TEXAS WATER DEVELOPMENT BOARD Report 129 Documents Department AUG2 3 1971 Dallas Public Library RECONNAISSANCE OF THE CHEMICAL QUALITY OF SURFACE WATERS OF THE RED RIVER BASIN, TEXAS MAY 1971 NO316684 081 0P75902790 ERNIWENT W600.7 R NO 12 # TEXAS WATER DEVELOPMENT BOARD ## **REPORT 129** # RECONNAISSANCE OF THE CHEMICAL QUALITY OF SURFACE WATERS OF THE RED RIVER BASIN, TEXAS Public Library AUG 2 3 1972 Dallas, Texas Donald K. Leifeste, James F. Blakey, and Leon S. Hughes «перативника» по в Вунити навление и выше Prepared by the U.S. Geological Survey in cooperation with the Texas Water Development Board # TEXAS WATER DEVELOPMENT BOARD W. E. Tinsley, Chairman Robert B. Gilmore Milton T. Potts Marvin Shurbet, Vice Chairman John H. McCoy Carl Illig Harry P. Burleigh, Executive Director Authorization for use or reproduction of any material contained in this publication, i.e., not obtained from other sources, is freely granted without the necessity of securing permission therefor. The Board would appreciate acknowledgement of the source of original material so utilized. Published and distributed by the Texas Water Development Board Post Office Box 13087 Austin, Texas 78711 # TABLE OF CONTENTS | | Page | |--|------| | ABSTRACT | 1 | | INTRODUCTION | 3 | | RED RIVER DRAINAGE BASIN | 3 | | General Description | 3 | | Population and Municipalities | 5 | | Agricultural and Industrial Development | 9 | | Development of Surface-Water Resources | 9 | | CHEMICAL QUALITY OF THE WATER | 9 | | Chemical-Quality Records | 9 | | Streamflow Records | 10 | | Environmental Factors and Their Effects on the Chemical Quality of the Water | 10 | | Geology | 10 | | Streamflow | 12 | | Activities of Man | 12 | | Relation of Quality of Water to Use | 17 | | Domestic Use | 17 | | Industrial Use | 19 | | Irrigation | 19 | | Geographic Variations in Water Quality | 19 | | Dissolved Solids | 21 | | Chloride | 22 | | Hardness | 22 | | Other Constituents | 22 | | Water Quality in Reservoirs | 22 | | Buffalo Lake | 22 | # TABLE OF CONTENTS (Cont'd.) | | Page | |---|------| | Bivins Lake | 22 | | Baylor Creek Reservoir | 23 | | Greenbelt Reservoir | 23 | | Lake Kemp and Diversion Lake | 23 | | Santa Rosa Lake | 23 | | North Fork Buffalo Creek Reservoir | 23 | | Lake Wichita | 23 | | Lake Kickapoo | 23 | | Lake Arrowhead | 23 | | Farmers Creek Lake | 23 | | Hubert H. Moss Lake | 23 | | Lake Texoma | 23 | | Lake Randall | 25 | | Brushy Creek Reservoir and Coffee Mill Creek Lake | 25 | | Pat Mayse Reservoir | 25 | | Lake Crook | 29 | | Water Quality at Potential Reservoir Sites | 29 | | Mackenzie | 29 | | Buck Creek | 29 | | Lelia Lake Creek | 29 | | Dozier Creek | 29 | | Lower McClellan Creek | 29 | | Sweetwater Creek | 29 | | Ringgold | 29 | | Timber Creek and Bois d'Arc Creek | 29 | | Big Pine | 29 | | Pecan Bayou | 29 | | Barkman Creek | 29 | # TABLE OF CONTENTS (Cont'd.) | | | Page | |-----|--|------| | | Present and Future Water-Quality Problems | 30 | | SEL | ECTED REFERENCES | 31 | | | TABLES | | | 1. | Reservoirs in the Red River Basin in Texas | | | ï | Having a Capacity of 5,000 Acre-Feet or More | 11 | | 2. | Source and Significance of Dissolved-Mineral | | | | Constituents and Properties of Water | 18 | | 3. | Water-Quality Tolerances for Industrial Applications | 20 | | 4. | Index of Surface-Water Records in the Red River Basin, Texas | 34 | | 5. | Summary of Chemical Analyses of Water at Daily Stations | | | | on Streams in the Red River Basin, Texas | 38 | | 6. | Chemical Analyses of Water From Streams and Reservoirs at | | | | Sites Other Than Daily Stations in the Red River Basin, Texas | 45 | | 7. | Chemical Analyses of Water From Streams at Selected Sites | | | | in the Red River Basin, Oklahoma | 62 | | | FIGURES | | | 1. | Index Map Showing River Basins in Texas and | | | | Physiographic Sections of the Red River Basin | 4 | | 2. | Map and Graphs Showing Precipitation and Runoff | 7 | | 3. | Geologic Map and Chemical Composition of Low-Flow of Streams | 13 | | 4. | Map Showing Location of Natural Brine Emissions | | | | and Areas of Petroleum Production | 15 | | 5. | Diagram for Classification of Irrigation Waters | 21 | | 6. | Duration Curve of Dissolved Solids for Red | | | | River Near Gainesville, Texas, 1953-63 | 21 | | 7. | Graph Showing Dissolved-Solids Content and | 0.4 | | | Quantity of Water in Lake Texoma, 1945-67 | 24 | | 8. | Map Showing Sampling Sites in Lake Texoma | 26 | | 9. | Vertical Profiles of Specific Conductance, | | | | Dissolved Oxygen, and Temperature of Lake Texoma | 27 | | 10. | Longitudinal Profiles of Lake Texoma Showing Water Quality, July 25-27, 1967 | 28 | | | water Quanty, July 20-27, 1907 | 28 | # TABLE OF CONTENTS (Cont'd.) | | | Page | |-----|---|------| | 11. | Map Showing Location of Streamflow and Chemical-Quality Data-Collection Sites, Major Existing Reservoirs, | | | | and Potential Reservoir Sites in Texas | 69 | | 12. | Map Showing Dissolved-Solids Concentrations of Surface Water | 71 | | 13. | Map Showing Chloride Concentrations of Surface Water | 73 | | 14. | Map Showing Hardness of Surface Water | 75 | # RECONNAISSANCE OF THE CHEMICAL QUALITY OF SURFACE WATERS OF THE RED RIVER BASIN, TEXAS #### ABSTRACT The Red River, from its point of origin in eastern New Mexico to the northeast corner of Texas, drains an area of about 48,000 square miles. The total area in Texas is 24,500 square miles. From west to east the topography changes from the nearly flat surface of the High Plains, to a gently eastward-sloping plain dissected by prominent systems of drainage in the Osage Plains, to the low relief and gently gulfward slope of the West Gulf Coastal Plain. The climate of the basin ranges from semiarid to humid; mean annual precipitation is less than 18 inches in the far western part and more than 46 inches in the extreme eastern part. Runoff increases from about 50 acre-feet per square mile at the 100th meridian to more than 800 acre-feet per square mile in the northeast corner of the State. The dissolved-mineral content and chemical character of waters in the Red River basin vary widely from place to place and from time to time. Geologic factors, runoff and streamflow characteristics, and activities of man largely determine the nature and amount of dissolved material transported by the Red River and its tributaries. In the semiarid western part of the basin, base flow is usually nonexistent. However, numerous seeps and springs in Permian rocks that crop out in this part of the basin account for much of the salt load in the Red River above Lake Texoma. The water quality of the main stem has been further degraded by oil-field brines. The eastern part of the basin is in an area of high rainfall and well-leached rocks and soils. Ground-water effluent is generally low in dissolved minerals, and the dissolved-solids content of streamflow varies only slightly with discharge. The highly mineralized waters from salt sources in the western part of the basin cause the water of the Red River to be undesirable for public supply throughout most of its reach in Texas. Storage of good-quality water in existing and proposed reservoirs on tributaries to the Red River will increase degradation of water quality in the main stem, especially above Lake Texoma. Even if releases are made from tributary impoundments in the western part of the basin, evaporation during impoundment and waste water from various uses of the reservoir waters will degrade the tributary waters entering the main stem. For any plan to be effective in the improvement of water quality of Red River throughout its reach in Texas, large amounts of natural brine must be prevented from entering water courses of the basin. # RECONNAISSANCE OF THE CHEMICAL QUALITY OF SURFACE WATERS OF THE RED RIVER BASIN, TEXAS ## INTRODUCTION The investigation of the chemical quality of the surface waters of the Red River basin, Texas, is part of a statewide reconnaissance. Each major river basin in the State is being studied and a report is being prepared to present the results of the study and to summarize the available chemical-quality data. Reports that have been published are included in the list of references. The purpose of this report is to summarize information on the quality of surface water in the Red River basin, and to present it in a form that will aid in the proper development, control, and use of water resources of the area. In the study, the following items were considered: the nature and amounts of mineral constituents in solution; the geologic, hydrologic, and cultural influences that determine water quality; the amount and probable source of the salt transported by streams; and the suitability of the water for domestic, industrial, and agricultural uses. Data for the Oklahoma part of the Red River basin are included to show the effect of runoff from Oklahoma on the chemical quality of water in the mainstem Red River. A network of daily chemical-quality stations on principal streams in Texas is operated by the U.S. Geological Survey in cooperation with the Texas Water Development Board and with federal and local agencies. This network has not been adequate to inventory completely the chemical quality of the surface waters of the State. To supplement the information being obtained by the network, a cooperative statewide reconnaissance by the U.S. Geological Survey and Texas Water Development Board was begun in September 1961. In this reconnaissance, samples for chemical analyses have been collected periodically at numerous sites throughout the State so that some quality-of-water information would be available for locations where
water-development projects are likely. These data aid in the delineation of areas having water-quality problems and in the identification of probable sources of pollution, and thus indicate areas where more detailed investigations are needed. During the period September 1961 to September 1967, water-quality data were collected on the principal streams, on the major reservoirs, at a number of potential reservoir sites, and on many tributaries in the basin. Quality-of-water information for the Oklahoma part of the Red River basin was collected by the U.S. Geological Survey in cooperation with the Oklahoma Water Resources Board. Water-quality data in Texas and Oklahoma have been collected also by the U.S. Public Health Service and the Federal Water Quality Administration. Agencies that have cooperated in the collection of water-quality and streamflow data include the U.S. Army Corps of Engineers, the Texas State Department of Health, and the city of Wichita Falls. # RED RIVER DRAINAGE BASIN ## **General Description** The Red River basin in Texas is bounded on the north by the Canadian River basin and on the south by the Brazos, Trinity, and Sulphur River basins. (See Figure 1). The headwater stream in the Red River basin, Tierra Blanca Creek, rises in the High Plains of eastern New Mexico about 40 miles west of the Texas-New Mexico boundary at an elevation of about 4,800 feet above mean sea level. Tierra Blanca Creek flows eastward across the Texas High Plains and becomes the Prairie Dog Town Fork Red River in eastern Randall County. The Prairie Dog Town Fork Red River flows eastward to the southeast corner of the Texas Panhandle where it becomes the Red River. The Red River flows eastward as the Texas-Oklahoma boundary, then becomes the Texas-Arkansas boundary for about 30 miles before leaving the State. At the northeast corner of Texas, the streambed elevation is about 250 feet. Figure 1.—Drainage Basins in Texas The Red River has many tributaries in Oklahoma and Texas. The Washita River, Sweetwater Creek, and the North and Salt Forks Red River rise in the Texas Panhandle and flow into Oklahoma before joining the Red River from the north. The major all-Texas tributaries are the Pease, Wichita, and Little Wichita Rivers. Downstream from the Little Wichita River, the Texas part of the basin is narrow and is drained by numerous small streams. The major all-Oklahoma tributaries are Muddy Boggy Creek and the Kiamichi River. The total area drained by the Red River usptream from the northeast corner of Texas is approximately 48,000 square miles, of which about 5,900 square miles is considered as noncontributing to streamflow. The total area in Texas draining to the Red River is approximately 24,500 square miles of which about 5,300 square miles is considered noncontributing. The Red River basin in Texas is in three physiographic sections—the High Plains section of the Great Plains province, the Osage Plains section of the Central Lowlands province, and the West Gulf Coastal Plain section of the Coastal Plain province. The physiographic sections are shown on Figure 1. The High Plains section within the Red River basin is characterized by a nearly flat surface sloping gently southeastward about 10 feet per mile. Among the few and generally insignificant features of relief are saucerlike depressions, ranging in diameter from several tens of feet to about 1 mile, and ranging in depth from a few inches to about 60 feet. The eastern margin of the High Plains is marked by a prominent escarpment or "break of the plains." The Osage Plains section within the Red River basin adjoins the High Plains section and has as its eastern boundary the western margin of the gulfward-dipping Cretaceous rocks of the West Gulf Coastal Plain, which extends diagonally from northeast to southwest across Montague County. The Osage Plains section generally is a gentle eastward-sloping plain dissected by prominent systems of drainage. The valleys are wide and bounded by abrupt escarpments, and the streams flow in broad, shallow channels. Much of the surface area has a definite reddish color. The West Gulf Coastal Plain section extends from the edge of the Osage Plains section eastward throughout the remainder of the report area. Low relief and a gentle gulfward slope of the land surface characterizes this section. Local topographic features are irregular, rolling, and hilly uplands, and flat flood plains and terraces. The streams have wide, nearly flat flood plains bounded by a series of terraces, which may be more than 100 feet higher than the stream channels. The climate of the basin ranges from semiarid to humid (Thornthwaite, 1952, p. 32). Thornthwaite's classification, which is based on a moisture index, compares potential evapotranspiration with precipitation. Where precipitation is exactly the same as potential evapotranspiration and water is available just as needed, water is neither deficient nor in excess, and the climate is neither moist or dry. As water deficiency becomes larger with respect to potential evapotranspiration, the climate becomes more arid; conversely, as water surplus becomes larger, the climate becomes more humid. East of a north-south line near the Cooke-Montague County line, the basin has surplus moisture and is characterized by a moist subhumid to humid climate. West of this line the area is deficient in moisture and has a dry subhumid to semiarid climate. Precipitation ranges from an annual mean of less than 18 inches in the far western part of the basin to more than 46 inches in the extreme eastern part. Figure 2 shows the average monthly precipitation at Amarillo, Wichita Falls, and Sherman, Texas, and McAlester, Oklahoma; it also shows the annual precipitation for 1937-65 at Altus, Oklahoma. In general, precipitation is greatest during the spring and summer months and least during the winter. However, precipitation is more evenly distributed throughout the year in the eastern part of the basin than in the western part. Runoff is that part of precipitation that appears in surface streams. It is the same as streamflow unaffected by artificial diversions, storage, or other works of man in or on stream channels (Langbein and Iseri, 1960, p. 17). However, the terms are not synonymous for regulated flow. The Red River is regulated by Lake Texoma, and some of the tributary streams are regulated by reservoirs, floodwater-retarding structures, and farm ponds. However, many streams in the Red River basin are not regulated by reservoirs of appreciable size. The 28-year record of the Salt Fork Red River at Mangum, Oklahoma, is the only long-term record of flow from west of the 100th meridian. Runoff varies widely from year to year, and at the Mangum station has varied from a maximum of 200,400 acre-feet in 1941 to a minimum of 8,930 acre-feet in 1940. Annual average runoff is 0.9 inch (50 acre-feet per square mile) at this station. Runoff at Mangum is indicative of runoff from the area west of the 100th meridian. Runoff in the Red River basin in Texas increases more or less uniformly from west to east, and averages more than 15 inches per year (800 acre-feet per square mile) at the northeast corner of the State. For the period 1944-65, the average runoff was 15.8 inches per year at the U.S. Geological Survey stream-gaging station Boggy Creek near Daingerfield in nearby Cypress Creek basin. Average annual runoff in inches per year, as computed from streamflow records for the period 1938-66, is given for seven stations on Figure 2. Also shown on Figure 2 is annual runoff expressed as mean discharge in cubic feet per second and inches per year for the gaging stations Salt Fork Red River at Mangum, Oklahoma; Red River near Gainesville, Texas; and Red River at Index, Arkansas. # **Population and Municipalities** The Red River basin in Texas constitutes about 9 percent of the area of the State and has about 4 percent of the population. Much of the land is sparsely populated. Population changes within the basin reflect the national trend of rural area decline and urban area increase. As in other areas of the country, these changes are due to the reduction of farm employment opportunities resulting from the development of mechanized, large-scale agricultural methods, and the consequent exodus of surplus farm labor to cities, as well as other migration and social factors. The larger cities have continued to grow while the population of small towns has remained fairly constant. The cities and towns having populations over 2,500 are listed in the following table. | CITY | *POPULA-
TION | CITY | *POPULA-
TION | |---------------|------------------|------------|------------------| | Amarillo1/ | 164,770 | Bonham | 7,600 | | Wichita Falls | 113,800 | Tulia | 6,690 | | Sherman | 27,100 | Childress | 6,420 | | Paris | 24,000 | Iowa Park | 5,410 | | Denison | 23,400 | Shamrock | 3,420 | | Vernon | 13,980 | Nocona | 3,360 | | Hereford | 12,570 | Henrietta | 3,200 | | Burkburnett | 8,490 | Whitesboro | 2,980 | | | | | | ^{* 1967} population estimates (Dallas Morning News, 1967). ^{1/}Amarillo is partly in the Canadian River basin. Figure 2 Precipitation and Runoff in the Red River Basin # Agricultural and Industrial Development Agriculture has contributed substantially to the economic growth of the Red River basin. Farming, livestock raising, and dairying are successful because of the fertile soils and generally favorable climate. The availability of ground water for irrigation and the advent of mechanized farm equipment have been largely responsible for the success of farming in the drier western part of the basin. In the eastern part, where rainfall is greater, supplemental irrigation insures good crop yields. Cotton, grain sorghums, and wheat are the principal crops in the western part, and cotton, corn, and vegetables predominate in the eastern part. The processing of local farm products is one of the major industries in the basin;
processing plants are located close to areas of agricultural production. Oil and gas production constitutes another substantial income-producing segment of the economy. Much of the industrial development of the basin is related to the production of oil and gas. The development of irrigation in places has been greatly facilitated by the abundant supply of natural gas for power. Industries in the area that depend on the production of oil and gas include synthetic rubber, carbon black, oil refining, petrochemical, and pipeline equipment. Lumber mills, plants related to timber production, power plants, machinery, and furniture manufacturers are also located in the basin. # **Development of Surface-Water Resources** The only reservoir on the Red River is Lake Texoma, which was built for flood control and hydroelectric power generation. Because of the poor quality of the water of the main stem, most of the water development projects in the basin are on tributary streams. As of December 31, 1967, nineteen reservoirs in the Texas part of the basin had capacities of 5,000 acre-feet or more. The capacity, ownership, and use of these reservoirs are listed in Table 1; the locations are shown on Figure 11. # CHEMICAL QUALITY OF THE WATER #### Chemical-Quality Records Although the U.S. Geological Survey has collected chemical-quality records in the Red River basin, Texas, since 1942, very few long-term daily records are available. In 1942, a daily sampling station was established on the Pease River near Crowell, but it was discontinued in 1943. Daily chemical-quality records of more than 10 years are available for the stations at Red River near Gainesville and Red River at Denison Dam. Since 1942, the U.S. Geological Survey has collected daily chemical-quality data for varying periods at 12 stations either on the main stem or on Texas tributaries. In addition, miscellaneous chemical-quality data are available for numerous sites. The periods of record at all data-collection sites in Texas are given in Table 4 and the locations are shown on Figure 11. The chemical-quality data for the daily stations are summarized in Table 5, and the complete records are published in an annual series of U.S. Geological Survey Water-Supply Papers and in reports of the Texas Water Development Board and predecessor agencies. Results of all the miscellaneous analyses are given in Table 6. Chemical analyses from selected stations in Oklahoma are given in Table 7. Complete records of all chemical-quality data available for surface water in Oklahoma are published in the annual series of U.S. Geological Survey Water-Supply Papers and in reports of the Oklahoma Water Resources Board. See list of references. Chemical-quality records, including continuous specific conductance data, were collected by the U.S. Public Health Service (1964) at 27 sites in the Red River basin in Texas and Oklahoma during 1961-62. Public Health Service sampling sites in the Red River basin in Texas are identified in Table 4. The Texas State Department of Health has made available to the Geological Survey the data collected in its former statewide stream-sampling program. The former data-collection sites are listed in the following table. Some of them are at U.S. Geological Survey stream-gaging stations. The numbers refer to sites shown on Figure 11. # SITE NO. FORMER TEXAS STATE DEPART-MENT OF HEALTH DATA-COLLECTION SITES - 4 Palo Duro Creek at Park Road 5 near Canyon, Texas. - 13 Prairie Dog Town Fork Red River at State Highway 70 near Brice, Texas. - Prairie Dog Town Fork Red River at U.S. Highway 83 near Childress, Texas. - 24 Red River at State Highway 283 near Quanah, Texas. - Red River at U.S. Highway 183 near Oklaunion, Texas. - 68 Red River at U.S. Highway 281 near Burkburnett, Texas. - Red River at State Highway 79 near Byers, Texas. # SITE NO. FORMER TEXAS STATE DEPART-MENT OF HEALTH DATA-COLLECTION SITES - 97 Red River at U.S. Highway 81 near Terral, Oklahoma. - 99 Red River near Gainesville, Texas. - Red River near Denison, Texas. - Red River at State Highway 78 near Bonham, Texas. - 104 Red River at U.S. Highway 271 near Arthur City, Texas. - Red River at State Highway 37 at Albion, Texas. - Red River at U.S. Highway 59 near Texarkana, Texas. ## Streamflow Records Streamflow records in the Red River basin date from the 1890's, when the U.S. Weather Bureau began collecting gage-height records on the Red River at Arthur City in 1891 and on the Red River near Colbert, Oklahoma (near Denison, Texas) in 1892. The first Geological Survey gaging station was established on the Wichita River at Wichita Falls in 1900. Discharge records are available for more than 50 stations on the Red River and its tributaries in Texas; 11 stations have 15 years or more of record and several others have more than 5 years of record. In 1966 the Geological Survey operated 26 streamflow stations, five reservoir content stations, and five partial-record stations in the Red River basin, Texas. During this reconnaissance, discharge measurements were made at other sites where water samples were collected for chemical analyses. Records of discharge, stage of streams, and contents and stages of reservoirs from 1900 to 1960 have been published in the annual series of the U.S. Geological Survey Water-Supply Papers. Beginning with the 1961 water year, streamflow records have been released by the Geological Survey in annual reports for each state (U.S. Geological Survey, 1961, 1962, 1963, 1964b, 1965, 1966). Summaries of discharge records giving monthly and annual totals have been published (U.S. Geological Survey 1955, 1964a; Texas Board of Water Engineers, 1958). # Environmental Factors and Their Effects on the Chemical Quality of the Water Water from natural sources contains mineral constituents dissolved from the rocks and soils of the earth's crust. The kind and quantities of dissolved minerals in surface water depend upon a number of environmental factors, some of the most important of which are geology, streamflow characteristics, and the activities of man. # Geology The amounts and kinds of minerals dissolved in water that drains from areas where municipal and industrial influences are small depend principally on the chemical composition and physical structure of the rocks and soils traversed by the water. The length of time the water is in contact with the soil and rocks is also important. The amount of minerals in the soils and rocks available for solution is decreased by leaching; therefore, in areas of high rainfall, rocks that originally contained large quantities of readily soluble minerals have been leached by circulating water until the mantle rock and residual soil contain relatively small amounts of readily soluble materials. These rocks usually yield water of low mineralization. However, in arid or semiarid regions most soils, and the rocks from which they originated, are incompletely leached and still contain large amounts of readily soluble material. In the semiarid western part of the Red River basin, some rocks and soils contain large quantities of halite, gypsum, limestone, and dolomite. Water of streams draining these areas usually is highly mineralized. In the eastern part of the basin, where precipitation is more abundant, the well-leached rocks usually yield waters of low mineralization. The geology of the Red River basin, Texas, has been described by Baker and others (1963, p. 18-26). Rocks exposed in the Texas part of the basin consist of a thick series of sedimentary strata that range in age from Pennsylvanian to Quaternary. The outcrop areas of the geologic units are shown on Figure 3. Chemical analyses of selected low-flow samples are represented diagrammatically (Stiff, 1951) on Figure 3 to relate chemical composition of surface waters to geology. The shape of the diagram indicates the relative concentrations of the principal chemical constituents of the water (in milliequivalents per liter) and the size of the diagram indicates roughly the relative degree of mineralization. The headwater stream of the Red River rises in the Ogallala Formation of Tertiary age. The Ogallala consists of clay, silt, sand, gravel, and caliche. Some of the sand, gravel, and silt are unconsolidated; but some cementation occurs, chiefly by calcium carbonate. The principal chemical constituents in water from the Ogallala are sodium, calcium, magnesium, and bicarbonate. Base flow is generally nonexistent in streams that drain the Ogallala outcrop, and runoff occurs only after heavy rains. Table 1.—Reservoirs in the Red River Basin in Texas Having Capacities of 5,000 Acre-Feet or More. 1 (The purpose for which the impounded waters are used is indicated by the following symbols: M, municipal; I, industrial; Ir, irrigation; P, hydroelectric power; F, flood control; R, recreation.) | | DATE | | *CAPACITY | | | | |--------------------------|-----------|------------------------------------|-----------|--|-----------------|---------| | RESERVOIR | COMPLETED | STREAM | (AC-FT) | OWNER | COUNTY | USE | | Buffalo Lake | 1938 | Tierra Blanca Creek | 18,150 | Fish and Wildlife
Service, U.S. Department
of Interior | Randall | R | | Bivins Lake | 1927 | Palo Duro Creek | 5,120 | City of Amarillo | Randall | М | | Baylor Creek | 1950 | Baylor Creek | 9,220 | City of Childress | Childress | М | | Greenbelt | 1966 | Salt Fork Red River | 59,800 | Greenbelt Municipal
and Industrial Water
Authority | Donley | М, І | | Lake Kemp | 1923 | Wichita River | 461,800 | City of Wichita Falls
and Wichita County
Water Improvement
District No. 2 | Baylor | l, ir | | Diversion Lake | 1924 | do | 40,000 | do | Baylor, Archer | I, Ir | | Santa Rose Lake | 1929 | Beaver Creek | 11,570 | W. T. Waggoner Estate | Wilbarger | l, Ir | | North Fork Buffalo Creek | 1964 | North Fork Buffalo
Creek | 15,400 | Wichita County
Water
Control and
Improvement District | | | | | | | | No. 3 | Wichita | M | | Lake Wichita | 1901 | Holliday Creek | 14,000 | City of Wichita Falls | Wichita, Archer | M | | Lake Kickapoo | 1945 | North Fork Little
Wichita River | 106,000 | do | Archer | M | | Lake Arrowhead | 1966 | Little Wichita River | 228,000 | do | Archer, Clay | М, І | | Farmers Creek | 1960 | Farmers Creek | 25,400 | North Montague County
Water Supply District | Montague | M, I | | Hubert H. Moss Lake | 1966 | Fish Creek | 23,200 | City of Gainesville | Cooke | М, І | | Lake Texoma | 1943 | Red River | 5,393,000 | U.S. Army Corps
of Engineers | Cooke, Grayson | P, F | | Lake Randall | 1909 | Shawnee Creek | 5,400 | City of Denison | Grayson | M | | Brushy Creek | 1961 | Brushy Creek | 16,800 | Texas Power and
Light Co. | Fannin, Grayson | P | | Coffee Mill Creek Lake | 1938 | Coffee Mill Creek | 8,000 | U.S. Forest Service | Fannin | R | | Pat Mayse | 1967 | Sanders Creek | 124,500 | U.S. Army Corps
of Engineers | Lamar | M, I, F | | Lake Crook | 1923 | Pine Creek | 9,960 | City of Paris | Lamar | М | | | | | | | | | ^{1/} Existing or under construction as of December 31, 1967. ^{*} Total capacity is that capacity below the lowest uncontrolled outlet or spillway and is based on the most recent reservoir survey available. Downstream from the Ogallala outcrop, the drainage area of the Prairie Dog Town Fork Red River is underlain by rocks of Triassic and Permian age. The Dockum Group of Triassic age consists of shale and sandy shale, crossbedded sandstone, and conglomerate. The chemical quality of the water from the Dockum Group varies with local conditions, but it is generally unsuitable for irrigation or public supply. Rocks of Permian age crop out over much of the basin east of the High Plains Escarpment and west of the eastern boundary of Montague County. The Permian rocks consist predominantly of shale, anhydrite, gypsum, limestonė, dolomite, and sandstone. The chemical composition of water contributed to streams by these rocks varies. During periods of sustained low flow, water of the Prairie Dog Town Fork Red River, and the North and Salt Forks Red River is of a highly mineralized calcium sulfate type. Water of the Pease River and North and South Forks Wichita River is of a highly mineralized sodium chloride type. Significant natural brine emission areas as identified by the U.S. Public Health Service (1964) are shown on Figure 4. Numerous small alluvial deposits of Quaternary age are present in this area, and ground-water flow from them probably causes some of the variations in chemical composition and dissolved-solids concentration of surface waters. Downstream from Lake Kemp, the Wichita River drains rocks of the Wichita Group of Permian age. The Wichita Group consists of shale, sandstone, and limestone. Ground-water effluent in this reach is generally of a mixed chemical type having sodium, sulfate, and chloride as the predominant ions. Dissolved-solids concentrations are much less than those of waters above Lake Kemp. The drainage area of the Little Wichita River is underlain by rocks of the Cisco and Wichita Groups. The Cisco Group of Pennsylvanian age is composed of shale, limestone, sandstone, and conglomerate. Ground-water effluent in Little Wichita River watershed is generally of a mixed chemical type, having sodium, bicarbonate, and chloride as the predominant ions; the water is relatively low in dissolved solids. However, oil-field brine pollution in some reaches in the Wichita and Little Wichita Rivers has in the past altered the composition of water to a sodium chloride type. Downstream from the Montague-Cooke County line, the streams drain rocks of Cretaceous age. The principal outcrops are the Eagle Ford Shale consisting of shale, limestone, and sand; rocks of Austin age consisting of chalk, marl, and sand; rocks of Taylor age consisting of marl, chalk, and sandy marl; and the Washita and Fredericksburg Groups undifferentiated consisting of limestone, marl, and clay. Waters draining these rocks, although varying slightly in composition from one formation to another, are low in dissolved-solids content and usually contain calcium and bicarbonate as the predominant ions. Quaternary alluvium is exposed from Lake Texoma eastward to the northeast corner of Texas. However, these alluvial deposits are present along the river in the form of terraces which hold water in bank storage. The alluvium is recharged during high flow, but it releases the water to the river when the high flow subsides. # Streamflow For many streams not regulated by upstream reservoirs, the concentrations of dissolved minerals vary inversely with the water discharge. The minimum concentrations usually occur during periods of high flow because most of the water is surface runoff that has been in contact with rocks and soils for a relatively short time. The maximum concentrations usually occur during periods of low flow when the water is predominantly ground water that has been in contact with the rocks and soils for a sufficient time to dissolve part of their soluble minerals. In the western part of the Red River basin, dissolved-solids content and water discharge are not related in a predictable manner. Many of the streams are dry or almost dry much of the time, and salt deposits accumulate on the beds and banks of the streams. Subsequent runoff dissolves these deposits causing erratic variation in the salt content of the runoff. In the eastern part of the basin, the dissolvedsolids content of ground-water effluent is generally low, and therefore the dissolved-solids content of streams varies only slightly with discharge. Consequently, the dissolved solids-water discharge relationship is poorly defined for streams in the Red River basin in Texas. #### **Activities of Man** The activities of man often degrade the chemical quality of surface water. Depletion of flow by diversion and by consumptive use, increased evaporation from impoundment, and return flow from irrigation increase the dissolved-solids concentration of water in streams. Also, the discharge of municipal and industrial wastes into a stream degrades the chemical quality of water. Eighteen reservoirs presently impound water of Texas tributaries to the Red River (Table 1). All of these except Lake Kemp, Diversion Lake, and Lake Wichita contain waters of good to excellent quality. Because these waters are stored and prevented from reaching the river, the quality of water of the main stem has been degraded to some extent. Much of the lake water eventually returns to the river system, but its quality has been affected by evaporation and other hydrologic changes due to impoundment. Most often the water # EXPLANATION Contribution of significant natural brine emission areas General area of petroleum and Load-tons/day Estimated natural gas production brine flow Area No. CI NaCI Cfs Area of intensive petroleum production 175 Significant natural brine emission area 150 250 375 620 Secondary natural brine emission area 450 740 150 250 250 410 350 580 200 330 50 80 10 200 330 WISHER CHILDRESS Goodlett Figure 4 Location of Natural Brine Emissions and Areas of Petroleum Production diverted from the lakes returns to the river system as waste water from municipal, industrial, and agricultural uses. As the needs for more water and number of reservoirs increase, the quality-of-water problems of the main stem may increase. At present, degradation of water quality by return flow from irrigation in the Red River basin, Texas is considered minor and localized. Although 1.4 million acres in the basin was irrigated with over 2 million acre-feet of water in 1964, more than 95 percent of both the land irrigated and the water used was in the Texas Panhandle (Gillett and Janca, 1965). Nearly all of the Panhandle supply is from ground water; the Ogallala Formation supplied about 1.5 million acre-feet of water to irrigate approximately a million acres in the High Plains. Irrigation return flow contributes very little to streamflow in the Panhandle, and any flow that does reach a stream probably will enhance rather than degrade the quality of the natural saline waters in most areas. The use of surface water for irrigation is limited primarily to the Wichita Falls area and the area along the Red River north of Texarkana. Minor, localized degradation of small tributaries to the Red River may be occuring in these areas. Oil is produced in many areas in the Red River basin (Figure 4). Brine is produced in nearly all oil fields and, if improperly handled, eventually reaches surface streams. According to an inventory by the Texas Railroad Commission in 1961, more than 95 percent of the salt water produced in oil fields of the Red River basin, Texas, was injected underground (Texas Water Commission and Texas Water Pollution Control Board, 1963). The remainder of the salt water was disposed of in open surface pits, most of which were unlined. From these surface pits, much of the brine has seeped into the ground and eventually reaches the streams, or it is washed by surface runoff directly into the streams. Also, brine from abandoned wells and unplugged or improperly plugged test holes may reach streams. The composition of oil-field brine varies, but the principal chemical constituents, in order of magnitude of their concentrations, are chloride, sodium, calcium, and sulfate. Generally, an erratic variation of the sodium chloride content of water in streams draining areas where oil fields are located is evidence that oil-field brine pollution is occurring. Because of widespread contamination of streams in the Red River basin by naturally occurring sodium chloride brines, distinction between natural contamination and manmade pollution is difficult. However, the saline waters of several streams in the central part of the basin have contained salts from both natural sources and oil fields. Chemical-quality
