop and sequence of the observations are assessed as a second accord of the observations are assessed and the sequence of the sequence of the following elements in the place of the sequence of the observations of the sequence may advect and the sequence of the following elements in the place of the sequence of the sequence of the following elements in the place of the sequence of the sequence of the following elements in the place of the sequence of the sequence of the sequence of the following elements in the place of the sequence of the sequence of the sequence of the sequence of the following elements in the place of the sequence of
The University of Texas Concrete Durability Center TxDOT 5-4563	The University of Texas Concrete Durability Center TxDOT 5-45

ConcreteWorks Overview	ConcreteWorks Overview	
 Why All The Travelle and why the specification? Concrete temperature and concrete durability are related Concrete Works can help provide high quality, durable, crack-free concrete 	 Why Do We Neural a Program. The calculations are difficult Guidance provided by ACI and PCA is vague Information in literature concerning temperature rise of various materials is dispersed The problem becomes even more difficult when cracking tendency is considered. The specification does not even address this! 	
The University of Texos Concrete Durability Center TxDOT 5-4563	The University of Texas Concrete Durability Center TxDOT 5-456	



ConcreteWorks Overview	ConcreteWorks Overview
 Put In Materials and Mix Design Inputs Geometry of Structural Element Type of Formwork, Base, Etc. Time, Date and Location of Project Placement Get Out Maximum Temperature Prediction Temperature Distribution Throughout Element Maximum Temperature Differential Cracking Susceptibility Other Goodies: ASR, DEF, and Sulfate Attack Susceptibility 	 Advantages Evaluation of Concrete Before Poured Prevent Problems Before they Occur No Need to Repair Later Save Consultant Fees \$\$\$\$ Program Development Paid Now Software is Intended to be Free Save Mix Designs Digitally Forever No Need for Keeping Bulky Paperwork
The University of Texas Concrete Durability Center TxDOT 5-4563	The University of Texas Concrete Durability Center TxDOT 5-4563


Concrete Works Overview	Concrete Works Overview
 Other Benefits Design Mixes With Minimal Crack Susceptibility Improve Longevity of Structures Reduce Replacement and Repair of Structures Reduce Field Discussions Concerning Placement Time and Weather Extremes 	 What it Won't Do: Account for Precipitation Freeze Events Recommend 22% or 23% Fly Ash Model Odd Shaped Concrete Members
The University of Texas Concrete Durability Center 1xDOI 5-4563	The University of Texas Concrete Derability Center 7xDO1 5-456

ap 1. Slump			Step 2: Maximum Size Aggregate
Types of Construction	Slute Max	ipi în. Min	Maximum Size Aggregate (MSA) Determined By:
Reinforced Foundation Walls and Footings	3	1	Formwork Clearance
Plain Footings, Caissons, and Substructure Walls	3	1	Concrete Member Thickness
Beams and Reinforced Walls	4	1	Reinforcement Spacing
Building Columns	4	1	Cover Over Steel Reinforcement
Pavements and Slabs	3	1	Affects Workability, Cost, And Performance
Moss Concrete	2	1	Sieve Size On Which 5 - 15% Of Coarse Aggregate
ACI 211 Table 6.3.1			Retained (typically 15)
Rule of Thumb: 1" of Slump \approx 10	lb/yd³ d	of Water	
University of Texos Concrete Durability Center		TxDOT 5-4563	The University of Texas Concrete Durability Center TxDOT 5-45

Step 3: Wat	100000000000000000000000000000000000000	121331003331	1199711300000						Step	4: Wister To Cement R	atio	
Air-Entrai Mixing W	ned Co ato, biye			ump and	Макте	om Size o	Aggre	gata		28-Day Compressive	Water-Cement R	atio by Weight
Silomp: In	3/6 m	in In	Mare.		1 /s in	2 17	3 m.	6 in.		Strangth est	Non-Air-Entrained	****************
1 to 2	305	295	280	270	250	240	205	180		6006	0.41	·
3 ro 4	340	325	305	295	275	265	225	200		5000	0.48	0.40
6 to 7	365	345	325	310	290	280	260			4000	0.57	0.48
Freeze/Thaw		Re	continieni	ded Total	Air Con	tern), parts	int			3000	0.68	0.59
Mild	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0		2000	0.82	0.74
Moderate	6.0	5.5	5.0	4.5	4.5	4.0	3.5	3.0		ACI 211 Toble 6.3.4(o	1	
Severe	7.5	7.0	6.0	6.0	5.5	5.0	4.5	4.0				

Step (c Design A					Mix Design And Proportioning		
Volume of Course Aggregate per Unit Volume of Concrete Nonsing Maximum Fine Aggregate Fineness, Modulus Size of Aggregate 2.40 2.60 3.00 3.00					dulus	 Coarse Aggregate Factor Intended to Provide Consistent Workability 		
	3/8 in.	0.50	0.48	0.46	0.44	Empirical Basis		
	1/2 in.	0.59	0.57	0.55	0.53	Di Multiplied by Dry-Rodded Unit Weight of Coarse		
3/4 in.	3/4 in.	0.66	0.64	0.62	0.60	Aggregate to Get Coarse Aggregate Content		
	1 in.	0.71	0.69	0.67	0.65			
1½ in. 2 in.	1½ in.	0.75	0.73	0.71	0.69	CA Content = CA Factor x Dry Rodded Unit Weight		
	2 in.	0.78	0.76	0.74	0.72			
	3 in.	0.82	0.80	0.78	0.76			
	6 in.	0.87	0.85	0.83	0.81			
	ACI 211 Table 6.3.6							

Mix Design And Proportioning Step 7. Fine Aggregate Content	Mix Design And Proportioning Star 7: Fine Aggregate Content
 Fine Aggregate Sand Crushed Stone 	Calculate Fine Aggregate On Per Cubic Yard Basis
 100% Passing 3/8" Sieve Usually 35-45% of Mix By Volume or Mass Only Remaining Volume to be Determined 	27 (Unit Yolume) (ft ³) - Volume Of Mixing Water (ft ³) - Volume Of Air (ft ³) - Volume Of Portland Cement (ft ³) - Volume Of Coarse Aggregate (ft ³) Volume Of Fine Aggregate (ft ³)
The University of Texas Concrete Durability Center T	IxDDT 5-4563 The University of Texas Concrete Durability Center TxDDT 5-45

Mix Design And Proportioning	Mix Design And Proportioning Step 81 Mediume Content Adjustment		
Step 8: Moisture Content Adjustment			
 Mix Design Obtained Following ACI 211: Cement: 564 lb/yd³ Water: 220 lb/yd³ Coarse Aggregate: 1800 lb/yd³ Fine Aggregate: 1100 lb/yd³ Aggregate Properties: Coarse Aggregate Absorption: 0.5% (by mass) Fine Aggregate Absorption: 0.9% (by mass) Moisture: 1.3% (by mass) 	 Aggregate Water Contribution (Moisture – Absorption) × Aggregate Content CA (0.3% - 0.5%) × 1800 lb/yd = -3.6 lb water FA (1.3% - 0.9%) × 1100 lb/yd = +4.4 lb water Net Result 4.4 - 3.6 = 0.8 lb water added by aggregates Adjusted mix water = 220 - 0.8 = 219.2 lb/yd³ 		
The University of Texas Concrete Durability Center TxDOT 5-4563	The University of Texas Concrete Durability Center TxDOT 5-456		

Mix Design And Proportioning	Mix Design And Proportioning		
Step 9: Trial Balch			
ACI Method Is Based On Comprehensive Laboratory Testing Of Concrete			
Materials Used To Develop The ACI Method Are Likely Different From Local Materials			
Concrete Mixtures In Practice Always Adjusted To Take Advantage Of Local Materials	Hands-On Demonstration of Mix Design and Proportioning in ConcreteWorks!		
ACI 211 Mix Design Process is Intended for Trial Batch Only			
You Are Responsible for Making Necessary Adjustments			
The University of Texas Concrete Durability Center TxDOT 5-4563	The University of Texas Concrete Durability Center TxDOT 5-456		

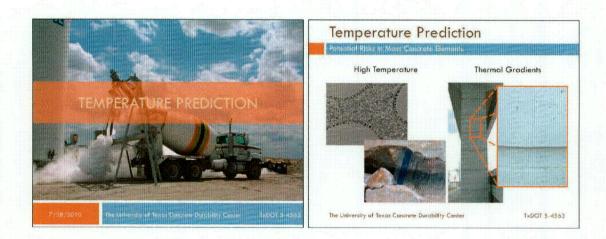
Hands-On Exercise Mix Design and Proportioning

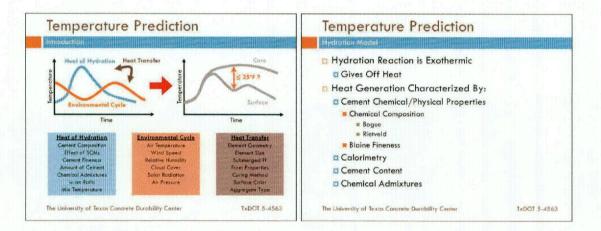
1. Open a new mass concrete project in ConcreteWorks

2. General Inputs

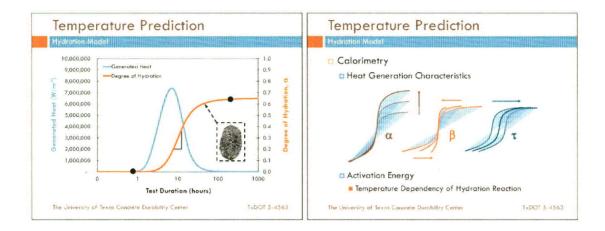
a. Select English units

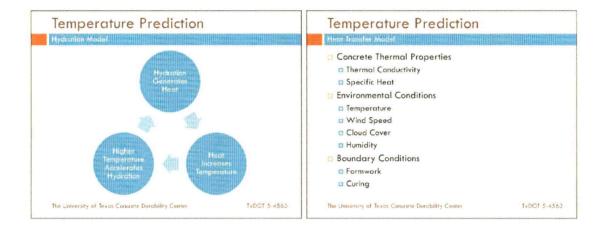
3. Mixture Proportion Inputs

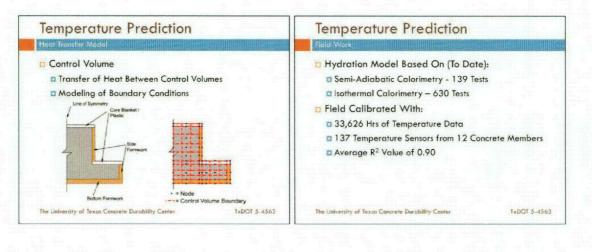

- a. Click Go to Design of Mixture Proportion
- b. General Mix Information
 - i. Compressive strength = 4000 psi
 - ii. Slump = 4 in
 - iii. Number of test used to determine standard deviation = 15-19
 - iv. Standard deviation = 600
- c. Aggregate Properties
 - i. Enter aggregate gradation properties as seen in the table below

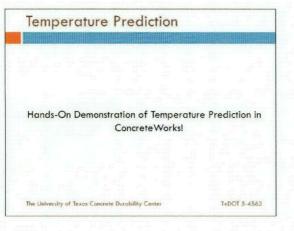

	Coarse 1	Coarse 2	Fine 1
2 in	100	100	
1 ½ in	100	100	-
1 in	98.2	100	
¾ in	75.2	100	•
½ in	38.5	100	
3/8 in	23.5	98.3	
#4	4.7	36	99
#8	3.7	4	84
#16	3.2	1	63
#30	2.9	0.9	43
#50	2.6	0.8	19
#100	2.2	0.3	4
#200	1.5	0	1
Pan	0	0	0
SG	2.7	2.6	2.7

- ii. Coarse Aggregate Oven-Dry-Rodded Unit Weight = 105 lb/ft³
- iii. Try various coarse aggregate percentages to optimize the gradation
- iv. Make sure to select "Update Aggregate Properties" each time you make changes
- d. Water Adjustment
 - Add in a type F high range water reducer and assume it reduces water demand by 25%
 - ii. Assume your optimized gradation reduces water demand by 5%


e. Final Volumes


- i. Add 30% Class F Fly Ash assume 3% water reduction per 10% fly ash
- ii. Add 8% Silica Fume assume 2% water demand per 1% silica fume




Temperature Prediction	Temperature Prediction
Hydration Model	Hydratich Model
 Cement Chemical Properties Oxide Analysis Caldum Oxide, CaO Silicon Dioxide, SiO₂ Ferric Oxide, Fe₂O₃ Ferric Oxide, Fe₂O₃ Alminum Oxide, Al₂O₃ Free Lime, CaO Sulphur Thioxide, SO₃ Magnetium Oxide, MagO Sodium Oxide, Na₂O Potassium Oxide, K₂O Constant Oxide, K₂O Coloutated Compound Using Bague Equations Alite, C₃S Bellie, C₅S Tetracoldum Aluminate, C₃A 	$\begin{aligned} & CaO = CaO - Free \ Lime \\ & C_3S = 4.0710 \cdot CaO - 7.6024 \cdot SiO_2 - 1.4297 \cdot Fe_2O_3 - 6.7187 \cdot Al_2O_3 \\ & C_2S = 8.6024 \cdot SiO_2 + 1.1 \cdot Fe_2O_3 + 5.0683 \cdot Al_2O_3 - 3.0710 \cdot CaO \\ & C_3A = 2.6504 \cdot Al_2O_3 - 1.6920 \cdot Fe_2O_3 \\ & C_4AF = 3.0432 \cdot Fe_2O_3 \end{aligned}$
The University of Texas Concrete Durability Center	TxDOT 5-4563 The University of Texos Concrete Durability Center TxDOT 5-4563

Temperature Prediction	Temperature Prediction		
Heat Transfer Model	Heat Bansfer Model		
Concrete Thermal Properties	Energy Balance		
 Thermal Conductivity Ability of a Material to Transfer or Conduct Heat 	$\Delta E = E_{in} - E_{out} + E_{gen} \qquad [Watts]$		
 Combined Aggregate Specific Heat Energy Required to Increase Temperature of Material 	 Where: E_{in} = Thermal Energy Entering Control Volume E_{out} = Thermal Energy Leaving Control Volume E_{gen} = Thermal Energy Generated Within Control Volume Heat Transfer (E_{in} - E_{out}) Heat of Hydration (E_{nen}) 		
The University of Texas Concrete Durability Center TxDQT 5 4563	The University of Texas Concrete Durability Center TxDOT 5-456		

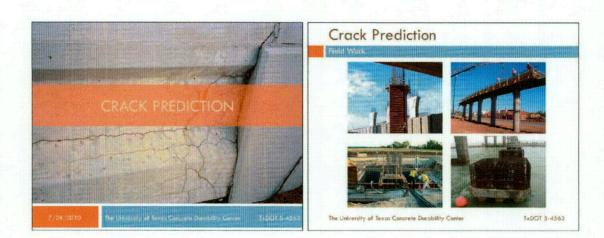
Hands-On Exercise Temperature Prediction

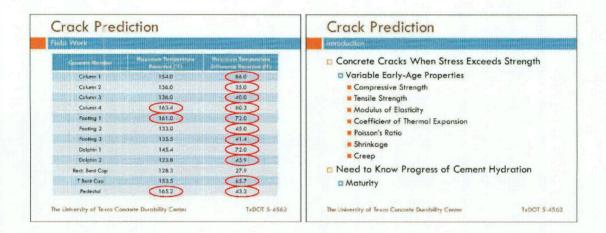
1. Open a new mass concrete project in ConcreteWorks

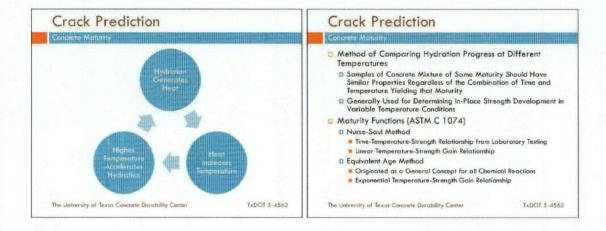
2. General Inputs

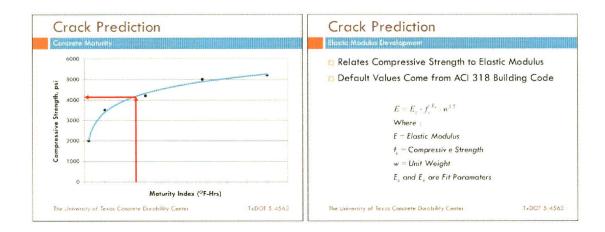
- a. Select English units
- b. Placement time = 10 am
- c. Temperature analysis duration = 7 days
- d. Project Location = Fort Worth

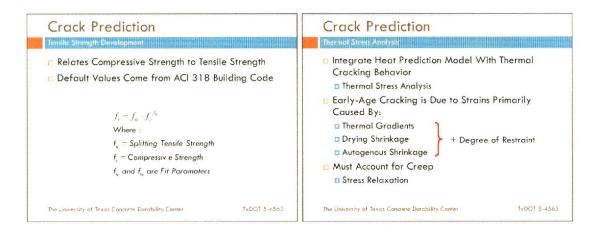
3. Shape Inputs

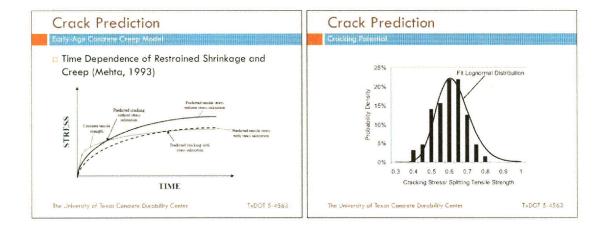

- a. Rectangular Column
- 4. Member Dimensions
 - a. Width = 5 ft
 - b. Depth = 5 ft

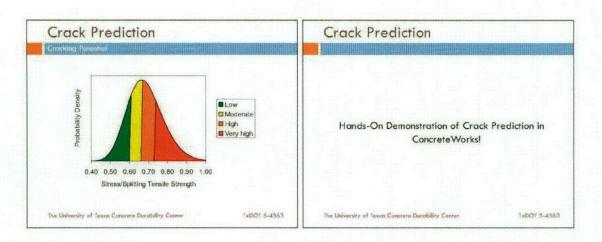

5. Mixture Proportion Inputs


- a. Click Go to Design of Mixture Proportion
- b. Compressive strength = 5000 psi
- 6. Input Check
 - a. Calculate Temperatures
- 7. Results
 - a. Select "Show Comparison Chart"
 - b. Rename Series 1 to "Straight Cement @ 10 am"
 - c. Close the comparison window