records indicate that several streams, not affected by naturally occurring brines, have periodically shown effects of oil-field drainage. Generally, these streams are in the Beaver Creek, Buffalo Creek, and Little Wichita River sub-basins. # Relation of Quality of Water to Use Quality-of-water studies usually are concerned with determining the suitability of water—judged by the chemical, physical, and biological characteristics—for a proposed use. In the Red River basin, surface water is used for municipal and industrial supplies and for irrigation. This report considers only the chemical character of the water and its relation to these principal uses. Most of the mineral matter dissolved in water is dissociated into charged particles, or ions. Principal cations (positive charged) in natural water are calcium (Ca), magnesium (Mg), sodium (Na), potassium (K), and iron (Fe). The principal anions (negative charged) are carbonate (CO₃), bicarbonate (HCO₃), sulfate (SO₄), chloride (Cl), fluoride (F), and nitrate (NO₃). Other constituents and properties are often determined to help define the chemical and physical quality of water. Table 2 lists the constituents and properties commonly determined by the U.S. Geological Survey, and includes a résume of their source and significance. #### **Domestic Use** Because of differences in individuals, varying amounts of water consumed, and other factors, it is difficult to define the safe limits for the mineral constituents usually found in water. The limits usually accepted in the United States for drinking water are the drinking-water standards established by the United States Public Health Service. Originally established in 1914 to control the quality of water used on interstate carriers for drinking and culinary purposes, these standards have been revised several times. The latest revision was in 1962 (U.S. Public Health Service, 1962). These standards have been accepted by the American Water Works Association and by many state departments of public health as minimum standards for all public water supplies. The maximum concentrations permitted by the standards are given for selected constituents in the following table: | CONSTITUENTS | MAXIMUM CONCEN-
TRATION (MILLI-
GRAMS PER LITER) | |------------------|--| | Sulfate | 250 | | Chloride | 250 | | Nitrate | 45 | | Fluoride | <u>a</u> /0.9 | | Dissolved solids | 500 | | | | a/Recommended limits based on the average of maximum daily air temperatures. Concentration cited is the optimum based on temperature records for lowa Park. | CONSTITUENT OR PROPERTY | SOURCE OR CAUSE | SIGNIFICANCE | |--|---|---| | Silica (SiO ₂) | Dissolved from practically all rocks and soils, commonly less than 30 mg/l. High concentrations, as much as 100 mg/l, generally occur in highly alkaline waters. | Forms hard scale in pipes and boilers. Carried over in steam of high pressure boilers to form deposits on blades of turbines. Inhibits deterioration of zeolite-type water softeners. | | Iron (Fe) | Dissolved from practically all rocks and soils. May also be derived from iron pipes, pumps, and other equipment. More than 1 or 2 mg/l of iron in surface waters generally indicates acid wastes from mine drainage or other sources. | On exposure to air, iron in ground water oxidizes to reddish-
brown precipitate. More than about 0.3 mg/l stains laundry and
utensils reddish-brown. Objectionable for food processing, tex-
tile processing, beverages, ice manufacture, brewing, and other
processes. U.S. Public Health Service (1962) drinking-water
standards state that iron should not exceed 0.3 mg/l. Larger
quantities cause unpleasant taste and favor growth of iron
bacteria. | | Calcium (Ca) and
magnesium (Mg) | Dissolved from practically all soils and rocks, but especially from limestone, dolomite, and gypsum. Calcium and magnesium are found in large quantities in some brines. Magnesium is present in large quantities in sea water. | Cause most of the hardness and scale-forming properties of water; soap consuming (see hardness). Waters low in calcium and magnesium desired in electroplating, tanning, dyeing, and in textile manufacturing. | | Sodium (Na) and potassium (K) | Dissolved from practically all rocks and soils. Found also in ancient brines, sea water, industrial brines, and sewage. | Large amounts, in combination with chloride, give a salty taste. Moderate quantities have little effect on the usefulness of water for most purposes. Sodium salts may cause foaming in steam boilers and a high sodium content may limit the use of water for irrigation. | | Bicarbonate (HCO3)
and carbonate (CO3) | Action of carbon dioxide in water
on carbonate rocks such as lime-
stone and dolomite. | Bicarbonate and carbonate produce alkalinity. Bicarbonates of calcium and magnesium decompose in steam boilers and hot water facilities to form scale and release corrosive carbon dioxide gas. In combination with calcium and magnesium, cause carbonate hardness. | | Sulfate (SO ₄) | Dissolved from rocks and soils containing gypsum, iron sulfides, and other sulfur compounds. Commonly present in mine waters and in some industrial wastes. | Sulfate in water containing calcium forms hard scale in steam boilers. In large amounts, sulfate in combination with other ions gives bitter taste to water. Some calcium sulfate is considered beneficial in the brewing process. U.S. Public Health Service (1962) drinking-water standards recommend that the sulfate content should not exceed 250 mg/l. | | Chloride (CI) | Dissolved from rocks and soils. Present in sewage and found in large amounts in ancient brines, sea water, and industrial brines. | In large amounts in combination with sodium, gives salty taste to drinking water. In large quantities, increases the corrosiveness of water. U.S. Public Health Service (1962) drinking-water standards recommend that the chloride content should not exceed 250 mg/l. | | Fluoride (F) | Dissolved in small to minute quantities from most rocks and soils. Added to many waters by fluoridation of municipal supplies. | Fluoride in drinking water reduces the incidence of tooth decay when the water is consumed during the period of enamel calcification. However, it may cause mottling of the teeth, depending on the concentration of fluoride, the age of the child, amount of drinking water consumed, and susceptbility of the individual. (Maier, 1950) | | Nitrate (NO ₃) | Decaying organic matter, sewage, fertilizers, and nitrates in soil. | Concentration much greater than the local average may suggest pollution. U.S. Public Health Service (1962) drinking-water standards suggest a limit of 45 mg/l. Waters of high nitrate content have been reported to be the cause of methemoglobinemia (an often fatal disease in infants) and therefore should not be used in infant feeding. Nitrate has been shown to be helpful in reducing inter-crystalline cracking of boiler steel. It encourages growth of algae and other organisms which produce undesirable tastes and odors. | | Dissolved solids | Chiefly mineral constituents dis-
solved from rocks and soils.
Includes some water of crystalli-
zation. | U.S. Public Health Service (1962) drinking-water standards recommend that waters containing more than 500 mg/l dissolved solids not be used if other less mineralized supplies are available. Waters containing more than 1000 mg/l dissolved solids are unsuitable for many purposes. | | Hardness as CaCO ₃ | In most waters nearly all the hardness is due to calcium and magnesium. All the metallic cations other than the alkali metals also cause hardness. | Consumes soap before a lather will form. Deposits soap curd on bathtubs. Hard water forms scale in boilers, water heaters, and pipes. Hardness equivalent to the bicarbonate and carbonate is called carbonate hardness. Any hardness in excess of this is called non-carbonate hardness. Waters of hardness as much as 60 ppm are considered soft; 61 to 120 mg/l, moderately hard; 121 to 180 mg/l, hard; more than 180 mg/l, very hard. | | Specific conductance
(micromhos at 25 ^o C) | Mineral content of the water, | Indicates degree of mineralization. Specific conductance is a measure of the capacity of the water to conduct an electric current. Varies with concentration and degree of ionization of the constituents. | | Hydrogen ion
concentration (pH) | Acids, acid-generating salts, and free carbon dioxide lower the pH. Carbonates, bicarbonates, hydroxides, and phosphates, silicates, and borates raise the pH. | A pH of 7.0 indicates neutrality of a solution, Values higher than 7.0 denote increasing alkalinity; values lower than 7.0 indicate increasing acidity, pH is a measure of the activity of the hydrogen ions. Corrosiveness of water generally increases with decreasing pH. However, excessively alkaline waters may also attack metals. | #### Industrial Use The quality requirements vary greatly for almost every industrial application, as is indicated by the water-quality tolerances given in Table 3. One requirement of most industries is that concentrations of the various
constituents of the water remain relatively constant. When concentrations of undesirable substances in water vary, constant monitoring is required and operating expenses are increased. Hardness is one of the more important properties of water that affects its utility for industrial purposes. Excessive hardness is objectionable because it contributes to the formation of scale in steam boilers, pipes, water-heaters, radiators, and various other equipment where water is heated, evaporated, or treated with alkaline materials. The accumulation of scale increases costs for fuel, labor, repairs and replacement, and lowers the quality of many wet-processed products. However, some calcium hardness may be desirable because calcium carbonate sometimes forms protective coatings on pipes and other equipment and reduces corrosion. The corrosive property of water receives considerable attention in industrial water supplies. A high concentration of dissolved solids in a water may be closely associated with the corrosiveness, particularly if chloride is present in appreciable quantities. Water that contains a large concentration of magnesium chloride may be highly corrosive because the hydrolysis of this salt yields hydrochloric acid. # Irrigation The chemical composition of a water is an important factor in determining its usefulness for irrigation, because the quality of the water should not adversely affect the productivity of the land irrigated. The extent to which chemical quality limits the suitability of a water for irrigation depends on many factors, such as the nature, composition, and drainage of the soil and subsoil; the amounts of water used and the methods of applying it; the kind of crops grown; and the climate of the region. Because these factors are highly variable, every method of classifying waters for irrigation is somewhat arbitrary. The most important characteristics in determining the quality of irrigation water, according to the U.S. Salinity Laboratory Staff (1954, p. 69) are: (1) total concentration of soluble salts, (2) relative proportion of sodium to other cations, (3) concentration of boron or other elements that may be toxic, and (4) the excess of equivalents of bicarbonate over equivalents of calcium plus magnesium. High concentrations of dissolved salts in irrigation water may cause a buildup of salts in the soil solution, and may make the soil saline. The increased salinity of the soil may reduce crop yields by decreasing the ability of the plants to take up water and essential plant nutrients from the soil solution. The tendency of irrigation water to cause a buildup of salts in the soil is called the salinity hazard of the water. The specific conductance of the water is used as an index of the salinity hazard. High concentrations of sodium (Na) relative to the concentrations of calcium (Ca) and magnesium (Mg) in irrigation water can adversely affect soil structure. Cations in the soil solution become fixed on the surface of the soil particles; calcium and magnesium tend to flocculate the particles, whereas sodium tends to deflocculate them. This adverse effect on soil structure caused by high sodium concentrations in an irrigation water is called the sodium hazard of the water. An index used for predicting the sodium hazard is the sodium-adsorption ratio (SAR), which is defined by the equation: $$SAR = \frac{Na^{+}}{\sqrt{Ca^{++} + Mg^{++}}}$$ where the concentrations of the ions are expressed in milliequivalents per liter. The U.S. Salinity Laboratory Staff has prepared a classification for irrigation waters in terms of salinity and sodium hazard. Empirical equations were used in developing a diagram reproduced in modified form as Figure 5, which uses SAR and specific conductance in classifying irrigation waters. This classification, although embodying both research and field observations, should be used only as a general guide because many additional factors also affect the suitability of water for irrigation. With respect to salinity and sodium hazards, waters are divided into four classes; low, medium, high, and very high. The classification range encompasses waters that can be used for irrigation of most crops on most soils as well as waters that are usually unsuitable for irrigation. The salinity and sodium hazards of water at selected sites in the Red River basin are given on Figure 5. # Geographic Variations in Water Quality Variations in dissolved solids, hardness, and chloride in the Red River basin are shown in Figures 12, 13, and 14. These values are based on the discharge-weighted average concentrations, as calculated from chemical-quality data. The discharge-weighted average represents the chemical character of the water if all the water passing a point in the stream during a period were impounded in a reservoir and mixed, with no adjustments for rainfall, evaporation, or chemical changes that might occur during storage. For many of the streams Table 3.-Water-Quality Tolerances for Industrial Applications 1 [Allowable Limits in Milligrams Per Liter Except as Indicated] | INDUSTRY | TUR-
BID-
ITY | COLOR | COLOR
+02
CON-
SUMED | DIS-
SOLVED
OXYGEN
(m1/1) | ODOR | HARD -
NESS | ALKA-
LINITY
(AS
CaCO ₃) | | TOTAL
SOLIDS | Ca | Fe | Mn | Fe+
Mn | A1203 | S10 ₂ | Cu | F | co3 | нс03 | ОН | CaSO ₄ | Na2S04
TO
Na2S03
RATIO | GEN-
ERAL ² / | |-----------------------------|---------------------|------------|-------------------------------|------------------------------------|------|----------------|---|---------|-----------------|---------|------|------|-----------|-------------------|------------------|----|-----|-----|------|----------|-------------------|---------------------------------|-----------------------------| | Air Conditioning3 | | | | | | | | | | | 0.5 | 0.5 | 0.5 | | | | | | | | | | A,B. | | Baking | 10 | 10 | | H- | | (4) | | | | | . 2 | .2 | .2 | 77 | | | | | | | 7-1 | | ć | | Boiler feed: | 0-150 psi | 20 | 80 | 100 | 2 | | 75 | | 8.0+ | 3,000-
1,000 | | | | nin | 5 | 40 | | | 200 | 50 | 50 | | 1 to 1 | 1 | | 150-250 psi | 10 | 40 | 50 | .2 | | 40 | | 8.5+ | 2,500- | 2- | | | | .5 | 20 | | ••• | 100 | 30 | 40 | | 2 to 1 | | | 250 psi and up | 5 | 5 | 10 | 0 | | 8 | 15 () () () | 9.0+ | 1,500- | | | 1001 | | . 05 | 5 | | | 40 | 5 | 30 | 60°44 | 3 to 1 | () | | Brewing: 5 | Light | 10 | | | | Low | | 75 | 6.5-7.0 | 500 | 100-200 | . 1 | . 1 | . 1 | | | | 1 | | | | 100-200 | | C,D | | Dark | 10 | | | | Low | | 150 | 7.0→ | 1,000 | 200-500 | .1 | .1 | .1 | | | | 1 | | | | 200-500 | | C,D | | Canning: | Legumes | 10 | | | | Low | 25 - 75 | | | 122 | | . 2 | .2 | . 2 | | | | | | | | | | C | | General | 10 | | | | Low | | | | 15 | | . 2 | . 2 | . 2 | | | | 1 | | | | | | С | | Carbonated bev- | erages ⁶ | 2 | 10 | 10 | | 0 | 250 | 50 | | 850 | | .2 | . 2 | .3 | | | | . 2 | | | | | | С | | Confectionary | | | •• | | Low | | | (7) | 100 | | . 2 | . 2 | . 2 | 345 - | | | | | | | | | | | Cooling 8 | 50 | | | 7.7 | •• | 50 | | | | | .5 | .5 | .5 | | | | | | | | | | A,B | | · Food, general | 10 | | •• | | Low | | | •• | | - 1 | . 2 | .2 | .2 | • | | | | | | | | | С | | Ice (raw water) 9/ | 1-5 | 5 | | | | | 30-50 | | 300 | | . 2 | . 2 | .2 | | 10 | | | | | | | | C | | Laundering | | | | | | 50 | | | | | .2 | . 2 | . 2 | | | | | | | | | | | | Plastics, clear, | undercolored | 2 | 2 | | | | | | | 200 | | .02 | .02 | .02 | | | | | | | •• | | | •• | | Paper and pulp: 19 | Groundwood | 50 | 20 | | | •• | 180 | | | - | - | 1.0 | .5 | 1.0 | | | | | | | | | | A | | Kraft pulp | 25 | 15 | | | | 100 | | | 300 | | . 2 | .1 | .2 | | | | | | | | | [| | | Soda and sulfite | 15 | 10 | •• | | | 100 | | | 200 | 44 | .1 | . 05 | .1 | •• | •• | | | | - | | | | | | Light paper,
HL-Grade | 5 | 5 | | | | 50 | | | 200 | | .1 | . 05 | .1 | | | 4- | | | | -4 | | 3 | В | | Rayon (viscose) | pulp:
Production | 5 | 5 | | | | 8 | 50 | | 100 | | . 05 | . 03 | . 05 | <8.0 | <25 | <5 | | | | | | | | | | .3 | | | | | 55 | | 7.8-8.3 | | 10 22 | .0 | .0 | .0 | | | | | | | | | | | | Manufacture
Tanning 11 | 20 | 10-100 | 24 | | , | 50-135 | 135 | 8.0 | | | . 2 | . 2 | .2 | | | | | | | | | | | | Tanning ' | Tanning 'j Textiles: | Textiles: | 5 | 20 | | | | 20 | | | | | .25 | .25 | | | 442 | | | | | | 9 | | | | Textiles: General Dueing 12 | 5 | 20
5-20 | - | | | 20
20 | | == | | 1 | .25 | . 25 | .25 | T. | | | :: | | = | | | | | | Textiles: | | | | | | | == | Ξ | == | | | | | Ξ | = | | :: | | == | ::
:: | == | | == | ^{1/} American Water Works Association, 1950. ^{2/} A-No corrosiveness; B-No slime formation; C-Conformance to Federal drinking water standards necessary; D-NaCl, 275 mg/l. Waters with algae and hydrogen sulfide odors are most unsuitable for air conditioning. ⁴ Some hardness desirable. ^{3/} Water for distilling must meet the same general requirements as for brewing (gin and spirits mashing water of light-beer quality; whiskey mashing water of dark-beer quality). ⁽Clear, odorless, sterile water for syrup and carbonization. Water consistent in character. Most high quality filtered municipal water not satisfactory for beverages. That candy requires pH of 7.0 or greater, as low value favors inversion of sucrose, causing sticky product. ^{8/} Control of corrosiveness is necessary as is also control of organisms, such as sulfur and iron bacteria, which tend to form slimes. ⁹ Ca (HCO₃)₂ particularly troublesome. Mg(HCO₃)₂ tends to greenish color. CO₂
assists to prevent cracking. Sulfates and chlorides of Ca, Mg, Na should each be less than 300 mg/1 ¹⁰ Uniformity of composition and temperature desirable. Iron objectionable as cellulose adsorbs iron from dilute solutions. Manganese very objectionable, clogs pipelines and is oxidized to permanganates by chlorine, causing reddish color. ¹⁾ Excessive iron, manganese, or turbidity creates spots and discoloration in tanning of hides and leather goods. ^{12/} Constant composition; residual alumina 0.5 mg/l. ^{13/} Calcium, magnesium, iron, manganese, suspended matter, and soluable organic matter may be objectionable. Figure 5.—Diagram for Classification of Irrigation Waters chemical-quality data are limited, especially data on the chemical quality of flood flows; therefore, the sub-divisions shown on the maps should be considered as generalized. All the streams will at times have concentrations exceeding those shown, but the averages are indicative of the quality of water that would be stored in a hypothetical reservoir. #### **Dissolved Solids** The concentrations of dissolved solids in streams in the Red River basin range from several thousand to less than 250 mg/l (milligrams per liter) (Figure 3). Water from the outcrop areas of Tertiary age in the extreme western part of the basin usually have dissolved-solids concentrations less than 250 mg/l. Downstream from the Tertiary outcrop, rocks of Triassic and Permian age contribute water containing very high concentrations of dissolved solids; more than 10,000 mg/l is common in some areas. The highly concentrated water from the Prairie Dog Town, Salt, and North Forks Red River, Pease River, and North and South Wichita Rivers cause the mainstem Red River to contain more than 1,000 mg/l of dissolved solids throughout most of its reach in Texas. About midway between Lake Texoma and Index, Arkansas, good quality inflow from the tributaries is of sufficient quantity to cause the Red River to contain less than 1,000 mg/l of dissolved solids. The discharge-weighted average concentrations of dissolved solids of the Red River near Gainesville for the periods 1944-46, 1953-63, and 1966-67 has ranged from a minimum of 891 mg/l in 1945 to a maximum of 1,950 mg/l in 1958. The discharge-weighted average concentration of dissolved solids of the Red River at Denison Dam for the period 1944-1967 has ranged from 486 mg/l in 1946 to 1,230 mg/l in 1961. The discharge-weighted average concentrations of dissolved solids at Index, Arkansas for 1961, 1962, and 1963 were 728 mg/l, 609 mg/l, and 538 mg/l, respectively. The analyses showing annual maximum and minimum dissolved-solids concentrations and the weighted averages for the stations are given in Table 5. Annual dissolved-solids averages for Red River at Denison Dam are shown on Figure 7. Time-weighted averages represented by duration curves are usually higher than discharge-weighted averages. The duration curve for dissolved-solids concentrations for the Red River near Gainesville during 1953-62 is shown in Figure 6. Dissolved solids equaled or exceeded 3,560 mg/l 10 percent of the time, 3,040 mg/l 30 percent of the time, 2,620 mg/l 50 percent of the time, and 1,100 mg/l 90 percent of the time. Downstream from the Wichita River, Texas tributaries drain Cretaceous rocks and contribute water containing less than 250 mg/l of dissolved solids. The discharge-weighted average concentration of dissolved solids of the Little Wichita River near Henrietta for the periods 1953-55 and 1959-66 ranged from 124 to 286 mg/l and averaged 211 mg/l; and the Little Wichita River near Ringgold for the 1959-62 period ranged from 151 to 187 mg/l and averaged 171 mg/l. Figure 6.—Duration Curve of Dissolved Solids for Red River Near Gainesville, Texas, 1953-63 #### Chloride The concentrations of chloride in surface water of the Red River basin vary from several thousand to less than 100 mg/l. Concentrations are generally less than 250 mg/l in all streams not affected by natural or oil-field brines. Brines in the drainage areas of the Prairie Dog Town, Salt, and North Forks Red River, Pease River, and North and South Wichita Rivers degrade the quality of the Red River throughout its reach in Texas. The annual weighted-average chloride concentration of the Red River near Gainesville (1944-46, 1953-63, 1966-67) has ranged from 283 to 717 mg/l, and at Denison Dam (1944-67), it has ranged from 139 to 431 mg/l. Chloride concentration of the main stem is generally more than 500 mg/l almost as far downstream as Lake Texoma, but it is less than 250 mg/l through the last 100-150 miles of its reach in Texas. Tributaries downstream from the Wichita River generally have chloride concentrations less than 50 mg/l. #### Hardness Surface water in the Red River basin generally ranges from moderately hard (61-120 mg/l) to very hard (more than 180 mg/l). Waters of streams in the western and central parts of the basin that contain high concentrations of dissolved solids are very hard, often having more than 500 mg/l hardness. The streams draining Cretaceous rocks in the eastern part of the basin generally contain waters that are moderately hard, even though they usually have a low dissolved-solids content. #### Other Constituents Other constituents of importance in the evaluation of the chemical quality of a water include silica, sodium, bicarbonate, sulfate, fluoride, and nitrate. Silica concentrations in the Red River basin range from less than 10 to nearly 70 mg/l. In the western part of the basin, water from streams draining the Tertiary, Triassic, and Permian rocks usually contains more than 20 mg/l of silica. In the central part of the basin, streams draining rocks of Pennsylvanian age usually contain 10 to 15 mg/l of silica; and in the eastern part of the basin, water from rocks of Cretaceous age usually contains less than 10 mg/l of silica. The annual weighted-average silica concentration of the Red River at Denison Dam has usually been about 10 mg/l. Sodium concentrations range from several thousand to less than 100 mg/l. Concentrations are generally less than 100 mg/l in streams unaffected by natural or oil-field brines. The sodium concentration of the Red River is usually more than 250 mg/l upstream from Lake Texoma and 100 to 250 mg/l from Lake Texoma to Index, Arkansas. Bicarbonate concentrations are usually less than 250 mg/l in surface waters in the basin; bicarbonate is the principal anion in most waters unaffected by brines. The annual weighted-average bicarbonate concentrations of the Red River near Gainesville and at Denison Dam have usually been less than 150 mg/l. Sulfate concentrations vary widely in the Red River basin. Streams draining Permian rocks north of the Priarie Dog Town Fork Red River have a sulfate content of several hundred mg/l. Sulfate is the principal anion in these waters. In Prairie Dog Town Fork Red River and in the streams draining Permian rocks south of the Red River, sulfate occurs in high concentrations; but chloride is the principal anion. Downstream from the Permian rocks, the tributaries contain less than 50 mg/l of sulfate. The annual weighted-average sulfate concentration of the Red River near Gainesville (1944-46, 1953-63, 1966-67) has ranged from 169 to 450 mg/l, but it has usually been more than 250 mg/l. The annual weighted-average of sulfate at Denison Dam (1944-67) has ranged from 100 to 297 mg/l, but it usually has been less than 250 mg/l. Fluoride concentrations are generally less than 1.0 mg/l except in some of the streams that drain the Ogallala Formation. Tule Creek near Silverton at times contains more than 5.0 mg/l of fluoride. Nitrate concentrations are usually less than 5.0 mg/l, except in some of the heavily irrigated areas of the High Plains where concentrations sometimes exceed 10 mg/l. # Water Quality in Reservoirs Chemical analyses for most of the principal reservoirs in the Texas part of the Red River basin are given in Table 6. Most of the reservoirs are on tributaries where quality-of-water problems are less severe than on the main stem. # **Buffalo Lake** When sampled in 1951, water in Buffalo Lake contained 472 mg/l dissolved solids, 27 mg/l of chloride and was very hard. Principal chemical constituents were sodium and bicarbonate. #### **Bivins Lake** Chemical analyses are not available for Bivins Lake, but analyses for downstream sites indicate that the stored water contains less than 500 mg/l of dissolved solids, is hard, and has calcium, sodium, bicarbonate, and sulfate as the principal chemical constituents. #### **Baylor Creek Reservoir** Very limited data indicate that Baylor Creek Reservoir impounds water containing between 500 and 1,000 mg/l of dissolved solids. The water is very hard and of a calcium sulfate type. #### Greenbelt Reservoir Greenbelt Reservoir was not impounding water during this study, but the chemical quality of its water can be inferred from analyses of Salt Fork Red River near Clarendon. Analyses of samples collected during low flow indicate that the dissolved-solids content seldom exceeds 500 mg/l. No data are available on the quality of water at high flow, but it is likely that the dissolved-solids content would be less than at low flow. Therefore, water impounded in the reservoir probably will contain less than 500 mg/l of dissolved solids, be very hard, and of a mixed chemical type. # Lake Kemp and Diversion Lake Lake Kemp and Diversion Lake were constructed in 1923 and 1924, respectively, and are two of the oldest major reservoirs in the Red River basin. Water is released from Lake Kemp into Diversion Lake and then released or withdrawn for industrial use and irrigation. The reservoirs are downstream from natural salt-contributing areas. Sources of natural pollution of the Wichita River above Lake Kemp were investigated by Joerns (1961) and by the U.S. Public Health Service (1964). Chemical analyses indicate that since construction the impounded water has usually
contained 2,000 to 3,000 mg/l dissolved solids. Calcium, sodium, sulfate, and chloride are the principal dissolved constituents. The water is suitable for irrigation for only highly salt-tolerant crops. # Santa Rosa Lake Water stored in Santa Rosa Lake is low in dissolved solids, moderately hard, and of a calcium bicarbonate type. #### North Fork Buffalo Creek Reservoir Chemical analyses are not available for North Fork Buffalo Creek Reservoir, but analyses for North Fork Buffalo Creek near Iowa Park indicate that at high flow the water is of good quality; dissolved-solids content is less than 200 mg/l. Analyses of water at low flow, however, indicate oil-field brine pollution. The quality of the stored water will depend upon the extent to which brine reaches North Fork Buffalo Creek upstream from the reservoir. #### Lake Wichita Natural runoff into Lake Wichita is probably of good quality. However, the lake receives return flow from areas irrigated with water from Lake Kemp, and also is degraded with water from oil fields. The dissolved-solids content usually exceeds 1,000 mg/l. An analysis in June 1965 showed that the water in Lake Wichita contained 1,450 mg/l of dissolved solids; calcium, sodium, sulfate, and chloride are the principal chemical constituents. #### Lake Kickapoo Water stored in Lake Kickapoo usually contains less than 250 mg/l of dissolved solids and is moderately hard. Principal dissolved constituents are calcium, sodium, and bicarbonate. #### Lake Arrowhead Impoundment of water in Lake Arrowhead began in 1966, and no analyses of the stored water were available during the study period. The quality of the stored water can, however, be inferred from records for the daily sampling station, Little Wichita River near Henrietta. During the period of daily record (1952-55, 1959-66), the annual weighted-average dissolved-solids concentration has ranged from 124 to 286 mg/l, and averaged 218 mg/l. The water was of a sodium chloride type—probably because of oil-field brine reaching the stream. # Farmers Creek Lake When sampled in 1967, water in Farmers Creek Lake contained 294 mg/l of dissolved solids and was hard. Principal chemical constituents were calcium, sodium, bicarbonate, and chloride. #### Hubert H. Moss Lake Chemical-quality data are not available for Hubert H. Moss Lake, but records from adjoining watersheds in the Trinity River basin indicate that the reservoir, when filled, will contain moderately hard water having a low dissolved-solids content. #### Lake Texoma Denison Dam which forms Lake Texoma was built in 1942 by the U.S. Army Corps of Engineers for flood control and hydroelectric power. Increasing needs for water have caused Lake Texoma to be considered as a source of water for public supply even though it has generally been too highly mineralized for this use. Water from Lake Texoma is pumped to Lake Randall to augment the municipal supply for the city of Denison. The city of Sherman has studied the practicability of damming off the Big Mineral Arm of the lake to obtain a municipal supply (Mendieta and Skinner, 1966). Since 1965, the dissolved-solids content of water in Lake Texoma has ranged from 969 to 1,230 mg/l. Chloride has ranged from 325 to 442 mg/l, and sulfate from 228 to 296 mg/l. Although the dissolved-solids content of Lake Texoma water varies from year to year, 23 years of records collected since impoundment began in 1944 show a definite trend of increasing mineralization. Annual weighted-average concentrations of dissolved solids for the outflow station at Denison Dam are shown on Figure 7. The net quantity of water available annually at Denison Dam (expressed as annual outflow plus change in storage, in thousands of acrefeet) is also shown on Figure 7. The net annual water available also represents the inflow to Lake Texoma minus losses due to evaporation, infiltration, and diversion. Along with the trend of increasing mineralization in Lake Texoma, Figure 7 shows a general trend toward less available water. The mineralization of water of Lake Texoma is increasing because of (1) a continuous salt load reaching the reservoir from upstream natural and man-made brine sources, (2) decreasing inflows to the reservoir because of upstream impoundments, (3) increasing dissolved-solids concentrations of inflows because of upstream impoundments of good-quality water, and (4) increasing dissolved-solids concentrations because of evaporation from Lake Texoma and from impoundments upstream. Figure 7.—Graph Showing Dissolved-Solids Content and Quantity of Water in Lake Texoma, 1945-67 Kane (1967, p. 17) shows average annual net lake-surface evaporation for Lake Texoma during the 1940-65 period to be 30 inches per year. At elevation 617 feet (top of power pool), Lake Texoma covers 89,000 acres. Therefore, evaporation losses from Lake Texoma may be more than 200,000 acre-feet per year. West of Lake Texoma average net annual evaporation losses increase rapidly to more than 50 inches in the High Plains. Waters that are released from impoundments above Lake Texoma after having been degraded by evaporation, further degrade the quality of inflows to the reservoir. To aid in the evaluation of water quality in Lake Texoma, the Geological Survey made two reconnaissance-type surveys of the reservoir. The surveys were made in March and July 1967 to obtain data for different seasons of the year. Measurements of specific conductance, temperature, and dissolved oxygen were made at sites throughout the reservoir and at various depths at each site. Water samples were collected at selected sites for laboratory analysis. Figure 8 is a map of the reservoir showing the observation sites. The first survey was made March 21-23. During this period, surface elevation remained almost constant at approximately 603 feet above mean sea level (contents, 1,710,000 acre-feet), and water was being released through the powerhouse. The reservoir was well mixed during this survey. Dissolved-solids content, estimated from specific conductance values and verified laboratory analyses (dissolved solids equals approximately 0.58 specific conductance), increased only slightly with depth at each site. In the Red River arm, dissolved-solids content was nearly uniform at about 1,200 mg/l from site 1C to site 24C, but increased upstream to about 1,700 mg/l at site 38C. In the Washita River arm, concentrations decreased in an upstream direction to about 1,000 mg/l at site 12C. Temperatures generally were about 1°C lower at the bottom of the lake than at the surface. Dissolved oxygen was nearly uniform throughout the vertical profile at each site-near saturation at the surface and only about 1 mg/l less near the bottom. Vertical profiles for sites 1C and 3C are shown on Figure 9. During the second survey, made July 25-27, surface elevation was about 614 feet (contents, 2,480,000 acre-feet, an increase of 770,000 acre-feet since the March survey). The dissolved-solids content varied only slightly with depth at each site except at site 38C where the concentration was 1,090 mg/l at the surface and 2,290 mg/l at the bottom. At all the other sites on the Red River arm, dissolved-solids content was near 1,000 mg/l, usually slightly less at the surface and slightly more at the bottom. In the Washita River arm, the dissolved-solids content varied from 935 mg/l at site 7C to about 700 mg/l at site 12C. A thin layer of water about 40 feet below the surface was less concentrated than the water above and below. Temperature and oxygen stratification was evident in all areas of the reservoir. At site 1C, temperature decreased from 25.8°C at the surface to 21.4°C at the bottom, and dissolved oxygen decreased from 7.2 mg/l at the surface to 0.0 mg/l at the bottom. At most sites, temperature and oxygen decreased slightly with depth through the top 50 feet, then decreased sharply through the next 10 feet, and was nearly uniform through the remaining depth. Vertical profiles for sites 1C and 3C are shown on Figure 9, and longitudinal profiles for the Red River and Washita River arms during the July 25-27 period are shown on Figure 10. Lake Texoma, like many reservoirs in the southwest, undergoes thermal stratification in the summer and becomes almost completely mixed during the winter. During the summer, the more concentrated inflow from the Red River tends to flow along the bottom of the reservoir and the less concentrated inflow from the Washita River tends to seek an intermediate depth. Dissolved-solids content of the reservoir increases upstream in the Red River arm and decreases upstream in the Washita River arm. During the winter, oxygen is available at all depths throughout the reservoir, but during the summer is generally deficient at all depths greater than 50 feet. # Lake Randall Lake Randall, a small reservoir owned by the city of Denison, is used as a municipal supply. Water is pumped from Lake Texoma to augment the normal yield, and quality of the water in Lake Randall is therefore determined by the proportion of water that is pumped from Lake Texoma. ## Brushy Creek Reservoir and Coffee Mill Creek Lake Although no chemical analyses are available for either of these reservoirs, the water quality can be inferred from records for nearby Bois d'Arc Creek and from records for watersheds in the adjacent Trinity River basin. Water in these areas is usually hard and of a calcium bicarbonate type. The dissolved-solids content averages less than 250 mg/l. #### Pat Mayse Reservoir Pat Mayse Reservoir was not impounding water during this study, but its quality can be inferred from analyses of Sanders Creek near Chicota (site 104). High flows in Sanders Creek contained less than 100 mg/l of dissolved solids, and the reservoir should store water containing less than 200 mg/l of dissolved solids. The water will be moderately hard and of a calcium bicarbonate type. Figure 9 Vertical Profiles of Specific Conductance, Dissolved Oxygen, and