8. Modify the Mix Design and Placement Time


- a. Go to the General Inputs Screen and change the placement time to 10 pm
- b. Go to Design of Mixture Proportion on the Mix Proportion tab and replace cement with 35% F Ash
- c. Click the Water Adjustment tab and adjust the following sliders:
 - i. High Range Water Reducer (Type F): -20
 - ii. Aggregate Shape and Texture: -2
 - iii. Combined Aggregate Grading: -5
 - iv. Mineral Admixtures: -10
- d. Give the F Ash a CaO content of 10%
- e. Manually enter the concrete fresh temperature: 60 F
- 9. Repeat step 6 and 7 name the series "Revised Mix @ 10 pm"
 - a. Compare your results





Hands-On Exercise Crack Prediction

1. Open a new mass concrete project in ConcreteWorks

2. General Inputs

- a. Select English units
- b. Set the location to Forth Worth, TX
- c. Temperature analysis duration = 3 days

3. Shape Inputs

a. Rectangular column

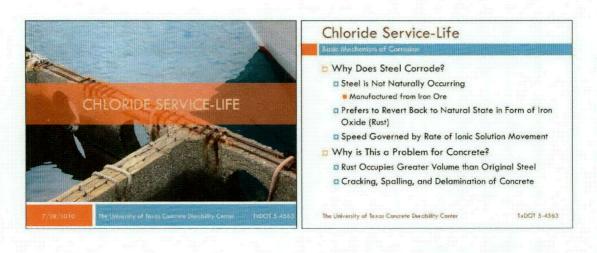
4. Rectangular Column Dimensions

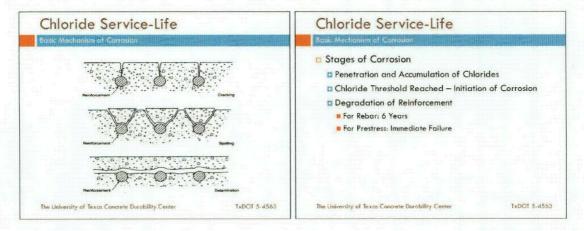
- a. Width = 3 ft
- b. Depth = 3 ft

5. Material Properties

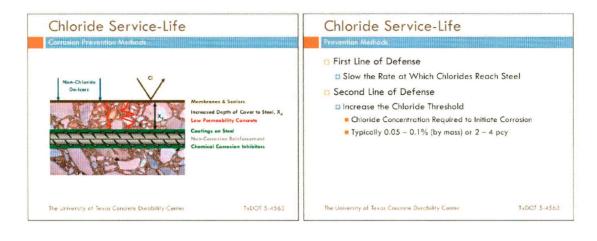
- a. Coarse aggregate type = siliceous river gravel
- b. Fine aggregate type = siliceous river sand

6. Mechanical Properties

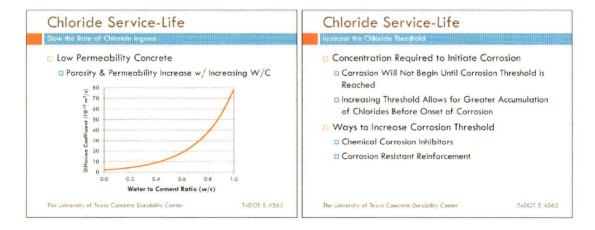

- a. Check to calculate thermal stresses
- b. Maturity function = Nurse-Saul
- c. Nurse-Saul Strength Inputs
 - i. a = -5450 psi


ii. $b = 2850 \text{ psi/}^{\circ}\text{F/hr}$

- 7. Input Check
 - a. Calculate Temperatures


8. Modify the Material Properties

- a. Coarse aggregate type = limestone
- 9. Input Check
 - a. Calculate Temperatures
 - b. Compare Results



Chloride Service-Life	Chloride Service-Life			
Internal Sources of Chlorides in Concrete	External Sources of Chlarides in Concrete			
Chloride-Containing Chemical Admixtures	© Seawater			
CaCl ₂ -Based Accelerators	Marine Structures, Oil Platforms, Coastal Bridges, Etc.			
Not Allowed in Any TxDOT Work	C Groundwater			
Aggregates	Piles, Tunnels, Foundations, Footings			
Sea-Dredged Sand	De-Icing Chemicals			
Presence of Mineral Halite	Rock Salt Used on Paving Surfaces			
D Mixing Water				
Chloride Limits per TxDOT Item 421 Table 1				
Bridges & Prestress: 500 ppm				
All Other Concrete: 1000 ppm				
The University of Texas Concrete Durability Center TxDOT 5-4563	The University of Texas Concrete Durability Center TxDOT 5-4563			

Chloride Service-Life	Chloride Service-Life			
Increase the Chloride Elizability	Recease the Chloride Threshold			
Chemical Corrosion Inhibitors	Alternative Reinforcement Options			
Calcium Nitrite	Epoxy Coated Steel			
User-Defined Dosage	 Grade 316 Stainless Steel Manually Defined Chloride Threshold Value Largely Dependent on Reinforcement Material Non-Corrosive Reinforcement Has a Larger Threshold than Standard Steel Reinforcement 			
Amines & Esthers				
Fixed Dosage: 1 gal/yd ³				
	No Rule of Thumb, However, Lower Value is More Conservative			
The University of Texas Concrete Durability Center TxDO1 5-4563	The University of Texas Concrete Darability Center TxDOT 5-456			

Chloride Service-Life	Chloride Service-Life		
Assumptions of Service-Life Model			
Concrete			
🛙 Uncracked			
Saturated			
Constant Density	Hands-On Demonstration of Chloride Service-Life in ConcreteWorks!		
Diffusion the Only Transport Mechanism			
Mass Transport from any Temperature Gradient or Pressure Gradient is Negligible			
B Reinforcement			
Corrosion Degradation Period			
Rebar: 6 Years			
Prestress: Immediately			
The University of Texas Concrete Durability Center TxDOT 5-4563	The University of Texas Concrete Durability Center 1xDOT 5-450		

Hands-On Exercise Chloride Service-Life

1. Open a new bridge deck project in ConcreteWorks

2. General Inputs

- a. Select English units
- b. Set the location to Fort Worth, TX

3. Shape Inputs

a. Deck w/ Precast Panels

4. Member Dimensions

- a. Overall Deck Thickness = 8 inches
- b. Cover for Top Mat of Steel = 2 inches
- c. Cover from Top Surface for Bottom Mat of Steel = 6 inches
- d. Precast Panel Thickness = 4 inches

5. Mix Design

- a. Compressive Strength = 4000 psi
- b. Click the Water Adjustment tab and adjust the following sliders
 - i. Mid Range Water Reducer: -12
 - ii. Aggregate Shape and Texture: -3
- 6. Corrosion Inputs
 - a. Exposure Class = Urban Road
- 7. Input Check
 - a. Calculate Temperatures

8. Modify the Mix Design & Corrosion Inputs

- a. 5% Silica Fume
- b. 30% Class F Fly Ash
- c. Sealer (10 years degradation and 10 year reapplication period)
- 9. Recalculate and Compare Your Results

Case Study and Group Project

The objective of this assignment is for you and your colleagues to work in groups of 3 to 5 to design a large rectangular column to meet the challenging requirements and specifications outlined below.

Using ConcreteWorks, select a mix design and construction plan that meets the technical requirements and is also practical and economically feasible. Each group will be asked to give a 5-10 minute presentation, briefly summarizing your proposed design. Give justification for your group's approach and back it up with output from ConcreteWorks.

Just a word of advice - minimize temperatures before calculating cracking probability. Otherwise you will waste lots of time waiting for the program to calculate.

Be innovative and have fun! Be sure to have a name for your group and maybe even a theme (e.g., sustainability, innovation, speed, technology, etc.).

1. Construction Details

- A. Column dimensions = $7' \times 7'$ (non-submerged)
- B. Casting date = July 28, 2010
- C. Casting time = 6 am (can be shifted five hours earlier or later if necessary)
- D. Location = Fort Worth
- E. Chloride exposure = urban road
- F. Temperature analysis duration = 7 days
- G. Formwork = steel (stripped at 72 to 120 hours)

2. Performance Requirements

- A. Temperature Specifications
 - I. Maximum fresh concrete temperature = 75 °F
 - II. Maximum temperature = 158 °F (to avoid delayed ettringite formation)
 - III. Maximum temperature gradient = 35 °F (to avoid thermal cracking)
- B. Serviceability / Durability
 - I. Low cracking probability index
 - II. 75 year chloride service-life

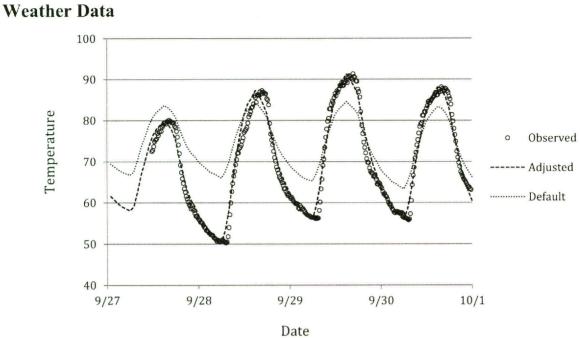
3. Mix Design

A. Basic Specifications

- 1. Air Content = 6.00%
- II. Slump = 4.00 in
- B. Strength Requirement
 - I. 28-day compressive strength = 4000 psi
 - II. Number of tests used to determine standard deviation = less than 15

Case Study and Group Project

- C. Mix Design Options
 - I. Replace 20 to 35% of the cement with Class F fly ash
 - II. Replace 35 to 50% of the cement with Grade 120 slag
 - III. Replace 35 to 50% of the cement with a combination of Class F fly ash, Grade 120 slag, or silica fume. However, no more than 35% may be fly ash, and no more than 10% may be silica fume.
- D. Water Adjustment
 - I. Mid-range water reducer: 12% water reduction
 - II. High-range water reducer: 25% water reduction
 - III. Class F fly ash: 3% water reduction per 10% ash
 - IV. Grade 120 slag: no impact
 - V. Silica fume: 2% water increase per 1% silica fume


4. Available Materials

- A. Portland cement (ASTM C 150)
 - I. Type I
 - II. Type I/II
 - III. Type II
- B. Supplementary cementitious materials
 - I. Class F fly ash (CaO = 19.0%)
 - II. Grade 120 slag
 - III. Silica fume
- C. Chemical admixtures
 - I. Mid-range water reducer
 - II. High-range water reducer
 - III. Retarder
 - IV. Accelerator
- D. Aggregates
 - I. Coarse
 - 1. Siliceous river gravel
 - 2. Dolomite
 - 3. Limestone
 - II. Fine
 - 1. Siliceous river sand
- E. Crushed ice and liquid nitrogen are available to reduce fresh concrete temperature (minimum of 60 °F)

Case Study and Group Project

- 5. Mechanical Properties
 - A. Maturity Function = Nurse-Saul
 - B. Below 35% SCMs
 - l. A = -5450 psi
 - II. $B = 2830 \text{ psi/}^{\circ}\text{F/hr}$
 - C. Above 35% SCMs
 - I. A = -7450 psi
 - II. B = 2950 psi/°F/hr

Appendix B: Bexar Concrete Works

Figure B-1 – Ambient Temperature

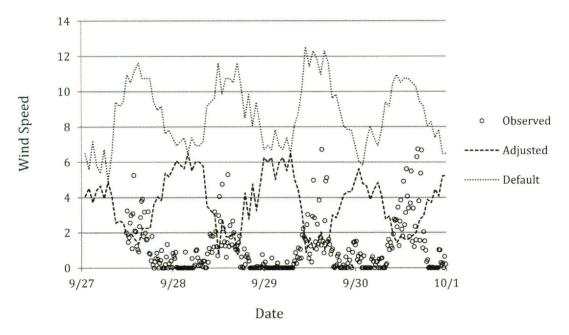


Figure B-2 – Wind Speed

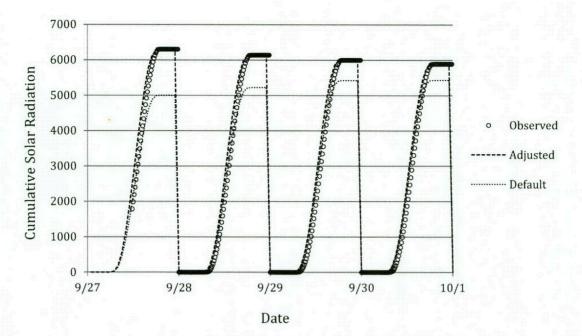


Figure B-3 – Bexar Precast Solar Radiation

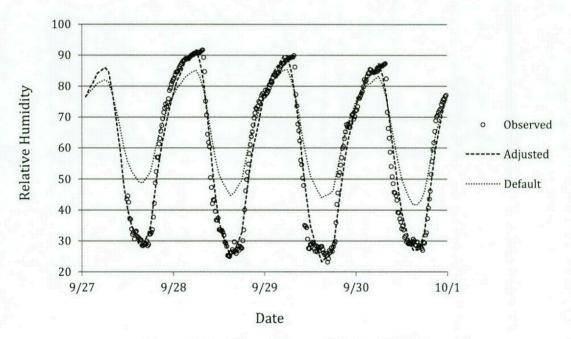


Figure B-4 – Bexar Precast Relative Humidity

ConcreteWorks Screen Prints

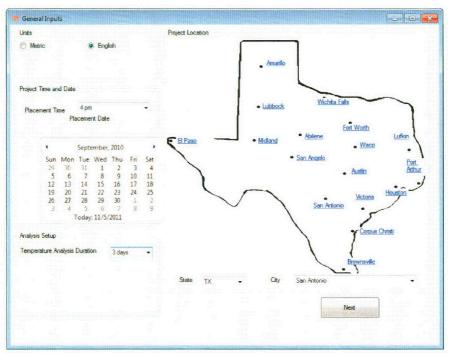


Figure B-5 – Alamo General Inputs

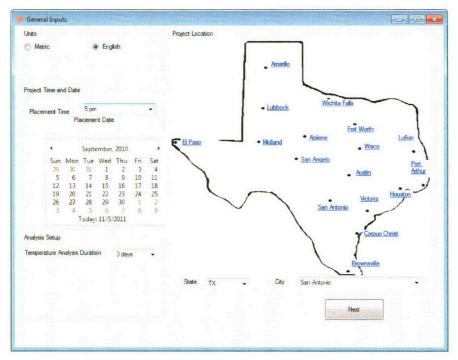


Figure B-6 – Capitol General Inputs

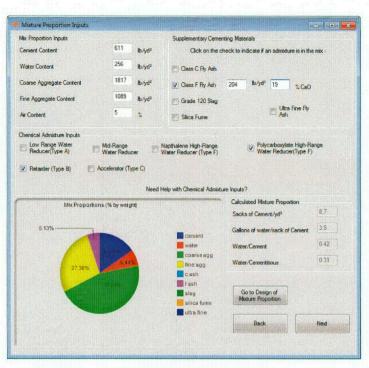


Figure B-7 – Bexar Mixture Proportions

🏀 Material Properties		
Cement Chemical/Physical Properties		
Cement Type Type III Check to manually enter ceme Chemical/physical properties	nt Blaine(m²/kg)	Tons CO2/Tons Clinker
Bogue Calculated Values (%)		and the second s
C ₃ S C ₂ S C ₃ A C ₄ AF Free CaO SO ₃	MgO Na2O	K20
<u>59.5</u> <u>13.2</u> <u>8.9</u> <u>9.8</u> <u>0.8</u> <u>3.9</u>	1.3 0.2	0.6
Aggregate Factors	Hydration Calculation	Properties
# of Coarse Aggregate Types 1 +	Check to mar hydration prop	nually enter perties
First Coarse Aggregate Type		
Limestone	Activation Energy	33636.4. J/mol
	Tau	18.568 Hrs
	Beta	1.026
	Alpha (ultimate):	0.66514
# of Fine Aggregate Types 1 +	Hu	456649. J/kg
First Fine Aggregate Type		
Limestone Sand -		
Check to Manually Enter the Concrete Coefficient of Thermal Expansion and Thermal Properties		
CTE 3.3 🖶 10°-6/*F	Back	Next
Concrete k 1.45 🚔 BTU/hr/ft/"F	Carried Street Street	
Combined Aggregate Cp 0.22 🕀 BTU/b/*F		

Figure B-8 – Alamo Material Properties (LOD 1)

Material Properties								
Cement Chemical/Physical	Properti	ies						
Cement Type Type III	•	Check	k to manually ical/physical j	enter cement properties	BI	aine(m²/kg)	Tons	0.90 (
Bogue Calculated Values	(%)							C
C ₃ S C ₂ S (C ₃ A	C AF	Free CaO	SO 3	MgO	Na20	K20	
46.39 24.64 6	.39	11.28	0.9	3.56	0.66	0.06	0.66	
Aggregate Factors				F	volration	Calculation	Properties	
# of Coarse Aggregate T	ypes	1 •				heck to mai dration pro	nually enter	
First Coarse Aggregate Ty	pe							
Limestone	•				Activa	tion Energy	34240.5	J/mol
					Tau		18.032	Hrs
					Beta		0.962	
i initia di seconda di s					Alpha	(ultimate):	0.66714	
# of Fine Aggregate Typ	es	1 -			н		413390	J/kg
First Fine Aggregate Type					.~		41,3330	
Limestone Sand	•							
Check to Manually En Thermal Expansion and	terthe (nd Them	Concrete C nal Properti	oefficient of es					
CTE	3.2	÷ 10'	`-6/*F		and an	Back	eset lass	Next
Concrete k	1.67	ET BT	U/hr/ft/"F		UNER	eservit i k		
Combined Aggregate Cp	0.20	😫 BT	U/Ib/°F					

Figure B-9 – Alamo Material Properties (LOD 2)

ement Chemical/Physical	Propert	ties							
Cement Type III	•	Che	ck to manually mical/physical	enter cemen	B	aine(m²/kg)	1	Fons CO	2/Tons Clinker
		GIR	nico/priyacor)	properties		519.8		0.	90 🚔
Bogue Calculated Values									
C ₃ S C ₂ S (3 A	C A A	F Free CaO	50 3	MgO	Na20	K20		
61.47 10.82 1	0.76	4,63		4,37	1.3	0.11	0.48		
ggregate Factors				•	lydration	Calculation	Propert	ties	
# of Coarse Aggregate T	ypes	1 •				heck to ma voration pro		nter	
First Coarse Aggregate Ty	pe								
imestone	•				Activa	tion Energy	3401	8 11 JA	mol
					Tau		17.17	7 Hr	s .
					Beta		1.076		
					Alpha	(ultimate):	0.705	141	
# of Fine Aggregate Type	55	1 •			Hu		4502	76. JA	kg
First Fine Aggregate Type									
imestone Sand	÷								
Check to Manually En Themal Expansion an	er the i d Them	Concrete mal Prope	Coefficient of rties						
CTE	3.2	🔶 1	0^-6/*F		Getted	Back		(SUIS)	Next
	1.67	E F	TU/hr/ft/"F						

Figure B-10 – Capitol Material Properties (LOD 2)

Material Properties			
Cement Chemical/Physical Properties			
Cement Type Type III - Check to manually en chemical/physical pro	nter cement Blaine(m²/kg) operties 486.3	Tons	CO2/Tons Clinker
Rietveld Calculated Values (%)	486.3		0.90
Alte Belite Aluminate Ferrite Gypsum	Bassanite Anhydrite Perk	dase Ar	canite Calcite
55.0 💠 8.6 🜩 5.2 💠 8.0 🜩 6.9 🜩	2.4 🜩 0.6 🜩 0.0	÷ 0.8	÷ 0.7 ÷
Aggregate Factors	Hydration Calculation	Properties	
# of Coarse Aggregate Types 1	Check to main hydration pro		
First Coarse Aggregate Type		22000 4	
Limestone 👻	Activation Energy	37236 41	J/mol
	Tau	15.463	His
	Beta	0.975	
	Alpha (ultimate):	0.67414/	
# of Fine Aggregate Types 1 +	Hu	3920561	J/kg
First Fine Aggregate Type			
Limestone Sand 👻			
Check to Manually Enter the Concrete Coefficient of Themal Expansion and Thermal Properties			
CTE 3.2 🕆 10^-6/"F	Back	Nill Internet	Next
Concrete k 1.67 🔶 BTU/hr/ft/*F	Contraction of the second second		
Combined Aggregate Cp 0.20 + BTU/lb/*F			

Figure B-11 – Alamo Material Properties (LOD 3)

Material Properties					
Cement Chemical/Physical Properties					
Cement Type Type III	ly enter cement al properties	Blaine(m²/	kg)	Tons CO2/T 0.90	
Rietveld Calculated Values (%)					
Alte Belte Aluminate Fente Gyps	um Bassanite	Anhydrite P	ericlase	Arcanite	Calcite
70.0 🚖 5.7 🌩 9.9 🚔 2.3 🜩 9.4	÷ 2.4 ÷	0.6 🚔 0	0.0 🚖	0.8	0.7
Aggregate Factors	Hy	dration Calculat	tion Prope	rties	
# of Coarse Aggregate Types 1 -		Check to hydration	manually e properties	snter	
First Coarse Aggregate Type					
Limestone -		Activation Ene	ingy 4134	J/mol	
		Таи	13.8	62 Hrs	
		Beta	1.07	1	
		Alpha (ultimate	ea 0	4341	
# of Fine Aggregate Types 1 -		Hu	4606	35.) J/kg	
First Fine Aggregate Type					
Limestone Sand					
Check to Manually Enter the Concrete Coefficient of Thermal Expansion and Thermal Properties					
CTE 3.2 😴 10^-6/1F		Back	(State	Ne	x
Concrete k 1.67 🚔 BTU/hr/ft/*F				Constant of the	
Combined Aggregate Cp 0.20 + BTU/b/*F					

Figure B-12 – Capitol Material Properties (LOD 3)

Construction Inputs				
Concrete Placement Temperature Click the method of calculating the	concrete fresh ter	mperature	Precast Concrete Inputs	
Calculated from indivual constituent material temperatures	Change Co Mater Tempera	nal	Select the combination of	curing procedures used
Concrete fresh temperature is eq time of placement	ual to ambient ter	mperature at	White or Clear Plastic	Black Plastic
 Manually enter concrete fresh ter 	nperature			Blanket/tarp used on sides
Estimated Placement Temperatur		۴	Concrete age when cure method is started	1 🕂 hrs
Formwork				
Concrete age at Form Removal	25 hrs			
Form Type Steel	-			
Form Color Red	•			
Blanket Insulation R-Value				
Blanket R-Value (Thickness / Thermal Conductivity)				
			Back	Next

Figure B-13 – Bexar Construction Inputs

The speed	Percent Cloud Cover	Relative H	umidity Yearly 1	[emperature	Summary Graphs
		Temperature	is in Degrees F		
		day	Max	Min	
	•	1	80.1	58	
		2	87.3	50.3	
Check to manually	enter	3	91.4	56.1	
temperature data		4	88.1	55.7	

Figure B-14 – Bexar Environmental Inputs (Temperature)

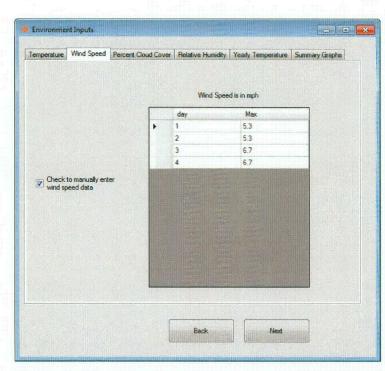


Figure B-15 – Bexar Environmental Inputs (Wind Speed)

emperature	Wind Speed	Percent Cloud Cover	Relative Humidity	Ye	arly Temperati	ure Summary Graphs
Cloud Co	ver is used to c	alculate the solar radiat	ion. sl	oud I ding	Cover is accon scale as show	ding to a n below
					day	Max
					1	22
	Chec	k to manually enter cover data			2	22
	Cloud	cover data			3	25
	er Sliding Scale			and the set	4	25
Sunny		ntly Cloudy	Overcast 100			
			Back		Nex	•

Figure B-16 – Bexar Environmental Inputs (Cloud Cover)

mperature Wind Speed F	ercent Cloud Cover	Relative Humidity	Yearly Temp	erature	Summary Graphs
		Humidity is in	percent		
		day	Max	Min	
	•	1	86	28.4	
		2	91.7	24.9	
		3	89.9	23.2	
		4	87.3	27	
Check to manually enter humidity data					
	ſ	Back		Next	

Figure B-17 – Bexar Environmental Inputs (Relative Humidity)

arameter	Value	Units	Parameter	Value	Units
Seneral Inputs			Environment Inputs Summary		
roject Location	San Antonio		Ave, Daily Max Temp	84	۰۴
Init System	English		Ave. Daily Min Temp.	65.3	۴F
Inalysis Duration	3	days	Ave. Max Daily Solar Radiation	751.6	W/m^2
oncrete placement time	4	pm	Ave, Max Daily Wind Speed	11.7	m/s
oncrete placement date	9/27/2010		Ave, Max Relative Humidity	83.9	2
			Ave, Min Relative Humidity	44.8	2
Member Inputs					
Shape Choice	U54 Beam		Construction Inputs		
			Concrete Fresh Temperature	88	*F
Mixture Proportions			Blanket R-Value	2.91	' F
Cement Content	611	b/yd ²	Forms are stripped after	25	hrs
Ry Ash Content	204	lb/yd²	Form Color	Red	
Nater Content	256	lb/yd ^a	Form Type	Steel	
Coarse Aggregate Content	1817	b/yd²	Precast Subbase	Clay	
ine Aggregate Content	1089	lb/yd²	Cure Method Application Age		hrs
Ar Content	5	1 2			
Chemical Admixture ASTM C494	Type F, PCHRWR		Corrosion Inputs		
Chemical Admixture ASTM C494	Type B, Retarder				
Material Properties					
Cement Type	III				
Cement Chemistry Values	Defaut				
Hydration Parameter Values	Default				
Coarse Agg.type	Umestone				
Fine Agg. type	Limestone Sand				
Coarse Agg.type	Limestone				
Fine Agg. type	Limestone Sand		Default values are indicated by or	een	
			Questionable input values are inde	cated by red	
Mechanical Properties	Nurse-Saul				
Maturity Method				Calculate	

Figure B-18 – Alamo Input Check (LOD 1)

Parameter	Value	Units	Parameter	Value	Units
General Inputs			Environment Inputs Summary		
Project Location	San Antonio		Ave, Daily Max Temp.	84	۴F
Uhit System	English		Ave, Daily Min Temp,	65.3	۴F
Analysis Duration	3	days	Ave. Max Daily Solar Radiation	751.6	W/m^2
Concrete placement time	5	pm	Ave. Max Daily Wind Speed	11.7	m/s
Concrete placement date	9/27/2010		Ave. Max Relative Humidity	83.9	2
			Ave. Min Relative Humidity	44.8	*
Member Inputs					
Shape Choice	U54 Beam		Construction Inputs		
			Concrete Fresh Temperature	88	۴
Mixture Proportions			Blanket R-Value	2.91	۴F
Cement Content	611	b/yd ³	Forms are stripped after	25	hrs
F Fly Ash Content	204	lb/yd ²	Form Color	Red	
Water Content	256	lb./yd3	Form Type	Steel	
Coarse Aggregate Content	1817	lb/yd ³	Precast Subbase	Clay	
Fine Aggregate Content	1089	lb/yd²	Cure Method Application Age	1	hrs
Air Content	5	2, 19			
Chemical Admixture ASTM C494	Type F, PCHRWR		Corrosion Inputs		
Chemical Admixture ASTM C494	Type B, Retarder				
Material Properties					
Cement Type	Ш				
Cement Chemistry Values	Default				
Hydration Parameter Values	Default				
Coarse Agg. type	Limestone				
Fine Agg. type	Limestone Sand				
Coarse Agg. type	Limestone				
Fine Agg. type	Limestone Sand		Distantion of the state	Carl Balance and State	
			Default values are indicated by gre Questionable input values are indic		
Mechanical Properties			Guestionable input values are indic	AREO DY FEO	
Maturity Method	Nurse-Saul		Back	Calculate	

Figure B-19 – Capitol Input Check (LOD 1)

Parameter	Value	Units *	Parameter	Value	Linits
Member Inputs	Value	CIIIIIS	Environment Inputs Summary	Value	UTIKS
Shape Choice	U54 Beam		Ave. Daily Max Temp	86.7	*F
andpe choice	USA Dodin		Ave Daily Min Temp	55	*F
Mixture Proportions			Ave. Max Daily Solar Radiation	865.6	W/m^2
Cement Content	611	lb/vd ²	Ave. Max Daily Wind Speed	6	m/s
F Fly Ash Content	204	lb/vd ³	Ave. Max Relative Humidity	88.7	2
Water Content	256	b/vd ^a	Ave. Min Relative Humidity	25.9	2
Coarse Aggregate Content	1817	b/vd ²	The Particulary	20.0	•
Fine Aggregate Content	1089	b/yd ²	Construction Inputs		
Air Content	5	2	Concrete Fresh Temperature	88	٩F
Chemical Admixture ASTM C494	Type F. PCHRWR		Blanket R-Value	2.91	۴F
Chemical Admixture ASTM C494	Type B. Retarder		Forms are stripped after	25	hrs
	Type D, Telesder		Form Color	Red	
Material Properties			Form Type	Steel	
Cement Type			Precast Subbase	Clay	
C3S content	46 39	2.	Cure Method Application Age	1	hrs
C2S content	24 64	2 3			Print.
C3A content	6.39	2,	Corrosion Inputs		
C4AF content	11,28	2			
Free CaO content	0.9	2			
SO3 content	3.56	E EXEMPT			
MgO content	0.66	7			
Alkali content	0.49	74			
Blaine Fineness	486.3	m^2/.			
Hydration Parameter Values	Default				
Coarse Agg, type	Limestone				
Fine Agg, type	Limestone Sand				
Concrete CTE	3.2	10^-6			
Concrete k	1.67	BTU/	Default values are indicated by gre		
Combined Aggregate Cp	0.20	BTU/.	Guestionable input values are indic	aled by red	
Coarse Agg type	Limestone			Calculate	1
Fine Agg, type	Limestone Sand		Back	Temperatures	

Figure B-20 – Alamo Input Check (LOD 2)

arameter	Value	Units *	Parameter	Value	Units
	VOIUC	UTIKS	Environment Inputs Summary	Value	URIND
Member Inputs Shape Choice	U54 Beam		Ave Daily Max Temp	86 7	۲:
snape Choice	U04 Dedni		Ave Daily Min Temp	55	۰ د
Mixture Proportions			Ave Max Daily Solar Radiation	865.6	r W/m^2
Cement Content	611	lb∕vd³	Ave Max Daily Wind Speed	6	m/s
F Fly Ash Content	204	b/vd ²	Ave Max Belative Humidity	88.7	7,
Water Content	256	b/yd ^a	Ave. Min Relative Humidity	25.9	ž
Coarse Aggregate Content	1817	b/yd ^a	Ave. Mill heldave Humoky	23.3	
Fine Aggregate Content	1089	lb/yd²	Construction Inputs		
Air Content	5	2	Concrete Fresh Temperature	88	"F
Chemical Adminture ASTM C494	Type F. PCHRWR		Blanket B-Value	2.91	*F
Chemical Admixture ASTM C494	Type B. Retarder		Forms are stripped after	25	hrs
Chemical Administer AD Thir C434	Type b. Hetaluer		Form Color	Red	
Material Properties		18	Form Type	Steel	
Cement Type	iii		Precast Subbase	Clay	
C3S content	61.47	× 1	Cure Method Application Age	1	hrs
C2S content	10.82	1. E			
C3A content	10.76	2	Corrosion Inputs		
C4AF content	4.63	2			
Free CaO content	0	2			
SO3 content	4.37				
MgO content	13	2			
Alkali content	0.43	2			
Blaine Fineness	519.8	m^2/			
Hydration Parameter Values	Default				
Coarse Agg, type	Lmestone				
Fine Agg, type	Limestone Sand				
Concrete CTE	3.2	10^-6	L		
Concrete k	1,67	BTU/	Default values are indicated by gre Questionable input values are indi-		
Combined Aggregate Cp	0.20	BTU/	usestionable input values are inde	Lated by red	
Coarse Agg, type	Limestone			Calculate	٦
Fine Agg. type	Limestone Sand	-	Back	Temperatures	

Figure B-21 – Capitol Input Check (LOD 2)

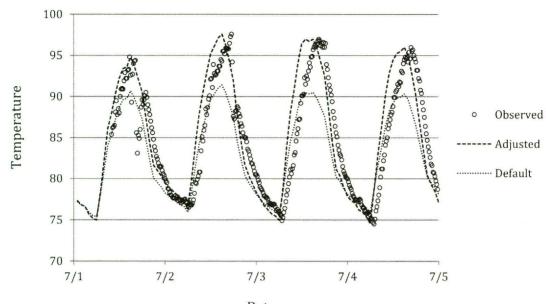

Input Check					
Parameter	Value	Units	* Parameter	Value	Units
			Environment Inputs Summary		
Mixture Proportions			Ave. Daily Max Temp.	86.7	*F
Cement Content	611	b/yd²	Ave Daily Min Temp	55	'F
F Fly Ash Content	204	lb/yd²	Ave Max Daily Solar Radiation	865.6	W/m^2
Water Content	256	lb/yd²	Ave. Max Daily Wind Speed	6	m/s
Coarse Aggregate Content	1817	lb.∕yd³	Ave. Max Relative Humidity	88.7	2
Fine Aggregate Content	1089	b/yd ^a	Ave. Min Relative Humidity	25.9	2,
Air Content	5	2			
Chemical Admixture ASTM C494	Type F, PCHRWR		Construction Inputs		
Chemical Admixture ASTM C494	Type B, Retarder		Concrete Fresh Temperature	88	۴F
			Blanket R-Value	2.91	*F
Material Properties			Forms are stripped after	25	hrs
Cement Type	III.		Form Color	Fed	
Alite content	55	2,	Form Type	Steel	
pelite content	8.6	2.	Precast Subbase	Clay	
Aluminate content	5.2	2	Cure Method Application Age	1	hrs
Femite content	8	Υ.			
gypsum content	6.9	%	Corrosion Inputs		
Bassanite content	2.4	%			
Anhydrite content	0.6	2,			
Periclase content	0	2			
Arcanite content	0.8	74			
Calcite content	0.7	2.			
Blaine Fineness	486.3	m^2/			
Hydration Parameter Values	Default	The State			
Coarse Agg. type	Limestone	C. C. C.			
Fine Agg type	Limestone Sand				
Concrete CTE	5.7	10^-6	Default values are indicated by g		
Concrete k	1.67	BTU/	Questionable input values are indicated by g		
Combined Aggregate Cp	0.20	BTU/	subestionable input values are ind	ICOLCO DY ICO	
Coarse Agg type	Limestone			Calculate	
Fine Agg. type	Limestone Sand		Back	Temperature	0

Figure B-22 – Capitol Input Check (LOD 3)