Temperature of Lake Texoma EXPLANATION 25.8 7.2 3 C Specific conductance, in micromhos at 25°C. Temperature, in degrees Celsius Dissolved oxygen, in milligrams per liter Sampling site Figure 10 Longitudinal Profiles of Lake Texoma Showing Water Quality, July 25-27, 1967 ### Lake Crook Lake Crook is owned and operated by the city of Paris for municipal water supply. When sampled in 1960, the reservoir water contained 70 mg/l of dissolved solids, was soft, and of a calcium bicarbonate type. # Water Quality at Potential Reservoir Sites One of the principal objectives of this study was to appraise the quality of water available for storage at potential reservoir sites in the Red River basin. Several potential sites suggested by various agencies are shown on Figure 11. In the following discussion, evaluations of water quality are based on 1967 conditions and the names of potential reservoir sites are those in use as of December 31, 1967. #### Mackenzie A reservoir on Tule Creek at the Mackenzie site would impound water of good quality; the dissolved-solids content would be less than 250 mg/l. The water would be hard and have calcium and bicarbonate as its principal ions. #### **Buck Creek** Information is not available on the chemical quality of flood flow in Buck Creek. Low-flow samples show high concentrations of calcium and sulfate. A reservoir on Buck Creek would probably impound water containing more than 1,000 mg/l of dissolved solids. ## Lelia Lake Creek Although water samples have been collected periodically for several years, data on the chemical quality of flood flows in Lelia Lake Creek is lacking. Available data indicate that a reservoir on Lelia Lake Creek would impound water of mixed chemical composition containing about 500 mg/l dissolved solids. The water would undoubtedly contain more than 500 mg/l of dissolved solids at times. ## **Dozier Creek** A reservoir on the Salt Fork Red River at the Dozier site would probably store water containing more than 1,000 mg/l of dissolved solids. A 2-year (1953-54) daily record is available for a station near Wellington (site 47). The weighted-average dissolved-solids concentrations were 1,300 mg/l in 1953 and 1,100 mg/l in 1954. #### Lower McClellan Creek Limited chemical-quality data indicate that a reservoir on McClellan Creek would store water containing about 500 mg/l dissolved solids. The water would be of a mixed chemical type and would be very hard. #### Sweetwater Creek A reservoir on Sweetwater Creek would store water of acceptable quality for most uses. The water would be of a calcium sodium bicarbonate type and contain less than 500 mg/l dissolved solids. ## Ringgold Daily chemical-quality records for the Little Wichita River near Henrietta and Ringgold indicate that a reservoir near the Ringgold site would impound water of good quality. At the Henrietta station the annual weighted-average concentration of dissolved solids was less than 300 mg/l each year during the period of record (1953-66). Oil-field brine has reached the streams in the watershed, and has caused some deterioration of the otherwise excellent-quality water. #### Timber Creek and Bois d'Arc Creek The water available for storage at these sites is of a calcium and sodium bicarbonate type and is moderately hard. The dissolved-solids content should be less than 250 mg/l. # **Big Pine** A reservoir on Big Pine Creek would impound water containing less than 150 mg/l dissolved solids. The water would be low in all dissolved constituents and would be soft. # Pecan Bayou The water in Pecan Bayou is always low in dissolved constituents, therefore, water impounded at the Pecan Bayou site would contain less than 100 mg/l dissolved solids and would be soft. #### Barkman Creek A reservoir on Barkman Creek would impound water containing less than 100 mg/l dissolved solids. The water would be soft and low in all dissolved constituents. # Present and Future Water-Quality Problems Natural and in the past, oil-field brines are the principal degrading influences on water-quality of the Red River. The highly mineralized waters from salt sources in the western part of the basin cause the water of the Red River to be undesirable for public supply throughout most of its reach in Texas. The salinity problems in the Red River basin have been intensively studied by various Federal agencies. The U.S. Public Health Service (1964) reported that there are 10 primary natural brine emission areas in the Red River basin. Figure 4 shows the locations of the primary sources and several secondary sources, and includes the average daily salt load that the Public Health Service calculated to be contributed by each primary source. A detailed description of each source is given in the report by the Public Health Service (1964). The U.S. Army Corps of Engineer District at Tulsa, Oklahoma, has prepared a report (1966) on the feasibility of plans to control the major salt sources in the Arkansas and Red River basins and has constructed an experimental control project at Estelline Springs on Prairie Dog Town Fork Red River. Congress has authorized construction of additional salt-control projects on three tributaries of the Wichita River above Lake Kemp, and the Corps of Engineers has proposed five additional projects in the Red River basin, four in Texas and one in Oklahoma. The plan for control of salt in the Wichita River consists of three low-water dams, pumping facilities, and pipelines for collecting highly mineralized water and moving it to storage basins for evaporation. The Corps estimates that the chloride load reaching Lake Kemp would be reduced by about 80 percent and the sulfate load by about 30 percent. Chloride concentrations would rarely exceed 200 mg/l and sulfate would usually be less than 500 mg/l. Maximum control of both man-made and natural brine pollution throughout the upper Red River basin, as proposed by the Corps of Engineers, would greatly improve the quality of the water impounded in Lake Texoma. The Corps estimates that chloride concentrations would be less than 110 mg/l 50 percent of the time, and would seldom exceed 150 mg/l. Dissolved solids would be reduced to an average of about 820 mg/l and sulfate to about 220 mg/l. With its quality thus improved, water of the lower Red River will be suitable for a wider variety of beneficial uses. Impoundments on tributaries in Texas and Oklahoma and in Lake Texoma are also causing degradation of water quality in the main stem. Of the 18 existing reservoirs on tributary streams in Texas, 16 are impounding water of better quality than is carried by the Red River. Of the 11 potential reservoir sites discussed, 9 would impound water having better quality than water of the main stem. The city of Sherman is considering damming off Big Mineral Arm of Lake Texoma which is less mineralized than the main body of the reservoir. Most existing and any future reservoirs on Oklahoma tributaries will impound waters of better quality than is carried by the mainstem Red River. Removal of the water of tributary streams leaves water of poorer quality in the Red River. Surface impoundments in the Red River basin will further degrade water of the basin because of evaporation losses. Figure 7 shows the trend of increasing mineralization of Lake Texoma waters, which must result in part from evaporation losses. According to Kane (1967, p. 17) average annual net lake surface evaporation rates vary from 10 inches near the Texas-Arkansas line to more than 50 inches in the High Plains. The population of the Red River basin in Texas has doubled in the past 25 years. The population growth is expected to be greater in the next 25 years. Along with increasing demands for municipal supplies, more water will be needed for industry and irrigation. If a significant part of these supplies is to come from surface waters of the Red River basin, a maximum effort to improve water quality will be required. ## SELECTED REFERENCES - American Water Works Association, 1950, Water quality and treatment: Am. Water Works Assoc. Manual, 2d ed., tables 3-4, p. 66-67. - Baker, E. T., Jr., Long, A. T., Reeves, R. D., and Wood, L. A., 1963, Reconnaissance investigation of the ground-water resources of the Red River, Sulphur River, and Cypress Creek basins, Texas: Texas Water Comm. Bull. 6306, 127 p. - Dallas Morning News, 1967, Texas almanac and state industrial guide, 1968-1969: A. H. Belo Corporation, 736 p. - Darton, N. H., Stephenson, L. W., and Gardner, Julia, 1937, Geologic map of Texas: U.S. Geol. Survey geol. map. - Gillett, P. T., and Janca, I. G., 1965, Inventory of Texas irrigation, 1958 and 1964: Texas Water Comm. Bull. 6515, 317 p. - Hughes, L. S., and Leifeste, D. K., 1965, Reconnaissance of the chemical quality of surface waters of the Sabine River basin, Texas and Louisiana: U.S. Geol. Survey Water-Supply Paper 1809-H, 71 p. - _____1967, Reconnaissance of the chemical quality of surface waters of the Neches River basin, Texas: U.S. Geol. Survey Water-Supply Paper 1839-A, 72 p. - Hughes, L. S., and Rawson, Jack, 1965, Reconnaissance of the chemical quality of surface waters of the San Jacinto River basin, Texas: Texas Water Devel. Board Rept. 13, 45 p. - Joerns, J. O., 1961, Investigation of sources of natural pollution, Wichita River above Lake Kemp, Texas 1951-57: U.S. Geol. Survey open-file rept. no. 62. - Kane, J. W., 1967, Monthly reservoir evaporation rates for Texas, 1940 through 1965: Texas Water Devel. Board Rept. 64, 111 p. - Langbein, W. B., and Iseri, K. T., 1960, General introduction and hydrologic definitions in Manual of hydrology, part 1, General surface-water techniques: U.S. Geol. Survey Water-Supply Paper 1541-A, p. 1-29. - Leifeste, D. K., and Hughes, L. S., 1967, Reconnaissance of the chemical quality of surface waters of the Trinity River basin, Texas: Texas Water Devel. Board Rept. 67, 73 p. - Leifeste, D. K., and Lansford, M. W., 1968, Reconnaissance of the chemical
quality of surface waters of the Colorado River basin, Texas: Texas Water Devel. Board Rept. 71, 85 p. - Maier, F. J., 1950, Fluoridation of public water supplies: Am. Water Works Assoc. Jour., v. 42, pt. 1, p. 1120-1132. - Mendieta, H. B., and Skinner, P. W., 1966, Quality of water of Big Mineral Arm and tributaries Lake Texoma, Texas, January 18-20 and February 10-11, 1966: Texas Water Devel. Board Rept. 35, 16 p. - Rawson, Jack, 1967, Study and interpretation of the chemical quality of surface waters in the Brazos River basin, Texas: Texas Water Devel. Board Rept. 55, 113 p. - Stiff, H. A., Jr., 1951, The interpretation of chemical water analysis by means of patterns: Jour. of Petroleum Technology, Oct., p. 15. - Stose, G. W. and Ljungstedt, O. A., compilers, 1932, Geologic map of the United States: U.S. Geol. Survey geol. map. - Texas Board of Water Engineers, 1958, Compilation of surface water records in Texas through September 1957: Texas Board Water Engineers Bull. 5807-A, 503 p. - Texas Water Commission and Texas Water Pollution Control Board, 1963, A statistical analysis of data on oil-field brine production in Texas for the year 1961 from an inventory conducted by the Texas Railroad Commission: Summary volume, 81 p. - Thornthwaite, C. W., 1952, Evapotranspiration in the hydrologic cycle, in The physical basis of water supply and its principal uses, v. 2 of The Physical and Economic Foundation of Natural Resources: U.S. Cong., House Comm. on Interior and Insular Affairs, p. 25-35. - U.S. Army Corps of Engineers, 1966 Water quality control study, Texas-Oklahoma-Kansas, in Survey report on Arkansas-Red River basin: U.S. Army Corps of Engineers, Tulsa District, v. 4. - U.S. Geological Survey, 1955, Compilation of records of surface waters of the United States through September 1950, Part 7, Lower Mississippi River basin: U.S. Geol. Survey Water-Supply Paper 1311, 606 p. - ____1961, Surface water records of Texas, 1961: U.S. Geol. Survey open-file rept. - _____1962, Surface water records of Texas, 1962: U.S. Geol. Survey open-file rept. - _____1963, Surface water records of Texas, 1963: U.S. Geol. Survey open-file rept. - U.S. Geological Survey, 1964a, Compilation of records of surface waters of the United States, October 1950 to September 1960, Part 7, Lower Mississippi River basin: U.S. Geol. Survey Water-Supply Paper 1731, 552 p. - _____1964b, Surface water records of Texas, 1964: U.S. Geol. Survey open-file rept. - _____1964c, Water quality records in Texas, 1964: U.S. Geol. Survey open-file rept. - 1965, Water resources data for Texas, 1965, Part 1, Surface water records; and Part 2, Water quality records: U.S. Geol. Survey open-file rept. - 1966, Water resources data for Texas, 1966, Part 1, Surface water records: U.S. Geol. Survey open-file rept. - U.S. Public Health Service, 1962, Drinking water standards, 1962, U.S. Public Health Service Pub. 956, 61 p. - ——1964, Arkansas-Red River basins water quality conservation, report on a basic study of water quality, sources of natural and manmade salt pollution, and suggested corrective measures: U.S. Department of Health, Education, and Welfare, Public Health Service, 4 vols. - U.S. Salinity Laboratory Staff, 1954, Diagnosis and improvement of saline and alkali soils: U.S. Dept. of Agriculture Handb. 60, 160 p. Quality-of-water records for the Red River basin are published in the following U.S. Geological Survey Water-Supply Papers, Texas Water Development Board (and predecessor agencies) Reports, and reports of the Oklahoma Water Resources Board. | WATER
YEAR | U.S.G.S.
WATER-SUPPLY
PAPER NO. | T.W.D.B. | OKLAHOMA WATER
RESOURCES BOARD REPORT | |---------------|---------------------------------------|------------|--| | 1940-45 | and the second | *1938-45 | | | 1946 | 1050 | *1946 | +1946-49 | | 1947 | 1102 | *1947 | +1946 49 | | 1948 | 1133 | *1948 | +1946-49 | | 1949 | 1163 | *1949 | +1946-49 | | 1950 | 1188 | *1950 | +1950 | | 1951 | 1199 | *1951 | +1951 | | 1952 | 1252 | *1952 | +1952 | | 1953 | 1292 | *1953 | +1953 | | 1954 | 1352 | *1954 | +1954 | | 1955 | 1402 | *1955 | +1955 | | 1956 | 1452 | Bull. 5905 | +1956 | | 1957 | 1522 | Bull. 5915 | +1957 | | 1958 | 1573 | Bull. 6104 | +1958 | | 1959 | 1644 | Bull. 6205 | +1959 | | 1960 | 1744 | Bull. 6215 | +1960 | | 1961 | 1884 | Bull. 6304 | +1961 | | 1962 | 1944 | Bull. 6501 | +1962 | | 1963 | 1950 | Rept. 7 | +1963 | | 1964 | | # # | # | | 1965 | | # | # | | 1966 | | # | # | | | | | | ^{* &}quot;Chemical Composition of Texas Surface Waters" was designated only by water year from 1938 through 1955. # Published as U.S. Geological Survey open-file report. ^{+ &}quot;Chemical Character of Surface Water of Oklahoma" was designated only by water year from 1946 through 1963. Table 4.--Index of Surface-Water Records for the Red River Basin, Texas | Refer- | | Drainage | | | Type and peri | od of record | | | |-------------|---|------------------|---------------------------|---------------------------------|---|------------------------------------|----------------------|----------------------| | ence
no. | Stream and location | area (sq. miles) | Daily
chemical quality | Discharge | Periodic
chemical quality | Periodic discharge
measurements | Reservoir
content | Water
temperature | | 1 | Tierra Bianca Creek above Buffalo Lake near
Umbarger | 2075 | | 1938-54,
1966 | | | | 1949-54, 196 | | 2 | Buffalo Lake near Umbarger | 2075 | | | 1951 | | 1938-54,
1966 | | | 3 | Tierra Blanca Creek below Buffalo Lake near Umbarger | | | 1966 | | | | 1966 | | 4 | Palo Duro Creek near Canyon | 982 | | 1942-54 | | | | 1949-54 | | 5 | Prairie Dog Town Fork Red River near Canyon | 3369 | | 1937-49 | | | | | | 6 | Prairie Dog Town Fork Red River above
Stockton Dam near Canyon | | | 1965 | | 1961-65 | | 1961-65 | | 7 | Lake Stockton near Canyon | | | | 1965-66 | | | | | 8 | Prairie Dog Town Fork Red River below
Stockton Dam near Canyon | | | | | 1961-65 | | 1961-65 | | 9 | Prairie Dog Town Fork Red River above
Palo Duro Park near Canyon | | | | 1961 | 1961-65 | | 1961-65 | | 10 | Prairie Dog Town Fork Red River below
Palo Duro Park near Canyon | | | | 1950, 1 <mark>96</mark> 1,
1964-65 | 1961-65 | | 1961-65 | | 11 | North Tule Draw at Reservoir near Tulia | 189 | | 1938-66 | | | 1938-66 | 1949-66 | | 12 | Tule Creek near Silverton | 1150 | | 1964-66 | 1964-66 | | | 1964-66 | | 13 | Prairie Dog Town Fork Red River near Brice | 5972 | 1950-51 | 1938-44,
1949-51,
1959-62 | | | | 1949-51, 1959 | | 14 | Mulberry Creek near Brice | 534 | 1950-51 | 1949-51 | | | | 1949-51 | | 15 | Prairie Dog Town Fork Red River near *478
Lakeview | 6792 | | 1963-66 | | | | 1963-66 | | 16 | Little Red River at State Highway 70 near
Turkey | | | | 1959 | | | | | 17 | Prairie Dog Town Fork Red River near
Estelline | 7293 | | 1937-47 | 1949-50 | | | | | 18 | Estelline Spring near Estelline | | | | 1959, 1962 | 1959, 1962 | | | | 19 | Baylor Creek Reservoir near Childress | | | | 1949-50 | | | | | 20 | Baylor Creek near Childress | | | | 1948 | | | | | 21 | Salt Creek 12 miles northwest of Childress | THE PARTY IS | | | 1959 | | | | | 22 | Prairie Dog Town Fork Red River near
Childress | 7725 | | 1964-66 | 1948-49, 1963 | | | 1964-66 | | 23 | Buck Creek near Wellington | 210 | | | 1945, 1947-48
1951-53, 1955-56
1959, 1962 | 1950-64 | | 1950-64 | | 24 | Red River near Quanah *750 | 8321 | | 1959-66 | 1959 | | | 1959-66 | | 25 | North Groesbeck Creek near North Groesbeck | 150 | | | 1951-53
1957-58, 1961 | 1951-64 | | 1951-64 | | 26 | South Groesbeck Creek near Goodlett | | | | 1962 | 1962-64 | | 1962-64 | | 27 | South Groesbeck Creek near Acme | 146 | | | 1951-53
1957-58, 1961 | 1951-64 | | 1951-64 | | 28 | Groesbeck Creek at State Highway 283 near
Quanah | 303 | | 1962-66 | 1950-53, 1957-58
1960, 1965-66 | | | 1962-66 | Table 4.--Index of Surface-Water Records for the Red River Basin, Texas--Continued | Refer- | The second secon | Drainage | | | Type and peri | od of record | | | |--------
--|---------------------|---------------------------|-----------|---|------------------------------------|----------------------|----------------------| | no. | Stream and location | area
(sq. miles) | Daily
chemical quality | Discharge | Periodic
chemical quality | Periodic discharge
measurements | Reservoir
content | Water
temperature | | 29 | Wanderers Creek at Odell | 199 | | | 1950-53
1957-58, 1960 | 1949-66 | | 1949-66 | | 30 | Carroll Creek near Clarendon | 177 | | | 1951-53 | 1948-60 | | 1949-60 | | 31 | Kelly Creek near Clarendon | | | | | 1961-65 | | 1961-65 | | 32 | Greenbelt Reservoir near Clarendon | | | | | | 1966 | | | 33 | Salt Fork Red River near Clarendon | 457 | | | 1950-53
1956, 1960, 1962 | 1950-60 | | 1950-64 | | 34 | Salt Fork Red River above Saddlers Creek north of Lelia Lake | | | | 1951 | | | | | 35 | Barton Creek northeast of Clarendon | | | | 1959 | | | | | 36 | Saddlers Creek 8 miles northeast of Clarendon | | | | 1951 | | | | | 37 | Salt Fork Red River north of Lelia Lake | | | | 1951, 1959 | | | | | 38 | Lelia Lake Creek below Bell Creek near Hedley | 74 | | | | 1964-66 | | 1964-66 | | 39 | Lelia Lake Creek near Hedley | 79 | | | 1950-53
1957-58, 1964 | 1951-66 | | 1951-66 | | 40 | Salt Fork Red River near Hedley | 744 | 1957-61 | | | 1951, 1956-62 | | 1951, 1956 | | 41 | Whitefish Creek near Alanreed | | | | 1962 | | | | | 12 | Whitefish Creek south of McLean | | | | 1951, 1962 | | | | | 43 | Whitefish Creek northeast of Hedley | 57 | | | 1951, 1962 | | | | | 44 | Gyp Creek north of McKnight | | | | 1951 | | | | | 45 | Salt Fork Red River north of Quail | | | | 1959, 1963 | | | | | 46 | Dozier Creek near Wellington | | | | 1950-51, 1953
1955, 1960 | 1950-60 | | 1950-60 | | 47 | Salt Fork Red River near Wellington *703 | 1222 | 1952-54 | 1962-66 | 0,000 | | | 1962-66 | | 48 | North Fork Red River west of Kellerville | 1.00- | | | 1959 | | | | | 49 | McClellan Creek at State Highway 70 near Boydston | 14077 | | | 1950 | | | | | 50 | Lake McClellan near Jericho | | | | 1951 | | | | | 51 | McClellan Creek at State Highway 273 near
McLean | - 4 | | | 1965 | 1965 | | | | 52 | North Fork Red River near Shamrock | 1082 | | 1964-66 | 1951-53
1958-59, 1964-66 | 1951-63 | | 1951-66 | | 53 | Sweetwater Creek at State Highway 152 west of Mobeetie | | | | 1951 | | | | | 54 | Sweetwater Creek at State Highway 152 southeast of Mobeetie | | | | 1951 | | | | | 55 | Sweetwater Creek near Wheeler | 164 | | | 1951-53
1955, 1957-58 | 1951-64 | | 1951-64 | | 56 | Sweetwater Creek near Kelton | 287 | | 1961-66 | 1962-66 | | | 1961-66 | | 57 | Elm Creek near Shamrock |
 | | | 1946-47, 1950-53
1955, 1958-59
1962 | 1947-65 | | 1947-65 | | 58 | Elm Creek above Wolf Creek near Lutie | | | | 1962 | | | | Table 4 .-- Index of Surface-Water Records for the Red River Basin, Texas--Continued | Refer- | | Drainage | | | Type and peri | od of record | | | |--------|---|------------------|---------------------------|-----------------------------------|--|------------------------------------|----------------------|---------------------| | no. | Stream and location | area (sq. miles) | Daily
chemical quality | Discharge | Periodic
chemical quality | Periodic discharge
measurements | Reservoir
content | Water
temperatur | | 59 | Wolf Creek at mouth near Lutie | | | | 1962 | | | | | 60 | Elm Creek below Wolf Creek near Lutie | | | | 1959, 1962 | | | | | 61 | Quitaque Creek near Quitaque | 293 | | 1945-59 | 1945-46, 1950-51 | 1960-66 | | 1960-66 | | 62 | Roaring Springs near Roaring Springs | | | | 1937, 1952-56
1958-60, 1962 | 1937, 1943-66 | | 1949-66 | | 63 | Middle Pease River near Paducah | | | | 1950, 1959 | | | | | 64 | Salt Springs tributary to Middle Pease
River 14 miles northeast of Paducah | | | | 1959 | | | | | 65 | Pease River near Childress *755 | 2747 | | 1959-62 | 1959 | | | 1959-62 | | 66 | Pease River near Crowell | 3037 | 1942-43 | 1924-47 | | | | | | 67 | Pease River near Vernon *759 | 3488 | | 1959-66 | 1942, 1951 | | | 1959-66 | | 68 | Red River near Burkburnett | 20570 | | 1959-66 | 1959 | 1924-25 | | 1959-66 | | 69 | North Wichita River 11 miles south of Paducah | | | | 1951-54 | | | | | 70 | North Wichita River 10 miles southeast of Paducah | | | | 1951-54 | | | | | 71 | Salt Creek 4 miles southeast of Paducah | | | | 1951-52, 1958 | | | | | 72 | Salt Creek at mouth 8 miles southeast of Paducah | | | | 1939, 1951-54,
1956, 1958-59 | | | | | 73 | North Wichita River below Salt Creek
12 miles southeast of Paducah | 44 | | | 1952, 1958 | | | | | 74 | North Wichita River near Paducah *771 | 540 | | 1961-66 | 1958-59, 1965-66 | 1951-54 | | 1961-66 | | 75 | North Wichita River near Truscott *757 | 937 | | 1959-66 | 1954, 1956, 1959,
1965-66 | 1952-57 | | 1959-66 | | 76 | South Wichita River at Guthrie | 39 | | | 1950, 1958-59
1963 | | | | | 77 | South Wichita River tributary 6 miles east of Guthrie | | | | 1958 | | | | | 78 | South Wichita River 6.5 miles east of Guthrie | <u> </u> | | | 1953-54, 1956
1958-59 | | | | | 79 | South Wichita River near Benjamin *756 | 584 | | 1959-66 | 1949,1953-54,1956
1959, 1965-66 | 1952-57 | | 1959-66 | | 80 | Wichita River near Seymour | 1874 | | 1959-66 | 1953-54, 1958,
1965-66 | | | 1959-66 | | 81 | Lake Kemp near Mabelle | 2086 | | | 1939,1942,1946,195
1954-55, 1964-65 | 2 | 1922-66 | | | 82 | Wichita River near Mabelle *752 | 2086 | | 1959-66 | 1965-66 | 1952-58 | | 1959-66 | | 83 | Santa Rosa Lake near Vernon | | | | 1966 | | | | | 84 | Beaver Creek near Electra *751 | 652 | | 1960-66 | 1966 | | | 1960-66 | | 85 | North Buffalo Creek near Iowa Park | | | | 1961-63 | 1961-63 | | 1961-63 | | 86 | Buffalo Creek near Iowa Park | - | | | 1964-65 | 1963-65 | | 1963-65 | | 87 | Wichita River at Wichita Falls *503 | 3140 | | 1900-1902,
1910-11,
1938-66 | 1951 | | | 1949-66 | Table 4.--Index of Surface-Water Records for the Red River Basin, Texas--Continued | Refer- | Calle and resident to | | Drainage | | | Type and peri | od of record | | | |-------------|--|------|----------|-----------------------------|---------------------|--------------------------------------|------------------------------------|----------------------|----------------------| | ence
no. | Stream and location | | area | Daily chemical quality | Discharge | Periodic
chemical quality | Periodic discharge
measurements | Reservoir
content | Water
temperature | | 88 | Lake Wichita at Wichita Falls | | | | | 1944, 1946, 1952
1954, 1959, 1965 | | | | | 89 | Wichita River at Farm Road 171
near Byers | | | | | 1949, 1951, 1958 | | | | | 90 | Lake Kickapoo near Archer City | | 275 | | | 1946, 1952, 1954
1957, 1964-65 | | 1946-66 | | | 91 | Little Wichita River near Archer City | | 481 | 1953-55 | 1932-56 | | | | 1949-56 | | 92 | Lake Creek near Henrietta | | | | | 1959 | | | | | 93 | Little Wichita River near Henrietta | *704 | 1037 | 1953-55, 1959-66 | 1953-66 | | | | 1953-66 | | 94 | Dry Fork Little Wichita River near
Henrietta | | | | | 1959 | | | | | 95 | East Fork Little Wichita River near
Henrietta | | 178 | | 1953-66 | 1959, 1964-66 | | | 1963-66 | | 96 | Little Wichita River near Ringgold | | 1350 | 1959-62 | 1959-65 | | | | 1959-65 | | 97 | Red River near Terral, Oklahoma | *507 | 28723 | | 1938-66 | | | | 1949-66 | | 98 | Farmers Creek Reservoir near Nocona | | | | | 1967 | | | | | 99 | Red River near Gainesville | *508 | 30782 | 1944-46, 1952-63
1966-67 | 1936-67 | | | | 1944-46
1949-66 | | 100 | Washita River at Farm Road 2564
near Allison | | | | | 1965 | 1965 | | | | 101 | Lake Texoma near Denison | | 39719 | | | | | 1942-66 | | | 102 | Red River at
Denison Dam near Denison | *522 | 39720 | 1944-1967 | 1923-67 | | | | | | 103 | Bois d'Arc Creek near Randolph | | 72 | | 1962-66 | 1966 | | | 1962-66 | | 104 | Sanders Creek near Chicota | | | | 1961-62
1965-66 | 1961-62, 1965-66 | | | | | 105 | Red River at Arthur City | *527 | 44531 | | 1905-11,
1936-66 | 1961-63 | | | | | 106 | Lake Crook near Paris | | | | 1960 | | | | | | 107 | Big Pine Creek near Manchester | | | | 1961-62 | 1961-62 | | | | | 108 | Pecan Bayou near Clarksville | | 100 | | 1962-66 | | | | 1962-66 | | 109 | Red River near New Boston | | 47555 | | 1960-63 | | | | | | 110 | Barkman Creek near Leary | | | | 1961-62 | 1961-62 | | | | | 111 | Red River at Index, Ark. | *529 | 48030 | 1960-63 | 1936-66 | | | | | ^{*} U. S. Public Health Service has collected chemical quality records at this site. Number is Public Health Service site number. Table 5.--Summary of Chemical Analyses of Water at Daily Stations on Streams in the Red River Basin, Texas | | | | | | | | | Bi- | | | | | | | solved s | | | ness
aCO, | 50- | Specific | | |--|----------------------------|-------------------------------|--------------|----------------------|-----------------------------|-----------------|----------------------------|--|---|-------------------------------|---------------------|--------|------------------------------------|---------------------------------|------------------------------|---------------------|--------------------------------------|-----------------------------|---------------------------------------|--|-----| | Date
of
collection | Mean
discharge
(cfs) | Silica
(SiO ₂) | Iron
(Fe) | Cal-
cium
(Ca) | Mag-
ne-
sium
(Mg) | Sodium
(Na) | Po-
tas-
sium
(K) | car-
bon-
ate
(HCO ₃) | Car-
bon-
ate
(CO ₃) | Sulfate
(SO ₄) | Chloride
(Cl) | | Ni-
trate
(NO ₃) | Milli-
grams
per
liter | Tons
per
acre-
foot | Tons
per
day | Cal-
cium,
Mag-
ne-
sium | Non-
car-
bon-
ate | dium
ad-
sorp-
tion
ratio | duct-
ance
(micro-
mhos at
25°C) | 1 | | | | ii allaati | 14 11 11 11 | | | 13. | PRAIR | IE DOG | TOWN | FORK RE | D RIVER N | EAR BI | RICE | | | | | | | | | | Water year 1950 Maximum, May 16-18,21,1950. Minimum, Oct. 10, 1949 Weighted average | 10.2
283
69.3 | 26 | | 650
397
327 | 134
42
56 | 296
20
77 | 5 | 114
82
110 | | 1750
1100
930 | 4740
280
1190 | | 2.5
2.9 | 10300
2090
3360 | 14.0
2.84
4.57 | 284
1600
629 | 2170
1160
1050 | 2080
1100
956 | | 15200
2680 | | | Water year 1951 Maximum, Jan. 15-16, 1951 Minimum, May 17-20 Weighted average | 10.1
6032
162 | 25
20
23 | | 813
202
229 | 217
36
41 | 441
30
45 | 8 | 153
110
129 | | 2270
583
669 | 7110
440
663 | | 3.8 | 14900
1650
2140 | 20.3
2.24
2.92 | 406
26900
940 | 2920
652
752 | 2800
562
647 | | 21400
2540
3370 | 8. | | | | P. Januar | | | | 388 | 1 | 4. MU | LBERRY | CREEK | NEAR BRIC | E | | 1000 | | | | | | | | | Water year 1950 Maximum, June 24, 1950 Minimum, July 24 Weikhted average | 0.25
204
38.2 | 18 | 6585H | 472
128
244 | 144
17
43 | 21
4
8 | 3 | 79
80
102 | | 1730
334
697 | 270
49
111 | | 0.5
1.8
1.7 | 2920
693
1260 | 3.97
.94
1.73 | 2.0
382
131 | 1770
391
786 | 1700
326
702 | | 3480
918
1650 | 8. | | Water year 1951 Maximum Mar. 2, 1951 Minimum, June 1-3 Weighted average | . 40
597
20.7 | 30
28
31 | | 500
101
200 | 113
19
40 | 22
3
8 | 6 | 124
113
112 | | 1680
235
566 | 255
49
115 | | .0
2.5
2.6 | 2870
526
1120 | 3.90
.75
1.52 | 3.1
893
63.0 | 1710
330
664 | 1610
238
572 | | 3390
789
1480 | 8. | | | 100 | | | | | | 40. | SALT | FORK F | ED RIVE | R NEAR HE | DLEY | | | | | | | | ARE I | | | Water year 1957 Maximum, Jan. 18, 1957 Minimum, Aug. 29 | | 34
15 | inne. | 371
38 | 125 | 26
5 3 | | 276
111 | | 1260
57 | 328
25 | 1.0 | | 2520
231 | 3.43 | | 1440
126 | 1210
35 | | 3260
382 | 7.8 | | Water year 1958
Maximum, Jan. 1, 3, 1958
Minimum, Oct. 15, 17-18,
1957 | | 28
17 | | 408
64 | 108
19 | 18 | | 217
136 | | 1280
166 | 250
125 | . 6 | .5 | 2370
575 | 3.22 | | 1460
238 | 1280 | 2.1 | 2860
925 | | | Water year 1959 Maximum, Mar. 11-14, 16,20, 22, 25, 23, 1959 Minimum, Mar. 5 | | 24
17 | | 215
72 | 74
24 | 27
8 | 8 | 184
100 | | 800
218 | 325
101 | . 9 | 1.8 | 1810
563 | 2.46 | | 841
278 | 590
196 | 4.2 | 2570
917 | 7.0 | | Water year 1960
Maximum, Nov. 3-9, 17-21,
23-30, 1959 | | 46
13 | | 130
45 | 49
8. | 14
5 2 | | 113
131 | | 516
59 | 148
27 | | 1.8 | 1090
27 0 | 1.48
.37 | | 526
147 | 434
40 | 2.8 | 1510
413 | | | Water year 1961
Maximum, June 26-29,
July 6, 1961
Minimum, Oct. 10-16, 1960 | | 46
19 | | 9 2
50 | 39
12 | 14
4 | | 78
135 | | 380
90 | 169
52 | .8 | .5
2.8 | 968
347 | 1.32
.47 | | 390
174 | 326
64 | 3.1
3.8 | 1370
565 | 7.5 | Table 5.--Summary of Chemical Analyses of Water at Daily Stations on Streams in the Red River Basin, Texas--Continued | | 4 | | | | | | | Bi- | | | | | | | calcula | | Hard
as C: | ness
aCO ₃ | So- | Specific | | |--|----------------------------|-------------------------------|--------------|----------------------|-----------------------------|----------------|----------------------------|-------------------|---|-------------------------------|----------------------|-------|------------------------------------|---------------------------------|------------------------------|----------------------|--------------------------------------|-----------------------------|---------------------------------------|--|-----| | Date
of
collection | Mean
discharge
(cfs) | Silica
(SiO ₂) | Iron
(Fe) | Cal-
cium
(Ca) | Mag-
ne-
sium
(Mg) | Sodium
(Na) | Po-
tas-
sium
(K) | car- | Car-
bon-
ate
(CO ₃) | Sulfate
(SO ₄) | Chloride
(C1) | ride | Ni-
trate
(NO ₃) | Milli-
grams
per
liter | Tons
per
acre-
foot | Tons
per
day | Cal-
cium,
Mag-
ne-
sium | Non-
car-
bon-
ate | dium
ad-
sorp-
tion
ratio | duct-
ance
(micro-
mhos at
25°C) | рН | | | | | | | | 4 | 7. S | ALT FOR | RK RED | RIVER | NEAR WELL | INGTO | N | | | | | | | | | | June to September 1952 Maximum, Sept. 21-30,1952 Minimum, June 22-24 | 3.22
51.4 | | | 558
199 | 101
47 | | 51
15 | 135
136 | | 1690
621 | 185
125 | 0.8 | | 2780
1220 | 3.78
1.66 | 24.2
169 | 1810
690 | 1700
578 | | 3240
1710 | | | Water year 1953
Maximum, Dec. 18-30, 1952 | 15.0 | 20 | | 600 | 108 | 1 | 31 | 174 | | 1650 | 255 | . 8 | 5.8 | 2860 | 3.89 | 116 | 1940 | 1800 | 1.3 | 3370 | 7.8 | | Minimum, Aug. 6, 8, 18-20, 1953 | | 26
29 | | 141
238 | 25
47 | | 51
02 | 125
128 | | 359
681 | 65
134 | . 5 | 1.5 | 730
1300 | .99
1.77 | 382
194 | 455
788 | 352
682 | | 1080
1730 | | | Water year 1954 Maximum, Aug. 12-20, 1954 Minimum, Oct. 21-24, 1953 Weighted average | 414 | 29
14
25 | | 518
127
188 | 141
21
40 | | 13
53
02 | 114
131
141 | | 1590
295
518 | 1030
71
141 | . 4 | 3.5
3.0
3.0 | 3980
677
1100 | 5.41
.92
1.50 | 67.6
757
357 | 1870
404
634 | 296 | 6.2
1.1
1.8 | 5470
960
1550 | 7.7 | | | | | | | | | 6 | 6. PE | ASE RI | VER NEAD | R CROWELL | | | | | | | | 4 | | | | July to September 1942 Maximum, July 16, 1942 Minimum, June 10 | | | | 1010
390 | 199
79 | 26
5 | 60
22 | 99
75 | | 2910
1150 | 4260
835 | | 13 | 11100
3010 | | | 3350
1300 | == | | 16000
4460 | | | Water year 1943 Maximum, Dec. 24, 1942 Minimum, Apr. 17, 1943 Weighted average | 1060 | 12
13 | | 864
326
424 | 170
33
64 | | 50
34
93 | 145
76
112 | | 2300
847
1130 | 6480
208
1250 | | 2.5
1.5
3.2 | 14200
1600
3740 | 18.9
2.18
5.09 | 1840
4580
1620 | 2860
949
1320 | 2740
886
1230 | | 20400
2420
5540 | | | | | | | | | 91 | . LI | TTLE W | ICHITA | RIVER | NEAR ARCH | ER CI | TY | | | | | | | | | | January to September 1953 Maximum, Aug. 15-17, 1953 Minimum, Aug. 20-28 Weighted average | 21.1 | 18 | | 72
22
27 | 25
5.9
8.0 | 9 | 62
53
84 | 121
113
114 | | 14
7.
7. | 675
L 65
L 128 | 0.8 | | 1220
230
328 | 1.66
.31
.46 | 19.3
13.1
5.52 | 282
79
100 | 184
0
7 | | 2360
405
622 | 8.0 | | Water year 1954 Maximum, Sept. 19, 1954 Minimum, Oct. 22-27, 1953 Weighted average | 1542 | 10 | | 14
19 | 3
5 | 1 |
20
34 | 165
59
73 | | 3.:
4.: | | . 5 | 4.8 | 2340
137
168 |
.19
.26 | 570
31.1 | 590
48
68 | | 1.3
1.8 | 3730
192
303 | 8.0 | | Water year 1955 Maximum, Nov. 17-18, 1954 Minimum, Sept. 25-26, 1955. Weighted average | 3890 | 8.6
6.4
9.7 | | 129
12
23 | 37
2.4
5.5 | 1 | 42
18
36 | 86
48
94 | | 13
7.8
5.0 | | . 5 | 4.0
4.0
4.0 | 1890
95
197 | 2.57
.13
.27 | 8.42
998
34.2 | 475
40
80 | | 11
1.3
1.8 | 3550
156
337 | 7.3 | | | | - | | | | 9 | 3. L | ITTLE V | WICHIT | A RIVER |
NEAR HEN | RIETT | A | | | | | | | | | | Dec. 1952 - Sept. 1953 Maximum, Mar. 15-16 Minimum, Mar. 14, 17-18 Weighted average | 137 | 14
9.4
12 | | 94
13
23 | 31
4.:
7.: | 3 | 14
20
73 | 81
59
90 | | 15
5.0
6.4 | |
 | 3.5 | 1700
111
286 | 2.31
.15
.43 | 474
41.1
10.7 | 362
50
88 | 296
2
14 | | 3290
205
542 | | | Water year 1954 Maximum, Oct. 6, 1953 Minimum, Oct. 22-24,26-29 Weighted average | 3326 | 16
7.2
12 | | 60
8.
14 | 18
2 2.3
4.8 | 7 | 15
11
25 | 93
38
58 | | 14
2.0
3.0 | | . 7 | 7.5
3.0
3.0 | 1310
66
147 | 1.78
.09
.20 | 654
593
81.0 | 224
32
55 | | 12
.8
1.5 | 2460
116
236 | | Table 5.--Summary of Chemical Analyses of Water at Daily Stations on Streams in the Red River Basin, Texas--Continued | | -57 - | | | | 34 | | D- | Bi- | | i i | | | | | | ssolved
calcula | | Hard
as Ca | | So- | Specific con- | | |--|----------------------------|-------------------------------|--------------|----------------------|-----------------------------|----------------|----------------------------|--|---|-------------------------------|--------------------|-----------------|------------------------------------|-------------------|---------------------------------|------------------------------|----------------------|--------------------------------------|-----------------------------|-------------------|--|------------| | Date of collection | Mean
discharge
(cfs) | Silica
(SiO ₂) | Iron
(Fe) | Cal-
cium
(Ca) | Mag-
ne-
sium
(Mg) | Sodium
(Na) | Po-
tas-
sium
(K) | car-
bon-
ate
(HCO ₃) | Car-
bon-
ate
(CO ₃) | Sulfate
(SO ₄) | Chloride
(Cl) | ride | Ni-
trate
(NO ₃) | Bo-
ron
(B) | Milli-
grams
per
liter | Tons
per
acre-
foot | Tons
per
day | Cal-
cium,
Mag-
ne-
sium | Non-
car-
bon-
ate | | duct-
ance
(micro-
mhos at
25°C) | рН | | | | | | | | 93. LI | TTLE | WICHITA | RIVE | R NEAR | HENRIETTA | Con | tinued | | | | | | | | | | | Maximum, Sept. 24, 1955
Minimum, May 19
Weighted average | 1430 | 11
7.2
9.7 | | 113
7.8
19 | 33
2.3
4.1 | | 81
8.4
36 | 74
34
69 | | 18
2
4.3 | 980
10
56 | 0.4 | | | 1670
57
166 | 2.27
.08
.23 | 415
220
51.7 | 418
29
64 | 358
1
8 | 10
.7
1.9 | 3250
97
306 | 7.4 | | March to September 1959 Maximum, May 12 Minimum, June 23 Weighted average | 2280 | 9.6
6.4
8.9 | | 78
6.8
21 | 23
3.4
6.1 | | 45
10
50 | 128
39
69 | | 25
4.4
6.6 | 642
10
85 | .6
.2
.3 | 2.5 | | 1190
63
218 | 1.62
.09
.30 | 1510
388
46.7 | 289
31
78 | 184
0
21 | 8.8
.8
2.5 | 2300
116
404 | | | Maximum, June 2, 1960 Minimum, Mar. 26 Weighted average | 245 | 7.8
9.3 | | 16
25 | 3.8
6.9 | |
18
64 | 58
59
70 | | 6.8
7.7 | 2500
26
114 | .2 | | | 4120
110
270 | 5.60
.15
.37 | 1280
72.8
45.7 | 1060
56
91 | 1010
7
33 | 1.0
2.9 | 7520
204
498 | 6.3 | | dater year 1961
Maximum, June 1-8, 1961
Minimum, Oct. 15-16, 1960
Weighted average | 789 | 7.3
9.3 | | 6.8
22 | 2.9
6.2 | |
8.8
59 | 94
34
71 | | 4.0
6.6 | 1450
9.2
100 |
.3
.3 | | | 2440
59
243 | 3.32
.08
.33 | 3.29
126
33.7 | 666
29
80 | 589
1
22 |
.7
2.9 | 4590
104
458 | 7.6 | | Maximum, Nov. 4, 1961
Minimum, June 30, 1962
Weighted average | 918 | 8.8 | | 109 | 29

6.6 | | 05

52 | 79
51
79 | | 16
4.2
6.1 | 1000
10
89 | . 4
 | 7.4

3.2 | | 1710
76
234 | 2.33
.10
.31 | 679
188
66.3 | 392
34
87 | 327
0
21 | 11

2.2 | 3170
129
436 | 7.5 | | ater year 1963 Maximum, Feb. 1-4, 8-14, 16-19, 1963 | .1
5.9
101 | 5.3 | | 210

17 | 76

4.9 | | 28

33 | 170
8
63 | | 29

7.8 | 1440
8.0
53 | == | 1.0 | | 2470
30
158 | 3.36
.04
.21 | . 67

66. 0 | 836
8
63 | 697
1
12 | 9.4 | 4560
44
290 | 7.6 | | Maximum, Dec. 15-17, 1963
Minimum, Sept. 16-17, 1964.
Weighted average | 8.6
118
56.3 | 7.2
11
11 | | 74
13
25 | 8.6
3.1
6.3 | | 06
20
56 | 62
72
92 | | 27
8.0
7.5 | 570
14
89 |
•4
 | | | 1020
106
242 | 1.39
.14
.33 | 23.7
33.8
73.0 | 220
45
88 | 169
0
17 | 9.0
1.3
2.3 | 1990
182
455 | 7.6
6.8 | | ater year 1965
Maximum, Apr. 16-18, 1964
Minimum, Aug. 16-17
Weighted average | 416 | 11
8.4
9.5 | | 65
11
25 | 18
3.1
6.7 | | 35
11
52 | 113
50
85 | | 17
6.0
8.9 | 450
11
87 | .2 | 3.2
1.5
1.0 | | 855
77
232 | 1.16
.10
.32 | 191
86.5
48.0 | 236
40
89 | 144
0
19 | 6.7
.8
2.2 | 1600
134
439 | | | Maximum, July 12, 1966
Minimum, Apr. 26-30
Weighted average | 3788 | 6.6
7./3
8.0 | | 106
12
15 | 30
3.3
4.0 | | 43
16
25 | 132
50
58 | | 21
3.2
4.7 | 710
20
37 | .5 | . 5 | | 1290
90
124 | 1.75
.12
.16 | 261
920
172 | 388
44
54 | 280
2
6 | 7.5
.9
1.2 | 2490
162
231 | 7.7 | | The state of s | | | | | | 9 | 6. L | ITTLE V | VICHIT | 'A RIVER | NEAR RIN | GGOLD | | | | 2011 | | | | | | | | March to September 1959 Maximum, Mar. 16-18, 1959 Minimum, Sept. 4 Weighted average | 32.1
383
130 | 7.8
7.6
9.6 | | 205
5·2
15 | 63
1.5
4.3 | | 83
4.3
33 | 150
22
55 | | 34
2.6
5.1 | 1640
4.0
52 | 0.3
.1
.2 | | | 2810
38
151 | 3.82
.05
.21 | 244
39.3
53.0 | 770
19
55 | 648
1
10 | 12
.4
1.9 | 5200
60
279 | 8.1 | | Water year 1960
Maximum, June 3, 1960
Minimum, Oct. 3-4, 1959
Weighted average | 173 | 10
10
11 | | 302
4.5
17 | 96
2.9
5.4 | 12 | 60
6.3
40 | 60
33
63 | | 62
1.4
6.0 | 2680
5.0
66 | .5 | 1.0 | | 4440
47
180 | 6.04
.06
.24 | 1590
173
52.5 | 1150
23
65 | 1100
0
13 | 16
.6
2.2 | 7860
72
326 | 6.8 | Table 5 .-- Summary of Chemical Analyses of Water at Daily Stations on Streams in the Red River Basin, Texas--Continued | | | | eliació | | | | | Bi- | | | re centere | | | Dis | ssolved
alcula | | Hardi
as Ca | | So- | Specific con- | |
--|----------------------------|-------------------------------|---------|----------------------|-----------------------------|----------------|----------------------------|--|---|-------------------------------|--------------------|-------|------------------------------------|---------------------------------|------------------------------|---|--------------------------------------|-----------------------------|------------------|--|-------------------| | Date
of
collection | Mean
discharge
(cfs) | Silica
(SiO ₂) | | Cal-
cium
(Ca) | Mag-
ne-
sium
(Mg) | Sodium
(Na) | Po-
tas-
sium
(K) | car-
bon-
ate
(HCO ₃) | Car-
bon-
ate
(CO ₃) | Sulfate
(SO ₄) | Chloride
(Cl) | | Ni-
trate
(NO ₃) | Milli-
grams
per
liter | Tons
per
acre-
foot | Tons
per
day | Cal-
cium,
Mag-
ne-
sium | Non-
car-
bon-
ate | | duct-
ance
(micro-
mhos at
25°C) | | | The state of s | September 1 | | | | | 96. LIT | TLE W | ICHITA | RIVER | R NEAR R | INGGOLD | Conti | nued | | | | | | | | | | Water year 1961 Maximum, Oct. 8-15, 1960 Minimum, Oct. 16-17 Weighted average | 1046 | 6.4
7.4
8.8 | | 89
6.5
18 | 23
2.4
5.4 | | 95
8.4
43 | 85
32
63 | | 18
4.2
6.9 | 770
8.0
72 | 0.4 | | 1340
55
187 | 1.82
.07
.25 | 94.1
155
40.7 | 316
26
67 | 247
0
15 | 9.7
.7
2 3 | 2570
99
354 | 6.6 | | Water year 1962 Maximum, Nov. 8-11, 1961 Minimum, Sept. 6-7, 1962 Weighted average | 1900 | 8 · 4
15
12 | | 112
5.0
17 | 29
2.9
5.4 | | 64
2.6
34 | 64
30
66 | | 17
.4
5.5 | 1100
3.0
54 | .6 | | 1870
45
168 | 2.54
.06
.23 | 42.9
231
74.4 | 399
24
65 | 346
0
12 | 12
.2
1.6 | 67 | 6.8
7.0
6.7 | | | Ų. | | | | | | 99 | . RED | RIVER | R NEAR G | AINESVILL | Е | | | | 1987
(8) (8) (4) | | | | 9 | | | May to September 1944 Maximum, Sept. 21-30 Minimum, June 13-16 Weighted average | 957 | | | 384
83
181 | 86
19
43 | | 40
63
33 | 144
115
126 | | 940
181
450 | 2070
252
705 | | 1.8
2.2
3.3 | 4790
757
1880 | 6.51
1.03
2.56 | 3570
1960
7410 | 1310
285
628 | 1190
191
525 | | 7530
1320
3070 | | | Water year 1945 Maximum, Jan. 11-20, 1945 Minimum, Sept. 30 Weighted average | 42300 | | | 310
36
97 | 97
7.3
24 | | 30
36
94 | 214
94
137 | | 751
31
169 | 1740
62
335 | | 3.5
1.2
3.5 | 4040
250
891 | 5.49
.34
1.21 | 5500
28600
10100 | 1170
120
340 | 997
43
228 |

 | 6550
403
1540 | | | October 1945 to April 1946 Maximum, Jan. 23-31, 1946. Minimum, Oct. 1-3, 1945 Weighted average | 6547 | | | 248
36
 | 75
7.3
 | | 66
36
 | 287
94
 | | 521
31
 | 1440
62
 | | 2.5
1.2 | 3290
250
 | = | ======================================= | 928
120
 | 692
43 | | 5510
403
 | | | Water year 1953 Maximum, Apr. 1-11, 1953 Minimum, July 22-23 Weighted average | 3090 | | | 450
39
169 | 94
8.4
38 | | 30
66
36 | 153
105
127 | | 1190
42
412 | 2750
101
698 | | 7.0
4.2
4.6 | 6480
342
1910 | 8.81
.47
2.60 | 47940
2850
3360 | 1510
132
578 | 1380
46
474 | 19
2.5
7.8 | | 7.4
8.0 | | Water year 1954 Maximum, Aug. 30-31 Minimum, May 12-13 Weighted average | 41950 | | | 460
52
115 | 86
6.2
23 | | 40
74
42 | 123
102
123 | | 1190
70
246 | 2000
114
394 | | 1.4 | 5210
412
1140 | 7.09
.56
1.55 | 11310
46670
9510 | 1500
155
382 | 1400
72
280 | 13
2.6
5.4 | 8010
698
1890 | 8.0 | | Water year 1955 Maximum, Aug. 1-6, 1955 Minimum, Sept. 26-30 Weighted average | 14660 | | | 356
48
141 | 73
12
32 | | 67
83
82 | 126
120
130 | | 900
70
326 | 1400
118
462 | | 1.7 | 3830
400
1370 | 5.21
.54
1.86 | 13470
15830
9730 | 1190
170
484 | 1090
72
377 | 11
2.8
5.6 | | 7.4
7.7 | | Water year 1956 Maximum, June 21-31, 1956. Minimum, July 11 Weighted average | 1220 | | | 424
45
146 | 103
12
37 | | 70
89
23 | 134
90
136 | | 1120
57
341 | 2250
155
533 | | 3.3 | 5490
446
1530 | 7.47
.61
2.08 | 7860
1470
8990 | 1480
160
516 | 1370
86
405 | 15
3.1
6.2 | 8670
776
2470 | 8.0 | | Water year 1957 Maximum, Sept. 11-12, 1957 Minimum, Apr. 26-30 Weighted average | 49580 | | | 384
51
107 | 69
7.5
23 | | 20
49
69 | 118
130
136 | | 917
58
209 | 1700
67
283 | | 2.4 | 4260
335
917 | 5.79
.46
1.25 | 5120
44850
18530 | 1240
158
362 | 1140
52
250 | 13
1.7
3.9 | | 7.6
8.2 | | Water year 1958 Maximum, Nov. 1-3 Minimum, Nov. 4 Weighted average | 1110 | | | 344
28
164 | 78
3.2
44 | | 10
6.4
34 | 196
84
151 | | 793
14
383 | 1850
7.0
717 | | 4.6 | 4680
115
1950 | 6.36
.16
2.65 | 8630
345
10520 | 1180
83
590 | 1020
14
466 | 14
.3
7.8 | 7460
176
3100 | 7.7 | Table 5 .-- Summary of Chemical Analyses of Water at Daily Stations on Streams in the Red River Basin, Texas--Continued | | | | | | | | | Bi- | | | 1170 | | | | | solved s | | Hard
as Ca | ness
aCO ₃ | So- | Specific | - | |---|----------------------------|-------------------------------|--------------|----------------------|-----------------------------|----------------|----------------------------|--|---|-------------------------------|------------------|-------|------------------------------------|-------------------|---------------------------------|------------------------------|--------------------|--------------------------------------|-----------------------------|---------------------------|--|-----| | Date
of
collection | Mean
discharge
(cfs) | Silica
(SiO ₂) | Iron
(Fe) | Cal-
cium
(Ca) | Mag-
ne-
sium
(Mg) | Sodium
(Na) | Po-
tas-
sium
(K) | car-
bon-
ate
(HCO ₃) | Car-
bon-
ate
(CO ₃) | Sulfate
(SO ₄) | Chloride
(Cl) | | Ni-
trate
(NO ₃) | Bo-
ron
(B) | Milli-
grams
per
liter | Tons
per
acre-
foot | Tons
per
day | Cal-
cium,
Mag-
ne-
sium | Non-
car-
bon-
ate | dium ad- sorp- tion ratio | duct-
ance
(micro-
mhos at
25°C) | - 1 | | | | | | | | | 99. R | ED RIV | ER NEA | R GAINE | SVILLEC | ontir | nued | | | | | | | | | | | Water year 1959 | | | | | | | | | | | | | | | | | | 100 | | | | | | Maximum, April 20, 1959 | 652 | | | 300 | 100 |] | 170 | 116 | | 815 | 1950 | | | | 4690 | 6.38 | 8260 | 1160 | 1060 | | 7150 | 8. | | Minimum, Sept. 5 | 1960
1534 | | | 48
154 | 16
31 | | 93
359 | 104
125 | | 73
375 | 60
566 | | 0.8 | === | 472
1640 | .64
2.23 | 2500
6790 | 185
512 | 100
409 | 6.9 | | 7. | | Water year 1960 | Maximum, July 1-8, 1960 | 799 | | | 348 | 90 | | 190 | 138 | | 990 | 1900 | | | | 4760 | 6.47 | 10270 | 1240 | 1130 | | 7080 | 8.0 | | Minimum, Oct. 4, 1959 | | | | 36 | 6.3 | | 32 | 108 | | 32 | 45 | | . 4 | | 217 | .30 | 16350 | 116 | 28 | | 362 | 7. | | Weighted average | 2916 | | | 147 | 36 | | 364 | 144 | | 342 | 590 | | | | 1660 | 2.26 | 13070 | 515 | 397 | 7.0 | 2590 | | | Water year 1961 | 0142 | | | 416 | 100 | , | 340 | 132 | | 1210 | 2120 | | | |
5630 | 7.66 | 32580 | 1450 | 1340 | 15 | 8050 | 8. | | Maximum, July 16-18, 1961
Minimum, Sept. 16-20 | 2143
5412 | | | 416 | 12 | | 95 | 118 | | 66 | 146 | | 3.6 | | 463 | .63 | 6770 | 168 | 72 | | 785 | 8.0 | | Weighted average | 3044 | | | 158 | 43 | | 399 | 148 | | 390 | 644 | | | | 1820 | 2.48 | 14960 | 571 | 450 | | | | | Water year 1962 | Maximum, April 18-22, 1962. | 311 | | | 252 | 120 | | 923 | 184 | | 718 | 1580 | | | 0.57 | 3880 | 5.28 | 3260 | 1120 | 969 | 12 | 6180 | 7.9 | | Minimum, Sept. 2 | 835 | | | 46 | 3.6 | | 21 | 140 | | 31 | 21 | | | | 221 | .30 | 498 | 130 | 16 | . 8 | 294 | 7.8 | | Weighted average | 2591 | | | 124 | 29 | | 287 | 140 | | 283 | 456 | | | | 1340 | 1.82 | 9370 | 429 | 314 | 6.0 | 2120 | | | Water year 1963 | i Lu. | | | | | | | | | | | | | 40 | | 7 5 0 | 11010 | 1000 | 1140 | 10 | 0000 | 0 (| | Maximum, June 26-July 1, 1963 | 751 | | | 392 | 69 | | 23 | 146 | | 1150
72 | 2350
19 | | 33 | . 43 | 5580
292 | 7.59 | 11310
3330 | 1260 | 1140
52 | 19.7 | 8800
460 | 8.2 | | Minimum, Nov. 26, 1962
Weighted average | 4220
1289 | | | 58
141 | 8.6
36 | | 381 | 148
150 | | 324 | 611 | | | .26 | 1590 | 2.16 | 5540 | 498 | | 7.0 | Water year 1967
Maximum, Mar. 1-31, 1967 | 179 | 4.6 | | 258 | 86 | 812 | 8.1 | 232 | | 610 | 1400 | | 2.5 | | 3310 | 4.50 | 1600 | 997 | 807 | 11 | 5350 | 7.6 | | Minimum, July 7-8 | 5110 | 7.9 | | 56 | 10 | 86 | 4.4 | | | 60 | 146 | 0.2 | . 2 | | 433 | . 59 | 5970 | 180 | | 2.8 | | | | Weighted average | 1316 | 7.9 | | 140 | 30 | 329 | 5.8 | 141 | | 302 | 545 | | 1.3 | | 1430 | 1.94 | 5080 | 473 | 358 | 6.0 | 2400 | 7.5 | | | | | | | | 1 | .02. R | ED RIV | ER AT | DENISON | DAM NEAR | DENI | SON | | er case | | | | | | 177 | | | May to September 1944 | χ. | | | | | | | | | | | | | | 1999 | | | | | | | | | Maximum, Aug. 11-20, 1944. | 746 | | | 148 | 37 | | 315 | 162 | | 323 | 520 | | 4.9 | | 1430 | 1.94 | 2880
497 | 522
352 | 389
222 | | 2430
1610 | 7.8 | | Minimum, June 11-20 | 204 | | | 98 | 26
32 | | 194
255 | 158
161 | | 183
255 | 318
424 | | 4.8 | | 902
1180 | 1.23 | 946 | 446 | 314 | == | 2040 | | | Weighted average | 297 | | | 126 | 32 | | 233 | 101 | | 233 | 424 | | 4.2 | | 1100 | 1.00 | 340 | 110 | 011 | | 2010 | | | Water year 1945 | 149 | | | 127 | 34 | | 296 | 172 | | 290 | 465 | | 2.0 | | 1300 | 1.77 | 523 | 457 | 316 | | 2280 | 8.0 | | Maximum, Jan. 1-10, 1945
Minimum, July 1-10 | | | | 68 | 19 | | 84 | 149 | | 98 | 146 | | .8 | | 489 | . 67 | 34200 | 248 | 9 | | 852 | 8.0 | | Weighted average | 7261 | | | 78 | 21 | | 114 | 140 | | 129 | 195 | | 1.7 | | 607 | . 83 | 11900 | 281 | 166 | | 1070 | | | Water year 1946 | | | | | | | | | | | | | | | | | APPENDING SERVICE | | | | | | | Maximum, Aug. 11-20, 1946 | 2043 | - | | 71 | 23 | | 115 | 165 | | 106 | 195 | | 1.0 | | 592 | .91 | 3680 | 272 | 3 | | 1050 | - 5 | | Minimum, Oct. 11-20, 1945 | | | | 62 | 17 | | 63 | 134 | | 86 | 115 | | . 5 | | 410 | . 65 | 47000
9000 | 224
245 | 114 | == | 762
874 | Ξ. | | Weighted average | 6199 | | | 67 | 19 | | 84 | 152 | | 100 | 139 | | .9 | | 486 | . 13 | 9000 | 243 | 120 | | 014 | | | Water year 1947 | 0247 | | | 142 | 34 | | 298 | 145 | | 321 | 490 | | 1.5 | | 1360 | 1.85 | 8620 | 497 | 378 | | 2290 | · . | | Maximum, Oct. 20-31, 1946 | 2347
2528 | | | 143
70 | 23 | | 116 | 163 | | 120 | 185 | | 1.5 | | 644 | .88 | 4400 | 269 | 136 | | 1070 | | | Minimum, Oct. 1-10
Weighted average | 7923 | | | 90 | 24 | | 149 | 148 | | 164 | 250 | | 2.0 | | 805 | 1.09 | 17200 | 323 | 202 | | 1340 | | | Water year 1948 | Maximum, Sept. 1-30, 1948 | 2124 | 10 | | 92 | 27 | | 170 | 137 | | 184 | 288 | | .8 | | 905 | 1.23 | 5190 | 340 | 228 | | 1500 | | | Minimum, Dec. 1-31, 1947 | 2351 | | | 78 | 23 | | 141 | 134 | | 176 | 215 | | . 5 | | 762 | 1.04 | 4840 | 289 | 179 | | 1230 | | | Weighted average | 3528 | | | 85 | 24 | | 150 | 140 | | 175 | 239 | | 1.5 | | 797 | 1.08 | 7590 | 310 | 196 | | 1310 | | | Water year 1949 | | | | | | | | | | | 205 | | | | 1040 | 1 41 | 0400 | 950 | 040 | | 1710 | | | Maximum, July 1-31, 1949 | 2307 | 12 | | 100 | 25 | | 209 | 135 | | 217 | 332 | | 2.8 | | 1040
774 | 1.41 | 6480
4530 | 352
310 | 242 | | 1710
1340 | | | Minimum, Nov. 1-30, 1948 | | 7.8 | | 85 | 24 | | 150
178 | 131 | | 175
193 | 246
290 | | 1.9 | | 901 | 1.05 | 9440 | 334 | 222 | | 1520 | | | Weighted average | 3880 | 8.6 | | 91 | 26 | | 119 | 137 | | 193 | 290 | | 1.9 | | 301 | 1.23 | 9440 | 004 | 222 | | 1010 | | Table 5 .-- Summary of Chemical Analyses of Water at Daily Stations on Streams in the Red River Basin, Texas--Continued | | 1 | , , | Ca | lculat | ted val | lues for | sodiu | ım plus | pota | ssium ar | e centere | a bet | ween | tne t | | | | 1 | | | | | |--|----------------------------|-------------------------------|--------------|----------------------|-----------------------------|----------------|----------------------------|--|---|-------------------------------|-------------------|---|------------------------------------|--------------------|---------------------------------|------------------------------|-------------------------|--------------------------------------|-----------------------------|---------------------------------------|--|------------| | | Property and the second | | | | | | | Bi- | | | | | | | | calcula | | Hard
as C | ness
aCO ₃ | So- | Specific
con- | | | Date of collection | Mean
discharge
(cfs) | Silica
(SiO ₂) | Iron
(Fe) | Cal-
cium
(Ca) | Mag-
ne-
sium
(Mg) | Sodium
(Na) | Po-
tas-
sium
(K) | car-
bon-
ate
(HCO ₃) | Car-
bon-
ate
(CO ₃) | Sulfate
(SO ₄) | Chloride
(Cl) | | Ni-
trate
(NO ₃) | | Milli-
grams
per
liter | Tons
per
acre-
foot | Tons
per
day | Cal-
cium,
Mag-
ne-
sium | Non-
car-
bon-
ate | dium
ad-
sorp-
tion
ratio | duct-
ance
(micro-
mhos at
25°C) | рН | | | | | | | | 102. RE | D RIV | ER AT | DENISO | N DAM NI | EAR DENIS | ONCo | ontinu | ied | 30 (1 | | 500-1 | 1965 | | | | | | Water year 1950 Maximum, Mar. 1-31, 1950 Minimum, Sept. 1-30 Weighted average | . 10330 | 11
12
13 | | 96
78
88 | 27
21
24 | 1 | 86
56
74 | 129
126
130 | | 215
165
191 | 300
245
276 |
 | 3.5
2.0
3.1 |

 | 977
790
882 | 1.33
1.07
1.20 | 4670
22000
16800 | 350
281
318 | 245
178
212 | == | 1600
1320
1460 | == | | Water year 1951 Maximum, June 1-30, 1951 Minimum, Sept. 1-30 Weighted average | . 2563 | 11
14
11 | | 99
77
91 | 29
21
25 | 1 | 98
43
79 | 149
132
141 | | 207
157
187 | 325
225
290 |