Parameter	Value	Units	•	Parameter	Value	Units
				Environment Inputs Summary		
Mixture Proportions				Ave. Daily Max Temp.	86.7	'F
Cement Content	611	b/yd²		Ave. Daily Min Temp.	55	• •F
Fly Ash Content	204	b/yd²		Ave. Max Daily Solar Radiation	865.6	W/m^2
Vater Content	256	lb/yd²		Ave. Max Daily Wind Speed	6	m/s
Coarse Aggregate Content	1817	b/yd ^a		Ave. Max Relative Humidity	88.7	7.
ine Aggregate Content	1089	b/yd ²		Ave. Min Relative Humidity	25.9	%
Air Content	5	- 74				
Chemical Admixture ASTM C494	Type F, PCHRWR			Construction Inputs		
Chemical Admixture ASTM C494	Type B, Retarder		10.00	Concrete Fresh Temperature	88	۴
				Blanket R-Value	2.91	۴F
Material Properties				Forms are stripped after	25	hrs
Cement Type				Form Color	Red	
Alte content	70	2		Form Type	Steel	
pelite content	5.7	2		Precast Subbase	Clay	
Auminate content	9.9	۶.		Cure Method Application Age	1	hrs
Fenite content	2.3	2	and a			
gypsum content	9.4	7,	II	Corrosion Inputs		
Bassanite content	2.4	7.				
Anhydrite content	0.6	2				
Periclase content	0	2				
Arcanite content	0.8	2				
Calcite content	0.7	7,	and a			
Blaine Fineness	519.8	m^2/				
Hydration Parameter Values	Default		and a			
Coarse Agg, type	Umestone					
Rine Agg. type	Limestone Sand					
Concrete CTE	3.2	10^-6.				
Concrete k	1.67	BTU/		Default values are indicated by gre Guestionable input values are indic		
Combined Aggregate Cp	0.20	BTU/.		unesionable tiput values are indic	aleu by red	
Coarse Agg. type	Limestone				Calculate	THE REPORT OF
Rine Agg. type	Limestone Sand		-	Back	Temperature	State In Super-

Figure B-23 – Capitol Input Check (LOD 3)

Appendix C: Valley Prestress Products

Weather Data

Figure C-1 – Eagle Lake Temperature

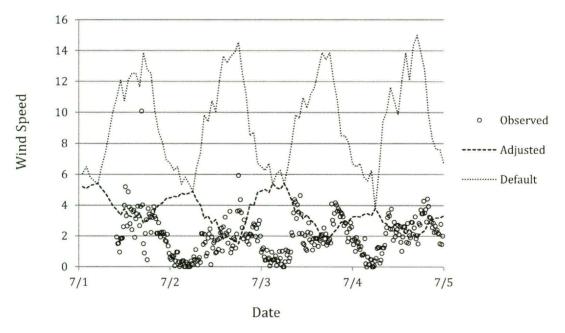


Figure C-2 – Eagle Lake Wind Speed

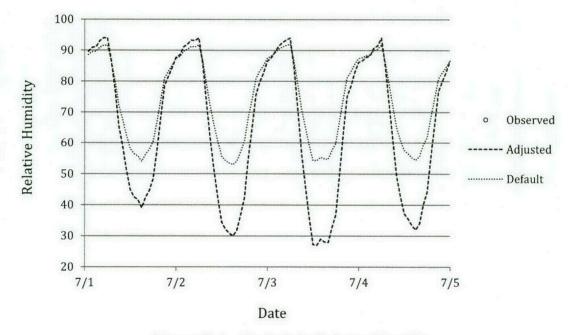


Figure C-4 – Eagle Lake Relative Humidity

ConcreteWorks Screen Prints

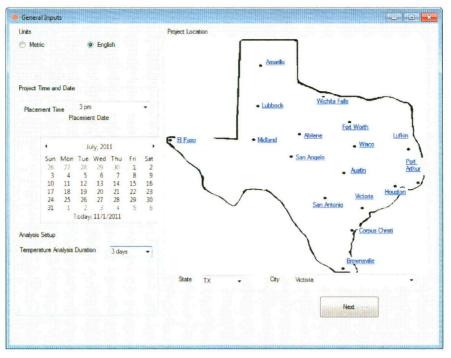


Figure C-5 – Eagle Lake General Inputs

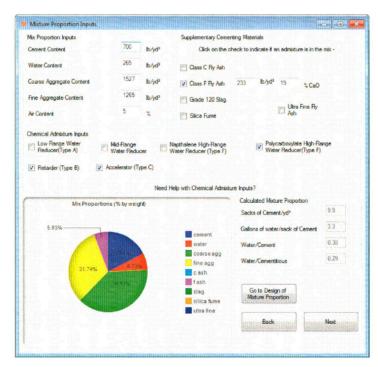


Figure C-6– Eagle Lake Mixture Proportions

Material Properties			
Cement Chemical/Physical Properties			
Cement Type Type III Check to manually enter ce Check to manually enter ce chemical/physical propertie		Tons	0.90 🜩
Bogue Calculated Values (%)			
C3S C2S C3A C4 AF Free CaO SO	MgO Na2O	К20	
59.5 13.2 8.9 9.8 0.8 3.9	1.3 0.2	0.6	
Aggregate Factors	Hydration Calculation	Properties	
# of Coarse Aggregate Types 1 •	Check to mar hydration prop	nually enter perties	
First Coarse Aggregate Type		20157.0	
Siliceous River Gravel 👻	Activation Energy	23137.8	J/mol
	Tau	16.013	Hrs
	Beta	1.026	
	Alpha (ultimate):	0.64874	
# of Fine Aggregate Types 1 •	Hu	456736 !	J/kg
First Fine Aggregate Type			
Siliceous River Sand -			
Check to Manually Enter the Concrete Coefficient of Thermal Expansion and Thermal Properties			
CTE 6.1 - 10^-6/*F	Back	ilien inne	Next
Concrete k 1.73 🗁 BTU/hr/ft/*F	(Storage Stilling		MALE REPORTED AND INCOME.
Combined Aggregate Cp 0.18 - BTU/b/*F			
And a second			

Figure C-7 – Material Properties (LOD 1)

Material Properties				
Cement Chemical/Physical Properties				
Cement Type Type III - Check to chemical	manually enter cement physical properties	Blaine(m²/kg)	Tons	0.90 🚔
Bogue Calculated Values (%)		517.5		0.30 -
C3S C2S C3A C4 AF F	ee CaO SO 3	MgO Na2O	K20	
60.33 14.31 6.20 10.64	1.47 0.66	3.57 0.03	0.68	
Aggregate Factors	н	dration Calculation	Properties	
# of Coarse Aggregate Types 1 -		Check to man hydration prop	ually enter perties	
First Coarse Aggregate Type				
Siliceous River Gravel 👻		Activation Energy	26//4.0	J/mol
		Tau	14.05	His
		Beta	0.958	
		Alpha (ultimate);	0.65374	
# of Fine Aggregate Types 1 +		Hu	452389.1	J/kg
First Fine Aggregate Type				
Siliceous River Sand 👻				
Check to Manually Enter the Concrete Coeff Themal Expansion and Themal Properties	icient of			
CTE 6.0 🛨 10^-6/	F	Back		Next
Concrete k 1.91 🚔 BTU/h	r/ft/°F	Constant States		
Combined Aggregate Cp 0.20 🚔 BTU/Ib	/*F			
Construction of the second state of the second	Contemporary and a state of Superse		The second second	

Figure C-8 – Material Properties (LOD 2)

Material Properties										Ŀ		• <mark>-</mark> *
Cement Chemical/Physical	Propertie	8										
Cement Type Type III	•	Check	k to manua ical/physic	ally ent	er cement	Blaine (m	1²/kg)	1	ions CO	02/To	ins Clin	ker
-		CICIII	icarpiyac		рониса	517.5	5		[0.90	÷	
Rietveld Calculated Value: Alte Belte Alue	s(%) minate	Fente	Gyps	um	Bassanite	Anhydrite	Perici	ase	Arca	nite	Calcite	,
65.0 💠 11.0 💠 4	2 💠	8.8	10.7	ŧ			0.0	1	0.8	(0.7	4
Aggregate Factors					Hy	dration Calcu	ilation	Propert	ies			
# of Coarse Aggregate T	ypes	1 -				Check t	to man on prop	ually er erties	nter			
First Coarse Aggregate Typ Silicenus River Gravel	pe					Activation E	nergy	3271	9.3: J	/mol		
						Tau		12.32	1 1	irs		
						Beta		0 956				
						Alpha (ultima	ste):	0,655	74			
# of Fine Aggregate Type	es	1 🔹				Hu		4385	96 J	/kg		
First Fine Aggregate Type												
Siliceous River Sand	•											
Check to Manually En Themal Expansion an	terthe Co d Thema	oncrete C al Properti	oefficient o	of								
CTE	6.0	÷ 10'	°-6/"F			Bac	*	1000	ittici	Nex	tinging	
Concrete k	1.91	🕂 BT	U/hr/ft/*F									
Combined Aggregate Cp	0.20	🔶 BT	U/Ib/"F									

Figure C-9 – Material Properties (LOD 3)

🌰 Material Properties							
Cement Chemical/Physical	Propert	iea					
Cement Type III	•		heck to manual hemical/physica	y enter cement I properties		Tons	CO2/Tons Clinker
Bogue Calculated Values	(2)				522.9		0.90 🚖
		C 🛓	AF Free CaO	SO 3	MgO Na2O	K20	
59.5 13.2 8	9	9.8	3.0	3.9	1.3 0.2	0.6	
Aggregate Factors				F	lydration Calculation	Properties	
# of Coarse Aggregate Ty	rpes	1	•		Check to man hydration prop	nually enter perties	
First Coarse Aggregate Typ	e						
Siliceous River Gravel	•				Activation Energy	29573	J/mol
					Тац	13 266	Hrs
					Beta	0 939	
					Alpha (ultimate):	0.676	
# of Fine Aggregate Type	15	1	•		Hu	446523	J/kg
First Fine Aggregate Type							
Siliceous River Sand	•						
Check to Manually Ent Themal Expansion an	er the (d Them	Concre nal Pro	te Coefficient of perties				
CTE	6.0	÷	10^-6/*F		Back		Next
Concrete k	1.91		BTU/hr/ft/"F		(aussientral)		MARCHARD HIT
Combined Aggregate Cp	0.20	ŧ	BTU/16/°F				

Figure C-10 – Material Properties (LOD 4)

S Construction Inputs	
Concrete Placement Temperature Click the method of calculating the concrete fresh temperature	Precist Concrete Inputs
Calculated from indivual constituent material temperatures Temperatures	Select the combination of curing procedures used
Concrete fresh temperature is equal to ambient temperature at time of placement	White or Clear Plastic 🔲 Black Plastic
Manually enter concrete fresh temperature	Blanket/ tarp used on sides
Estimated Placement Temperature 90 "F	Concrete age when cure 1 this method is started
Formwork	
Concrete age at Form Removal 14 hrs	
Form Type Steel	
Form Color Red 🗸	
Blanket Insulation R-Value Blanket R-Value (Thickness / Thermal Conductivity)	
	Back Next

Figure C-11 – Eagle Lake Construction Inputs

mperature Wind Speed Percent C	loud Cover	Relative Hu	midity Yearly To	emperature Sumi	many Graphs
		Temperature	is in Degrees F		
		day	Max	Min	7
	•	1	94.8	75	
		2	97.96	76.5	
Check to manually enter		3	97	74.9	Sec. 1
Check to manually enter temperature data		4	96	74.5	

Figure C-12 – Eagle Lake Environmental Inputs (Temperature)

emperature Wind Speed	Percent Cloud Cover	Relative Humidity	Yearly Temperature	Summary Graphs
		Wind Spee	d is in mph	
		day	Max	
	•	1	10,1	
		2	5.9	
		3	4.6	
		4	4.4	
Check to manually en wind speed data				

Figure C-13 – Eagle Lake Environmental Inputs (Wind Speed)

perature Wind Speed Percent Cloud Cover Relative I	Humidity Ye	early Temperature	Summary Graphs
Cloud Cover is used to calculate the solar radiation.	Cloud	Cover is according scale as shown be) to a slow
		day	Мах
	•	1	45
Check to manually enter		2	19
cloud cover data		3	24
loud Cover Sliding Scale Index	PERSONAL	4	27
iunny Parity Cloudy Overcast			
0 10 20 30 40 50 60 70 80 90 100			

Figure C-14 – Eagle Lake Environmental Inputs (Cloud Cover)

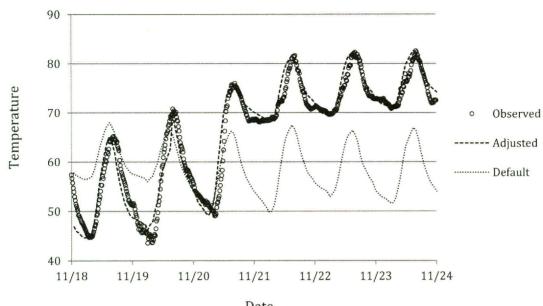
emperature	Wind Speed	Percent Cloud (Cover	Relative Humidity	Yearly Ter	nperature	Summary Graphs
				Humidity is in	percent		
				day	Max	Min	
			•	1	94	39	
				2	94	30	
				3	94	27	
				4	94	32	
				Back		Next	

Figure C-15 – Eagle Lake Environmental Inputs (Relative Humidity)

Parameter	Value	Units	Parameter	Value	Units
General Inputs			Environment Inputs Summary		
Project Location	Victoria		Ave. Daily Max Temp.	90.7	۴F
Unit System	English		Ave, Daily Min Temp.	75.7	۴F
Analysis Duration	3	days	Ave. Max Daily Solar Radiation	803.7	W/m^2
Concrete placement time	3	pm	Ave. Max Daily Wind Speed	14.3	m/s
Concrete placement date	7/1/2011		Ave, Max Relative Humidity	91.8	24
			Ave. Min Relative Humidity	54	%
Member Inputs					
Shape Choice	U54 Beam		Construction Inputs		
			Concrete Fresh Temperature	90	۴F
Mixture Proportions			Blanket R-Value	2.91	*F
Cement Content	700	b/yd²	Forms are stripped after	14	hre
F Fly Ash Content	233	b/yd ²	Form Color	Red	
Water Content	269	b/yd ^p	Form Type	Steel	
Coarse Aggregate Content	1527	b/yd²	Precast Subbase	Clay	
Fine Aggregate Content	1269	b/yd ²	Cure Method Application Age	1	hre
Air Content	5	Z			
Chemical Admixture ASTM C494	Type F, PCHRWR		Corrosion Inputs		
Chemical Admixture ASTM C494	Type B, Retarder				
Chemical Admixture ASTM C494	Type C. Accelerator				
Material Properties					
Cement Type	III				
Cement Chemistry Values	Default				
Hydration Parameter Values	Default				
Coarse Agg. type	Siliceous River Gravel				
Fine Agg, type	Siliceous River Sand				
Coarse Agg. type	Siliceous River Gravel			Course and a second second	Contraction of the later
Fine Agg type	Siliceous River Sand		Default values are indicated by gre Questionable input values are indic		
Mechanical Properties				Calculate	7
Maturity Method	Nurse-Saul		Back	Temperatures	No Contraction

Figure C-16 – Eagle Lake Input Check (LOD 1)