 | .8
1.0
1.2 | 121
14- | 1010
725
913 | 1.37
.99
1.24 | 70800
5020
17200 | 366
278
330 | 244
170
214 | == | 1670
1220
1500 | 8.9
7.6 | | Water year 1952 Maximum, Aug. 1-31, 1952 Minimum, Oct. 1-31, 1951 Weighted average | . 1841 | 8.2
11
9.5 | | 89
68
83 | 27
23
26 | 1 | 83
44
61 | 145
135
142 | | 200
160
185 | 285
212
250 | <u>=</u> | 2.0
2.0
1.9 |
52 | 894
722
827 | 1.22
.99
1.12 | 7580
3590
5140 | 333
264
3 14 | 214
154
198 | 4.3
3.9
3.9 | 1530
1180
1380 | 7.9
7.8 | | Water year 1953 Maximum, Aug. 1-31, 1953 Minimum, Oct. 1-31, 1952 Weighted average | . 2394 | 11
11
9.5 | | 92
88
92 | 28
28
29 | 1 | 97
88
90 | 140
140
142 | | 205
203
207 | 315
295
305 | ======================================= | 1.0
1.2
1.9 | == | 995
912
944 | 1.35
1.24
1.28 | 7880
5890
4720 | 344
334
348 | 230
220
232 | | 1620
1520
1570 | 8.0
7.9 | | Water year 1954 Maximum, Nov. 1-30, 1953 Minimum, July 1-31, 1954 Weighted average | . 4608 | 8.8
15
12 | | 100
84
89 | 27
21
24 | 1 | 33
65
84 | 123
128
128 | | 239
178
200 | 370
275
299 | 0.5
.3
.4 | 2.0 | 0.18
.20
.18 | 1040
830
908 | 1.41
1.13
1.23 | 3330
10330
9680 | 360
296
320 | 260
191
216 | 4.2 | 1750
1390
1530 | | | Water year 1955 Maximum, Sept. 1-30, 1955. Minimum, Oct. 1-31, 1954 Weighted average | . 1109 | 11
12
9.9 | | 106
86
96 | 21
22
22 | 1 | 16
77
93 | 122
122
126 | | 240
190
209 | 342
278
306 | .4 | 1.5 | .14 | 1000
880
937 | 1.36
1.20
1.27 | 7260
2630
6990 | 351
305
330 | 251
205
227 | 4.9
4.4
4.5 | 1720
1480
1570 | 7.8
7.7 | | Water year 1956 Maximum, Sept. 1-30, 1956. Minimum, Jan. 1-31 Weighted average | . 3627 | 12
11
11 | | 128
102
106 | 32
21
23 | 1 | 80
98
23 | 126
121
122 | | 315
228
248 | 448
305
346 | .5 | . 9 | .20
.17
.17 | 1280
954
1030 | 1.74
1.30
1.40 | 4920
9340
9870 | 450
341
359 | 346
242
259 | 5.7
4.6
5.0 | 2190
1600
1720 | | | Water year 1957 Maximum, Dec. 1-31, 1956 Minimum, June 1-30, 1957 Weighted average | . 66910 | 12
11
11 | | 134
78
89 | 32
15
18 | 1 | 11
33
67 | 123
107
112 | | 342
165
195 | 485
202
258 | == | .7
1.8
2.2 | | 1380
696
840 | 1.88
.95
1.14 | 2520
125700
24700 | 465
256
296 | 364
168
204 | 3.6 | 2290
1130
1370 | | | Water year 1958 Maximum, Sept. 1-30, 1958. Minimum, Oct. 1-31, 1957 Weighted
average | . 5720 | 9.4
15
11 | | 100
85
91 | 24
20
20 | 1 | 20
44
71 | 148
132
136 | | 209
173
185 | 345
225
268 | == | .5
1.2
1.0 | II. | 981
733
837 | 1.33
1.00
1.14 | 4280
11320
9760 | 348
294
309 | 226
186
198 | 5.1
3.6
4.2 | 1700
1240
1400 | 8.0
8.2 | | Water year 1959 Maximum, Aug. 1-31, 1959 Minimum, Oct. 1-31, 1958 Weighted average | . 1823 | 10
8.8
9.4 | | 112
99
104 | 27
24
28 | 2 | 60
34
52 | 131
138
135 | | 259
218
246 | 408
365
390 | | .4
.5
.8 | == | 1140
1020
1100 | 1.55
1.39
1.50 | 14230
5020
6830 | 390
346
374 | 283
232
264 | 5.7
5.5
5.7 | | 7.4
8.2 | | Water year 1960 Maximum, Sept. 1-30, 1960. Minimum, May 1-31 Weighted average | . 2703 | 12
8.6
9.5 | | 113
99
101 | 28
25
26 | 1 | 64
87
22 | 153
155
129 | | 266
223
238 | 400
280
343 | .6
.3
.4 | | | 1160
900
1020 | 1.58
1.22
1.39 | 6040
6570
14330 | 397
350
359 | 272
223
254 | 5.8
4.3
5.1 | | 7.5
7.5 | Table 5.--Summary of Chemical Analyses of Water at Daily Stations on Streams in the Red River Basin, Texas--Continued | | | | | Ta. | | | | | Bi- | | | | | | | ACCUSANCE OF SERVICE STREET | solved s | | Hard
as Ca | | So- | Specific con- | | |-------------------------------|----------------------------|----------------------------|-------------------------------|-----|----------------------|-----------------------------|----------------|----------------------------|--|---|-------------------------------|------------------|------|------------------------------------|-------------------|---------------------------------|------------------------------|--------------------|--------------------------------------|-----------------------------|---------------------------------------|--|-----| | | Date
of
collection | Mean
discharge
(cfs) | Silica
(SiO ₂) | | Cal-
cium
(Ca) | Mag-
ne-
sium
(Mg) | Sodium
(Na) | Po-
tas-
sium
(K) | car-
bon-
ate
(HCO ₃) | Car-
bon-
ate
(CO ₃) | Sulfate
(SO ₄) | Chloride
(Cl) | ride | Ni-
trate
(NO ₃) | Bo-
ron
(B) | Milli-
grams
per
liter | Tons
per
acre-
foot | Tons
per
day | Cal-
cium,
Mag-
ne-
sium | Non-
car-
bon-
ate | dium
ad-
sorp-
tion
ratio | duct-
ance
(micro-
mhos at
25°C) | | | N Company | | | | | | | 102. H | RED RI | VER AT | DENIS | ON DAM | NEAR DENI | SON | Conti | nued | | | | | | | | | | Water year 196 | 1 1 20 1061 | 3593 | 11 | | 120 | 37 | 31 | 00 | 138 | | 312 | 470 | 0.3 | 2.8 | | 1320 | 1.80 | 12810 | 452 | 338 | 6.2 | 2210 | 7.7 | | Minimum, Oct. | 1-30, 1961
1-31, 1960 | 12040
4299 | 9.4 | | 110
117 | 33 | 20 | 63
78 | 128
134 | | 286
297 | 410
431 | .3 | $\frac{.4}{1.2}$ | | 1170
1230 | 1.59
1.67 | 38030
14280 | 410
428 | 305
318 | 5.7 | 2010
2100 | 7.6 | | Water year 196 | | 402.4 | 0.0 | | 121 | 37 | 21 | 97 | 130 | | 316 | 470 | . 4 | . 5 | | 1320 | 1.80 | 17160 | 454 | 348 | 6.1 | 2220 | 7.2 | | Maximum, Oct. | 1-31, 1961
. 1-30, 1962 | 4814
3772 | 9.9 | | 100 | 30 | | 38 | 139 | | 256 | 360 | . 4 | 1.2 | | 1060 | 1.44 | 10800 | 373 | 259 | 5.4 | 1800 | | | | age | 4527 | 8.9 | | 111 | 34 | 2 | 53 | 136 | | 277 | 403 | . 4 | 1.4 | | 1150 | 1.56 | 14100 | 420 | 308 | 5.4 | 1980 | | | Water year 196 | | 3.503 | 0.0 | | 105 | 31 | 91 | 25 | 150 | | 249 | 350 | 4 | 1.8 | | 1050 | 1.43 | 4260 | 390 | 266 | 5.0 | 1820 | 6.9 | | | 1-30, 1963
1-30, 1963 | 1501
2862 | 9.2 | | 105
98 | 27 | | 99 | 140 | | 236 | 302 | | 1.0 | | 941 | 1.28 | 7270 | 356 | 241 | 4.6 | 1570 | | | | age | 3029 | 9.3 | | 99 | 29 | | 11 | 133 | | 244 | 326 | . 4 | 1.2 | | 989 | 1.35 | 8090 | 366 | 256 | 4.8 | 1670 | | | Water year 196 | 4 | 1100 | 0.1 | | 111 | 35 | 2 | 98 | 160 | | 300 | 440 | 4 | 1.8 | | 1270 | 1.73 | 4036 | 418 | 288 | 6.3 | 2060 | 7.5 | | Maximum, Sept | 1-30, 1964
1-30, 1963 | 803 | 8.1 | | 111 | 35 | | 53 | 130 | | 285 | 402 | | .2 | | 1160 | 1.58 | 2515 | 421 | 314 | 5.4 | 2000 | 7.4 | | | age | 1510 | 8.4 | | 111 | 35 | | 67 | 135 | | 290 | 420 | . 4 | 1.2 | | 1200 | 1.63 | 4900 | 422 | 312 | 5.6 | 2040 | | | Water year 196 | 55 | | 0.0 | | 100 | 25 | 0 | 83 | 120 | | 296 | 440 | 3 | 1.8 | | 1230 | 1.67 | 2710 | 414 | 316 | 6.1 | 2060 | 7.4 | | | 1-30, 1964 | 815
1939 | 6.2 | | 108
96 | 35
30 | | 09 | 135 | | 236 | 325 | | 2.2 | | 969 | 1.32 | 5070 | 363 | | 4.8 | 1720 | 7.2 | | | 1-31, 1965 | 1943 | 5.6 | | 101 | 30 | | 38 | 135 | | 251 | 373 | .3 | 1.1 | | 1070 | 1.46 | 5610 | 376 | 266 | 5.3 | 1850 | | | Water year 196 | | 200 | | | 100 | 20 | 0 | 61 | 127 | | 272 | 442 | 4 | 1.8 | | 1180 | 1.60 | 4170 | 393 | 289 | 5.7 | 2040 | 7.0 | | | 1-31, 1966 | 1310
2056 | 3.2 | | 108 | 30
32 | | 47 | 126 | | 246 | 400 | | 1.0 | | 1090 | 1.48 | 6050 | 385 | | 5.4 | 1940 | | | | 1-31, 1965 | | 2.4 | | 110 | 30 | | 55 | 138 | | 264 | 403 | . 4 | .8 | | 1130 | 1.54 | 8610 | 397 | 284 | 5.5 | 1980 | | | Water year 196 | | | | | | 00 | 070 | | 123 | | 292 | 438 | . 1 | .8 | | 1220 | 1.66 | 6360 | 404 | 303 | 5.9 | 2070 | 7.1 | | | 1-28, 1967 | 1931
2840 | 4.5
2.3 | | 114 | 29
25 | 273
220 | 5.5 | 122 | | 228 | 355 | | 1.0 | | 996 | 1.35 | 7640 | 350 | 250 | 5.1 | 1720 | | | | 1-31, 1967 | | 2.5 | | 106 | 28 | 248 | 5.4 | 123 | | 253 | 404 | | 1.0 | | 1110 | 1.50 | 6990 | 380 | 279 | 5.5 | 1920 | 7.2 | | 13000 | | | | | | | | | 111. | RED R | IVER AT | INDEX, AF | RK. | | | | | | | | | | | | Water year 196 | 51 | | | | | | | | | | | | | | | 1260 | 1.71 | 10590 | 445 | 204 | 5.3 | 2020 | 8 (| | Maximum, Sept | 6-10, 1961 | 3112 | | | 118
29 | 37 | | 55
30 | 172
76 | | 275
38 | 405
38 | | 1.0 | | 185 | .25 | 12490 | 90 | | 1.4 | 306 | | | Minimum, May
Weighted aver | 9-14, 1961 | 10190 | | | 75 | 20 | | 39 | 116 | | 161 | 219 | | .8 | | 728 | .99 | 26000 | 269 | | 3.5 | 1200 | 7.8 | | Water year 196 | 62 | | | | | | | 45 | 136 | | 268 | 405 | | | | 1180 | 1.60 | 20950 | 430 | 318 | 5.1 | 1940 | 7.7 | | | 21-31, 1961 | | | | 55 | ==== | | 21 | 92 | | 24 | 24 | | | | 157 | .21 | 6190 | 88 | 12 | 1.0 | | 7.5 | | Weighted aver | e 6-9, 1962 | 10930 | | | | | | 11 | 116 | | 122 | 177 | | | | 609 | . 83 | 18000 | 230 | 134 | 2.9 | 972 | 7.9 | | Water year 196 | 63 | | | | | | | 17 | 140 | | 245 | 348 | | | | 1090 | 1.48 | 6770 | 396 | 275 | 4.7 | 1740 | 8. | | Maximum, Sep | t. 12-14, 1963. | 2300 | | | | | | 17
40 | 148
104 | | 47 | 62 | | | | 292 | .40 | 24600 | 138 | 49 | 1.5 | 476 | 8.3 | | | 1-6 | | | | 55 | | | 96 | 121 | | 110 | 149 | | | | 538 | .73 | 10120 | 218 | 115 | 2.6 | 887 | 7.9 | Table 6 .-- Chemical Analyses of Water From Streams and Reservoirs at Sites Other Than Daily Stations in the Red River Basin, Texas (Results in milligrams per liter except as indicated. Calculated values for sodium plus potassium are centered between the two columns.) Dissolved solids Hardness Specific as CaCO. So-(calculated) con-Bidium Mag-Po-Carduct-Fluo- Ni-Bo-Date Calcar-Calad-Iron Sulfate Chloride Silica Sodium tasbon-Nonance pH neride trate ron Milli-Tons Discharge bonof cium Tons cium. sorp-(SO4) (C1) (SiO₂) (Fe) (Na) sium ate sium (NO.) (B) grams per carmicro-(Ca) ate (F) collection (cfs) Mag-(HCO₃) (CO₃) per tion per (Mg) (K) mhos at bonacreday neratio liter 25°C) ate foot a sium 2. BUFFALO LAKE NEAR UMBARGER 238 0 804 8.2 472 0.64 31 81 14 372 73 27 2.0 2.0 0.11 4.6 0.09 44 May 2. 1951.... PRAIRIE DOG TOWN FORK RED RIVER ABOVE STOCKTON DAM NEAR CANYON 6. 727 8.3 455 0.62 130 0 4.6 12 122 288 96 32 5.0 0.8 Apr. 26, 1965.... b0.08 13 32 0 1.0 393 7.2 . 2 227 .31 145 28 13 35 14 27 185 1.4 Aug. 24..... .20 17 7. LAKE STOCKTON NEAR CANYON 188 0 1.4 542 7.5 0.40 42 20 43 237 49 22 1.5 0.2 295 0.3 Feb. 4, 1965..... 120 0 . 6 300 6.8 6.8 .2 157 15 152 16 .8 7 34 8.5 Nov. 17..... 142 0 1.0 421 7.1 28 8.0 180 38 17 1.1 1.0 233 Aug. 10, 1966..... 3.0 34 14 157 0 1.2 466 7.5 . 2 260 17 34 9.3 203 43 20 1.2 35 Jan. 20, 1967..... .1 460 7.8 1.5 2.0 265 142 0 1.5 9.0 185 49 25 .9 29 17 41 Aug. 25..... PRAIRIE DOG TOWN FORK RED RIVER ABOVE PALO DURO PARK NEAR CANYON 9. 1.65 634 472 2.3 1550 7.3 133 197 668 42 3.1 0.0 1210 185 42 0.57 38 Dec. 1. 1961..... 10. PRAIRIE DOG TOWN FORK RED RIVER BELOW PALO DURO PARK NEAR CANYON 2.22 765 1950 7.8 36 0.5 1720 854 ___ 60 89 108 1040 Oct. 18, 1950..... -- 38 314 1460 1350 2800 7.3 2570 3.50 0.27 42 448 82 213 125 1660 58 2.4 . 0 Dec. 1, 1961..... 2540 7.8 50 2380 3.24 1580 1440 1.2 172 1540 1.8 .0 .15 26 468 100 110 Dec. 2, 1964..... 1610 1490 1.7 2900 7.3 2.7 2600 3.54 144 1690 55 .0 510 82 162 Feb. 4, 1965..... .40 27 2.6 . 2 2680 3.64 1620 1530 1.9 2920 7.0 102 1770 54 492 95 180 .21 35 Apr. 26..... 1440 1320 1.6 2660 7.3 137 144 1480 52 2.4 .2 2300 3.13 462 70 Aug. 24..... b.28 27 11. NORTH TULE DRAW AT RESERVOIR NEAR TULIA 169 0 414 8.2 17 8.0 1.6 1.5 0.05 234 0.32 8.8 233 4.8 0.17 48 12 17 May 2, 1951..... 12. TULE CREEK NEAR SILVERTON 280 6.9 164 0.22 117 0 0.6 7.8 14 147 18 4.4 0.9 0.5 13.3 12 34 Sept. 24, 1964.... 259 46 2.5 832 8.6 93 340 138 42 4.4 521 .71 .50 23 23 49 Jan. 7, 1965..... 291 6.8 125 0 .9 1.2 169 .23 . 5 165 11 2.0 37 8.0 13 4310 15 June 11..... 169 0 . 5 380 6.8 3.6 1.0 .2 221 .30 222 13 12 16 12100 18 48 June 11..... 266 6.6 154 .21 110 0 . 5 13 142 15 2.9 .7 . 5 6.1 12 34 June 13..... 212 22 1.7 646 7.8 2.6 .2 394 .54 50 21 58 232 98 2.8 .70 22 July 14..... . 52 170 21 2.3 635 6.9 .2 381 182 125 24 2.5 .72 14 40 17 69 Aug. 12..... 580 247 34 2.7 950 7.6 54 4.0 .2 ---259 190 47 31 99 14 Nov. 16..... .2 12 328 20 2.8 1090 3.0 191 53 6.6 .0 685 15 376 51 49 115 Mar. 10, 1966.... . 2 19 807 7.4 258 34 1.9 4.2 1.0 481 44
36 70 12 274 112 46 8.1 21 June 14..... 163 10 . 5 392 7.3 235 38 5.1 1.3 2.2 8.8 187 --6.3 14 49 10 15 Aug. 10..... 297 7.0 .6 1.5 129 0 . 2 3.6 166 --7.4 160 9.6 41 6.5 5.7 Aug. 25..... 185 11 16. LITTLE RED RIVER AT STATE HIGHWAY 70 NEAR TURKEY 5980 73200 2000 1190 119 115000 9900 9790 152000 7.8 See footnotes at end of table. b0.02 Mar. 24, 1959..... Table 6.--Chemical Analyses of Water From Streams and Reservoirs at Sites Other Than Daily Stations in the Red River Basin, Texas--Continued (Results in milligrams per liter except as indicated. Calculated values for sodium plus potassium are centered between the two columns.) | | 1 1 | | | | | | | Bi- | | | | | | | | ssolved s | | Hard
as C | ness
aCO ₃ | So- | Specific
con- | | |--|------------------------------|-------------------------------|--------------|--|---------------------------------|------------------------------|----------------------------|--|---|--|--|--------|---------------------------------------|-----|--|------------------------------|--------------------|--|-------------------------------------|---------------------------------------|--|----------------| | Date
of
collection | Discharge
(cfs) | Silica
(SiO ₂) | Iron
(Fe) | Cal-
cium
(Ca) | Mag-
ne-
sium
(Mg) | Sodium
(Na) | Po-
tas-
sium
(K) | car-
bon-
ate
(HCO ₃) | Car-
bon-
ate
(CO ₃) | Sulfate
(SO ₄) | Chloride
(Cl) | Tiue | Ni-
trate
(NO ₃) | | Milli-
grams
per
liter | Tons
per
acre-
foot | Tons
per
day | Cal-
cium,
Mag-
ne-
sium | Non-
car-
bon-
ate | dium
ad-
sorp-
tion
ratio | duct-
ance
(micro-
mhos at
25°C) | pH | | | | | | | | 17. | PRAIR | IE DOG | TOWN | FORK RI | ED RIVER N | EAR E | STELL | INE | | | | | | | | | | July 29. 1949
Sept. 11, 1950 | 0.5
1000 | | | | | | | 130 | | 1520
876 | 820
1110 | | 2.0 | | Sec. | ETTENH MUS | | | | | 4940
4910 | 7. | | | | | | | | | 18. | ESTE | LLINE | SPRING | NEAR ESTE | ELLINE | | | 1 5367 | | | | in je | | | | | Feb. 12, 1959
Mar. 24
Apr. 30, 1960
May 30, 1962 | 4.1

5.05 | 14 | | 1510
1500
1460
1470 | 283
270
302
275 | 1770
1740
1680
1620 | 00 | 144
139
230
91 | | 4380
4290
4220
4160 | 27200
27000
25800
25300 | | | | 47500 | 64.6 | | 4930
4840
4870
4790 | 4810
4730
4690
4710 | | 61600
61500
60600
57900 | 7.
6. | | | | 150 | | | |) | 9. B | AYLOR | CREEK | RESERVO | DIR NEAR C | CHILDR | ESS | | | | | | | | | | | Aug. 19, 1949
Mar. 10, 1950 | | 18 | Major II | 179
216 | 28
20 | | .1 | 83
98 | | 488
541 | 7
8.0 | | 0.2 | | 765
930 | 1.04 | er Skriger | 562
621 | 494
540 | | 963
1110 | 7. | | | | | | | | | 2 | 0. BA | YLOR (| CREEK NE | EAR CHILDE | RESS | | | | | | 100 | | | | | | lar. 1, 1948
Mar. 3 | | 11 5.0 | 0.1 | 96
100 | 12
9.7 | | 6.7
4.6 | 61
46 | | 230
242 | 8.0
10 | | 3.2 | | 430
415 | | | 289
290 | 252 | | 562 | 7. | | | | | | | | 21. | SAL | T CREE | K 12 | MILES NO | ORTHWEST C | F CHI | LDRES | S | | | | 164.4 | | | | | | Mar. 24, 1959 | | | | 1030 | 213 | 599 | 0 | 110 | | 2860 | 9500 | | | | 10.00 | | | 3459 | 3360 | | 27200 | 7. | | 16818 B. 11 | | | | | | 22. | PRAIR | IE DOG | TOWN | FORK RI | ED RIVER N | EAR C | HILDR | ESS | | | or or or other | | | | | | | Sept. 23, 1948
Mar. 24, 1959
Apr. 21, 1963 | | 15

9.8 | | 1750
1860
1740 | 459
407
393 | 2140
2350
2060 | 00 | 106
86
96 | | 4980
5440
4970 | 33700
36500
32300 | | | | 62200

60100 | 81.8 | | 6250
6320
5960 | 6250
5880 | | 77100
77200
61300 | | | THE RESERVE | | | | | | | 2 | 3. BU | CK CR | EEK NEAF | R WELLINGT | ON | | | | | | | | | | | | Sept. 17, 1945 Oct. 21, 1947 Sept. 23, 1948 Feb. 26, 1951 July 16 Aug. 15 Oct. 8, 1952 | 11.5 | 23
35 | | 574
606
408
608
622
608 | 147
134
116
132
138 | 20
25 | 58
96
70
57 | 120
105
120
168
73
70 | | 2000
1870
2100
1340
1960
2000 | 235
320
240
120
232
242 | | 2.0
.8
1.5
3.0
4.0
3.0 | | 3170
3420
2180
3160
3240
3210 | 2.96
4.30
4.41 | | 1960
2040
2060
1500
2060
2120 | 1360
2000
2060
2010 |

1.7 | 3710
3660
2530
3580
3610
3860 | 7.
7.
7. | | May 11, 1953 Jan. 12, 1955 Jan. 12, 1956 Mar. 22, 1959 Aug. 2, 1962 | 3.06
2.68
3.57
b.08 | 15
29
19 | | 568
568
574
390 | 130
125
117
187 | 14
13
19
12 | 12
37
06 | 73
77
157
247 | | 1800
1770
1790
1610 | 225
225
242
94
42 | 0.5 | 7.0
6.6
 | | 2930
2900
3020

982 | 3.98
3.94
4.11
 | | 1950
1930
1910
1740
640 | 1890
1870
1780
1540
530 | 1.4
1.4
1.9
1.3 | | 7.
7.
7. | | | | | | | | | | 24. | RED R | IVER NEA | AR QUANAH | | | | | To Jack | 100000 | | | | | | | Mar. 25, 1959 | - 11 | | | 721 | 197 | 267 | 0 | 154 | | 2310 | 4170 | | | | | | 88343 | 2610 | 2480 | 23 | 14300 | 7. | Table 6.--Chemical Analyses of Water From Streams and Reservoirs at Sites Other Than Daily Stations in the Red River Basin, Texas--Continued | | (Results in | | | | | | | Bi- | | era littera | | | | | Dis | solved s | olids | Hard
as Ca | ness | So-
dium | Specific con- | | |------|--------------------------|--------------------|-------------------------------|----------------------|-----------------------------|----------------|----------------------------|--|---|-------------------------------|------------------|--------|------------------------------------|-------------------|---------------------------------|------------------------------|--------------------|--------------------------------------|-----------------------------|-------------------------------|--|----| | | Date
of
collection | Discharge
(cfs) | Silica
(SiO ₂) | Cal-
cium
(Ca) | Mag-
ne-
sium
(Mg) | Sodium
(Na) | Po-
tas-
sium
(K) | car-
bon-
ate
(HCO ₃) | Car-
bon-
ate
(CO ₃) | Sulfate
(SO ₄) | Chloride
(Cl) | | Ni-
trate
(NO ₃) | Bo-
ron
(B) | Milli-
grams
per
liter | Tons
per
acre-
foot | Tons per day | Cal-
cium,
Mag-
ne-
sium | Non-
car-
bon-
ate | ad-
sorp-
tion
ratio | duct-
ance
(micro-
mhos at
25°C) | рН | | | | | - | | | 25 | . NOI | RTH GRO | DESBEC | K CREEK | NEAR NORT | TH GRO | ESBEC | K | | | | | | | | | | 1 vr | 16, 1951 | 5.23 | 21 | 624 | 127 | 3 | 82 | 176 | 1.01000000 | 19,00 | 555 | | 5.9 | | 3700 | 5.03 | | 2080 | 1940 | | 4760 | | | | 22, 1952 | 4.14 | | | | | | | | 1830 | 530 | | . 0 | | | | | 1100 | | | 4410
4550 | | | ec. | 8, 1953 | 2.84 | | | 105 | | | 151 | | 1810
1890 | 570
805 | | 5.9 | | 4070 | 5.54 | | 2100 | 1980 | | 5220 | 7. | | | 19, 1957 | 1.82
2.33 | | 636
660 | 125
130 | | 30 · | 192. | 4 | 1920 | 830 | | 8.8 | | 4200 | 5.71 | | 2180 | 2020 | 4.9 | 5360 | 8. | | | 3, 1961 | 1.90 | | | | | 22 | 188 | | 1960 | 780 | | | | 144 | | 1 | 2160 | 2010 | | 5100 | 7. | | | | | | | | | 26. | SOUTH | H GROE | SBECK CE | REEK NEAR | GOODI | ETT | | | | | | : - | | | | | une | 7, 1962 | 6.25 | 26 | 32 | 4.4 | l . | 12 | 98 | | 32 | 4.0 | 0.2 | 4.1 | ,1, | 163 | 0.22 | | 98 | 18 | 0.5 | 230 | 7. | | | | | | | | | 27 | . sour | rh GRO | ESBECK C | CREEK NEAD | R ACME | 4/ | | | | | 42003034 | | | ery acertoses | | | - 7 | 10 1051 | 6.05 | 22 |
614 | 99 | 5 | 97 | 157 | | 1750 | 292 | | 6.5 | | 3060 | 4.16 | | 1940 | 1810 | | 3630 | 7. | | | 16, 1951
22, 1952 | 4.00 | | 612 | 102 | | 79 | 203 | | 1690 | 290 | | 1.8 | | 2990 | 4.07 | | 1950 | 1780 | 1.8 | 3560 | | | | 8, 1953 | 4.57 | 13 | | | | 77 | .== | | 1720 | 270 | | 5.1 | | 0050 | 4 01 | | 1840 | 1730 | 2 0 | 3570
3470 | 7. | | | 19, 1957 | 2.09 | | 600 | 84
97 | | 201 | 137
93 | | 1700
1730 | 280
235 | | 3.8 | | 2950
2880 | 4.01
3.92 | | 1880 | 1810 | | 3300 | 8 | | | 20, 1958
3, 1961 | 4.66 | | 595 | | | .98 | 172 | | 1750 | 240 | - | | | | | | 1870 | | | 3340 | 7. | | - | 0, 1001 | | | | | 28. (| ROESB | ECK CRI | EEK AT | STATE I | HIGHWAY: 28 | 33 NEA | AR QUA | NAH | | | # 1 TO 1 TO 1 TO 1 | | | | | | | | | | 00 | 580 | 48 | | 111 | 90 | | 1790 | 425 | | 1.2 | | 3330 | 4.53 | | 1640 | 1570 | | 3590 | 7. | | | 21, 1950
15, 1951 | 11.0 | 29 | 582 | 122 | | 71 | 150 | | 1780 | 400 | -22 | 4.5 | | 3250 | 4.42 | | 1950 | 1830 | | 3810 | 7. | | | 15 | 10.0 | | 564 | 117 | 2 | 92 | 102 | | 1770 | 420 | | 5.0 | | 3230 | 4.39 | | 1890 | 1800 | | 3990 | | | | 16 | 14.3 | 18 | 590 | 108 | | 277 | 125 | | 1780 | 398 | | 2.8 | | 3230
3480 | 4.39 | | 1920
1970 | 1810
1910 | 52 | 3950
4030 | | | lug. | 15 | 8.85 | 25 | 598 | 117 | | 330 | 78 | | 1940 | 428 | | 3.5 | | | | | | | | | | | oct. | 1 | 9.96 | | 598 | 116 | | 282 | 141 | | 1800 | 418 | | 3.0 | | 3300
3260 | 4.49 | | 1970
1980 | 1850
1860 | | 4010
3 9 80 | 7. | | | 18 | 9.92 | | 600 | 118 | | 264 | 148 | | 1760
1710 | 425
400 | | 4.5 | | 3190 | 4.34 | | 1970 | | | 3900 | 7. | | | 22, 1952 | 9.66
83.6 | | 254 | 52 | | 17 | 106 | | 714 | 190 | | 3.5 | | 1400 | 1.90 | | 848 | | 1.7 | 1830 | 7. | | | 13, 1953 | 6.50 | | 586 | 117 | |
307 | 84 | | 1830 | 448 | | 5.4 | | 3350 | 4.56 | | 1940 | 1870 | 3.0 | 4050 | 7. | | | 11 | | 12 | 610 | 131 | | 284 | 72 | | 1870 | 472 | | 8.2 | | 3420 | 4.65 | | 2060 | 2000 | 2.7 | 4170 | 7. | | | 8 | 11.0 | | | | | 268 | | | 1740 | 415 | | 4.4 | | | | | | | | 4070 | | | | 19, 1957 | | 14 | 592 | 102 | | 359 | 132 | | 1740 | 535 | | 3.8 | | 3410 | 4.64 | | 1900
1700 | 1790
1620 | | 4290
3570 | 7. | | | 21 | | 28 | 532 | 90 | 231 | 7.8 | 90 | | 1540
1690 | 375
415 | | 5.2 | | 2850
3210 | 3.88
4.37 | | 1890 | 1810 | | 3930 | 7. | | Jan. | 10, 1958 | - | 21 | 632 | 98 | | 247 | 204 | | | | 2477 | | | | | | | | | | | | | 20 | 4.72 | | 585 | 109 | | 320 | 75 | | 1830 | 450 | 0.3 | 2.5 | | 3360
2460 | 4.57
3.35 | | 1910
1460 | 1850
1350 | | 4020
3030 | 7. | | | 7, 1960 | 3.32 | | 450 | 83
114 | | 209 | 135
198 | | 1330
1760 | 298
403 | 0.3 | 3.8 | | 3260 | 3.33 | | 2040 | | | 4010 | 7. | | | 8, 1965 | 2.3 | 8.3 | 630
660 | 121 | 328 | 5.3 | | | 1980 | 538 | .4 | 2.2 | | 3710 | - 12 | | 2140 | 2020 | 3.1 | 4510 | 7. | | | 31, 1966
5 | 1.6 | 5.0 | 658 | 124 | 347 | 8.7 | | | 1950 | 560 | . 4 | . 8 | 450 | 3700 | | | 2150 | 2070 | 3.3 | 4420 | 7. | | | | | | | | | | 29. | WANDE | RERS CRI | EEK AT OD | ELL | Justil | | are area o | Light | | 1275 | | | | Ħ, | | eb. | 20, 1950 | 4.54 | 8.4 | 104 | 66 | | 26 | 188 | | 415 | 150 | | 7.8 | | 1140 | 1.56 | | 531 | 377 | | 1600 | | | | 17, 1951 | 3.98 | 16 | 94 | | | | | | 524 | 170 | | 11 | | 205 | | | 114 | 27 | 0.9 | 1720
329 | 7. | | | 15, 1952 | 77.8 | 21 | | | | 22 | 106 | | 52 | 13 | | 2.8 | | 205 | . 28 | | 114 | | 2.7 | 1779 | 7. | | | 13, 1953 | 2.04 | | 139 | 74 | | 158 | 384 | | 446 | 148 | | 10 | | 1180 | 1.60 | | 652 | 337 | | | | Table 6.--Chemical Analyses of Water From Streams and Reservoirs at Sites Other Than Daily Stations in the Red River Basin, Texas--Continued | | | | | | | | | Bi- | | | | | | | | ssolved s | | Hard
as Ca | | So- | Specific con- | 2 | |-----------------------------|--------------------|-------------------------------|--------------|----------------------|-----------------------------|----------------|----------------------------|---------------------|---|-------------------------------|------------------|-------|------------------------------------|-------------------|---------------------------------|---------------------|--------------------|--------------------------------------|-----------------------------|---------------------------------------|--|---| | Date
of
collection | Discharge
(cfs) | Silica
(SiO ₂) | Iron
(Fe) | Cal-
cium
(Ca) | Mag-
ne-
sium
(Mg) | Sodium
(Na) | Po-
tas-
sium
(K) | car-
bon-
ate | Car-
bon-
ate
(CO ₃) | Sulfate
(SO ₄) | Chloride
(Cl) | | Ni-
trate
(NO ₃) | Bo-
ron
(B) | Milli-
grams
per
liter | Tons per acre- foot | Tons
per
day | Cal-
cium,
Mag-
ne-
sium | Non-
car-
bon-
ate | dium
ad-
sorp-
tion
ratio | duct-
ance
(micro-
mhos at
25°C) | p | | | | | | | | | 29. | WANDER | ERS CI | REEK AT | ODELLCo | ntinu | ed | | | | | | | | | | | t. 31, 1953 | 6.69 | | | | | | | 187 | | 662 | 193 | | 9.5 | | 1 | 1 22 | | 770 | 617 | | 2090 | 8 | | c. 8, 1953 | 2.73 | | |
114 | 67 | | 77 | | | 610 | 195 | | 8.3 | | 1070 | 7 46 | | | | | 2170 | 8 | | b. 19, 1957
t. 21 | 2.40
6.5 | | | 186 | 64 | 131 | 55
5.6 | 353
368 | | 399
493 | 128
138 | 0.8 | 11 | | 1070
1240 | 1.46 | | 560
727 | 270
425 | 2.8 | 1670
1720 | | | n. 10, 1958 | 6.02 | | | 263 | 103 | | 48 | 418 | | 906 | 230 | . 7 | 10 | | 1980 | 2.69 | | 1080 | 738 | 3.3 | 2620 | 8 | | g. 20 | 1.22 | 37 | | 46 | 38 | | 91 | 165 | | 199 | 81 | | 15 | | 616 | .84 | | 272 | 136 | 2.4 | 928 | ۶ | | pt. 6, 1960 | 1.08 | 28 | | 55 | 36 | | 80 | 228 | | 158 | 64 | . 6 | 21 | | 555 | .75 | 21400 | 285 | 98 | 2.1 | 860 | 7 | | | | 4. | | | | | 3 | 30. CA | RROLL | CREEK N | FAR CLARE | NDON | | | | | | | | | | | | ly 20, 1951 | 0.14 | | | 36 | 19 | | 32 | 209 | | 43 | 15 | | 1.5 | | 294 | 0.40 | | 168 | 0 | | 450 | ۶ | | n. 23, 1952
n. 13, 1953 | 1.29 | 30 | | 31 | 20 | | 23 | 190 | | 34
31 | 14 | | 2.8 | | 254 | .35 | | 160 | 4 | 0.8 | 551
488 | | | ;. 24 | . 44 | | | | | | 30 | 208 | | 48 | 15 | | 1.8 | | | | | 177 | | 1.0 | | | | | | | | | | | 32. | GREEN | BELT F | RESERVOI | R NEAR CL | AREND | ON | | | | | | | | | | | 15, 1967 | | 13 | | 56 | 20 | 43 | 5.2 | 198 | | 97 | 42 | 1.2 | 0.5 | | 375 | | | 222 | 60 | 1.3 | 621 | | | | 100 | | | | | | 33. | SALT | FORK I | RED RIVE | R NEAR CL | AREND | ON | | | | | 100 | E 93 | | | | | ot. 12, 1950 | | 23 | | 55 | 18 | | 42 | 196 | | 75 | 44 | | 1.0 | | 415 | 0.56 | | 211 | 50 | | 600 | | | v. 4 | 12.4 | | | 40 | 22 | | 52 | 148 | | 106 | 48 | | 4.5 | | 400 | . 54 | | 190 | 69 | | 589 | | | 1. 15, 1951 | 17.0
9.3 | 19 | | 53
67 | 21
22 | | 35
34 | 190
212 | | 79
92 | 40
43 | | 1.0 | | 388
386 | . 53 | | 218
258 | 63
84 | | 609
659 | | | 2 | 10.6 | 26 | | 61 | 24 | | 36 | 202 | | 106 | 37 | | 1.5 | | 402 | . 55 | | 250 | 83 | II# | 628 | | | . 21 | 12 | 22 | | 53 | 21 | | 32 | 164 | | 79 | 50 | - | 1.0 | | 342 | . 47 | | 218 | 84 | | 626 | | | . 12 | 6.66 | | | 44 | 21 | | 46 | 182 | | 88 | 38 | | 2.5 | | 360 | . 49 | | 196 | 48 | | 673 | | | y 20 | 1.16 | | | 56 | 21 | | 72 | 144 | | 137 | 85 | | 1.0 | | 498 | . 68 | | 226 | 108 | | 774 | | | . 23, 1952 | 19.2 | 28 | | 40 | 17 | | 41 | 153 | | 86
76 | 55
38 | | .0 | | 242 | 47 | | 170 | 44 | 1.4 | 704
526 | | | 22 | | | | | | | | | | | | | 1.5 | | 343 | . 47 | | | 44 | | | | | . 8
. 13, 1953 | 1.25
9.26 | | | 48
42 | 24
21 | | 81
48 | 168
146 | | 101 | 108
50 | | .8
1.8 | | 526
397 | .72 | | 218
192 | 81
72 | 2.4 | 841
669 | | | y 22 | 9.20 | | | | | | | 182 | | 121 | 76 | == | | | 493 | . 67 | | 244 | 95 | | 761 | | | . 24 | 1.05 | | | 50 | 21 | | 78 | 123 | | 123 | 108 | | . 5 | | 536 | .73 | | 212 | 110 | 2.4 | 801 | | | . 26, 1956 | 2.36 | 34 | | 47 | 21 | 100 | 69 | 151 | | 121 | 74 | | . 5 | | 440 | .60 | | 204 | 80 | 2.1 | 716 | | | 19, 1960 | | 26 | | 61 | 13 | | 42 | 205 | | 68 | 38 | 0.7 | 2.0 | | 352 | . 48 | | 206 | 38 | 1.3 | 557 | | | ie 2, 15, 23 | | 30 | | 61 | 17 | | 44 | 191 | | 93 | 43 | . 8 | 1.2 | | 405 | . 55 | | 222 | 66 | 1.3 | 609 | | | e 7, 9, 10
y 3, 10 | == | | | 39 | 6.6 | | 18 | 136
172 | | 25 | 16
62 | . 5 | 3.5 | | 196 | . 27 | | 124
224 | 13
83 | .7 | 311
691 | | | y 6, 14, 20,27. | | 34 | | 56 | 18 | | 50 | 174 | | 106 | 46 | 1.0 | 1.2 | | 416 | . 57 | | 214 | 71 | 1.5 | | | | . 18 | | | | | | | - | 140 | | 23 | 10 | | | | | | | 120 | 6 | | | | | . 24 | 1.46 | | | 52 | 18 | | 74 | 158
176 | | 107
99 | 54
81 | 1.1 | .2 | | 442 | . 60 | | 198
204 | 68
60 | 2.2 | 638
729 | | | 10, 1902 | 1.40 | 30 | | 32 | | | | | ADOUT | | | | | | | .00 | | 204 | 0.5 | 2.2 | 129 | | | 12 1051 | 11.7 | 0.4 | | 7.4 | | | | | ABOVE | | RS CREEK | NORTH | | LLIA | | 0.00 | | 200 | 120 | | 1110 | | | . 13, 1951 | 11.7 | 24 | | 74 | 28 | | 18 | 207 | | 156 | 158 | | 1.5 | | 719 | 0.98 | | 300 | 130 | | 1110 | | | | | | | | | | | RTON CI | REEK N | ORTHEAS | T OF CLAR | ENDON | | | | | | | | | | | | . 22, 1959 | b3 | 36 | | 112 | 47 | 2 | 76 | 228 | | 402 | 332 | | 0.9 | | 1320 | 1.80 | | 473 | 286 | 5.5 | 2070 | | Table 6 .-- Chemical Analyses of Water From Streams and Reservoirs at Sites Other Than Daily Stations in the Red River Basin, Texas--Continued (Results in milligrams per liter except as indicated. Calculated values for sodium plus potassium are centered between the two columns.) | | | | | | | | | | Bi- | | | The state of | | | | | ssolved so | | Hard
as C | | So- | Specific con- | | |--------------------------------------|--|------------------------------|-------------------------------|--------------|-------------------------------|--------------------------------------|----------------|------------------------------|--|---|---|--|--------|------------------------------------|------|--|----------------------------------|--------------------|--------------------------------------|---|---------------------------------------|---|----------------| | | Date
of
collection | Discharge
(cfs) | Silica
(SiO ₂) | Iron
(Fe) | Cal-
cium
(Ca) | Mag-
ne-
sium
(Mg) | Sodium
(Na) | Po-
tas-
sium
(K) | car-
bon-
ate
(HCO ₃) | Car-
bon-
ate
(CO _s) | Sulfate
(SO ₄) | Chloride
(Cl) | True | Ni-
trate
(NO ₃) | | Milli-
grams
per
liter | Tons
per
acre-
foot | Tons
per
day | Cal-
cium,
Mag-
ne-
sium | Non-
car-
bon-
ate | dium
ad-
sorp-
tion
ratio | duct-
ance
(micro-
mhos at
25°C) | pВ | | | | | | | | | 36. SAI | DDLERS | CREEK | 8 MI | LES NORT | THEAST OF | CLARE | ENDON | | 100 | | | | | | 2 | 50-101 | | | 13, 1951
21 | 5.0 | | | 82
93 | 36
43 | 14
18 | | 240
218 | | 216
282 | 174
246 | | 1.0 | | 858
995 | 1.17
1.35 | | 352
409 | 156
230 | | 1300
1650 | | | | | | | | | | | 37. | SALT F | ORK R | ED RIVER | NORTH OF | FLELI | [A LA | Œ | | | | | | | | | | | 21, 1951
22, 1959 | b2.0 | 24 | | 81
64 | 32
26 | 18 | | 202
216 | | 221
150 | 240
147 | | 0.5 | | 871 | 1.18 | | 334
266 | 168
89 | 3.4 | 1490
1080 | | | | | | | | | | | | 39. L | ELIA | LAKE CRE | EEK NEAR H | HEDLEY
| Y | | | | | | | | | | | Jan.
Feb.
Mar.
Oct.
Jan. | 13, 1950
9, 1951
13
21
4, 1951
22, 1952 | 7.0

5.22
7.17 | 31
26
41
31 | | 95
110
103
101
78 | 27
26
28
29
28

30 | \$
2
4 | 57
52
56
49
58 | 198
273
250
206
161

108 | | 221
181
197
217
223
205
237 | 54
52
52
54
48
54
66 | == | 7.8
6.3
6.9 | | 666
565
698
628
561

599 | 0.91
.77
.95
.85
.76 | | 348
382
372
371
310 | 186
158
167
202
178 |

1.4 | 890
894
921
933
858
942
864 | 8. | | Oct.
Jan. | 22
8
13, 1953
12 | 11.1
5.58
5.79
8.22 | 44
40 | | 60
73
66
51 | 28
28
17 | | 54
52
32 | 143
105
170 | | 215
217
89 | 48
51
23 | | 7.7
9.2
3.2 | | 601
542
372 | .82
.74
.51 | | 297
280
197 | 180
194
58 | 1.4
1.3
1.0 | 830
891
525
961 | 8. | | Nov.
Feb.
Apr. | 24 | 6.82
6.31
11.7
6.80 | 32
43 | | 87
66
70
80 | 25
25
25
24
24 | 56 | 59
79
2.9
57
3.9 | 199
114
142
188 | | 225
231
199
197
205 | 53
57
56
47
51 | 0.5 | 9.2
8.9
9.3
9.1
2.2 | | 649
513
499
549 | .88
.70
.68 | | 320
268
273
298 | 174
156 | 1.9
1.5
1.5
1.5 | 956
806
767
822 | 7.
8.
7. | | | | Control of Control | | | | | | | 41. W | HITEF | ISH CREE | EK NEAR AI | LANREI | ED | | 1665 | | 400 | | | | 100 | | | June | 12, 1962 | | | | | | | | 202 | | 11 | | 0.4 | | | 223 | | | 168 | 2 | 0.3 | 373 | 8. | | | 21, 1951
15, 1962 | | 26 | | 269 | 83 | 15 | | 182
158 | ITEFI | 869
332 | 245
70 | F MCLI | 0.8
.6 | 0.19 | 1760
784 | 2.39 | | 1010
430 | 864
300 | 1.4 | 2430
1050 | | | | | | | 100°s | | | | 43 | . WHIT | TEFISH | CREEK N | NORTHEAST | OF HI | EDLEY | | | | | | | and the control | | | | | 8, 1951
12, 1962 | 0.03 | 15 | | 354 | 114 | | 00
07 | 196
124 | | 1210
1360 | 260
440 | | 0.0 | 0.37 | 2250
3030 | 3.06 | | 1320
1470 | | | 2820
3590 | | | | | | | | | | | | 44. | GYP C | REEK NO | RTH OF Mcl | KNIGHT | Г | | | | | | <u> Marina da da</u> | | Charles Control | | | Jan. | 1, 1951 | | | | 824 | 304 | 31: | 20 | 200 | | 99 | 4950 | | 2.3 | | 12100 | 16.3 | | 3310 | 3140 | | 16500 | | | | | | | | | | une de la | 45 | . SALT | FORK | RED RI | VER NORTH | OF Q | UAIL | | | | 1449 | | | | | | | Mar.
Apr. | 22, 1959
21, 1963 | b0.25
b1.5 | | 1739 | 355
640 | 98
84 | | 68
02 | 169
166 | | 1240
1800 | 315
570 | | 2.0 | | 3600 | 4.90 | | | 1150
1810 | 3.2 | 3050
4320 | | Table 6.--Chemical Analyses of Water From Streams and Reservoirs at Sites Other Than Daily Stations in the Red River Basin, Texas--Continued | | | | | Mag | | Po | Bi- | Con | | | | | | AND RESIDENCE OF THE PERSONS ASSESSED. | ssolved se | | Hard
as C | | So- | Specific con- | | |--|---|--------------|-----------------------------------|-----------------------------|----------------|-----------------------------|--|---|--------------------------------------|---------------------------------|------------------|------------------------------------|------|--|--|--------------------|--------------------------------------|----------------------------------|---------------------------------------|--|---------------------------------| | Date
of
collection | Discharge (SiO | Iron
(Fe) | Cal-
cium
(Ca) | Mag-
ne-
sium
(Mg) | Sodium
(Na) | Po-
tas-
sium
(K) | car-
bon-
ate
(HCO ₃) | Car-
bon-
ate
(CO ₃) | Sulfate
(SO ₄) | Chloride
(C1) | ride | Ni-
trate
(NO ₃) | | Milli-
grams
per
liter | Tons
per
acre-
foot | Tons
per
day | Cal-
cium,
Mag-
ne-
sium | Non-
car-
bon-
ate | dium
ad-
sorp-
tion
ratio | duct-
ance
(micro-
mhos at
25°C) | рН | | | 100 | | Tien. | | | | 46. DC | ZIER | CREEK NE | AR WELLIN | NGTON | | | | | | | | | | | | June 14. 1950 Feb. 8. 1951 Mar. 5, 1953 Sept. 18 Nov. 25 Jan. 12, 1955 | 1.0 14 -23 24 -23 34 -40 24 -24 30 | | 607
585
584
586
 | 84
84
82
84
 | 1 | 74
84
65
68
 | 144
186
110
99
 | | 1720
1660
1660
1690
1640 | 75
70
78
76
73 | | 6.8
12
8.7
9.0
9.3 | | 2640
2600
2560
2600

2520 | 3.59
3.54
3.48
3.54
 | | 1800
1790 | 1740
1650
1700
1730
 |
0.7
.7
 | 2820
2780
2820
2810
2820
2720 | 7.7 | | Jan. 15, 1960 | | | | | | | 58 | | | 38 | | | 100 | | | | 608 | 560 | -11 | 1160 | | | | | | | | 48 | . NO | RTH FOR | RK RED | RIVER W | EST OF KE | ELLERV | ILLE | | | | | | a. jaja | | | | | Mar. 22, 1959 | b6 | | 208 | 112 | 3: | 35 | 149 | | 156 | 1010 | | | | Sec. 1 | | | 980 | 858 | 4.7 | 3560 | 7.9 | | | | | | | 49. Me | cCLEL | LAN CRE | EK AT | STATE H | IGHWAY 70 | NEAR | BOYD | STON | in the second | | and Carlon | | | | | | | Sept. 12, 1950 | | | | | | | 86 | | 8.0 | 2.9 | | 5.0 | | | | | 74 | | | 179 | 7.9 | | | | | | | | | 50 LA | KE MC | CLELLAN | NEAR JERI | СНО | | | | | | | | | | | | June 28, 1951 | 10 | 0.23 | 23 | 2.8 | 3 1.2 | 1.2 | 83 | | 2.7 | 1.7 | 0.1 | 2.2 | 0.27 | 96 | | | 69 | 1 | | 148 | 7.6 | | | | | | | 51. 1 | McCLE | LLAN CR | EEK A | T STATE | HIGHWAY 2 | 73 NE | CAR Mc | LEAN | | 1000 Magain - 10 | | | | | ales con c | | | Jan. 6, 1965
June 22
Oct. 20
Nov. 22
June 8, 1966 | 11.4 23
12.1 29
11.2 24
10.9 24
.1 24 | | 50
56
72
66
65 | 22
17
18
19
21 | 121 | 99
12
12
05
4.6 | 160
193
230
216
183 | | 123
122
125
118
123 | 121
117
125
120
175 | .8
.8
.7 | 0.2
.0
.2
.2
.0 | | 886
549
590
559
624 | 0.70
.75

 | | 216
210
254
244
248 | 52
65
67
98 | 2.9
3.4
3.1
2.9
3.3 | 929
986
961
1140 | 7.4
7.6 | | Jan. 17, 1967
July 25 | 2.07 25
1.00 25 | | 78
60 | 20
19 | 124
132 | 3.0
4.2 | 168 | | 133
136 | 141
171 | . 8 | . 0 | | 647
631 | <u> </u> | | 277
228 | 73
90 | 3.2 | 1070 | 7.9 | | Sept. 7 | 4.16 23 | | 69 | 20 | 134 | 4.1 | | DODU | 137 | 169 | . 8 | . 2 | | 662 | | | 254 | 80 | 3.7 | 1100 | 7.6 | | | | | | | | 52. | | FORK | | ER NEAR S | 10 000 | | | 1000 | | | | | | | | | Feb. 26, 1951
Apr. 9
July 25
Nov. 18
Jan. 21, 1952 | 162 22
12.0 32
2.19 28
.73 26
18.5 21 | | 148
194
248
392 | 35
47
22
57 | 20
2
11 | 72
07
28
17 | 200
168
113
107 | | 268
489
593
1040
428 | 315
340
41
210
308 |

 | 1.5
1.5
2.5
1.5 | | 1060
1390
1020
1900 | 1.44
1.89
1.39
2.58 | | 514
678
710
1210 | 350
540
617
1120 | 1.5 | 1750
2139
1310
2530
1970 | 8.4 | | Dec. 8, 1953
Jan. 9, 1958
Feb. 13
Mar. 22, 1959
May 27, 1964 | 13.0 26
15.2 20
5.89 42
b6.0 -
12.9 9. | | 189
205
235
405 |
36
45
49
44 | 29
23
3 | 02
52
10
63 | 178
89
159
103 | | 445
390
530
565
1080 | 388
360
438
528
84 |

0.5 | .2
.5
1.8
 | | 1290
1560

1740 | 1.75
2.12

2.37 | | 620
696
790
1190 | 474
624
660
1110 | 3.5
4.1
4.8
.8 | 2320
2050
2550
2740
2010 |
7.5
8.0
8.0
6.5 | | May 28 | $\begin{array}{c} .13 & 14 \\ 81.9 & 12 \\ 2080 & 18 \\ 18.3 & 7. \\ 1180 & 14 \end{array}$ | 5 | 430
164
130
218
122 | 55
10
21
54
20 | 2 | 52
20
95
18
55 | 128
104
226
76
141 | | 1130
357
238
584
186 | 245
22
130
402
292 | .6
.6
.6 | 1.0
5.3
.5
.5 | | 2090
642
744
1520
860 | 2.84
.87
1.01
2.07 | | 1300
450
411
766
387 | 1200
365
226
704
272 | 1.9
.4
2.0
3.4
3.4 | 2590
889
1170
2260
1510 | 6.5
7.1
6.8
8.1
6.8 | Table 6.--Chemical Analyses of Water From Streams and Reservoirs at Sites Other Than Daily Stations in the Red River Basin, Texas--Continued | | | | | | Mag | | Po | Bi- | Com | | | 170 | | - | | ssolved s | | Hard
as Ca | | So- | Specific con- | | |--|--------------------------------------|-------------------------------|--------------|---------------------------------|-----------------------------|-------------------------|----------------------------|--|---|-----------------------------------|--------------------------------|----------------------|------------------------------------|-------------------|--------------------------------------|----------------------------------|--------------------|--------------------------------------|---------------------------------|---------------------------------------|--|----------------| | Date
of
collection | Discharge
(cfs) | Silica
(SiO ₂) | Iron
(Fe) | Cal-
cium
(Ca) | Mag-
ne-
sium
(Mg) | Sodium
(Na) | Po-
tas-
sium
(K) | car-
bon-
ate
(HCO ₃) | Car-
bon-
ate
(CO ₃) | Sulfate
(SO ₄) | Chloride
(Cl) | Fluo-
ride
(F) | Ni-
trate
(NO ₃) | Bo-
ron
(B) | Milli-
grams
per
liter | Tons
per
acre-
foot | Tons
per
day | Cal-
cium,
Mag-
ne-
sium | Non-
car-
bon-
ate | dium
ad-
sorp-
tion
ratio | duct-
ance
(micro-
mhos at
25°C) | pl | | | | | | | | 52. | NORTH | FORK I | RED RI | VER NEAD | R SHAMROCI | KCor | ntinue | ed | | | | | | | | | | ov. 22, 1965
uly 24, 1966
ept. 19
an. 17, 1967
pr. 14 | 10.8
35.6
34.8
4.79
28.4 | 13
18
23 | | 265
295
205
310
227 | 47
21
30
59
46 | 24
188
272
293 | 8.3
6.0
4.9
7.1 | 148 | | 618
661
· 366
712
416 | 375
40
378
528
580 | . 6 | 2.2 | | 1600
1150
1270
2000
1680 | 22.
22. | | 855
822
635
1020
756 | 736
685
514
872
608 | 3.0
.4
3.3
3.7
4.6 | 2470
1480
2070
2960
2710 | 7 | | une 28
ug. 5
ug. 24 | 92.0
77.0
137 | 11 | | 172
218
160 | 19
40
23 | 60
211
180 | 5.2
5.7
5.8 | 132 | | 364
432
175 | 109
425
360 | .3
.6
.6 | .5
2.2
1.2 | | 811
1420
1040 | == | | 507
708
494 | 390
600
300 | 1.2
3.4
3.5 | 1170
2200
1750 | 7 | | | | | | | 53. | SWEET | WATER | CREEK | AT ST | ATE HIGH | TWAY 152 W | EST O | F MOB | EETIE | | | | | | | | | | Peb. 13, 1951
Peb. 27 | 2.73 | 17
23 | | 74
64 | 13
11 | | 17
13 | 298
246 | | 14
17 | 10
8 | | 2.0
2.0 | | 294
259 | 0.40 | | 238
205 | 0 | | 499
410 | | | | | | | | 54. | SWEETWA | rer Ci | REEK AT | STAT | E HIGHWA | Y 152 SOU | THEAS | T OF | MOBEE | TIE | | | | | | | | | Peb. 13, 1951
Peb. 27 | 8.84 | 18
27 | | 68
68 | 14
14 | | 41
20 | 308
280 | | 26
17 | 24
16 | | 3.0 | | 368
302 | 0.50
.41 | | 227
227 | 0 | | 593
482 | | | | | | | | | | 5 | 5. SWE | ETWAT | ER CREEK | NEAR WHE | ELER | | | | | | | | | | | | eb. 12, 1951
eb. 13eb. 27eb. 27eb. 27eb. 27 | | 27 | | 88
79
81
77
70 | 22
19
22
21
18 | 1 | 13
34
50
55
39 | 312
348
336
340
334 | | 104
27
79
75
25 | 26
24
29
28
23 | 4 | 2.5
2.0
3.8
2.0
1.5 | | 488
402
458
457
372 | 0.66
.55
.62
.62
.51 | | 310
275
292
278
248 | 54
0
17
0 | ==
==
== | 718
619
718
717
589 | 8 | | uly 25 | 8.48
7.77
10.7
16.9
1.69 | 30
35
40 | | 39
40

30
70 | 14
15

14
16 | | 37
51

41
37 | 222
230

206
326 | | 25
38
20
22
26 | 18
30
18
21
18 | | 3.0
1.0
.8
1.0
1.5 | | 295
318

270
362 | . 40
. 43

. 37
. 49 | | 155
162

132
240 | | 1.7

1.6
1.0 | 448
560
506
426
586 | 8 | | ay 11ept. 8ec. 8an. 12, 1955pr. 24, 1957 | 3.83
.08
5.91
2.98
13.5 | 58
36
36 | | 30
36