Autor: Proportions ement Content 700 b)rdP Ry Ab Content 203 b)rdP Ry Ab Content 203 b)rdP Some Aggregate Content 269 b)rdP Ave: Darly Max Temp. 75.2 1F Ave: Max Darly Solar Radiation 9118.5 Wm ² 2 Ave: Max Darly Solar Radiation 5116.5 Wm ² 2 Ave: Max Darly Solar Radiation 5116.5 Wm ² 2 Ave: Max Darly Solar Radiation 5116.5 Wm ² 2 Ave: Max Darly Solar Radiation 5116.5 Wm ² 2 Ave: Max Darly Solar Radiation 5116.5 Wm ² 2 Ave: Max Darly Solar Radiation 5116.5 Concreter fresh Temperature 90 Temmel Admisure ASTM C434 Type F. PCHRWR Concreter fresh Temperature 90 TF Banket Rivebue 251 TF F F F Somernet Type III Train Calor Freed F Form Calor Faed F F	Parameter	Value	Units	* Parameter	Value	Units
tature Proportions Are Day Min Tamp 75.2 +F ement Content 700 b/ydP Py Ach Content 233 b/ydP Inter Content 269 b/ydP Are Max Daly Wind Speed 6.2 n/4 Are Max Daly Wind Speed 5 % InterAgregate Content 1255 b/ydP InterAgregate Content 1255 b/ydP InterAgregate Content 1255 b/ydP InterAgregate Content 14 % Precisit Scheduler 50 17 Fermical Admiture ASTM C494 Type F. PCHRWR Fermical Admiture Flyade Fermical Admiture ASTM C494 Type F. Reader Construction Inputs Scontent 60.33 % 1 Scontent 1064 % Precisit Schose Clay Scontent 0.66 % 1 Instruction Inputs Concert 0.66 % % Game Agregate C TE <td>Shape Choice</td> <td>U54 Beam</td> <td></td> <td>Environment Inputs Summar</td> <td>Y</td> <td></td>	Shape Choice	U54 Beam		Environment Inputs Summar	Y	
Activity Content <				Ave Daily Max Temp	96.4	۲F
Ply Ash Content 233 b/ydf Ave Max Daily Wind Speed 6.2 m/a Vater Content 269 b/ydf ine Aggregate Content 1527 b/ydf ine Aggregate Content 1269 b/ydf we Max Relative Humidity 32 % Aree Max Relative Humidity 32 % Phenical Admitute ASTM C494 Type F. PCHRWR 5 Themical Admitute ASTM C494 Type F. PCHRWR 5 Themical Admitute ASTM C494 Type F. PCHRWR 5 Type Mill 3 Concrete fresh Temperature 90 Scontent 603.3 % Sp Content 14.31 % Sp Content 1064 % Optiontent 0.57 % Optiontent 0.57 m ² / Mate Content 0.48 % Difficience Fresh Free Gravel Immer Sincebus Priver Gravel 1 Immer Sincebus Priver Gravel Immer Aggregate Cp 20 01°-6 Sincebus Priver Gravel 01°-6 01°-6 Immer Sing type Sincebus Priver Gravel Differet Hamilite Values are indicated by green Optionate K 191 BTU/ Damited Aggregate Cp <td>Mixture Proportions</td> <td></td> <td></td> <td>Ave, Daily Min Temp</td> <td>75.2</td> <td>۴F</td>	Mixture Proportions			Ave, Daily Min Temp	75.2	۴F
Valer Content 269 b-/yd ² Ave: Max Relative Humidity 54 Ave: Max Relative Humidity 32 Ave: Max Relative Humidity	Cement Content	700	b/yd ²	Ave. Max Daily Solar Radiation	918.5	W/m^2
base Aggregate Content 1527 b.5ydP brem Aggregate Content 1265 b.5ydP Vectorett 1265 b.5ydP bremcal Admidure ASTM C494 Type F. PCHRWR Kimp bremcal Admidure ASTM C494 Type F. PCHRWR Kimp bremcal Admidure ASTM C494 Type C. Accelerator Banket R-Value 2.91 Katenial Properties Banket R-Value 2.91 TF Binnet R-Value 2.91 TF Banket R-Value 2.91 TF Scontent 60.33 % Scontent 164 % Banket R-Value Carred Sciebase Carred Sciebase Curred Waldes Default TF Banke Formerass 517.5 m22/ Mation Parameter Values Default Values are indicated by green Correte CTE 60 1	Fly Ash Content	233	b/yd ²	Ave. Max Daily Wind Speed	6.2	m/s
he Aggregate Content 1263 b/vdP ICOntent 1263 b/vdP Construction Inputs Construction Input s Constructi	Nater Content	269	b/yd ^a	Ave. Max Relative Humidity	94	24
Construction Inputs Some Add mixture ASTM C494 Type F. PCHRWR hemical Admixture ASTM C494 Type F. PCHRWR hemical Admixture ASTM C494 Type F. Petrader concrete Fresh Temperature S0 fatterial Properties Fremical Admixture R-Value emerit Type III 35 content 60.33 25 content 60.33 34 content 62 32 content 10.64 10.64 % 400 content 0.66 25 content 0.48 02 content 0.48 03 content 0.48 10.64 % 10.64 % 20 content 0.66 20 content 0.48 10.77 % 20 content 0.48 20 content 0.48 20 content 0.48 20 content 0.48 20 content 0.175 20 content 0.48 20 content 0.107-6 20 content 0.107-6 <	oarse Aggregate Content	1527	b/yd ³	Ave. Min Relative Humidity	32	2
hemical Admidure ASTM C494 Type F, PCHRW/R hemical Admidure ASTM C494 Type B, Retarder hemical Admidure ASTM C494 Type B, Retarder hemical Admidure ASTM C494 Type C, Accelerator Banket Rivelue 291 TF Banket Rivelue 291 TF Form Calcer Read Form Spee Steel Form Spee Cure Method Acolection Age 1 The Steel Correation Inputs Correation Inputs Default values are indicated by green Cureation Bit Values are indicated by red Cureation Bit Profile Cureation Bit Profile	ine Aggregate Content	1269	b/yd²			
hemical Admixture ASTM C494 Type B. Retarder hemical Admixture ASTM C494 Type C. Accelerator facterial Properties ement Type III So content 6033 % 25 content 1431 % 36 content 52 % 44 F content 1064 % and content 066 % that content 048	Ar Content	5	12	Construction Inputs		
Landon Jansabi Cross 1/pc C Accelerator Femical Admissure ASTM C494 Type C. Accelerator Landon Jansabi Cross 1/p Sector Red Immedia Admissure ASTM C494 Type C. Accelerator Landon Jansabi Cross Red Sector Red Sector Red Sector Red Sector Red Jacortent 60.33 Sector 62 Advectent 10.64 Sector 10.64 Sector Corrosion Inouts	Chemical Admixture ASTM C494	Type F, PCHRWR		Concrete Fresh Temperature	90	*F
Katerial Properties III Societ 1 Societ 60.33 Z's content 60.33 Z's content 14.31 Accider Frecast Subbace Clay 2 Accider 1 Nonconstruct 6.2 Accider 1 Nonconstruct 1.64 0.3 content 0.66 0.3 content 0.66 0.48 % Nater Finences 517.5 more CaD content 0.48 Societ 1 Matching Finences 517.5 more fuel 0.66 Silceous Rive Gravel 1 Default values are indicated by green concrete K 1.91 Store Apg. type Silceous Rive Gravel Default values are indicated by green Concrete k 1.91 Default values are indicated by green Concrete k 1.91 Default values are indicated by green Concrete k 1.91 Default values are indicated by green Concrete C 5 Sizeous Rive Gravel	Chemical Admixture ASTM C494	Type B. Retarder		Blanket R-Value	2 91	*F
factorial Properties From Type From Type Scontent 52 content 6033 23 content 52 34 content 52 34 content 1064 1 147 20 content 066 20 content 357 03 content 048 1 147 1 147 2 2 1 147 2 2 1 147 2 2 1 147 2 2 1 147 2 2 1 147 2 2 1 147 2 2 1 147 2 2 1 147 2 2 1 148 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	Chemical Admixture ASTM C494	Type C. Accelerator		Forms are stripped after	14	hrs
emerit Type III 35 content 60.33 % 35 content 14.31 % 34 content 62. % 44 F content 62. % 40 content 62. % 40 content 62. % 40 content 62. % 40 content 66. % 40 content 0.66. % 40 content 0.66. % 40 content 0.66. % 40 content 0.48. % 10 content 0.48. %				Form Color	Red	
So content 60.33 1. 25 content 14.31 1. 3A content 6.2 1. 4A content 6.2 1. 4A content 6.2 1. Cure Method Acolection Age 1. Cure Method Acolection Ag	Material Properties			Form Type	Steel	
2S content 14.31 % 3A content 5.2 % 4A content 10.64 % ree CaO content 147 % 03 content 0.66 % 10 (p) content 3.57 % Iame Fineness 517.5 m°2/ Addition Reported Values Default values are indicated by green concrete K 1.91 BTU/ content k 1.91 Content content k 1.91 BTU/ content k 1.91 Content	Cement Type	18		Precast Subbase	Clay	
3A content 6.2 1, 4AF content 1064 1, 0.3 content 1064 1, 0.3 content 0.66 1, 0.3 content 3.57 1, 10 content 3.57 1, 10 content 3.57 1, 10 content 3.57 1, 10 content 0.48 1, 10 content 0.66 1, 10 content 0.6 1, 10 content 0.7 1,	C3S content	60.33	24	Cure Method Application Age		hrs
4AF content 10 64 1 ree G8 content 147 2 03 content 066 2 03 content 357 2 kikal content 357 2 vigitation Pranteel Values 10 6 0 content 048 2 vigitation Pranteel Values 10 6 0 content 048 2 vigitation Pranteel Values 10 10 0 concete CTE 6.0 10°-6 oncrete K 191 BTU/ Oncrete K 191 BTU/ Outstone Silcoous Priver Gravel Cuestionable input values are indicated by green Outston Point Silcoous BTU/	C2S content	14,31	1			
ree CaO content 147 % O3 content 0.66 % Ideal content 3.57 % Ikai content 0.48 % Iarre Fineness 5.17.5 m°2/ Jarten Paranter Values 100 for the former of the former o	C3A content	6.2	2	Corrosion Inputs		
03 content 0.66 % 1g0 content 3.57 % kika content 0.48 % Jame Pinemess 517.5 m°27. Jorandon Parameter Values Default Default oncret Agregate Cp 511.5 10°.6 Default values are indicated by green Concrete CTE 6.0 oncrete Agregate Cp 2.20 BTU/. Default values are indicated by red Cuestionable input values are indicated by red	C4AF content	10.64	2			
IgO content 3.57 % kkai content 0.48 % larne Finences 517.5 m°22/ viction Parameter Values 100 File Content 100 File Conte	Free CaO content	1.47	2			
Anal content 0.49 % Iame Fineness 517.5 m° 2/ Joanse Agg type Siliceous River Gravel ine Agg type Siliceous River Stand oncrete CTE 5.0 10°-6 oncrete k 1.91 BTU/ combined Aggregate Cp 0.20 BTU/ Guestion Boilt register Siliceous River Gravel	SO3 content	0.66	2			
There Finences 517.5 m ⁻² / hydration Parameter Values Derivat Dares Agg type Siliceous River Gravel in Agg type Siliceous River Sand concrete CTE 6.0 10 ⁻⁶ concrete k 191 BTU/. Combined Aggregate Cp. 0.20 BTU/. Counciliant values are indicated by green Counciliant values are indicated by red Counciliant values are indicated by red	MgO content	3.57	2			
Adration Parameter Values Default oame Agg type Siliceous River Gravel ine Agg, type Siliceous River Gravel oncrete CTE 5.0 oncrete k 191 ombined Aggregate Cp. 0.20 page Aggregate Cp. Siliceous River Gravel	Alkali content	0.48	24			
Desire Agg type Siliceous River Gravel Dire Agg type Siliceous River Sand oncrete CTE 5.0 oncrete K 1.91 BTU/ Guestionable input values are indicated by green combined Aggregate Cp 0.20 BTU/ Guestionable input values are indicated by red consert Aggregate Cp 0.20 BTU/ Guestionable input values are indicated by red	Baine Fineness		m^2/			
ne Aggi type Sticeous River Sand oncrete CTE 6.0 10^6 Default values are indicated by green controle k 191 BTU/ Cuestionable input values are indicated by red Cuest	Hydration Parameter Values	Default				
oncrete CTE 6.0 10°.6 oncrete k 1.91 BTU/. Ombined Aggregate Cp 0.20 BTU/. Ouestionable input values are indicated by red Ouestionable input values are indicated by red Ouestionable input values are indicated by red	Coarse Agg. type	Siliceous River Gravel				
ancrete k 1.91 BTU/ Default values are indicated by green anahined Aggregate Cp 0.20 BTU/ Questionable input values are indicated by red asses Aggregate Cp 53ceous River Gravel	ine Agg. type	Siliceous River Sand				
oncrete k 1.51 B1U/ Questionable input values are indicated by red onaise Aog. Type Output Ou	Concrete CTE	6.0	10^-6			
ombined Aggregate Cp 0.20 BTU/ corse Ago type Siliceous River Gravel Columnation	Concrete k	1.91	BTU/			
	Combined Aggregate Cp	0.20	BTU/	vauesuonable input values a	re indicated by red	
	oarse Agg type	Siliceous Fliver Gravel		Back	Calculate	


Figure C-17 – Eagle Lake Input Check (LOD 2)

Input Check					
Parameter	Value	Units *	Parameter	Value	Units
Mixture Proportions			Environment Inputs Summary		
Cement Content	700	lb/yd²	Ave. Daily Max Temp	96.4	*F
- Ry Ash Content	233	lb/yd ^a	Ave. Daily Min Temp	75.2	*F
Vater Content	269	b/yd²	Ave. Max Daily Solar Radiation	918 5	W/m^2
Coarse Aggregate Content	1527	lb/yd ¹	Ave Max Daily Wind Speed	6,2	m/s
ine Aggregate Content	1269	lb/yd ³	Ave Max Relative Humidity	94	7.
Nr Content	5	3	Ave. Min Relative Humidity	32	2
Chemical Admixture ASTM C494	Type F, PCHRWR				
Themical Admixture ASTM C494	Type B, Retarder		Construction Inputs		
Themical Admixture ASTM C494	Type C, Accelerator		Concrete Fresh Temperature	90	*F
			Blanket R-Value	2.91	"F
Material Properties			Forms are stripped after	14	hrs
Cement Type	iii		Form Color	Red	
Nite content	65	2	Form Type	Steel	
elite content	11	2	Precast Subbase	Clay	
Numinate content	4.2	24	Cure Method Application Age		hrs
Femte content	8.8	1.			
ypsum content	10.7	1 <u>,</u> 2	Corrosion Inputs		
Bassanite content	2.4	2			
Anhydrite content	0.6	2,			
Penclase content	0	2			
Arcanite content	0.8	2			
Calcite content	0.7	2			
Blaine Fineness	517.5	m^2/ .			
-ydration Parameter Values	Default				
Coarse Agg. type	Siliceous River Gravel				
Fine Agg type	Siliceous River Sand	A MILLE			
Concrete CTE	6.0	10^-6	Default values are indicated by on		
Concrete k	1.91	BTU/. ^{Lu}	Questionable input values are indicated by gr Questionable input values are indi		
Combined Aggregate Cp	0.20	BTU/	aneanniane i that varies die Ela	caled by ite	
Coarse Agg. type	Siliceous River Gravel			Calculate	
Fine Agg. type	Siliceous River Sand		Back	Temperature	15

Figure C-18 – Eagle Lake Input Check (LOD 3)

Input Check					
Parameter	Value	Units *	Parameter	Value	Units
Concrete placement time	3	pm	Environment Inputs Summary		
Concrete placement date	7/1/2011		Ave. Daily Max Temp.	96.4	۰F
		2	Ave. Daily Min Temp.	75.2	*F
Member Inputs			Ave. Max Daily Solar Radiation	918.5	W/m^2
Shape Choice	U54 Beam		Ave. Max Daily Wind Speed	6.2	m/s
			Ave. Max Relative Humidity	94	2
Mixture Proportions			Ave. Min Relative Humidity	32	2.
Cement Content	700	b/yd²			
F Fly Ash Content	233	b/yd²	Construction Inputs		
Water Content	269	b/yd ^a	Concrete Fresh Temperature	90	*F
Coarse Aggregate Content	1527	b/yd ^a	Blanket R-Value	2.91	*F
Fine Aggregate Content	1269	b/yd ²	Forms are stripped after	14	hrs
Air Content	5	12	Form Color	Red	
Chemical Admixture ASTM C494	Type F, PCHRWR		Form Type	Steel	
Chemical Admixture ASTM C494	Type B, Retarder		Precast Subbase	Clay	
Chemical Admixture ASTM C494	Type C, Accelerator	10	Cure Method Application Age	1	hrs
Material Properties			Corrosion Inputs		
Cement Type	Ш				
Cement Chemistry Values	Default				
Activation Energy	29573	J/mol			
Alpha	0.676				
Tau	13.266	hrs			
Beta	0.939				
Hu	446523				
Coarse Agg. type	Siliceous River Gravel				
Fine Agg, type	Siliceous River Sand				
Concrete CTE	6.0	10^-6	D. A. L. A. A. M.		ALC: NOT THE OWNER OF THE OWNER
Concrete k	1.91	BTU/.	Default values are indicated by gre Questionable input values are indic		
Combined Aggregate Cp	0.20	BTU/.	Anestonacie input values are inde	cared by red	
Coarse Agg_ type	Siliceous River Gravel			Calculate	
Fine Agg, type	Siliceous River Sand		Back	Temperature	

Figure C-19 – Eagle Lake Input Check (LOD 4)

Weather Data

Figure D-1 – WBSB 8 Temperature

Figure D-2 – WBSB 8 Wind Speed

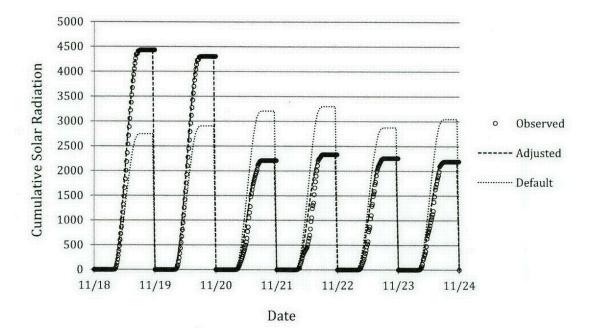


Figure D-3 – WBSB 8 Solar Radiation

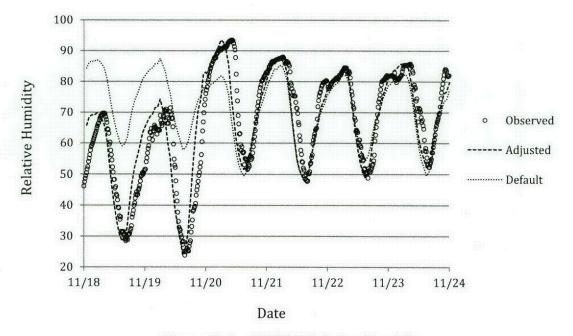


Figure D-4 – WBSB 8 Relative Humidity

ConcreteWorks Screen Prints

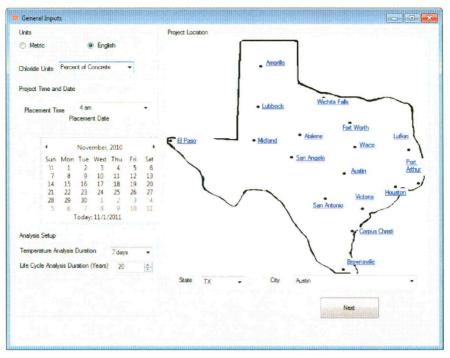


Figure D-5 – WBSB 8 General Inputs

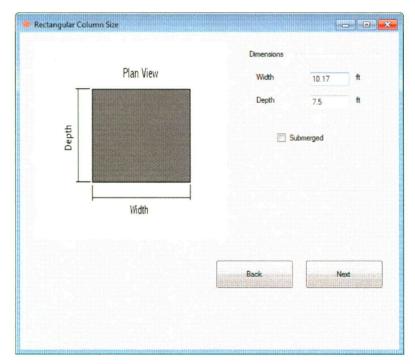


Figure D-6 – WBSB 8 Member Dimensions

Figure D-7 – WBSB 8 Mixture Proportions

Material Properties		
Cement Chemical/Physical Properties		
Cement Type Type I/II - Check to manually enter ce chemical/physical propertie		Tons CO2/Tons Clinker
Bogue Calculated Values (%)		
C3S C2S C3A C4 AF Free CaO SO	MgO Na2O	К20
60.2 13 6.1 10.9 0.9 2.7	1.7 0.1	0.5
Aggregate Factors	Hydration Calculation	Properties
# of Coarse Aggregate Types 1 •	Check to man hydration prop	nually enter perties
First Coarse Aggregate Type		20000
Dolomite -	Activation Energy	35958.44 J/mol
	Tau	16.231 Hrs
	Beta	0.965
	Alpha (ultimate):	0.74846
# of Fine Aggregate Types 1 -	Hu	448602 J/kg
First Fine Aggregate Type		
Siliceous River Sand 👻		
Check to Manually Enter the Concrete Coefficient of Themal Expansion and Themal Properties		
CTE 5.1 10~6/*F	Back	Next
Concrete k 1.94 + BTU/hr/ft/"F		
Combined Aggregate Cp 0.20 8TU/b/"F		

Figure D-8 – WBSB 8 Material Properties (LOD 1)