104 | 15
14

13
12 | | 12
32
29

33 | 201
210

391 | | 22
21
20
18
29 | 26
16
19
16
21 | | 3.5
.5
1.0
1.0 | | 272
286

423 | . 37
. 39

. 58 | | 137
147

308 | 0
0

0 | 1.5
1.2

.8 | 435
423
506
506 | 8 | | Oct. 1 | .14
7.15
6.14 | 24 | | 37
64
 | 11
13
15 | | 33
36
2.9 | 200
285
 | | 25
25
28 | 13
23
24 | | .5
.5
1.2 | | 258
326
 | .35
.44
 | | 138
214
 | | 1.2
1.1 | 385
530
526 | 8.
8. | | | | | | | | | 50 | 6. SWE | ETWAT | ER CREEK | NEAR KEI | TON | | | | | | | | | | | | Aug. 8, 1962
Aug. 13, 1963
Nov. 19
Jan. 21, 1964
June 11 | 11.9
224
10.8
15.9
7.17 | 12
25
27 | | 104
74
83
88
102 | 21
8.6
18
18
25 | ; | 61
18
46
45
53 | 267
241
287
322
274 | | 202
44
100
87
197 | 32
11
28
24
28 | | .5
1.8
1.8 | | 598
287
443
450
567 | 0.81
.39
.60
.61 | | 346
220
281
294
358 | | 1.4
.5
1.2
1.1 | 860
488
709
716
854 | 6.
7.
7. | Table 6.--Chemical Analyses of Water From Streams and Reservoirs at Sites Other Than Daily Stations in the Red River Basin, Texas--Continued | Nov. 23 Mar. 8, 1966 June 8 July 13 Aug. 2 Sept. 12 Jan. 17, 196 Apr. 14 May 16 Aug. 28 Sept. 30, 19 Oct. 26 Oct. 26 Oct. 26 Oct. 26 Oct. 26 Nov. 25 Dec. 16 Feb. 13, 194 Apr. 8 May 6 June 12 June 12 June 12 June 10, 195 Sept. 1 Sept. 28 Oct. 17 Mar. 15, 195 | 964 | 346
(cfs)
346
.17
13.1
389
15.2
17.1
2.9
.2
1.0
.6 | 15
30
22
14
25
22
24
30
 | (Fe) | 56
175
89
44
91
96
136 | 7.4
46
22
5.4
19 | 9 | Po-
tas-
sium
(K)
6. SV
32
96
48
25 | (HCO ₃) | | Sulfate
(SO ₄)
EEK NEAR
27
528 | Chloride (C1) | (F) | trate
(NO ₃) | Bo-
ron
(B) | Milli-
grams
per
liter | Tons
per
acre-
foot | Tons
per
day | Cal-
cium,
Mag-
ne-
sium | Non-car-
bon-
ate | dium
ad-
sorp-
tion
ratio | duct-
ance
(micro-
mhos at
25°C) | | |---|-----------|---|--|------|--|------------------------------|------------------|---|---------------------|--------|--|---------------|------|-----------------------------|-------------------|---------------------------------|------------------------------|--------------------|--------------------------------------|-------------------------|---------------------------------------|--|---------| | Oct. 9 Jan. 6, 1965 Oct. 18 Nov. 23 Mar. 8, 1966 June 8 July 13 Aug. 2 Sept. 12 May 16 Aug. 28 Sept. 30, 19 Oct. 26 Oct. 26 Oct. 26 Oct. 26 Oct. 26 Oct. 26 May 19 May 6 June 12 June 10, 195 Sept. 12 Sept. 12 Dec. 1 June 10, 195 Sept. 18 Sept. 28 Oct. 17 Mar. 15, 195 | 66
967 | . 17
13.1
389
15.2
17.1
2.9
.2
1.0
.6 | 30
22
14
25
22
24
30
 | | 175
89
44
91
96
136 | 46
22
5.4
19 | 3
9
4
2 | 32
96
18 | 234
196 | TER CR | 27 | 13 | | | | | | | 170 | | 1.1 | AFE | | | Oct. 26 | 66
967 | . 17
13.1
389
15.2
17.1
2.9
.2
1.0
.6 | 30
22
14
25
22
24
30
 | | 175
89
44
91
96
136 | 46
22
5.4
19 | 9 | 96
18 | 196 | | | | 0.4 | 0 0 | | | | | 170 | | 1 1 | 455 | 1001237 | | Jan. 6, 1965 Oct. 18 Nov. 23 Mar. 8, 1966 June 8 July 13 Aug. 2 Sept. 12 Jan. 17, 196 Apr. 14 May 16 Aug. 28 Sept. 30, 19 Oct. 26 Oct. 26 Oct. 26 Oct. 26 Oct. 26 Nov. 25 Dec. 16 June 12 June 12 June 12 June 12 June 12 June 12 June 10, 195 Sept. 1 Sept. 28 Oct. 17 Mar. 15, 195 | 66 | 13.1
389
15.2
17.1
2.9
.2
1.0
.6 | 22
14
25
22
24
30
 | | 89
44
91
96
136 | 22
5.4
19 | 2 | 18 | | | | | | | | 266 | . 36 | | 170 | | | | 6. | | Oct. 18 Nov. 23 Mar. 8, 1966 June 8 July 13 Aug. 2 Sept. 12 Jan. 17, 196 Apr. 14 May 16 Oct. 26 Oct. 26 Oct. 26 Oct. 26 Oct. 26 Oct. 26 May 6 June 12 June 12 July 7 7 Aug. 12 June 10, 195 Sept. 1 Sept. 28 June 10, 195 Sept. 1 Sept. 28. Oct. 17 Mar. 15, 195 | 967 | 389
15.2
17.1
2.9
.2
1.0
.6 |
14
25
22
24
30
 | | 44
91
96
136 | 5.4
19 | 2 | | | | 112 | 78
27 | .6 | 3.0 | | 1040
478 | 1.41 | | 626
312 | 465
55 | 1.6 | 1430
741 | 7. | | Nov. 23 Mar. 8, 1966 June 8 July 13 Aug. 2 Sept. 12 Jan. 17, 196 Apr. 14 May 16 Sept. 30, 19 Oct. 26 Oct. 26 Oct. 26 Oct. 26 Oct. 26 Oct. 26 May 9 Feb. 13, 194 Apr. 8 May 6 June 12 July 7 Aug. 12 July 7 Aug. 12 Dec. 1 July 7 July 7 Aug. 12 July 7 July 7 July 7 July 7 July 7 Aug. 12 July 7 Sept. 28 June 10, 195 Sept. 1 Sept. 28 Mar. 15, 195 | 967 | 15.2
17.1
2.9
.2
1.0
.6 | 25
22
24
30
 | | 91
96
136 | 19 | | | 178 | | 22 | 12 | . 4 | .5 | | 211 | | | 132 | 0 | .9 | | 7. | | June 8 | 967 | 2.9
.2
1.0
.6 | 24
30
 | | 136 | 19 | | 2.9 | 318 | | 121 | 32 | .8 | 1.0 | | 502 | | | 306 | 46 | 1.3 | 798 | 7. | | June 8 | 967 | 2.9
.2
1.0
.6 | 24
30
 | | 136 | | 51 | 2.3 | 300 | | 127 | 31 | .8 | 1.5 | | 499 | | | 318 | 72 | 1.2 | 795 | 7. | | Aug 2 Sept. 12 Jan. 17, 196 Apr. 14 May 16 Aug. 28 Sept. 30, 19 Oct. 26 Oct. 26 Oct. 26 Oct. 26 Nov. 25 Dec. 16 Feb. 13, 194 Apr. 8 May 6 June 12 July 7 Aug. 12 Dec. 1 Dec. 1 Dec. 1 Sept. 28 Dec. 1 Sept. 28 Oct. 21 Dec. 1 Sept. 1 Sept. 28 Oct. 17 Mar. 15, 195 | 967 | 1.0
.6
11.4 | 22 | | | 34 | 69 | 2.6 | | | 355 | 42 | . 5 | 2.0 | | 778 | | | 480 | 291 | 1.4 | 1140 | 7. | | Sept. 12 Jan. 17, 196 Apr. 14 May 16 Aug. 28 Sept. 30, 19 Oct. 26 Oct. 26 Oct. 26 Oct. 26 Oct. 26 Nov. 25 Dec. 16 May 6 June 12 July 7 Aug. 12 Oct. 21 Dec. 1 June 10, 195 Sept. 1 Sept. 28 Oct. 17 Mar. 15, 195 | 967 | .6
11.4 | | | | 47 | 99 | 3.0 | 180 | | 554 | 71 | . 5 | 1.5 | | 1060 | | | 608 | 460 | 1.7 | 1440 | 7. | | Jan. 17, 196 Apr. 14 Aug. 28 Sept. 30, 19 Oct. 26 Oct. 26 Oct. 26 Oct. 26 May 12 May 28 May 6 June 12 June 12 June 10, 195 Sept. 18 Sept. 28 June 10, 195 Sept. 18 Sept. 28 May 6 June 10, 195 Sept. 18 Sept. 28 Oct. 17 Mar. 15, 195 | 967 | 11.4 | | | 117 | 21 | | 5 | 210
194 | | 433 | 33
55 | | | | | | | 378
526 | 206
367 | | 912
1250 | 7. | | Apr. 14 Aug. 28 Aug. 28 Aug. 28 Sept. 30. 19 Oct. 26 Oct. 26 Oct. 26 Oct. 26 Oct. 26 May 6 Juc. 16 May 6 June 12 June 12 June 10, 195 Sept. 28 June 10, 195 Sept. 28 Oct. 17 Mar. 15, 195 | | | | | | | 40 | 0 0 | | | | | 7 | | | 454 | | | | | | 715 | 7. | | May 16 | | 02.1 | | | 87
70 | 18
15 | 46
47 | 6.0 | 302
284 | | 98
69 | 28
26 | .7 | 1.0 | | 454
397 | 151 | | 291
236 | 44 | 1.2 | 637 | 7. | | Sept. 30, 19 Oct. 26 | | | 10 E. S. | | | 21 | 50 | 2.7 | 224 | | 150 | 32 | .8 | 1.8 | | 465 | | | 276 | 92 | 1.3 | | 7. | | Oct. 26 Oct. 26 Oct. 26 Oct. 26 Oct. 26 Dec. 16 Feb. 13, 194 Apr. 8 May 6 June 12 July 7 Aug. 12 Oct. 21 Dec. 1 June 10, 195 Sept. 1 Sept. 28. Oct. 17 Mar. 15, 195 | | 1.80 | 26 | | 148 | 33 | 72 | 2.8 | 218 | | 400 | 45 | . 7 | 2.5 | | 837 | | | 505 | 326 | 1.4 | 1150 | 7. | | Oct. 26 Oct. 26 Oct. 26 Oct. 26 Oct. 26 Dec. 16 Feb. 13, 194 Apr. 8 May 6 June 12 July 7 Aug. 12 Oct. 21 Dec. 1 June 10, 195 Sept. 1 Sept. 28. Oct. 17 Mar. 15, 195 | | | | | | | | | 57. | ELM C | REEK NEA | R SHAMROO | CK | | | | | | | | | | | | Oct. 26 Oct. 26 Oct. 26 Oct. 26 Oct. 26 Nov. 25 Dec. 16 Feb. 13, 194 Apr. 8 May 6 June 12 July 7 Aug. 12 Oct. 21 June 10, 195 Sept. 1 Sept. 28 Oct. 17 Mar. 15, 195 | 1946 | | | | | 37 | | 50 | 162 | | 525 | 92 | 14- | 2.2 | | 1010 | With the | v | 681 | | | 1410 | | | Oct. 26 Oct. 26 Oct. 26 Nov. 25 Dec. 16 Feb. 13, 194 Apr. 8 May 6 June 12 July 7 Aug. 12 Oct. 21 Dec. 1 June 10, 195 Sept. 1 Sept. 28 Oct. 17 Mar. 15, 195 | | 2.54 | | | | 29 | 10 | 00 | 241
277 | | 403
305 | 98 | == | 5.0 | | 923 | | | 541 | | | 1240
1120 | Ē | | Oct. 26 Oct. 26 Nov. 25 Dec. 16 Feb. 13, 194 Apr. 8 May 6 June 12 July 7 Aug. 12 Oct. 21 Dec. 1 June 10, 195 Sept. 1 Sept. 28 Oct. 17 Mar. 15, 195 | | 1.01 | | | | 36 | 10 | | 262 | | 655 | 82
90 | | .0 | | 1270 | | | 797 | | | 1620 | ΠĒ | | Nov. 25 Dec. 16 Feb. 13, 194 Apr. 8 May 6 June 12 July 7 Aug. 12 Oct. 21 June 10, 195 Sept. 1 Sept. 28 Oct. 17 Mar. 15, 195 | | .91 | | | | 31 | | 7 | 306 | | 230 | 70 | | | | 743 | | | 474 | | | 1050 | - | | Nov. 25 Dec. 16 Feb. 13, 194 Apr. 8 May 6 June 12 July 7 Aug. 12 Oct. 21 June 10, 195 Sept. 1 Sept. 28 Oct. 17 Mar. 15, 195 | | 2.51 | | | | | _ | _ | 194 | | 471 | 98 | | 2.8 | | | | | | ш. | | 1320 | - | | Feb. 13, 194 Apr. 8 May 6 June 12 July 7 Aug. 12 Oct. 21 Dec. 1 June 10, 195 Sept. 1 Sept. 28. Oct. 17 Mar. 15, 195 | | | | | | 31 | | 70 | 260 | | 352 | 94 | | 14 | | 998 | | | 572 | | 112- | 1320 | - | | Apr. 8 | | 2.32 | | | | 28 | | 73 | 196 | | 359 | 90 | 4.0 | 4.0 | | 864 | 7.5 | | 504 | | - 55 | 1240 | - | | May 6 | | 2.42 | | | | 35
28 | | 54
31 | 242
248 | | 343
342 | 95
92 | | 3.8 | | 908
891 | 11 | | 576
517 | | II | 1230
1220 | _ | | June 12 | | | | | | | | | | | | | | | | | | | 492 | | | 1240 | _ | | July 7 | | 3.3 | | | | 28
31 | | 78
38 | 204
264 | | 351
310 | 90
83 | - 11 | 7.4 | | 898
853 | 1 | | 579 | | | 1220 | | | Aug. 12 Oct. 21 Dec. 1 June 10, 195 Sept. 1 Sept. 28 Oct. 17 Mar. 15, 195 | | 2.71 | | | | | | | | | | 95 | | | | | H 111 | | | | | 1210 | - | | Dec. 1 June 10, 195 Sept. 1 Sept. 28 Oct. 17 Mar. 15, 195 | | | | | | 29 | | 11 | 208 | | 351 | 97 | | 5.5 | | 943 | | | 524 | | | 1250 | | | June 10, 195
Sept. 1
Sept. 28
Oct. 17
Mar. 15, 195 | | 1.47 | | | | 29 | 7 | 72 | 270 | | 346 | 91 | | 5.5 | | 946 | | | 558 | | | 1270 | - | | Sept. 1
Sept. 28
Oct. 17
Mar. 15, 195 | | 2.58 | | | | 23 | | 34 | 166 | | 324 | 92 | 72 | 5.3 | | 833 | 1 00 | | 424 | 979 | | 1270 | | | Sept. 28
Oct. 17
Mar. 15, 195 | | 3.0
1.97 | | | | 29
28 | | 39
36 | 269
166 | | 328
365 | 89
98 | | 6.5 | | 948
886 | 1.29 | | 498
470 | 278
334 | | 1230
1230 | 7. | | Oct. 17
Mar. 15, 195 | | 2.67 | | | | 29 | | 18 | 106 | | 355 | 93 | | 4.5 | | 815 | 1.11 | | 421 | 334 | | 1120 | 7. | | | | 2.39 | | | | 33 | | 52 | 96 | | 354 | 92 | | 4.2 | | 801 | 1.09 | | 445 | 366 | | 1100 | 7. | | | 951 | 2.17 | 40 | | 139 | 34 | 4 | 11 | 111 | | 337 | 91 | | 6.1 | | 787 | 1.07 | | 487 | 396 | | 1179 | 8. | | June 28 | | 1.71 | 53 | | | 30 | | 78 | 153 | | 360 | 94 | | 5.0 | | 833 | 1.13 | | 468 | 342 | | 1240 | 7. | | May 11, 1953 | | 1.67 | | | | 32 | | 73 | 102
90 | | 373
308 | 97
121 | | 5.0 | | 866 | 1.18 | | 454
360 | 370 | 1.5 | 1200 | 8. | | Sept. 8
Dec. 8 | | 1.35 | | | 11 | | | | 90 | | 377 | 98 | | 3.0 | | | | | | | | 1300 | | | | | | | | | | | 78 | 76 | | 393 | 98 | | 2.5 | | 863 | 1.17 | | 442 | 380 | 1.6 | | 7. | | Jan. 12, 195
Jan. 9, 1958 | | 1.67 | | | | 28
25 | | 39 | 248 | | 425 | 100 | | 1.5 | | 982 | 1.34 | | 594 | 391 | 1.6 | | 7. | | Mar. 22, 195 | 955 | b2.0 | | | | 33 | 10 | | 161 | | 607 | 112 | | .2 | | 1190 | 1.62 | | 697 | 565 | 1.7 | | 7. | | Feb. 21, 196
Aug. 8 | 955
58 | | 25 | | | 28
27 | | 73 | 274
224 | | 370
380 | 103
102 | 0.5 | 3.6 | | 998
930 | 1.26 | | 600
525 | 376
342 | 1.3 | 1380
1280 | 7. | Table 6 .-- Chemical Analyses of Water From Streams and Reservoirs at Sites Other Than Daily Stations in the Red River Basin, Texas--Continued | 962
962 | |---------------------------------| | 962
959
962 | | 962
959
962 | | 959
962 | | 959
962 | | 945 | | 945 | | 945 | | | | 946.
950. | | 100 | | 953
954
955
956
956 | | . 5999 | Table 6.--Chemical Analyses of Water From Streams and Reservoirs at Sites Other Than Daily Stations in the Red River Basin, Texas--Continued | | | | | | | | Mag- | | Po- | Bi- | Car- | | | | | | A CONTRACTOR OF THE PARTY TH | ssolved s | | Hard
as C | | 50- | Specific
con- | | |----------------------|--|-------------------|-----------------------------|-----------------------|------------|---------------------------------|-------------------------------|-----------------------------------|---------------------------|--|-------------|--------------------------------------|--------------------------------------|--------|------------------------------------|-------------------
--|------------------------------|--------------------|--------------------------------------|------------------------------------|-------------------|---|-------------------| | | Date
of
collection | Discharg
(cfs) | e Sil | | ron
Fe) | Cal-
cium
(Ca) | ne-
sium
(Mg) | Sodium
(Na) | tas-
sium
(K) | car-
bon-
ate
(HCO ₃) | bon-
ate | Sulfate (SO ₄) | Chloride
(C1) | Tiue | Ni-
trate
(NO ₃) | Bo-
ron
(B) | Milli-
grams
per
liter | Tons
per
acre-
foot | Tons
per
day | Cal-
cium,
Mag-
ne-
sium | Non-
car-
bon-
ate | | duct-
ance
micro-
nhos at
25°C) | pН | | | | | | | | | | | 63. | MIDI | LE PE | ASE RIVI | ER NEAR PA | ADUCAH | | | | | | | | | | | | | . 11, 1950
11, 1959 | | 22 | | | 177
1320 | 27
217 | 111 | 06
00 | 109
125 | 1 | 458
3730 | 152
17300 | | 3.0 | | 999 | 1.36 | | 552
4180 | 463
4080 | | 1460
44300 | | | | | ngij | | | | 64. | SALT S | PRINGS T | RIBUTA | RY TO | MIDDL | E PEASE | RIVER 14 | MILES | NORT | THEAST | OF PADI | JCAH | | | | | | | | | 11, 1959
21 | |)2 | | | 1430
1080 | 243
241 | 139
65 | | 111
170 | | 4100
3210 | 21700
10200 | | | | | | | 4570
3700 | | | 52000
28900 | | | | | | | | | | | | . 6 | 5. PI | EASE R | IVER NE | AR CHILDR | ESS | | | | | | ¥. | | | | | | Jan.
Aug. | 21, 1959
26, 1967
24 | . 2 | 57 10
33 11
54 10 | | | 1200
1260
1040
705 | 246
229
180
115 | 76:
8040
5700
4110 | 20
18
18
15 | 151
144
124
108 | | 3270
3330
2190
1730 | 12100
12700
9300
6600 | | | | 25600
18500
13500 | | | 4000
4090
3340
2250 | 3880
3980
3240
2160 | | 32600
36600
28200
20500 | 7.4 | | | 12. | | | | | | | | | 67. I | PEASE | RIVER NI | EAR VERNO | N | | | | | | | | | 7 | | | Apr.
Jan.
Apr. | 16, 1942
10, 1951
27, 1967
17 | . 0.3 | 35 5
9 |
. 5
. 9
. 1 | | 580
500
478
385
495 | 115
139
132
50
41 | 108
16:
1360
782
1050 | 7.3
7.9 | 126
165
235
125
77 | | 1820
1540
1560
944
1070 | 1610
2540
2050
1240
1640 | | 6.7
.5

.8
2.0 | | 5270
6410
5710
3480
4260 | 8.72 | | 1920
1820
1740
1170
1180 | 1680
1540
1060
1120 | 9.9 | 7570
10100
8440
5310
6520 | 7.0 | | | | | | | | | | 69. | NORT | H WICH | ITA R | IVER 11 | MILES SOU | TH OF | PADU | CAH | | | | | | | | | | Mar.
Jan. | 28, 1951
12, 1952
13, 1953
10, 1954 | . 11.: | 18
10
- 21 | | | 821 | 180
194
191
 | 406
438
473
482 | 80
30 | 156
150
95
128 | | 2230
2300
2410
2460 | 6410
6990
7430
7660 | | | | 13700
14800
15600
24000 | 18.6
20.1
21.2 | | 2650
2850
277 0 | 2530
2720
2700
 | | 20500
22100
22900
24000 | 7.7 | | | | 100 | | | | | | 70. N | ORTH | *ICHIT | A RIVI | ER 10 MI | LES SOUTH | EAST (| OF PAI | DUCAH | | | | 100 | 5 75 | | | | | Nov.
Mar.
Jan. | 25, 1951
28 | . 4.4
. 4.3 | 23
5 22
7 16
04 18 | | | 540
661 | 145
134
145
133 | 187
87
219
77
308 | 79
90
75 | 112
138
183
90
110 | | 1860
1590
1890
1600
2110 | 2920
1440
3460
1250
4930 | | 13

16 | | 7470
4690
8450
4350 | 10.2
6.38
11.5
5.92 | | 2090
1900
2240
1830 | 2000
1790
2100
1760 | 8.8
2.0
7.9 | 11400
6790
12800
6100
16800 | 7.6 | | July
Dec.
June | 21, 1956
30, 1958
22, 1966
12, 1967 | . 6.4
. cl200 | 0 6 | .6
.9 | | 1260

920
53
660 | 265

185
7.3
129 | 5720
73
3690 | 00

22
5.4
14 | 117
128
188
96
126 | | 3870

2740
84
1880 | 18500
1980
9050
11
5800 | 0.6 |

4.2 | | 35900

18700
394
12300 | 47.7 | | 4230
1280
3060
162
2180 | 4140
1180
2960
84
2070 | 2.5 | 27200 | 7.9
7.4
7.5 | | | | | | | | | | 7 | 1. SA | LT CRE | EEK 4 | MILES SO | OUTHEAST (| OF PAD | UCAH | | | | | | | | | | | Mar.
July | 28, 1951
21, 1952
30, 1958
30 | . 0.: | 18
15
21 | | | 475 | 304
120
285 | 1230
214
1210 | 40 | 126
177
125
129 | | 3850
1330
3890 | 19100
3410
18400
19700 | 15 | | | 37000
7580
36000 | | | 4460
1680
4260
4400 | 4360
1530
4160
4290 | | 48000
12200
45700
48800 | 7.7 7.4 | Table 6.--Chemical Analyses of Water From Streams and Reservoirs at Sites Other Than Daily Stations in the Red River Basin, Texas--Continued | | | | | | | | | Bi- | | | | | | | 1000 | ssolved se | | Hard
as Ca | | So-
dium | Specific con- | | |--|--|---|--------------|--|---|---|----------------------------|--|---|---|--|--------|------------------------------------|--------|---|------------------------------|--------------------|---|---|-------------------------------|---|-----------------------| | Date
of
collection | Discharge
(cfs) | Silica
(SiO ₂) | Iron
(Fe) | Cal-
cium
(Ca) | Mag-
ne-
sium
(Mg) | Sodium
(Na) | Po-
tas-
sium
(K) | car-
bon-
ate
(HCO ₃) | Car-
bon-
ate
(CO ₃) | Sulfate
(SO ₄) | Chloride
(Cl) | | Ni-
trate
(NO ₃) | | Milli-
grams
per
liter | Tons
per
acre-
foot | Tons
per
day | Cal-
cium,
Mag-
ne-
sium | Non-
car-
bon-
ate | ad-
sorp-
tion
ratio | duct-
ance
(micro-
mhos at
25°C) | pН | | | | | | | | 72. SA | LT CI | EEK AT | MOUT | H 8 MILE | S SOUTHEA | ST OF | PADU | CAH | | | | | | | | | | ov. 16, 1939
ily 25, 1951
ov. 28
ar. 12, 1952
an. 13, 1953 | 2.7
2.27
2.22
1.96 | 7.2 | | 546
1010
1230
1320
1270 | 124
271
299
319
297 | 39
82:
1120
1180
1170 | 30
00
00 | 186
51
95
87
91 | | 1590
3030
3630
3730
3800 | 650
13000
17600
18600
18200 | | 5.6 | | 3400
25600
34000
35800
35300 | 34.3

47.6
46.9 | | 1870
3640
4290
4600
4390 | 3600
4210
4530
4310 | | 36700
45000
47000
47000 | 7 | | eb. 10, 1954
ov. 21, 1956
uly 30, 1958
uly 30
ar. 18, 1959 | 2.31
1.04
 | 14 | | 1200

92
1300 | 272

15
270 | 116
11700
33
124 | 32 | 91
- 94
57
92
119 | | 3890
3820

196
4050 | 18800
18300
7240
520
19200 | |

1.0 | | 35300

1210 | 46.9
1.65 | | 4110
1730
291
4360 | 4030
1680
216
4260 | 8.5 | 21400 | 7 7 7 | | | | | | | 73. | NORTH WI | CHITA | RIVER | BELOW | SALT C | REEK 12 M | ILES S | SOUTHE | EAST (| OF PADUC | АН | | | | | | | | ar. 12, 1952
uly 30, 1958 | 5.89 | 11 | | 871 | 209 | 53: | 20 | 138
108 | | 2490 | 8440
4490 | | | | 17400 | 23.7 | | 3030
1580 | 2920
1490 | 42 | 25900
14300 | | | |
 | | | | - | 74 | . NOR | rh wic | HITA RI | VER NEAR | PADUCA | AH | | | | | | | | | | | uly 30, 1958
ar. 18, 1959
ec. 7, 1965
ay 31, 1966
uly 5 | 4.8
2.8
2.2 | 10
5.0
1.2
.8 | | 444
851
960
1040
975 | 94
121
220
231
207 | 23
53
61
6720
6300 | 00 | 106
154
164
95
72 | | 1310
2610
2720
3100
2970 | 3590
8020
9680
10700
9800 | | | | 7810

19800
21900
20300 | 10.6 | | 1490
2620
3300
3560
3290 | 1410
2490
3170
3470
3220 | | 12200
23800
29700
30200
29200 | 7 6 | | | | 1011192 | | | | | 75 | . NOR | TH WIC | HITA RI | VER NEAR | TRUSCO | TTC | | | | | | | | | | | eb. 10, 1954 ov. 21, 1956 ar. 19, 1959 ecc. 7, 1965 une 1, 1966 uly 6 ept. 16 ecc. 21 ug. 23, 1967 | 13.7
7.0

11.7
4.1
1.9
c2740
14.5
11.8 | 8.4

2.7
3.8
6.5
8.4
3.4
2.8 | 100 | 941
911
853
961
774
130
830
910 | 216
218
231
226
167
11
192
190 | 38
44'
444
34:
4060
2860
58
3470
3440 | 70
30 | 128
116
114
147
145
142
0 154
160
93 | | 2590
2820
2890
2480
2770
2190
245
2580
2750 | 6360
7050
6930
5630
6620
4480
79
5500
5370 | 0.2 | 3.0 | | 15600

12700
14800
10600
615
12700
12800 | 21.2 | | 3240
3170
3080
3330
2620
370
2860
3060 | 3140
3080
2960
3210
2500
244
2730
2980 | 34
34

1.3 | 20800
21700
21500
19700
23100
15400
955
18400
18500 | 8
7
7
7
7 | | | | | | | | | 7 | 6. SOI | TH WI | CHITA R | IVER AT G | UTHRI | Ξ | | 100 | | | | | | 430.78 | | | Sept. 11, 1950
July 30, 1958
Jar. 19, 1959
Jpr. 20, 1963 | 5

b.04
b.25 | | | 228
570
759
675 | 64
227
296
260 | 3'
14
18
15 | 60 | 103
103
125
166 | | 686
2020
2720
2470 | 605
2350
2990
2400 | | 1.0 | | 2040
6680

7430 | 2.77
9.08

10.1 | | 832
2360
3110
2750 | 748
2270
3010
2620 | 13
14
13 | 3140
9530
11700
9880 | 7. | | | | | | | | 78. | sou | TH WICH | HITA F | IVER 6. | 5 MILES EA | AST OF | GUTH | RIE | | | | 100 | eric. | | 1111,00 | | | Jan. 13, 1953
Feb. 10, 1954
Nov. 21, 1956
July 30, 1958
Mar. 19, 1959 | | 22
15 | | 1210

1190
833
1240 | 305

294
178
269 | 88
8000
8870
48
95 | 30 | 117
- 116
- 113
121
131 | | 3090
3000
3140
2220
3290 | 14300
13300
14400
7730
15200 | | | | 27800

27900
15900 | 37.1

37.3
21.6 | | 4280

4180
2810
4200 | 4180

4090
2710
4090 | | 38500
36800
36800
23000
39200 | 7.
7.
7. | Table 6.--Chemical Analyses of Water From Streams and Reservoirs at Sites Other Than Daily Stations in the Red River Basin, Texas--Continued | | | | | | | | | Bi- | | | | | | | | solved s | | Hardi
as Ca | | So- | Specific | | |---|---|---|--------------------|--|---|---|-------------------------------|---|---|--|--|---|------------------------------------|---|---|------------------------------|---|--|--|---------------------------------------|---|----------------------------| | Date
of
collection | Discharge
(cfs) | Silica
(SiO ₂) | | Cal-
cium
(Ca) | Mag-
ne-
sium
(Mg) | Sodium
(Na) | Po-
tas-
sium
(K) | car-
bon-
ate
(HCO ₃) | Car-
bon-
ate
(CO ₃) | Sulfate
(SO ₄) | Chloride
(Cl) | Fluo-
ride
(F) | Ni-
trate
(NO ₃) | Bo-
ron
(B) | Milli-
grams
per
liter | Tons
per
acre-
foot | Tons
per
day | Cal-
cium,
Mag-
ne-
sium | Non-
car-
bon-
ate | dium
ad-
sorp-
tion
ratio | duct-
ance
(micro-
mhos at
25°C) | pН | | | | | | | | | 79. | SOUT | H WICH | ITA RIV | ER NEAR B | ENJAM | IN | | | | | | | | | | | July 29, 1949
Jan. 13, 1953
Feb. 10, 1954
Nov. 21, 1956
Mar. 19, 1959 | 10
4.0
5.90
1.65 | 24
8.7 | | 1420

1250
1420 | 394

303
394 | 889
662
6330
833 | 0 | 110
106
118
136 | | 3410
3040
3000
3750 | 6080
14800
11300
10700
13600 | |

 | | 28900
21700 | | | 5160

4360
5150 | 5060

4260
5040 |
41 | 20100
39900
32200
28900
36300 | 7.'
8. | | Dec. 7, 1965
June 1, 1966
July 6
Sept. 16
Jan. 25, 1967 | 10.2
1.7
.4
c3710
8.78 | 5.0
5.7
8.3
6.7
2.1 | | 1030
1360
999
250
1050 | 289
396
193
18
275 | 449
6320
2840
184
4920 | 68
21
5.1
2 2 | 182
172
133
104
177 | | 2690
3600
2310
546
2940 | 7500
10600
4820
305
7900 | 0.2 |

0.2 | | 16100
22500
11300
1370
17200 | ==
==
== | | 3760
5020
3290
698
3750 | 3610
4880
3180
613
3610 | 3.0 | 2070 | 7. | | June 13
Aug. 23 | 26.0
4.48 | 8.8 | | 480
1140 | 62
279 | 605
4320 | 10
22 | 88
154 | | 1170
3070 | 1060
7140 | | 1.5 | | 3440
16100 | | | 1450
3990 | 1380
3860 | | 5010
23300 | | | | | | | | | | 8 | 0. WI | СНІТА | RIVER N | EAR SEYMO | OUR | | | | | | | | | | | | Jan. 13, 1953 Feb. 10, 1954 July 30, 1958 Dec. 7, 1965 July 7, 1966 Sept. 1 Dec. 20 June 14, 1967 Aug. 23 | 8.0
17.6

44.8
8.5
2310

906
21.2 | 18

14
5.7
9.3
10
6.3
9.8
9.3 | | 792

500
799
540
179
815
146
568 | 207

88
216
127
17
212
18
125 | 358
3490
123
292
1830
112
3150
140
1760 | 13
4.
18 | 85
102
75
167
140
8 129
166
7 110
127 | | 2320
2240
1190
2030
1470
370
2320
362
1520 | 5710
5860
2120
4950
2920
173
5150
200
2900 | 0.3 |

0.5

.5 | | 12600

5180
11000
6980
921
11800
936
6950 | 7.04 | | 2830

1610
2880
1870
921
2900
438
1930 | 2760

1550
2740
1760
388
2770
348
1829 | 13

18
2.2

2.9 | 18400
19100
8020
17000
10500
1430
17100
460
10500 | 7.
7.
7.
7.
7. | | | | | | | | | | 81. | LAKE K | EMP NEA | R MABELLE | 3 | | | | | 7 55 7 7 54 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | | | | Oct. 10, 1939 July 15, 1942 June 6, 1946 June 16, 1952 June 15, 1954 Nov. 23, 1955 | | 7.2

7.0
7.4
4.7
6.5 | 0.09
.02
.02 | 212
198
282
240
140 | 44
44
65
57
28 | 762 | | 86
116
104
106
6 78 | | 594
529
774
675
373
387 | 685
610
1250
1100
520
470 | 0.3

.6
.4
.4 | 0.0
3.0
.8
.0
.5 | 0.31 | 2020
1824
3210
2830
1430
1380 | 1.94 | | 710
675
972
834
464
468 | 746
400 | 6.5 | 2970
5230
4650
2430
2290 | 7.5 | | Oct. 23, 1964 June 30, 1965 Aug. 31 Dec. 7 Jan. 23, 1967 | | 6.7
6.4
6.6
7.3 |

 | 248
225
225
270
210 | 61
54
52
60
42 | 7777 | 94
14
09
40 | 106
116
88
132
2 102 | | 716
648
652
740
560 | 1250
1110
1110
1170
820 | ======================================= | 1.5
1.5
1.5
.5 | ======================================= | 3130
2820
2800
3050
2210 | 4.26
3.84 | | 870
784
776
920
696 | 783
688
704
812
613 | 11
11 | 4910
4660
4650
4890
3620 | 6. | | | | | | 7-70 | | | | | CHITA | | EAR MABEL | | | | | | | | | | | | | Dec. 12, 1965 June 1, 1966 June 2 July 7 Oct. 11 | 128
12.0
328
461
1740 | 6.1
7.3
5.4
5.6
6.3 | | 220
603
245
250
189 | 46
162
49
52
35 | 1980
656
694
460 | 7.
6. | 9 109
0 109
0 86 | | 616
1670
640
672
512 | 898
3340
1080
1110
720 | | 0.0

.5
1.5
1.2 | | 2410
7850
2740
2850
1970 | | | 749
2170
813
838
616 | | 10
10
8.0 | 4550
4650
3250 | 7.1
7.2
6.0 | | Dec. 20
July 21, 1967
Aug. 22 | 150
1340
399 | 6.8
6.0
6.2 | | 213
208
204 | 42
40
39 | 526
512
477 | 5. | 9 103
9 108
0 110 | | 562
556
534 | 830
810
760 | | 1.0 | | 2240
2190
2080 | | | 704
684
670 | 595
580 | 8.5 | 3690
3540
3280 | | Table 6.--Chemical Analyses of Water From Streams and Reservoirs at Sites Other Than Daily Stations in the Red River Basin, Texas--Continued (Results in milligrams per liter except as indicated. Calculated values for sodium plus potassium are centered between the two columns.) | | | | | | | | | | Bi- | | | | | | | | ssolved s | | Hard
as Ca | | So- | Specific | 2 | |------|--------------------------|--------------------
-------------------------------|--------------|----------------------|-----------------------------|----------------|----------------------------|--|---|-------------------------------|------------------|-----|------------------------------------|------|--|------------------------------|---|--------------------------------------|-----------------------------|---------------------------------------|--|------------| | | Date
of
collection | Discharge
(cfs) | Silica
(SiO ₂) | Iron
(Fe) | Cal-
cium
(Ca) | Mag-
ne-
sium
(Mg) | Sodium
(Na) | Po-
tas-
sium
(K) | car-
bon-
ate
(HCO ₃) | Car-
bon-
ate
(CO ₃) | Sulfate
(SO ₄) | Chloride
(Cl) | | Ni-
trate
(NO ₃) | | Milli-
grams
per
liter | Tons
per
acre-
foot | Tons
per
day | Cal-
cium,
Mag-
ne-
sium | Non-
car-
bon-
ate | dium
ad-
sorp-
tion
ratio | duct-
ance
(micro-
mhos at
25°C) | 20 0399.00 | | | | and Hilling | | | | 700 | | 8 | 33. SA | NTA R | OSA LAKE | NEAR VER | NON | | | | | | | | | 27H | | | | 5, 1966
21 | | 6.0
9.5 | | 34
32 | 7.2
7.2 | | 3.8
4.3 | 138
130 | | 22
19 | 5.3
7.7 | 0.2 | | | 159
155 | | | 114
109 | 1
3 | 0.5 | 281
265 | | | | | | | | | | | | 84. B | EAVER | CREEK N | EAR ELECT | RA | | | 100 Per Pe | | | 17.54 | | | | i i | | | 26, 1966 | 103 | 7.8 | | 50 | 12 | 128 | 2.9 | | | 11 | 243 | 0.3 | 2.2 | 77 | 522 | | Torth 199 | 174 | 66 | 4.2 | 1020 | 7 | | | 27 | .7
2.10 | 7.2 | | 290 | 135 | 935 | 7.0 | | | 54 | 1500
2200 | | | | 3730 | | | 700
1280 | 626
1110 | 11 | 4760
6830 | 7 | | an. | 27, 1967 | 3.2 | 5.0 | | 330 | 168 | 1170 | 7.2 | 200 | | 38 | 2750 | | | | 4560 | | | 1510 | 1350
1290 | | 8120 | | | eb. | 28 | . 39 | 1.0 | | 330 | 156 | 1110 | 7.4 | | | 85 | 2600 | | | | 4400 | | (d) | 1460 | 1290 | 13 | 7740 | ' | | 33 | | | 23 | | | | | | | BUFFAI | | NEAR IOW | | | | | | | | | | | | | | 3, 1961
19, 1962 | 0.15
309 | 7.9 | | 160 | 50
6.0 | | 722
32 | 67
54 | | 57
8.4 | 1460
64 | 0.3 | 0.0 | | 2490
166 | 3.39
.23 | | 604
75 | 550
30 | 13 | 4660
324 | 6 | | | 19 | 167 | 9.6 | | 21 | 6.0 | | 30 | 68 | | 9.8 | 52 | . 3 | 1.5 | | 163 | . 22 | | 77 | 21 | 1.5 | 309 | 6 | | | 19 | 2.13 | 5.3 | | 20
425 | 6.0 | 1870 | 6.6 | 91 | | 12
137 | 31
3900 | . 3 | .8 | | 163
6510 | . 22
8.85 | | 75
1660 | 1630 | | 271
10900 | 6
5 | | | 1 1988 | | ender. | | | | | 86 | . BUF | FALO (| CREEK NE | AR IOWA P | ARK | | | | | | 1325.0 | 1169 | 139 | 7 1000 | | | eb. | 12, 1964 | 0.16 | 6.4 | | 48 | 18 | | 188 | 88 | | 23 | 355 | 0.3 | 6.2 | | 688 | 0.94 | | 194 | 122 | 5.9 | 1340 | 7 | | ay 4 | 1 | .01 | 8.4 | | 93
36 | 33
12 | | 813 | 139
110 | | 40
14 | 632
155 | .3 | | | 1190
367 | 1.62 | | 368
140 | 254
50 | $7.1 \\ 3.1$ | 2270
711 | 6 | | | 23 | 39.1 | | | 41 | 13 | | 111 | 120 | | 15 | 199 | .3 | | | 448 | .61 | | 156 | 58 | 3.6 | 866 | 6 | | an. | 26, 1965 | .36 | 7.7 | | 96 | 73 | | 110 | 324 | | 110 | 740 | . 7 | | | 1600 | 2.18 | | 540 | 274 | 7.7 | 2840 | 7 | | | 23
12, 1967 | 1000 | 9.4 | | 68
18 | 30
5.0 | | 4.8 | 164
37 | | 30
31 | 430
56 | .3 | | | 872
177 | 1.19 | | 293
65 | 158
35 | 5.6 | 1680
331 | 6 | | P. | | | | | | | | 87. | | ITA R | | WICHITA F | | | | Page 1 | | | | | | | | | | 12, 1951
14, 1966 | 354
1550 | 12
6.5 | T II | 230
195 | 61
40 | 480 | 6.4 | 113 | | 629
514 | 1000
770 | | 2.0 | | 2600
2060 | 3.54 | and a second | 825
651 | 732
568 | 9.3 | 4320
3480 | | | π. | 14, 1900 | 1330 | 0.0 | | 193 | 40 | 100 | 88. | | WICH | | ICHITA FA | LLS | 1.0 | | 2000 | 1110 | | 001 | 300 | 0.2 | 3400 | _ | | o.t. | 19, 1944 | | 3.0 | 0.10 | 152 | 41 | | 107 | 74 | | 264 | 775 | 0.9 | 1.0 | | 1680 | | 2000
1 1400 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 | 548 | | 100 | 3240 | 7 | | ov. | 16 | | 2.0 | . 25 | 172 | 41 | 4 | 124 | 66 | | 294 | 820 | .9 | 1.5 | | 1790 | | | 598 | | | 3370 | 7 | | | 6, 1946
24, 1952 | | 8.6 | . 67 | 81
120 | 25
36 | 280
304 | 21 | 80 | | 101
239 | 545
552 | .6 | | 0.35 | 1100
1310 | 1.78 | | 305
448 | 240
362 | 6.2 | 2070
2440 | 7 7 | | | 15, 1954 | | 6.6 | .37 | 34 | 8.8 | | 5.7 | | | 36 | 109 | . 5 | | | | . 43 | | 121 | 36 | 2.6 | 592 | 7 | | | 11, 1959 | | 5.0 | 11 | 101
120 | 24
33 | | 259
363 | 118
134 | | 175
270 | 450
590 | . 3 | 1.0 | | 1070
1450 | 1.46 | | 350
435 | 254
325 | 6.0 | 1890
2570 | 7 6 | | une | 23, 1965 | | 8.2 | | 120 | | 89 | | | IVER | | ROAD 171 | | | | 1400 | 1.51 | 3000 | 100 | 323 | | 2010) | | | | 21 1040 | 1.28 Mg 1.2 | 10 | | 200 | 77 | | | | T T DIC 1 | | | | | 1.15 | 2540 | 3.45 | | 816 | 696 | | 4350 | 8 | | | 21, 1949
12, 1951 | | 10 | | 200
248 | 84 | | 615
670 | 146
226 | | 486
573 | 1080
1160 | | 4.4 | 1.15 | 2850 | 3.45 | | 964 | 780 | 9.4 | 4720 | 7 | | | 29, 1958 | | | | | | | 44 | 116 | | | 610 | | 164_ | | | | | 545 | 450 | | 2750 | 7 | Table 6.--Chemical Analyses of Water From Streams and Reservoirs at Sites Other Than Daily Stations in the Red River Basin, Texas--Continued | | | | | | | | | Bi- | | | | | | | Residence of the second | ssolved a | | Hard
as Ca | THE RESERVE OF THE PARTY | So- | Specific con- | | |---|---------------------------------|---------------------------------|---------------------------|------------------------------|---------------------------------|------------------------------|---------------------------------|--|---|--------------------------------|----------------------------|---------------------------|------------------------------------|------|---------------------------------|----------------------------------|--------------------|--------------------------------------
--|-------------------------------|---------------------------------|---------------------------------| | Date
of
collection | Discharge
(cfs) | Silica
(SiO ₂) | | Cal-
cium
(Ca) | mag-
ne-
sium
(Mg) | Sodium
(Na) | Po-
tas-
sium
(K) | car-
bon-
ate
(HCO ₃) | Car-
bon-
ate
(CO ₃) | Sulfate
(SO ₄) | Chloride
(C1) | | Ni-
trate
(NO ₃) | | Milli-
grams
per
liter | Tons
per
acre-
foot | Tons
per
day | Cal-
cium,
Mag-
ne-
sium | Non-
car-
bon-
ate | ad-
sorp-
tion
ratio | ance
(micro- | рН | | | | | | | | | 90. | LAKE | KICK. | APOO NEA | R ARCHER | CITY | | | | | | | | | | | | Oct. 21, 1946
Feb. 20, 1952
June 15, 1954
Jan. 23, 1957
Oct. 23, 1964 | | 8.2
4.3
3.1
4.0
5.7 | 0.25
.00
.04
.07 | 16
33
24
32
28 | 4.4
11
8.4
9.8
9.3 | 3 |
13
16 | 176
139
188
159 | | 4.8
8.4
7.7
9.8 | 18
15
19
31 | .5 .4 .4 | 1.8
.5
2.8
.2
.2 | 0.07 | 115
197
153
209
200 | 0.27
.21
.27
.27 | | 58
128
94
120
108 | 0
0
0
0 | | 214
335
274
389
371 | 7.0
7.9
7.6
8.2
7.2 | | June 23, 1965
Aug. 30
Dec. 7
Jan. 27, 1967
May 10 | | 5.2
9.0
9.4
4.5
5.0 | === | 26
34
30
29
31 | 8.8
9.0
10
8.0
8.0 | 4 | 19
14
15
4.5
4.5 | 151
181
176
5 153
5 162 | | 13
13
14
10
10 | 33
38
38
30
32 | . 4
. 4
. 3
. 6 | .2
.0
.2
.5 | === | 200
237
234
194
205 | .27 | | 101
122
116
105
110 | | | 379
432
421
356
370 | 6.9
7.1
7.3
7.5
8.0 | | | | | | | | | | 92. L | AKE CI | REEK NEA | R HENRIET | TA | | | | | | | | | | | | Apr. 18, 1959
Apr. 21 | b5
b.5 | 9.0
14 | | 69
77 | 19
20 | 36
50 | | 88
110 | | 34
46 | 660
870 | 0.7 | 0.2 | | 1200
1590 | 1.63
2.16 | | 250
274 | 178
184 | | 2220
2920 | | | | | | | | | 94. | DRY I | FORK LI | TTLE V | VICHITA | RIVER NEA | R HEN | RIETT | A | | | 34 1984 | | | | | | | Oct. 4, 1959
Oct. 7 | | 12
18 | | 9.1
16 | 1.8
3.7 | | 7.8
8 | 44
78 | | 0.8
5.8 | | 0.1 | 0.8 | | 61
117 | 0.08 | | 30
54 | | 0.6 | 87
182 | 7.6 | | | | | | | | 95. | EAST | FORK L | ITTLE | WICHITA | RIVER NE | AR HE | NRIET | TA | | | | 3.634 | | | | | | Oct. 4, 1959 Oct. 7 Mar. 10, 1964 Apr. 28 Apr. 30 | | 12 | | 6.5
14
22
14
16 | 1.9
3.4
5.1
3.9
4.9 | 1
2
1 | 8.9
8
3
4 | 34
66
104
60
72 | | 0.8
3.2
10
6.8
9.2 | 22
20
16 | 0.0
.2
.3
.2 | 0.8
.5
.8
2.0
1.5 | | 57
109
145
99
112 | 0.08
.15
.20
.13
.15 | | 24
50
76
51
60 | 0
0
0
2
1 | 9.8
1.1
1.1
.9 | 85
176
258
181
206 | 7.3
8.1
6.7
6.2
6.3 | | May 8 | 302
641
.10
.32
909 | | | 15
10
24
12
5.0 | 3.5
2.9
6.8
3.9
2.2 | 1 2 | 26
.5
.2
4 . 5 | 40
43
109
64
5 22 | | 4.8
6.2
12
5.8
6.6 | 19
26
7.9 | .0
.1
.2
.3 | 2.8
.5
.5
.8
.5 | | 129
84
160
84
42 | .18
.11
.22
.11 | | 52
37
88
46
22 | 19
2
0
0
4 | 1.6
1.1
1.1
.8
.3 | 257
146
288
141
66 | 6.6
6.6
6.5
6.1 | | Apr. 27 | 2730
54.0
.5
564 | 10
6.8
12
14
8.6 | | 11
6.5
24
62
7.5 | 6.0 | 10
4.8
26
80
6.7 | 5.3
3.9
4.2
6.2
6.0 | 28 82 | | 5.0
1.8
10
27
4.4 | 6.9
48
150 | .3
.2
.1
.3 | .5
.2
.2
.5
2.5 | | 83
47
170
465
66 | | | 43
25
85
232
31 | 5
2
17
56
3 | .7
.4
1.2
2.3
.5 | 145
91
313
862
105 | 7.6 | | | | | | | | 98. | FAR | MERS C | REEK F | ESERVOI | R NEAR NO | CONA | | | | | | | | | | | | Apr. 12, 1967 | | 3.4 | | 50 | 13 | 38 | | 3 164 | | 28 | 74 | | 0.2 | | 294 | 11.22 | | 178 | 44 | 1.2 | 552 | 7.3 | | | | | | | | 100. | | | VER A | | OAD 2564 | | | ON | | | | | | | | | | June 16, 1965
Sept. 6
June 7, 1966
Jan. 17, 1967
June 21 | 15.0
.64
.4
.65 | 21 | | 17
89
65
76
80 | 19
20
23
20
23 | | | 307
332
256
5 273
5 328 | | 61
86