🐣 Material Properties					- • ×
Cement Chemical/Physical Proper	rties				
Cement Type 1/11 +	Check to manually e chemical/physical p	enter cement roperties	Blaine(m²/kg)	Tons	CO2/Tons Clinker
Bogue Calculated Values (%)			303.2		230
C ₃ S C ₂ S C ₃ A	C AF Free CaO	SO 3	MgO Na2O	K20	
32.56 38.60 12.16	5.81	3.72	1.33 0.14	0.53	
Aggregate Factors		н	dration Calculation	Properties	
# of Coarse Aggregate Types	1 -		Check to man hydration prop	ually enter perties	
First Coarse Aggregate Type					
Dolomite -			Activation Energy	36594.4	J/mol
			Tau	19.801	Hirs
			Beta	1.138	
			Alpha (ultimate):	0.76846	
# of Fine Aggregate Types	1 🔹		Hu	410244	J/ka
First Fine Aggregate Type				410244.4	
Siliceous River Sand 🔹					
-					
Check to Manually Enter the Thermal Expansion and Ther	Concrete Coefficient of mal Properties				
CTE 4.9	10^-6/*F		Back	tage and	Next
Concrete k 2.46	BTU/hr/ft/°F				HUMPH (BALLED)
Combined Aggregate Cp 0.20	BTU/Ib/*F				

Figure D-9 – WBSB 8 Material Properties (LOD 2)

ement Chemical/Physical	Topon													
Cement Type Type I/	11 🔹		eck to	manua	ally en	ter cement	Bl	aine (r	n²∕kg)		Fons (CO2/T	ons Cli	nker
		-		1	ou pro	Pertura		385	2			0.90	÷	
Rietveld Calculated Value Aite Belte Alu	is (%) iminate	Ferr		Gum		Bassanite	Achu	dula	Penc	896	Arr	ante	Calcit	
64.4 🗢 5.3 🌩 1	0.4 🔶	2.0	-	17.3	4	0.9	0.6	÷	1_1	÷	0.7	÷	4.1	÷.
Aggregate Factors						н	dration	Calcu	lation	Proper	ties			
# of Coarse Aggregate 1	lypes	1	•						to man		nter			
First Coarse Aggregate Ty	pe						- ny	dratic	on prop	erties				
Dolomite	•						Actival	tion E	nergy	4883	8.5%	J/mol		
							Tau			13.48	11	Hrs		
										1.097		FTS		
							Beta			1.4.3				
							Alpha	(ultim	ate):	0 782	464			
# of Fine Aggregate Typ	es	1	•				Hu			4691	50 f	J/ko		
First Fine Aggregate Type										1.001				
Siliceous River Sand	•													
Check to Manually En Thermal Expansion an	terthe Ci id Themi	oncret al Prop	e Coeff ierties	icient d	f									
CTE	4.9		10^-6/	۴			[Bac	*			Nex	t	
								1200120		100001		COLUMN TO A	T-10100	1000

Figure D-10 – WBSB 8 Material Properties (LOD 3)

nt Blaine(m²/kg)	Tons	s CO2/Tons Clinker
	Tons	002/Tees Oleker
		0.90 🚓
	K20	
Hydration Calculation	ually enter perties	
Activation Energy	27122	J/mol
Tau	18.483	Hrs
Apha (ultimate).	0.868	
Hu	435953	J/kg
Back		Next
	1.7 0.1 Hydration Calculation Check to man hydration prop Activation Energy Tau Beta Alpha (ultmate): Hu	1.7 0.1 0.5 Hydration Calculation Properties Check to manually enter hydration properties Activation Energy 27122 Tau 18.483 Beta 1.032 Alpha (ultimate): 0.868 Hu 435953

Figure D-11 – WBSB 8 Material Properties (LOD 4)

🐡 Construction Inputs	
Concrete Placement Temperature Click the method of calculating the concrete fresh temperature Calculated from indivual constituent material temperatures Concrete fresh temperature is equal to ambient temperature at	After Forms Are Sinpped Select the correct combination of curing methods on concrete exposed after forms are stripped White Curing Compound Elack Plastic Wet Curing Banket White or Clear Plastic
Concrete intent remperature is equal to anotent remperature at time of placement Manually enter concrete fresh temperature	Time between form removal and 1 hrs curing method applied
Estimated Placement Temperature 64 *F	Check which sides have form liners
Formwork Concrete age at Form Removal 101 hrs Form Type Steel • Form Color Yellow • Blanket Insulation R-Value Blanket Insulation R-Value Blanket Insulation R-Value Blanket Insulation R-Value Conductivity)	Widh Desh
	Back

Figure D-12 – WBSB 8 Construction Inputs

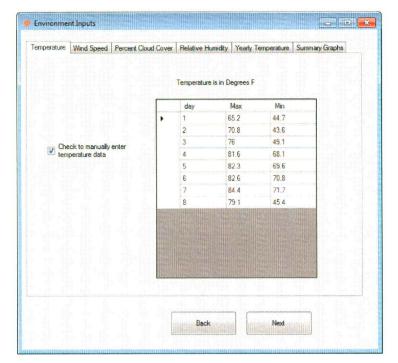


Figure D-13 – WBSB 8 Environment Inputs (Temperature)

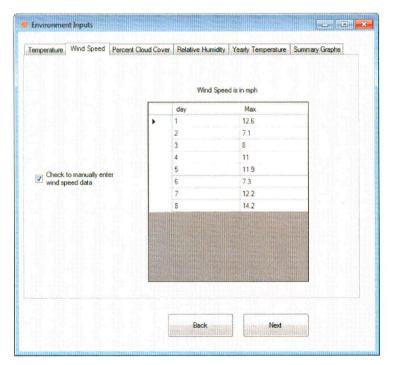


Figure D-14 – WBSB 8 Environment Inputs (Wind Speed)

	Cover is according scale as shown be	
		elow
	day	Max
•	1	14.1
	2	17.5
	3	73.7
	4	65.9
	5	69.1
	6	68.8
	7	52.9
	8	98.6
		3 4 5 6 7

Figure D-15 – WBSB 8 Environment Inputs (Cloud Cover)

mperature Wind Speed Percent Clo	ud Cover	Relative Humi	dity Yearly Ter	nperature Summa	ary Graphs
		Humidity	is in percent		
		day	Мах	Min	
	•	1	69.7	28.4	
		2	74.2	23.8	
		3	93.5	51.6	
		4	88	47.8	
Check to manually enter humidity data		5	84.6	48.9	
		6	85.8	52.4	
		7	84.9	45.6	Section 1
		8	82.6	29	
		Back		Next	

Figure D-16 – WBSB 8 Environment Inputs (Relative Humidity)

^o arameter	Value	Units *	Parameter	Value	Units
General Inputs			Environment Inputs Summary		
Project Location	Austin		Ave, Daily Max Temp.	66.8	۴F
Jnit System	English		Ave: Daily Min Temp.	52.2	۰F
Chloride Units	Percent of Concrete		Ave. Max Daily Solar Radiation	487.5	W/m^2
ife Cycle Analysis Duration	20	Years	Ave Max Daily Wind Speed	12 1	m/s
Analysis Duration	7	days	Ave Max Relative Humidity	84.4	2,
Concrete placement time	4	am	Ave. Min Relative Humidity	54.1	2
Concrete placement date	11/18/2010		-		
		1	Construction Inputs		
Member Inputs			Concrete Fresh Temperature	64	۴F
Shape Choice	Rect column		Blanket R-Value	2.91	Ŧ
Member width	10 17	ft	Forms are stripped after	101	hrs
Member depth	7.5	ft	Form Color	Yellow	
		E	Form Type	Steel	
Mixture Proportions			No Cure Method Chosen		
Cement Content	428	b/yd²			
Fly Ash Content	107.5	b/yd²	Corrosion Inputs		
Nater Content	231.2	b/yd ^a	Steel Type	Black Steel	
Coarse Aggregate Content	1934	b/yd ²	Steel Cover	2	
Fine Aggregate Content	1356	lb/yd²	Dref	101.3	x 10^
Ar Content	5	3	m	0.421	
Chemical Admixture ASTM C494	Type F, PCHRWR		No Barrier Method Selected		
Chemical Admixture ASTM C494	Type B, Retarder		Exposure Class	Urban Road	
Material Properties					
Cement Type	1/1				
Cement Chemistry Values	Default				
Hydration Parameter Values	Default		Default values are indicated by gre		
Coarse Agg, type	Dolomite		Questionable input values are indicated by gre		
Fine Agg type	Silceous River Sand		aucsonieure Piput values are Pioc	acu by icu	
Coarse Agg type	Dolomite		Back	Calculate	1

Figure D-17 – WBSB 8 Input Check (LOD 1)

Parameter	Value	Units 1		Value	Units
lember width	10 17	ît	Environment Inputs Summary		
lember depth	7.5	ft	Ave. Daily Max Temp.	77.8	۴
			Ave. Daily Min Temp	57.9	*F
Mixture Proportions			Ave, Max Daily Solar Radiation	455.4	W/m^2
Cement Content	428	b/yd²	Ave. Max Daily Wind Speed	10.5	m/s
Fly Ash Content	107.5	lb/yd³	Ave. Max Relative Humidity	82.9	2
Vater Content	231.2	lb/yd²	Ave, Min Relative Humidity	40.9	2.
Coarse Aggregate Content	1934	lb/yd²			
ine Aggregate Content	1356	lb/yd⁰	Construction Inputs		
Vr Content	5. Mill 1. Kar	3	Concrete Fresh Temperature	64	۴F
Themical Admixture ASTM C494	Type F, PCHRWR		Blanket R-Value	2.91	Ŧ
Themical Admixture ASTM C494	Type B, Retarder		Forms are stripped after	101	hrs
			Form Color	Yellow	
Material Properties			Form Type	Steel	
Cement Type	M	AL PROPERTY	No Cure Method Chosen		
C3S content	32 56	2			
2S content	38.6	2.	Corrosion Inputs		
3A content	12.16	2. 1		Black Steel	
AAF content	5.81	14	Steel Cover	2	
ree CaO content	0	2.	Dref	101.3	x 10^
03 content	3.72	22	m	0.421	
lgO content	1.33	2	No Barrier Method Selected		
Vkali content	0.49	74	Exposure Class	Urban Road	
Baine Fineness	385.2	m^2/			
lydration Parameter Values	Default	and the second			
Coarse Agg type	Dolomite				
ine Agg type	Silceous River Sand				
Concrete CTE	4.9	10^-6.	Default values are indicated by gre	100	
Concrete k	2.46	BTU/	Questionable input values are indicated by ge		
Combined Aggregate Cp	0.20	BTU/			
loarse Agg type	Dolomite Siliceous River Sand		Back	Calculate	

Figure D-18 – WBSB 8 Input Check (LOD 2)

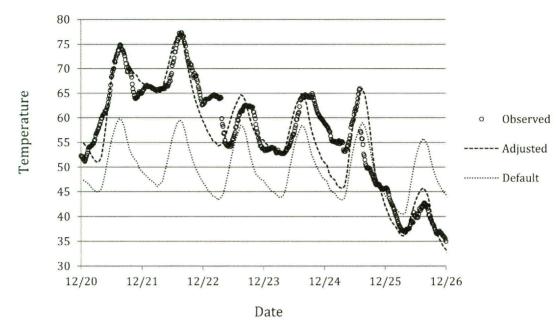

Number Value Value Value Value Wendber vidth 10.17 ft Member depth 7.5 ft Windure Proportions Environment Inputs Summary Zener Content 428 b/ydP Pily Aah Content 107.5 b/ydP Ave: Daily Min Temp. 57.9 'F Ave: Max Daily Stope Reduition 455.4 W/m. Darse Aggregate Content 1334 b/ydP Ave: Max Daily Stope Reduition 455.4 W/m. Derive Administure ASTM C494 Type F. PCHRWR Concrete Fresh Temperature Derive Type 1/11 Min Material Properties 2.91 'F Derive Ministe content 5.3 'V Stassardie content 10.4 'X Searate content 11 'X Minatics Content 11 'X Material Properties Default values are indicated by reen Concrete Nethod Chesen 101.3 'X 10'- Minatics content 11<	Input Check					
Member depth 7.5 h Member depth 7.5 h Mature Proportions	Parameter	Value	Units	Parameter	Value	Units
Mature Proportions Connert Cortex 428 b/ydP Ave. Daily Min Temp. 57.9 *F Ave. Max Daily Min Temp. 57.9 *F Ave. Max Daily Min Temp. 455.4 W/m ² Conser Aggregate Content 107.5 b/ydP Ave. Max Daily Min Temp. 455.4 W/m ² Ave. Max Daily Min Temp. 40.9 % Demical Admidute ASTM C454 Type E, PCHRWR 40.9 Chroate Type 101 hrs Mateorial Properties 101 hrs Centert Type 101 hrs Mateorial Type 104 % Ave. Inte content 10.4 % State content 10.4 % Ave. Max	Member width	10.17	ft	Environment Inputs Summary		
Mature Proportions Ave. Max Daily Solar Radiation 455.4 W/m ² Jennert Content 107.5 b/yd ² Ave. Max Daily Solar Radiation 455.4 W/m ² Ave. Max Daily Solar Radiation 455.4 W/m ² Ave. Max Daily Solar Radiation 455.4 W/m ² Ave. Max Daily Solar Radiation 405.4 W/m ² Ave. Max Daily Solar Radiation 455.4 W/m ² Ave. Max Daily Solar Radiation 405.4 W/m ² b/yd ² Ave. Max Daily Solar Radiation 405.4 W/m ² Name Appropriate Content 1334 b/yd ² Ave. Max Ralative Humidhy 82.9 2 Ave. Max Daily Solar Radiation 405.4 W/m ² Ave. Max Ralative Humidhy 82.9 2 Ave. Max Daily Solar Radiation 40.9 % Ave. Max Daily Solar Radiation 40.9 % Ave. Max Daily Solar Radiation 10.4 % Concrete Fresh Temperature 64 % Demetal Admixture ASTM C454 Type B. Retarder 101 Ive More Mathod Chasen 101 State Content 10.4 % % 101 More Mathod Chasen 101 Name Retary Education 10.4 % 101 More Mathod Chasen 101.3 % 10 ^o State	Member depth	7.5	ft	Ave. Daily Max Temp	77.8	"F
Cemerx Content 428 b/yd ^P Fily Ala Content 107.5 b/yd ^P Ave: Max Daily Wind Speed 10.5 m/s Constract Content 5 % Concrete Fresh Temperature 64 Form Type 10 hrs Form Type Form Type Mate content 5.3 % Form Type No Cure Method Chasen Na Cure Method Chasen No Cure Method Selected Ede Cover 2 Def 10.1.3 x 10^{-1} m 0.421 No				Ave. Daily Min Temp.	57.9	'F
F Ry Ash Content 107.5 brydP Water Content 231.2 brydP Ave. Max Relative Humidity 40.9 Sectorization 5 Demical Advisture ASTM C494 Type B, PCHRWR Demical Advisture ASTM C494 Type B, Retorder Demical Advisture ASTM C494 Type B, Retorder Mate content 64.4 Ave. Max Relative Humidity 2.91 Form Color Yellow Forma are stripped after 101 Mate content 5.3 Auminate content 0.9 Aver, Max Relative Humidity 84.8 Periodes content 0.9 Autoriate content 0.9 Aver, Max Relative Humidity 8.8 Rele Type Blask Steel Steel content 0.1 No Cure Method Chosen <t< td=""><td>Mixture Proportions</td><td></td><td></td><td>Ave. Max Daily Solar Radiation</td><td>455.4</td><td>W/m^2</td></t<>	Mixture Proportions			Ave. Max Daily Solar Radiation	455.4	W/m^2
Water Content 231.2 b/yd ^P Consex Aggregate Content 1334 b/yd ^P Air Content 1356 b/yd ^P Air Content 5 b/yd ^P Chemical Administure ASTM C454 Type F. PCHRWR Concrete Fresh Temperature 64 °F Demical Administure ASTM C454 Type B. Retorder 101 Vrs Chemical Administure ASTM C454 Type B. Retorder 101 Vrs Material Properties Intil Seel Concrete Fresh Temperature 64 °F Banker Browneter 64.4 % Seel Intil No Gure Method Chosen No Gure Method Chosen No Gure Method Chosen No Core Method Chosen 101.3 x 10 ^o No Barrier Method Selected Dref 101.3 x 10 ^o Steel Cover 2 x Dref 101.3 x 10 ^o No Barrier Method Selected Dref 101.3 x 10 ^o No Barrier Method Selected Exposure Casa Urban Road Exearcherontent 0.4 1 x	Cement Content	428	lb/yd²	Ave. Max Daily Wind Speed	10.5	m/s
Conserve Aggregate Content 1334 blydP Diren Aggregate Content 1355 blydP Kine Aggregate Content 1355 blydP Construction Inpuds Construction Inpuds Construction I Construction Inpuds State Content 11 X Avainate content 05 Construction Inpuds State Content 11 X Perclase content 11 X Coble content 11<	F Fly Ash Content	107.5	lb/yd ^a	Ave. Max Relative Humidity	82.9	2
Fine Aggregate Content 1356 bryde Wit General 5 % Demical Admidure ASTM C494 Type F, PCHRWR Concrete Fresh Temperature 64 * Demical Admidure ASTM C494 Type B, Retarder 101 hrs Material Properties Concrete Fresh Temperature 64 * Cameat 64.4 % Atte content 64.4 % Atte content 5.3 % Autiniate content 10.4 % Space content 10.4 % Space content 10.4 % Space content 0.9 % Advidue content 0.9 % Avoiniate content 0.9 % Avoinate content 0.6 % Avoinate content 0.7 % Bane Reneres 385.2 m ² / Bane Reneres 385.2 m ² / Bane Reneres 385.2 m ² / Concrete (TE 4.9 10*6 Concrete (TE 4.9 10*6 Concrete (TE 4.9 10*6 Concrete (TE 4.9 10*6	Water Content	231.2	b/yd ³	Ave. Min Relative Humidity	40.9	54
Aur Content S Aur Content S Aur Content Ferrational Administration ASTM C494 Type F. PCHRWR Dremical Administrice ASTM C494 Type F. PCHRWR Type F. PCHRWR Type F. PCHRWR Dremical Administrice ASTM C494 Type B. Retorder Concrete Fresh Temperature 64 1 Material Properties Electronic Matter Astronic Administrice ASTM C494 Type B. Retorder 101 hrs Material Properties Electronic Mathematic Astronic Administrice Astronic Administric	Coarse Aggregate Content	1934	b/yd ²			
Domical Admisture ASTM C454 Type F. PCHRWR Dremical Admisture ASTM C454 Type B. Petrader Demical Admisture ASTM C454 Type B. Retarder Chemical Admisture ASTM C454 Type B. Retarder Form see stripped after 101 Material Proporties 101 Centert. Type 101 Material Proporties Seel Centert. Type 101 Material Proporties Seel Centert. Type 104 Stell content 5.3 10.4 X Spreamorter 1 10.4 17.3 X Sassanite content 0.9 Avainate content 0.6 Variante content 0.6 Variante content 1.1 Variante content 0.6 Variante content 1.1 Stell Cover 2 Def 101.3 Woldshire Parameter Values Default Concrete Values Default Concrete CTE 9 Concrete CTE 2.46 BTU/ Default values are indicated by red	Fine Aggregate Content	1356	lb/yd²	Construction Inputs		
Chemical Admiture ASTM C454 Type B, Retarder Material Properties Material Properties Material Properties Centered: Type International Content Cont	Air Content	5	24	Concrete Fresh Temperature	64	*F
Material Properties Value Centent: Type 1/1 Atte content: 64.4 Atte content: 5.3 Autimate content: 5.3 Seatility of the content: 10.4 Yearning content: 10.4 Yearning content: 10.4 Seasante content: 10.3 Seasante content: 0.6 Antrydite content: 0.6 Antrydite content: 0.6 Antrydite content: 0.7 Antrydite content: 0.7 Antrydite content: 0.7 Calcide content: 4.1 Calcide content: 4.1 Calcide content: 0.4.1 Calcide content: 0.4.1 Cancer Agg type Dolomate Connette CTE 4.9 Connette CTE 4.9 Connette CTE 4.9 Calculate Calculate	Chemical Admixture ASTM C494	Type F, PCHRWR		Blanket R-Value	2.91	*F
Material Properties Steel Cernet Type 1/II Material Properties Steel Cernet 1 64.4 balke content 5.3 Auminate content 5.3 Territe content 2 Aground accontent 17.3 Aground accontent 0.9 Avainate content 0.9 Avainate content 0.6 Avainate content 0.7 Paicales content 0.7 Base Content 0.7 Calcie content 0.7 Base States Uthan Road Default values are indicated by reen Concrete X 2.46 Default values are indicated by reen Concrete CTE 4.9 Concrete K 2.46	Chemical Admixture ASTM C494	Type B, Retarder		Forms are stripped after	101	hrs
Centert Type 1/11 Ville content 64.4 Selet content 5.3 Auminate content 10.4 Zensorie content 2 Applian content 10.4 Zasanite content 0.9 Antydite content 0.6 Antydite content 0.6 Antydite content 0.6 Carbon for the content 0.6 Carbon for the content 0.7 Charbe content 1.1 Charbe content 1.1 Charbe content 1.1 Charbe content 1.1 Charbe content 2.1 Default values are indicated by green Connete CTE 4.9 Connete CTE 4.9 Connete CTE 4.9 Connete CTE 4.9				Form Color	Yellow	
Alte content 64.4 1 belle content 5.3 1 belle content 5.3 1 Animate content 10.4 1 Pentice content 2 1 Seel Type Bask: Steel 1 Seel Type Bask: Steel 1 Seel Type Dref 101.3 x 10^{^{-1}} Seel Cover 2 2 Anhydite content 0.6 1 Penciase content 1.1 1 Anhydite content 0.6 1 No Barner Method Selected 0.421 Penciase content 1.1 1 Calcite content 4.1 2 Calcite content 4.1 2 Calcite content 4.1 2 Concet of Tipe Dolomate Concet of Tipe Silceous Rver Stad Concet of Tipe 4.9 10^{-6} Concet of Tipe 4.9 10^{-6} Concet of Tipe 2.46 BTU/	Material Properties			Form Type	Steel	
belite content 5.3 Auminate content 10.4 Selection content 10.5 Selection content 10.5 Selection content 11. Selection content 12. Def ault values are indicated by red Calculate Concrete K 2.46 Selection	Cement Type	1/11		No Cure Method Chosen		
Aluminate content 10.4	Alite content	64.4	2,			
Auminate content 10.4 % Auminate content 2 % Brains content 2 % gysum content 17.3 % Basesite content 0.9 % Arbytide content 0.6 % Arbytide content 0.6 % Arbytide content 0.7 % Base anter Method Selected Montent Dictic content 1.1 % Base anter Method Selected Montent Base State content 1.1 % Base State content 1.1 % Base State content 0.7 % Base State content 0.7 % Base State content 0.7 % Colacte content 0.7 % Base State content 0.7 % Colacte content 0.7 % Base State content 0.7 % Colacte content 1.1 % Concert Class Uban Road Default values are indicated by green Concerte CTE 4.9 Concerte CTE 2.45 Bruck Calculate	belite content	5.3	7	Corrosion Inputs		
gysum content 17.3 1 Basasine content 0.9 1 Arbytick content 0.6 1 Periclase content 1.1 1 Arbytick content 0.7 2 Ocate content 0.7 2 Baine Method Selected 1 Baine Method Selected 1 Default values Uban Road Contract R Silceous River Sand Contract R 2.45 BTU/ Park	Aluminate content		7,	Steel Type		
Basanite content 0.9 1 Arhydite content 0.6 1 Periclase content 1.1 1 Acarite content 0.7 1 Calcite content 1.1 1 Elaine Fineness 385.2 m ² /. Blaine Fineness 385.2 m ² /. Consete Cites 10 for 4. Consete Cite 4.9 Concete Cite 4.9 Concete Cite 4.9 Concete Cite 2.46	Fenite content	2	2	Steel Cover	2	
Aritydrite content 0.6 x. Periclase content 1.1 x. Aritydrite content 0.7 x. Calcide content 0.7 x. Calcide content 4.1 x. Baine Finemess 385.2 m ⁻² /. Mundation Farameter Values 0.6 x. Coarse Agg type Dolomate Default Coarse Agg type Dolomate 0.0 Connete CTE 9.9 10 ^o -6. Connete K 2.46 BTU/	gypsum content	17.3	2	Dref	101.3	x 10^
Periclase content 1.1 % Avante content 0.7 % Boine Finemesa 385.2 m ² / Hydration Parameter Values Carana Agg type Dolomate Fine Agg type Concrete CTE 4.9 10 ⁻⁶ . Concrete CTE 4.9 10 ⁻⁶ .	Bassanite content	0.9	2	m	0.421	
Arcante content 0.7 % Calcite content 4.1 % Blaine Fineness 395.2 m ² // Kydraidin Parameter Values Coarea Ago, type Dotomite Default values are indicated by green Cuestionable input values are indicated by red Concrete CFE 4.9 10°-6 Concrete k 2.46 BTU/	Anhydrite content	0.6				
Calcite content 4.1 % Bane Preness 335.2 m ⁻¹ 2/. Bane Agg, type Dolomate Default Values are indicated by green Gane Agg, type Dolomate Dolomate Default values are indicated by green Concrete CTE 9 10 ⁻⁶ . Concrete K 2.46 BTU/ Default values are indicated by red	Periclase content			Exposure Class	Urban Road	
Blaine Fineness 385.2 m ² /. Hydration Parameter Values Default Coarea Ago type Dolomite Fine Ago type Silceous River Sand Concrete CTE 4.9 10°-6. Concrete k 2.46 BTU/.	Arcanite content	0.7	2			
Hydration Parameter Values Default Coarse Agg, type Dolomite Fine Agg, type Difault values are indicated by green Concrete CTE 4.9 Concrete K 2.46	Calcite content					
Coarse Agg type Dolomite Bine Agg type Default values are indicated by green Concrete CTE 4.9 Concrete K 2.46	Blaine Fineness	385.2	m^2/_			
Fine App type Silceous River Sand Default values are indicated by green Concrete CTE 4.9 10°-6 Concrete k Calculate Concrete k 2.45 BTU/ Back Calculate	Hydration Parameter Values	Default				
Inter-Spice Isidebus Hiver sand Concete CTE 4.9 10°-6 Concete k 2.46 BTU/	Coarse Agg. type	Dolomite	1	Defends of the second state of the second		1000 Sector Sector
Concrete k 2.46 BTU/. Paul Calculate	Fine Agg. type	Sliceous River Sand				
Park Calculate	Concrete CTE	4.9	10^-6.	Guesuonable input values are indi	calco by red	
	Concrete k	2.46	BTU/		Calculate	1
	Combined Aggregate Cp	0.20	BTU/ -	Back		

Figure D-19 – WBSB 8 Input Check (LOD 3)

Parameter	Value	Units		Parameter	Value	Linits
					Value	Units
Member width	10.17	h		Environment Inputs Summary		Sec.
Member depth	7.5	ft		Ave. Daily Max Temp.	77.8	*F *F
				Ave. Daily Min Temp.	57.9	
Mixture Proportions	428			Ave. Max Daily Solar Radiation Ave. Max Daily Wind Speed	455.4	W/m^2
F Fly Ash Content	428	b/yd ³			82.9	m/s
Water Content	231.2	b/yd ³		Ave. Max Relative Humidity Ave. Min Relative Humidity	40.9	2
Coarse Aggregate Content	231.2	lb/yd² Ib/yd²		Ave. Min Helative Humidity	40.9	7.
Fine Aggregate Content	1356	b/yd²		Construction Inputs		
Air Content	5	tu/yu-		Concrete Fresh Temperature	64	۰F
Chemical Admixture ASTM C494	Type F, PCHRWR	4		Blanket R-Value	2.91	1F
Chemical Admixture ASTM C494	Type B. Retarder			Forms are stripped after	101	hrs
chemical Admixture ASTM C454	Type b, heldidel			Form Color	Yellow	1113
Material Properties				Form Type	Steel	
Cement Type	M			No Cure Method Chosen	Jee	
Cement Chemistry Values	Default			The Care Mesilod Chosen	and Friday and States	
Activation Energy	27122	.L/mol		Corrosion Inputs		
Alpha	0.868	or mor		Steel Type	Black Steel	
Tau	18.483	hrs	1	Steel Cover	2	
Beta	1.032		-	Dref	101.3	× 10 [^]
Hu	435953			m	0.421	
Coarse Agg. type	Dolomite		1 and a	No Barrier Method Selected		
Fine Agg, type	Siliceous River Sand			Exposure Class	Urban Road	
Concrete CTE	49	10^-6				
Concrete k	2.46	BTU/				
Combined Aggregate Cp	0.20	BTU/				
Coarse Ago, type	Dolomite					
Fine Agg type	Sliceous River Sand					
				Default values are indicated by gre		
Mechanical Properties				Questionable input values are indic	sated by red	
Maturity Method	Nurse-Saul			Back	Calculate	

Figure D-20 – WBSB 8 Input Check (LOD 4)

Appendix E: IH35/SH71 WBSB Column 9

Weather Data

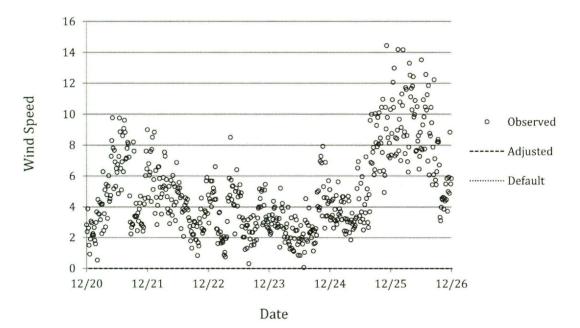
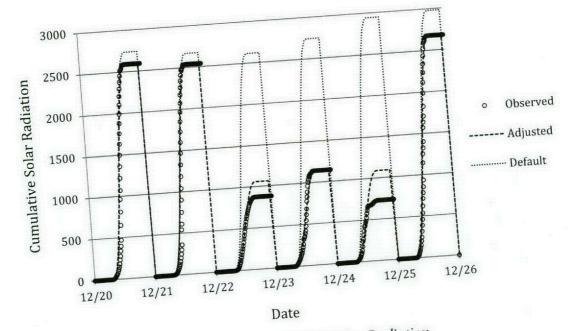
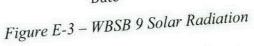
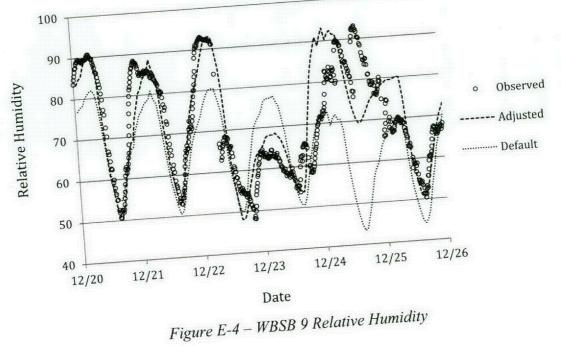





Figure E-2 – WBSB 9 Wind Speed

ConcreteWorks Screen Prints

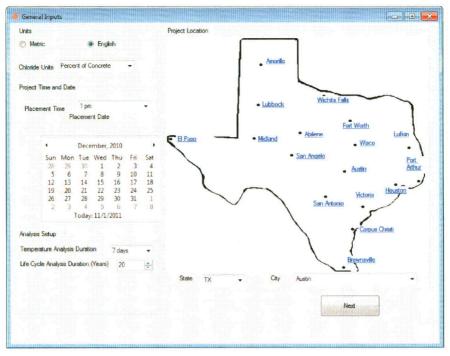
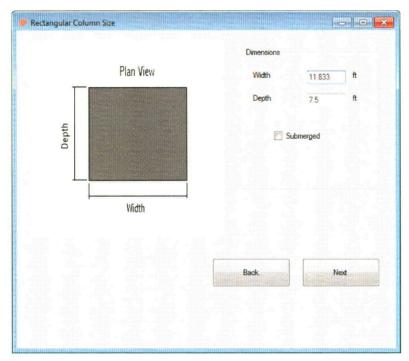


Figure E-5 – WBSB 9 General Inputs



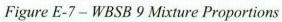


Figure E-6 – WBSB 9 Member Dimensions

🐠 Material Properties			
Cement Chemical/Physical Properties			
Cement Type Type I/II Check to manually enter ceme chemical/physical properties	nt Blaine(m²/kg)	Tons	CO2/Tons Clinker
Bogue Calculated Values (%)			
C ₃ S C ₂ S C ₃ A C ₄ AF Free CaO SO ₃	MgO Na2O	K20	
60.2 13 6.1 10.9 0.9 2.7	1.7 0.1	0.5	
Aggregate Factors	Hydration Calculation	Properties	
# of Coarse Aggregate Types 1 +	Check to man hydration prop	ually enter perties	
First Coarse Aggregate Type			
Dolomite -	Activation Energy	35959.0	J/mol
	Тац	16.207	His
	Beta	0.965	
	Alpha (ultimate):	0 74846	
# of Fine Aggregate Types 1	Hu	448776.1	J/kg
First Fine Aggregate Type			
Siliceous River Sand 👻			
Check to Manually Enter the Concrete Coefficient of Thermal Expansion and Thermal Properties			
CTE 5.1 + 10°-6/*F	Back		Next
Concrete k 1.84 🐨 BTU/hr/ft/*F			
Combined Aggregate Cp 0.20 BTU/b/*F			

Figure E-8 – WBSB 9 Material Properties (LOD 1)

🦀 Material Properties				Construction of the	
Cement Chemical/Physical Proper	ties				
Cement Type 1/11 -	Check to manually	enter cement	Blaine(m²/kg)	Tons	CO2/Tons Clinker
	chemical/physical p	properties	389.3		0.90 🚖
Bogue Calculated Values (%)					
C ₃ S C ₂ S C ₃ A	anterna anterna de la composición de la compos	SO 3	MgO Na2O	K20	
48.77 23.36 11.42	5.2	3.8	1.27 0.13	0.54	
Aggregate Factors		н	dration Calculation	Properties	
# of Coarse Aggregate Types	1 👻		Check to man hydration prop	ually enter perties	·
First Coarse Aggregate Type					
Dolomite 👻			Activation Energy	36332.2	J/mol
			Tau	17,786	Hrs
			Beta	1.116	
			Alpha (ultimate):	0 77246	
# of Fine Aggregate Types					
First Fine Aggregate Type			Hu	436329	J/kg
Siliceous River Sand					
Check to Manually Enter the Themal Expansion and Them	Concrete Coefficient of mal Properties			منتقر ومنتقا	
CTE 5.1	➡ 10^-6/*F		Back	idits 2000	Next
Concrete k 2.45	BTU/hr/ft/*F		United with Disk		
Combined Aggregate Cp 0.20	BTU/b/"F				ġ,

Figure E-9 – WBSB 9 Material Properties (LOD 2)

	_	a	harah da			ter ceme		Blaine	(m²Ac	a)	Т	0000 (τ Λ 201	ons Clin	kor
Cement Type 1/		d d	nemical	/physic	al pro	operties		38		21			0.90		
Rietveld Calculated Value	s (%)							30	3.3				0.00	<u>.</u>	
Alite Belite Alu	minate	Fen	ite	Gyps	um	Bassar	ite	Anhydrite	Pe	niclas	e	Arc	anite	Calcite	B
590 💠 6.1 💠 1	03 👌	- 2.5	÷	14.5	4	0.9	\$	0.6 🔶	1	1	•	0.7	•	4.1	÷
Aggregate Factors							Hy	dration Cale	culatio	on Pri	operti	es			
# of Coarse Aggregate T	ypes	1	•					Check				ter			
First Coarse Aggregate Ty	pe														
Dolomite	•							Activation	Energ	ay ¹⁴	6722	0	J/mol		
								Tau		1	4.034	1	Hrs		
								Beta		1	095				
								Alpha (ultin	nate).	. 0	7804	46-			
# of Fine Aggregate Typ	85	1	•					Hu		1	4350	-	J/kg		
First Fine Aggregate Type															
Siliceous River Sand	•														
Check to Manually En Thermal Expansion an	terthe C d Them	Concret nal Proj	te Coeff perties	icient o	ł										
CTE	5.1	÷	10^-6/	'F				B	ack		ו		Neo	đ	
Themal Expansion an	d Them	nal Pro	perties	'F	•			B	ack				Neo	đ	and a second sec
Sector R															

Figure E-10 – WBSB 9 Material Properties (LOD 3)

Material Properties				
Cement Chemical/Physical Propert	es			
Cement Type 1/II •	Check to manually enter chemical/physical prope	arties	Tons	CO2/Tons Clinker
Boque Calculated Values (%)		371.5		0.90
C3S C2S CA	C AF Free CaO S	0 MgO Na20	К20	
60.2 13 6.1	10.9 0.9 2	7 17 01	0.5	
Aggregate Factors		Hydration Calculation	Properties	
# of Coarse Aggregate Types	1 •	Check to man hydration prop	ually enter perties	
First Coarse Aggregate Type			26914	
Dolomite -		Activation Energy	20314	J/mol
		Tau	18.495	His
		Beta	0.812	
		Alpha (ultimate):	0.895	
# of Fine Aggregate Types	1 •	Hu	462578	J/kg
First Fine Aggregate Type				
Siliceous River Sand 👻				
Check to Manually Enterthe (Themal Expansion and Them	Concrete Coefficient of nal Properties			
CTE 5.1		Back	and Creat	Next
Concrete k 2.45	BTU/hr/ft/*F			
Combined Aggregate Cp 0.20	BTU/b/*F			

Figure E-11 – WBSB 9 Material Properties (LOD 4)

Concrete Placement Temperature Click the method of calculating the	e concrete fresh temperature		ination of curing methods on
Calculated from indivual constituent material temperature	s Change Constituent Material Temperatures	concrete exposed after	
 Concrete fresh temperature is e time of placement 	iqual to ambient temperature at	Wet Curing Blanket	White or Clear Plastic
 Manually enter concrete fresh t 	emperature	Form Liners	
Estimated Placement Temperat	ure 71 'F	Check which sides have	form liners
Formwork		🕑 Width	Depth
Concrete age at Form Removal	120 hrs		
Form Type Steel	•		
Form Color Yellow			
Blanket Insulation R-Value			
Blanket R-Value (Thickness / Thermal Conductivity) 2.91	1		
		Bac	Next

Figure E-12 – WBSB 9 Construction Inputs

perature Wind Speed	Percent Cloud Cover	Relative Hum	idity Yearly T	emperature Sumr	nary Graphs
		Temperature is	in Degrees F		
		day	Max	Min	٦
	•	1	74.9	51.1	
		2	77.3	62.6	
Check to manually e	oter	3	64.7	53.7	
temperature data		4	64.9	52.7	
		5	65.9	45.5	
		6	45.8	35.5	
		7	50.3	29	
		8	59.1	31.8	
		Back		Next	

Figure E-13 – WBSB 9 Environment Inputs (Temperature)

emperature Wind Speed Percer	t Cloud Cover	Relative Humidity	Yearly Temperature	Summary Graphs
		Wind Spee	d is in mph	
		day	Max	
	•	1	9.8	
		2	9	
		3	8.5	
		4	7.9	
Check to manually enter wind speed data		5	14.4	
		6	14.2	
		7	6.2	
		8	9.5	
	Contain the			
		an a		
			ر	
		Back	Next	

Figure E-14 – WBSB 9 Environment Inputs (Wind Speed)

mperature	Wind Speed	Percent Cloud Cover	Relative Humidity	Yearly	Temperature	Summary Graphs
Cloud Co	ver is used to c	alculate the solar radiat			ver is according	
					day	Max
			•		1	55
	Chec	k to manually enter			2	56
	Check	cover data			3	100
Cloud Cover Sliding Scale Index Sunny Partly Cloudy Overcast			4	9		
	Contraction of the		5	100		
	100 A 100 A		6	56		
	ath Claude Ourseat	0		7	17	
	Overcase		8	32		
10	20 30 40	50 60 70 80 90	100			
			Back		Next	

Figure E-15 – WBSB 9 Environment Inputs (Cloud Cover)

mperature Wind Speed Percer	nt Cloud Cover	Relative Humidity	Yearly Ter	mperature	Summary Graphs				
		Humidity is in percent							
		day	Max	Min					
	•	-1	90.7	50.6					
		2	88.4	52.9					
		3	93	48.1					
		4	71	53.8					
Check to manually enter humidity data		5	93.1	71.5					
		6	80.2	50.4					
		7	80.8	32.8					
		8	85.2	44.2					
		Back		Next					

Figure E-16 – WBSB 9 Environment Inputs (Relative Humidity)

Parameter	Value	Units ^	Parameter	Value	Units
General Inputs			Environment Inputs Summary		
Project Location	Austin		Ave. Daily Max Temp	58.7	'F
Unit System	English		Ave. Daily Min Temp.	43.4	"F
Chloride Units	Percent of Concrete		Ave. Max Daily Solar Radiation	455.3	W/m^;
Life Cycle Analysis Duration	20	Years	Ave, Max Daily Wind Speed	12.8	m/s
Analysis Duration	7	days	Ave. Max Relative Humidity	77.9	2,
Concrete placement time	1	pm	Ave, Min Relative Humidity	49.3	*
Concrete placement date	12/20/2010				
			Construction Inputs		
Member Inputs			Concrete Fresh Temperature	71	۰۴
Shape Choice	Rect column		Blanket R Value	2.91	*F
Member width	11,833	A	Forms are stripped after	120	hrs
Member depth	75	ft	Form Color	Yellow	
		1	Form Type	Steel	
Mixture Proportions			No Cure Method Chosen		
Cement Content	431.5	lb/yd²			
F Fly Ash Content	107.5	lb/yd²	Corrosion Inputs		
Water Content	231.2	b/yd²	Steel Type	Black Steel	and the set
Coarse Aggregate Content	1906	b/yd²	Steel Cover	2	
Fine Aggregate Content	1348	lb/yd²	Dref	101.3	x 10 [^]
Air Content	5	2	m	0.42	·
Chemical Admixture ASTM C494	Type F, PCHRWR		No Barrer Method Selected		
Chemical Admixture ASTM C494	Type B, Retarder		Exposure Class	Urban Road	in a started
Material Properties					
Cement Type	1/1				
Cement Chemistry Values	Default				
Hydration Parameter Values	Default		Default values are indicated by or		
Coarse Agg. type	Dolomite		Questionable input values are indicated by gre		
Fine Agg. type	Siliceous River Sand	14.24	SERVICE REPORT OF THE PROPERTY OF THE	dicu by rob	
Coarse Agg. type	Dolomite			Calculate	
Fine Agg type	Siliceous River Sand		Back	Temperatures	

Figure E-17 – WBSB 9 Input Check (LOD 1)

Parameter	Value	Units	Parameter	Value	Units
Member width	11.833	ft	Environment Inputs Summary		
Member depth	7.5	ft	Ave Daily Max Temp	62.9	*F
			Ave Daily Min Temp	45.2	*F
Mixture Proportions			Ave. Max Daily Solar Radiation	448.2	W/m^2
Cement Content	431.5	b/yd ²	Ave. Max Daily Wind Speed	9.9	m/s
F Ry Ash Content	107.5	b/yd3	Ave Max Relative Humidity	85.3	2
Water Content	231.2	lb/yd ¹	Ave Min Relative Humidity	50.5	2
Coarse Aggregate Content	1906	b/yd²			
Fine Aggregate Content	1348	b/yd²	Construction Inputs		
Ar Content	5	4	Concrete Fresh Temperature	71	۴F
Chemical Admixture ASTM C494	Type F, PCHRWR		Blanket R-Value	291	۳F
Chemical Admixture ASTM C494	Type B, Retarder		Forms are stripped after	120	hrs
			Form Color	Yellow	
Material Properties			Form Type	Steel	
Cement Type	1/11		No Cure Method Chosen		
C3S content	48.77	2			
C2S content	23 36	2	Corrosion Inputs		
C3A content	11.42	2	Steel Type	Black Steel	
C4AF content	5.2	2	Steel Cover	2	
Free CaO content	0	2	Dref	101.3	x 10^
SO3 content	3.8	2	m	0.42	
MgO content	1.27	2	No Barrier Method Selected		
Alkali content	0.49	2	Exposure Class	Urban Road	
Blaine Fineness	389.3	m^2/			
Hydration Parameter Values	Default				
Coarse Agg. type	Dolomite				
Fine Agg type	Siliceous River Sand	C. C. State			
Concrete CTE	5.1	10^-6			
Concrete k	2.45	BTU/	Default values are indicated by g		
Combined Aggregate Cp	0.20	BTO/	Questionable input values are ind	icated by red	
Coarse Agg. type	Dolomite			Calculate	7
Fine Agg type	Siliceous River Sand		Back	Temperatures	

Figure E-18 – WBSB 9 Input Check (LOD 2)

Input Check					
arameter	Value	Units *	Parameter	Value	Units
lember width	11.833	ft	Environment Inputs Summary		
lember depth	7.5	ft	Ave. Daily Max Temp.	62.9	۴F
			Ave. Daily Min Temp.	45.2	۴F
Aixture Proportions			Ave. Max Daily Solar Radiation	448.2	W/m^2
Cement Content	431.5	b/yd³	Ave. Max Daily Wind Speed	9.9	m/s
Fly Ash Content	107.5	lb/yd ^a	Ave. Max Relative Humidity	85.3	7.
Vater Content	231.2	lb/yd ²	Ave. Min Relative Humidity	50.5	*
coarse Aggregate Content	1906	lb/yd²			
ine Aggregate Content	1348	lb/yd²	Construction Inputs		
Vr Content	5	2	Concrete Fresh Temperature	71	۴F
Chemical Admixture ASTM C494	Type F, PCHRWR		Blanket R-Value	2.91	۴F
Themical Admixture ASTM C494	Type B, Retarder		Forms are stripped after	120	hrs
			Form Color	Yellow	
Material Properties		10	Form Type	Steel	
Cement Type	1/1		No Cure Method Chosen		
Nite content	59	2			
elite content	6.1	*	Corrosion Inputs		
Numinate content	10.3	2 1	Steel Type	Black Steel	
ente content	2.5	7.	Steel Cover	2	
lypsum content	14.5	2	Dref	101,3	x 10^
assanite content	0.9	2	m	0.42	
whydrite content	0.6	2	No Barrier Method Selected		
ericlase content	1,1	2	Exposure Class	Urban Road	
vcanite content	0.7	2			
alote content	4.1	2			
laine Fineness	389.3	m^2/.			
lydration Parameter Values	Default				
coarse Agg, type	Dolomite		Default values are indicated by gre		
ine Agg. type	Siliceous River Sand		Questionable input values are indicated by gre		
Concrete CTE	5.1	10^-6	Guesuonable input values are indic	cated by red	
Concrete k	2.45	BTU/.		Calculate	7
Combined Aggregate Cp	0.20	BTU/ +	Back	Temperatures	

Figure E-19 – WBSB 9 Input Check (LOD 3)

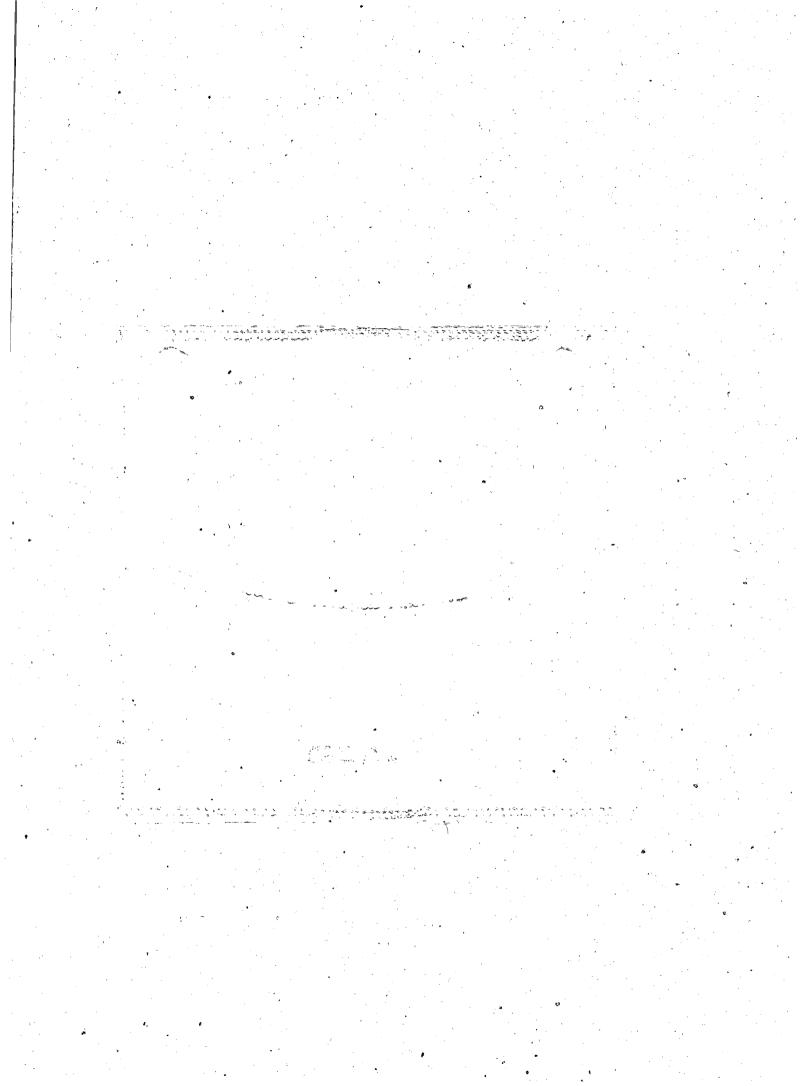

Parameter	Value	Units	•	Parameter	Value	Units
Member width	11.833	ît		Environment Inputs Summary		
Member depth	7.5	ft		Ave, Daily Max Temp.	62.9	۴F
				Ave. Daily Min Temp.	45.2	۴F
Mixture Proportions				Ave. Max Daily Solar Radiation	448.2	W/m^2
Cement Content	431.5	lb/yd²		Ave. Max Daily Wind Speed	9.9	m/s
F Ry Ash Content	107.5	b/yd3		Ave. Max Relative Humidity	85.3	2
Water Content	231.2	b/yd3		Ave. Min Relative Humidity	50.5	7.
Coarse Aggregate Content	1906	b/yd3	-			
Fine Aggregate Content	1348	lb/yd ²		Construction Inputs		
Air Content	5	%		Concrete Fresh Temperature	71	۴F
Chemical Admixture ASTM C494	Type F, PCHRWR			Blanket R-Value	2.91	'F
Chemical Admixture ASTM C494	Type B, Retarder			Forms are stripped after	120	hrs
				Form Color	Yellow	
Material Properties				Farm Type	Steel	
Cement Type	1/II			No Cure Method Chosen		
Cement Chemistry Values	Default					
Activation Energy	26914	J/mol		Corrosion Inputs		
Alpha	0.895			Steel Type	Black Steel	
Tau	18.495	hrs		Steel Cover	2	
Beta	0.812		1	Dref	101.3	x 10^
Hu	462578			m	0.42	
Coarse Agg. type	Dolomite			No Barrier Method Selected		
Fine Agg. type	Siliceous River Sand			Exposure Class	Urban Road	
Concrete CTE	5.1	10^-6				
Concrete k	2.45	BTU/				
Combined Aggregate Cp	0.20	BTU/				
Coarse Agg. type	Dolomite					
Fine Agg. type	Siliceous River Sand			Default values are indicated by ore		CONTRACTOR OF STREET
				Questionable input values are indicated by gre		
Mechanical Properties				successionaure input values are indic	aleo by red	
Maturity Method	Nurse-Saul				Calculate	

Figure E-20 – WBSB 9 Input Check (LOD 4)

References

- AASHTO (2009). AASHTO T 336-09, Coefficient of Thermal Expansion of Hydraulic Cement Concrete. Washington DC: American Association of State Highway and Transportation Officials.
- ASTM C127. (2007). Density, Relative Density (SG), and Absorption of Coarse Aggregate. Pennsylvania: American Society of Testing and Materials.
- ASTM C128. (2007). Density, Relative Density (SG), and Absorption of Fine Aggregate. Pennsylvania: American Society of Testing and Materials.
- ASTM C204. (2007). Fineness of Hydraulic Cement by Air-Permeability Apparatus. Pennsylvania: American Society of Testing and Materials.
- ASTM C39. (2010). Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. Pennsylvania: American Society of Testing and Materials.
- ASTM C469. (2002). Standard Test Method for Static Modulus of Elasticity and Poisson's Ratio of Concrete in Compression. Pennsylvania: American Society of Testing and Materials.
- ASTM C496. (2004). Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens. Pennsylvania: American Society of Testing and Materials.
- ASTM C1074. (2004). *Maturity Method*. Pennsylvania: American Society of Testing and Materials.
- Maxim. (2011). DS1921G Thermochron iButton. Retrieved from http://www.maximic. com/datasheet/index.mvp/id/4023
- Poole L., Riding K., Folliard, K., Juenger M., & Schindler A. (2007, January). Methods for Calculating Activation Energy for Portland Cement. ACI Materials Journal 104(1), 303-311.
- Riding K. (2007). *Early Age Concrete Thermal Stress Measurement and Modeling*. PhD Thesis, University of Texas at Austin.
- Schindler, A., & Folliard, K. (2005). *Heat of Hydration Models for Cementitious Materials*. ACI Materials Journal, 24-33.
- Scrivener, K.L., T. Füllmann, E. Gallucci, G. Walenta, and E. Bermejo. (2004). *Quantitative* Study of Portland Cement Hydration by X-Ray Diffraction/Rietveld Analysis and Independent Methods.

-N .

Center for Transportation Research

The University of Texas at Austin 1616 Guadalupe Street Austin, TX 78701

Phone: (512) 232-3100 To order reports: (512) 232-3126 (CTR Library) E-mail: ctrlib@austin.utexas.edu Web site: www.utexas.edu/research/ctr CTR Library Web site: http://library.ctr.utexas.edu