85
81 | 35
43
49
35
45 | 0.7
.7

.5
.8 | 1.2 | | 425
488

415
476 | 0.58 | | 270
304
256
272
294 | 18
32
46
48
25 | 1.2
1.4

1.1
1.4 | 686
786
736
668
755 | | Table 6.--Chemical Analyses of Water From Streams and Reservoirs at Sites Other Than Daily Stations in the Red River Basin, Texas--Continued | | | | | | Was | | Po- | Bi- | Car- | | Topic I | | | | | solved a | | Hard
as Ca | | So-
dium | Specific con- | | |-----------------------|---|---|-------------------------------|------------------------------|---------------------------------|---------------------------------|---------------------------------|--|-------------|--------------------------------|---------------------------------|-----------------------|------------------------------------|-------------------|-----------------------------------|------------------------------------|---|--------------------------------------|---------------------------------|---------------------------------|--|--------------------------| | | Date
of
collection | Discharge
(cfs) | Silica
(SiO ₂) | Cal-
cium
(Ca) | Mag-
ne-
sium
(Mg) | Sodium
(Na) | tas-
sium
(K) | car-
bon-
ate
(HCO ₃) | bon-
ate | Sulfate
(SO ₄) | Chloride
(Cl) | | Ni-
trate
(NO ₃) | Bo-
ron
(B) | Milli-
grams
per
liter | Tons
per
acre-
foot | Tons
per
day | Cal-
cium,
Mag-
ne-
sium | Non-
car-
bon-
ate | ad-
sorp-
tion
ratio | duct-
ance
(micro-
mhos at
25°C) | pH | | | | | | | | | 103 | . BOI | S D'AI | RC CREEK | NEAR RAN | DOLPH | | | , e 1/2 | Lens | | | N. | | | | | Mar.
Feb.
Apr. | 30, 1965
30, 1966
22, 1967
4 | 1.1
6.1
2.66
5.70
39.0 | 4.4 | 72
36
62
70
81 | 2.7
2.8
3.1
2.9
2.5 | 41
24
56
18
20 | 3.2
1.5
2.5
2.1
2.6 | 109
254
210 | | 27
41
46
35
32 | 23
16
24
11
12 | 0.5
.5
.3
.6 | 0.2
.0
.2
.0
5.0 | | 310
179
321
247
287 | | | 190
101
168
187
212 | 12
0
14
10 | 1.3
1.0
1.9
.6 | 580
351
550
431
486 | 7.
7.
7.
7. | | | 12 | . 45
4660 | 5.6
9.2 | 53
70 | 3.1 | 36 | 2.4 | | | 44
5.0 | 24 | . 6 | . 8 | | 255
200 | | | 145
179 | 0 | 1.3 | 438
344 | 7. | | | | | | 11 | | 100 | 1 | 04. S | ANDER | S CREEK | NEAR CHIC | OTA | 7 - 12° | | 4. | | | | | 100 | | | | Feb.
Apr.
May | 29, 1961
6, 1962
22
25
29, 1965 | 1.4 | 11 | 30
73
84
97
80 | 2.4
6.3
7.7
7.6
23 | . 2 | 3.4
29
12
88 | 90
178
201
254
254 | | 22
82
104
93
77 | 5.5
28
42
. 36
127 | 0.3
.2
.3
.3 | 1.0
.0
.0
.0 | | 124
334
398
422
532 | 0.17
.45
.54
.57 | | 85
208
241
274
296 | 11
62
76
66
88 | 0.4
.9
1.2
1.0
1.8 | 218
515
591
679
948 | 6.:
7.:
7.:
7.: | | June
Feb.
Apr. | 14, 1966
13
25, 1967
7
6 | 6.2
2.0
.23
9.71
464 | 17 | 33
66
72
34
22 | 6.6
11
23
5.3
2.7 | 23
42
72
17
5.0 | 2.8
3.9
9.5
3.7
3.2 |
193
244
102 | | 46
58
91
32 | 39
64
110
20
4.9 | .3
.2
.2
.4 | .2
.0
.5
.5 | | 198
353
515
172
95 | | | 110
210
274
107
66 | 56
52
74
23
6 | 1.0
1.3
1.9
.7 | 877 | 6.
7.
6.
7. | | July | 11 | 390 | 5.1 | 22 | 2.3 | 4.7 | 3.1 | 73 | | 9.2 | 4.5 | . 4 | 2.0 | | . 89 | | | 64 | 5 | . 3 | 148 | 7. | | | | | | | | | | 105. | RED R | IVER AT | ARTHUR CI | TY | : <u>:</u> | | 19 July
10 P | | | | | 3.4 | 100 | | | Dec.
Jan.
Feb. | 1, 1961
13
4, 1962
2 | 2560
16100
3540
5000
c4820 | | 114
42
81
98
62 | 51
10
34
26
18 | 222
69
188
198
105 | | 176
86
134
144
120 | | 258
75
192
218
128 | 400
106
310
310
160 | | 2.0
.1
1.1
.6
.2 | | 1220
374
980
1020
608 | 1.66
.51
1.33
1.39
.83 | 8430
16260
9370
13770
7910 | 495
148
340
352
228 | 350
78
230
234
130 | 4.3
2.5
4.4
4.6
3.0 | 605
1550
1580 | 8.8.8. | | May I
June
Aug. | 2
2
19
15 | 13800
7180
32400
4820
10800 | | 36
50
109
105
36 | 6.8
10
30
32
4.4 | 33
45
237
210
30 | | 108
144
138
158
108 | | 43
60
262
238
32 | 38
59
372
335
35 | | 2.3
1.3
.2
1.0
1.1 | | 253
351
1180
1100
226 | .34
.48
1.60
1.50 | 9430
6800
103200
14320
6590 | 118
166
395
395
108 | 30
48
282
266
20 | 1.3
1.5
5.2
4.6
1.2 | 1850
1730 | 8.
8.
8. | | Nov.
Dec.
Jan. | 10 | 4650
4140
24200
4820
689 | | 94 | 31

 | 193
175
143
187
116 | | 136
146
120
154
236 | | 225

125
210
122 | 308

215
295
175 | | .0

 | | 1010
848
566
936
657 | 1.37
1.15
.77
1.27 | 12680
9480
36980
12180
1220 | 360
320
222
355
315 | 248
200
124
229
121 | 4.4
4.2
4.2
4.3
2.8 | 1350
936
1510 | 7.
8.
8.
8. | | Apr.
May
June | 26 | 5580
1640
1640
1560
1780 | | | | 39
125
175
191
123 | | 124
122
128
152
156 | | 56
140
195
215
128 | 70
182
260
290
182 | | == | | 314
682
945
974
642 | .43
.93
1.28
1.32
.87 | 4730
3020
4180
4100
3080 | 174
230
295
340
250 | 72
130
190
219
122 | 1.3
3.6
4.4
4.5
3.4 | 1040
1390
1500 | 8.
8.
8. | | | 12 | 2340
2180 | | | | 210
235 | | 140
144 | | 225
246 | 322
370 | | == | | 1050
1130 | 1.43
1.54 | 6630
6650 | 345
386 | 230
268 | 4.9
5.2 | | 8. | | | 7 | | 1000 | Managara (1987) | HIS SHOULD | 16.795 | AUL | 106. | LAKE | CROOK N | EAR PARIS | | | | | | 100 100 100 100 100 100 100 100 100 100 | 100 | | | | | | Mar. | 18, 1960 | | 3.2 | 14 | 1.3 | 6.3 | 2.9 | 35 | | 19 | 6.0 | 0.3 | 0.2 | | 70 | 0.10 | Na Maria | 40 | 12 | 0.4 | 118 | 6. | Table 6.--Chemical Analyses of Water From Streams and Reservoirs at Sites Other Than Daily Stations in the Red River Basin, Texas--Continued | (Results in milligrams | per liter except as indicated. | Calculated values for sodium n | us potassium are centered | hetween the two columns.) | |------------------------|--------------------------------|--------------------------------|---------------------------|---------------------------| | | | | | | | | | Bi- | 9 | | | | | | ssolved a | | Hard
as Ca | ness
aCO ₃ | So- | Specific con- | | |--|-------------------------|-------------------------------|--------------|---|------------------------------------|---------------------------------|----------------------------|--|---|---------------------------------|---------------------------------|-----------------------|------------------------------------|------------------------------------|--------------------------------------|--------------------|--------------------------------------|---------------------------------|---------------------------------------|--|-------------------| | Date
of
collection | Discharge
(cfs) | Silica
(SiO ₂) | Iron
(Fe) | Cal-
cium
(Ca) | Mag-
ne-
sium
(Mg) | Sodium
(Na) | Po-
tas-
sium
(K) | car-
bon-
ate
(HCO ₃) | Car-
bon-
ate
(CO ₃) | Sulfate
(SO ₄) | Chloride
(Cl) | | Ni-
trate
(NO ₃) | Milli-
grams
per
liter | Tons
per
acre-
foot | Tons
per
day | Cal-
cium,
Mag-
ne-
sium | Non-
car-
bon-
ate | dium
ad-
sorp-
tion
ratio | duct-
ance
(micro-
mhos at
25°C) | рН | | | | | | | | | 10' | 7. BIG | PINE | CREEK 1 | NEAR MANCI | HESTE | R | | | | | | | | | | May 25, 1962
Apr. 21
Mar. 27, 1963 | 2.0
23.9
500 | 13
9.6
5.8 | | 23
20
10 | 5.3
4.4
2.5 | 2
1
8.1 | | 70
42
20 | | 36
47
25 | 20
17
10 | 0.2
.2
.1 | . 0 | 158
150
75 | 0.21
.20
.10 | | 79
68
35 | 22
34
19 | 1.0
.9
.6 | 255
218
122 | 6.8 | | | | | - | | | | 1 | 08. PI | ECAN E | AYOU NE | AR CLARKS | VILLE | | | | | | | | | | | Jan. 17, 1967
Feb. 25
Apr. 8
Apr. 27 | 0.2
6.1
.4
616 | 6.1
1.1
4.5
6.1 | | 24
16
29
5. | 2.7
2.8
3.7
8 1.5 | | 4.8
5.0
4.7
2.9 | 50
44
105
20 | | 36
23
14
7.2 | 21
16
15
5.4 | 0.0
.1
.1
.0 | .2 | 135
98
138
44 | | | 71
51
88
21 | 30
15
2
4 | 0.8
.7
.7
.4 | 237
181
250
72 | 6.8 | | | | | | | | | 10 | 09. RI | ED RIV | ER NEAR | NEW BOST | ON | | | 111100 | 1000 | | | | | | | Nov. 1, 1960
Nov. 12
Dec. 23
Jan. 31, 1961
Mar. 11 | | | | 101
106
94
110
55 | 30
33
21
26
14 | 225
215
184
205
96 | | 122
140
110
144
114 | | 249
249
187
219
99 | 358
350
308
340
145 | | 1.3
.8
1.2
1.1
1.6 | 1110
1130
849
972
493 | 1.51
1.54
1.15
1.32
.67 | | 375
400
320
380
194 | 275
286
230
262
100 | 5.1
4.7
4.5
4.6
3.0 | 1740
1760
1520
1700
822 | 7.0
7.0 | | Apr. 12 | | | | 82
27
54
122
95 | 20
5.5
13
28
30 | 159
24
98
228
227 | | 122
72
90
188
116 | | 172
29
110
242
240 | 250
36
150
360
360 | | 1.9
2.6
2.3
1.3 | 796
180
524
1200
1070 | 1.08
.24
.71
1.63
1.46 | | 288
90
190
420
360 | 188
31
116
266
265 | 4.1
1.1
3.1
4.8
5.2 | 1280
294
836
1820
1760 | 8.2 | | Sept. 27 | | | | 98
101
79
115
88 | 31
30
22
32
32 | 226
203
176
232
187 | | 134
120
108
168
122 | | 240
225
185
205
200 | 355
342
275
385
318 | | 1.0
1.0
1.0
12 | 1090
996
834
1180
1000 | 1.48
1.35
1.13
1.60
1.36 | | 370
375
288
420
350 | 260
276
200
282
250 | 5.1
4.6
4.5
4.7
4.4 | 1770
1660
1380
1900
1580 | 7.8
7.8
8.3 | | Jan. 4, 1962
Feb. 2
Mar. 2
Apr. 3
May 2 | | | | 85
58
24
28
26 | 27
· 13
· 5.8
· 3.9
10 | 163
98
38
23
27 | | 142
100
76
84
100 | | 178
110
33
28
37 | 265
150
49
26
32 | | 1.0
.7
.4
2.6 | 884
544
166
198
238 | 1.20
.74
.23
.27
.32 | | 322
196
84
86
108 | 206
114
22
17
26 | 4.0
3.0
1.8
1.1 | 1400
857
277
280
355 | 8.6
7.8
7.8 | | June 19 | | | | 111
101
31
 | 31
31
5.5
 | 237
210
23
172
142 | | 136
150
102
124
130 | | 255
238
28
192
155 | 385
330
25
275
220 | | .0
.7
1.4
.0 | 1220
1110
195
907
742 | 1.66
1.51
.27
1.23
1.01 | | 405
380
100
315
270 | 294
257
16
213
163 | 5.1
4.7
1.0
4.2
3.8 | 1830
1730
296
1420
1170 | 7.9 | | Dec. 5 | | | |
 |

 | 96
103
164
113
23 | | 126
148
144
208
88 | | 111
116
191
124
31 | 146
158
260
174
32 | |

 | 543
593
868
687
208 | .74
.81
1.18
.93
.28 | | 216
242
326
300
100 | 113
121
208
130
28 | 2.9
2.9
4.0
2.8
1.0 | 879
961
1390
1090
306 | 8.0
7.9
8.1 | | Apr. 24 | | | | ======================================= | | 144
171
192
64
204 | | 148
148
142
92
152 | | 155
205
225
40
228 | 240
270
295
120
320 | | ==
==
==
==
== | 802
922
992
380
1030 | 1.09
1.25
1.35
.52
1.40 | | 308
344
359
148
370 | 187
223
234
73
245 | 3.6
4.0
4.5
2.3
4.6 | 1280
1450
1540
620
1640 | 8.3 | Table 6.--Chemical Analyses of Water From Streams and Reservoirs at Sites Other Than Daily Stations in the Red River Basın, Texas--Continued (Results in milligrams per liter except as indicated. Calculated values for sodium plus potassium are centered between the two columns.) | | | | | | 36 | | D- | Bi- | 0 | | | | | | | solved s | | Hard
as Ca | | S0- | Specific | c | |---|--------------------|-------------------------------|--------------|----------------------|-----------------------------|----------------|----------------------------|--
---|-------------------------------|-----------------------|-----------------------|------------------------------------|-------------------|---------------------------------|------------------------------|--------------------|--------------------------------------|-----------------------------|-------------------|-------------------------|----------------| | Date
of
collection | Discharge
(cfs) | Silica
(SiO ₂) | Iron
(Fe) | Cal-
cium
(Ca) | Mag-
ne-
sium
(Mg) | Sodium
(Na) | Po-
tas-
sium
(K) | car-
bon-
ate
(HCO ₃) | Car-
bon-
ate
(CO ₃) | Sulfate
(SO ₄) | Chloride
(Cl) | | Ni-
trate
(NO ₃) | Bo-
ron
(B) | Milli-
grams
per
liter | Tons
per
acre-
foot | Tons
per
day | Cal-
cium,
Mag-
ne-
sium | Non-
car-
bon-
ate | sorp- | ance
(micro- | pE | | | | | | | | | 1 | 10. B | ARKMAN | CREEK 1 | NEAR LEAR | Y | | | | | | | | | | | | May 23, 1961 | 2.3 | 5.7 | 0.00 | 6.4 | 2.4 | 11 | 2.1 | 35 | | 3.8 | 9.0 | 0.2 | 1.0 | | 59 | | | 26 | 0 | | 108 | - | | may 20, 1901 | | | | | | | | | | | | 0.0 | | | | | | | | | | h. | | | . 6 | 11 | | 7.5 | 2.2 | | 13 | 33 | | 6.0 | 12 | 1.2 | 2.8 | | 72 | 0.10 | | | 50 | 1.1 | | 6. | | Oct. 23
Nov. 30 | 4.4 | 11 | | 7.5 | 2.2 | | 13
14 | 33
25 | | 6.0
8.8 | | | | | | | | 28
17 | 50
64 | 1.1 | 143
118 | 6. | | Oct. 23
Nov. 30
Mar. 16, 1962 | | 11
8.3 | | | 1.5 | | | | | | 12 | 1.2 | 2.8 | | 72 | 0.10 | | 28 | | | 143 | 6. | | Oct. 23 | 4.4 | 11 | | 4.5 | 1.5 | 8.0 | 14 | 25 | | 8.8 | 12
12 | 1.2 | 2.8
.8
.0 | | 72
65 | 0.10 | | 28
17 | 64 | 1.5 | 143
118 | 6.
5. | | Oct. 23
Nov. 30
Mar. 16, 1962
May 26 | $\frac{4.4}{18.2}$ | 11
8.3
9.8 | | 4.5
3.5 | 1.5
1.1
2.4 | 8.0 | .7 | 25
16 | | 8.8
7.2 | 12
12
7.5 | 1.2
.2
.1
.1 | 2.8
.8
.0 | | 72
65
44
72 | 0.10
.09
.06
.10 | | 28
17
13
30 | 64
55
49 | 1.5 1.0 1.0 | 143
118
73
131 | 6.
5.
6. | | May 25, 1901
Nov. 30
Mar. 16, 1962
July 7
July 31 | 4.4
18.2
.5 | 11
8.3
9.8 | | 4.5
3.5
8.0 | 1.5
1.1
2.4 | 8.0 | 14
.7
13 | 25
16
44 | | 8.8
7.2
2.8 | 12
12
7.5
14 | 1.2
.2
.1
.1 | 2.8
.8
.0 | | 72
65
44 | 0.10
.09
.06 | | 28
17
13 | 64
55 | $\frac{1.5}{1.0}$ | 143
118
73 | 6.
5. | a Includes the equivalent of any carbonate $({\rm CO_3})$ present. b Field estimate. c Mean discharge. Table 7.--Chemical Analyses of Water From Streams at Selected Sites in the Red River Basin, Oklahoma | | | | | | | | | Bi- | | | | | | Dia | ssolved s | olids | Hard
as C | THE PARTY OF P | So- | Specific con- | | |---|--------------------|-------------------------------|--------------|---|---|--|----------------------------|--|---|--|--|---|------------------------------------|--|--|--------------------|--|--|--|--|-----------------------| | Date
of
collection | Discharge
(cfs) | Silica
(SiO ₂) | Iron
(Fe) | Cal-
cium
(Ca) | Mag-
ne-
sium
(Mg) | Sodium
(Na) | Po-
tas-
sium
(K) | car-
bon-
ate
(HCO ₃) | Car-
bon-
ate
(CO ₃) | Sulfate
(SO ₄) | Chloride
(Cl) | | Ni-
trate
(NO ₃) | Milli-
grams
per
liter | Tons
per
acre-
foot | Tons
per
day | Cal-
cium,
Mag-
ne-
sium | Non-
car-
bon-
ate | dium ad- sorp- tion ratio | duct-
ance
(micro-
mhos at
25°C) | рН | | | | | | | | Α. | SAL | r FORK | RED F | IVER NE | AR VINSON | , OKL | Α. | | | | | | | | | | ec. 21, 1959
an. 14, 1960
an. 26
ar. 14
pr. 18 | | | | 220
250
210
290
460 | 56
65
67
92
105 | 134
156
146
161
234 | | 70
130
86
64
144 | 0
0
0
0 | 719
820
727
1050
1540 | 185
190
202
215
260 | .7 | 3.8
2.3 | 1350
1660
1400
1970
2850 | 1.84
2.26
1.90
2.68
3.88 | | 780
890
800
1100
1580 | 722
784
730
1050
1460 | 2.1
2.3
2.2
2.1
2.6 | 1880
2050
1970
2380
3230 | 8
8
8
7
7 | | pr. 28 | | | | 112
464
404
440
320 | 49
122
93
93
51 | 100
269
201
180
181 | | 152
204
124
180
138 | 0
0
0
0 | 402
1600
1360
1310
969 | 108
292
220
255
200 | 1.0 | 2.8
.0
.2
.1 | 950
3020
2540
2550
1890 | 1.29
4.11
3.45
3.47
2.57 | | 480
1660
1390
1480
1010 | 356
1490
1290
1330
897 | 2.0
2.9
2.3
2.0
2.5 | 1270
3440
2820
2940
2270 | 8
7
8
7 | | et. 18 | | | | 128
332
344
296
448 | 20
73
78
83
88 | 49
191
200
166
206 | | 232
148
166
70
152 | 0
0
0
0 | 237
1090
1120
1050
1430 | 49
205
220
205
222 | ======================================= | .1
2.8
1.4
2.9 | 645
2110
2180
2020
2680 | .88
2.87
2.96
2.75
3.64 | | 400
1130
1180
1080
1480 | 210
1010
1040
1020
1360 | 1.1
2.5
2.5
2.2
2.3 | | 77 77 88 77 | | pr. 19
ay 17une 21uly 12uly 12 | | | | 412
160
388
232
352 | 105
73
78
44
78 | 205
191
157
107
146 | | 150
402
124
128
124 | 0
0
0
0 | 1440
644
1210
670
1130 | 200
82
192
135
170 | ======================================= | 2.4
.2
.2
.5 | 2640
1410
2370
1340
2050 | 3.59
1.92
3.22
1.82
2.79 | | 1460
700
1290
760
1200 | 1340
370
1190
655
1100 | 2.3
3.1
1.9
1.7 | 2870
1900
2620
1710
2380 | 7
7
7
8
7 | | ept. 26 | | | | 476
504

 | 100
103

 | 161
188
177
196
173 | | 116
120
142
60
132 | 0
0
0
0 | 1510
1620
1180
1160
968 | 200
215
212
225
190 | ======================================= | 1.9
.0
1.0
2.9
2.4 | 2660
2800
2240
2120
1860 | 3.62
3.81
3.05
2.88
2.53 | | 1600
1680
1260
1150
1010 | 1500
1580
1140
1100
902 | 1.8
2.0
2.2
2.5
2.4 | 2860
3070
2630
2520
2280 | | | ar. 7ar. 28pr. 25ay 23une 27ept. 25 | | | | ======================================= | ======================================= | 193
213
203
182
204
109 | | 96
92
62
166
122
140 | 0
0
0
0
0 | 1250
1380
1370
772
626
1020 | 240
220
230
220
295
170 |]]
]]
]] | 1.2 | 2420
2530
2550
1680
1370
2020 | 3.29
3.44
3.47
2.28
1.86
2.75 | | 1300
1360
1360
855
725
1180 | 1220
1280
1310
719
625
1070 | 2.3
2.5
2.4
2.7
3.3
1.4 | 2850
2860
2870
2160
1710
2480 | | | | | | | | | в. | SAL | | RED I | | MANGUM, | OKLA. | | | | | | | | | | | ater year 1947 | | | | | | | | | | | | | | 322 | 2.00 | | | | | | | | Maximum,
Aug. 11-20, 1947
Minimum, Oct.7-9, | | | | 488 | 158 | 355 | | 118 | 0 | 1690 | 555 | | 0.5 | 3300 | 4.49 | | 1870 | 1770 | | 4080 | | | 12. 14, 1946
ater year 1948
Maximum,
| 1360 | | | 170 | 36 | 86 | | 134 | | 485 | 100 | | 3.0 | 946 | 1.29 | 3470 | 572 | 462 | | 1350 | | | Apr. 21-30, 1947
Minimum, | 6.68 | | | 563 | 135 | 198 | | 123 | | 1840 | 272 | | 2.0 | 3080 | 4.19 | 56 | 1970 | 1870 | | 3500 | | | June 21-22,29-30
or. 7, 1949
eb. 10, 1950
ec. 2
eb. 6, 1951 | 1783

 | | | 243
350
432
459
401 | 36
83
92
97
86 | 83
175
152
169
162 | | 108
136
141
161
167 | | 687
1110
1290
1410
1240 | 93
232
232
220
195 | | 1.9
1.0
1.0
2.3
3.0 | 1200
2020
2270
2610
2360 | 1.63
3.09
3.55
3.21 | 5780

 | 754
1220
1460
1540
1350 | 1100
1340
1410
1220 | | 1520
2570
2870
2920
2750 | | Table 7.--Chemical Analyses of Water From Streams at Selected Sites in the Red River Basin, Oklahoma--Continued | | | | | | | | | | Bi- | | | | | | | Dia | solved s | olids | Hard
as Ca | | So- | Specific con- | | |----------------------|--|----------------------------------|-------------------------------|---|---------------------------------|------------------------------|---------------------------------|----------------------------|--|---|-------------------------------------|---------------------------------|----------------------------|--|--------------------------|--------------------------------------|--------------------------------------|-------------------------------------|--------------------------------------|-------------------------------------|---------------------------------------|--|---------------------------------| | | Date
of
collection | Discharge
(cfs) | Silica
(SiO ₂) | Iron
(Fe) | Cal-
cium
(Ca) | Mag-
ne-
sium
(Mg) | Sodium
(Na) | Po-
tas-
sium
(K) | car-
bon-
ate
(HCO ₃) | Car-
bon-
ate
(CO ₃) | Sulfate
(SO ₄) | Chloride
(Cl) | Fluo-
ride
(F) | Ni-
trate
(NO ₃) | Bo-
ron
(B) | Milli-
grams
per
liter | Tons
per
acre-
foot | Tons
per
day | Cal-
cium,
Mag-
ne-
sium | Non-
car-
bon-
ate | dium
ad-
sorp-
tion
ratio | duct-
ance
(micro-
mhos at
25°C) | рН | | | | | | | 120 | В. | SALT : | FORK I | RED RIV | ER AT | MANGUM, | OKLA C | Contin | ued | | | | | | | | Me and | | | lan.
leb.
lune | 19
16, 1952
10, 1954
3, 1955 | | ==
==
== |
 | 196
389
517
126
216 | 38
88
90
91
102 | 1;
1: | 33
39
91
56
79 | 136
149
123
255
116 | | 538

 | 109
212
252
70
210 | | 0.8 | 10
 | 1220

 | 1.66 | 12
12
13 | 645
1330
1660
690
960 | 534
1210
1560
480
865 | 2.0
.9
2.5 | 1480
2610
3250
1560
2610 | 8.0
7.7
7.8
7.0
7.1 | | oct.
oct.
oec. | 3 | 2160
- 2
45
300
b407 | 18

 | ======================================= | 520
224
276 | 17
74
49
64
66 | 131
125
149
156 | 7.8 | 216
144
132
144
114 | 0
0
0 | 1440
677
846
933 | 18
188
152
192
205 | 0.5
.6
.6 | 1.2
4.3
3.6
4.2 | 0.42 | 2440
1330
1600
1720 | 3.32
1.77
2.18
2.34 | 1.32
158
1300
1890 | 620
1600
760
950
1020 | 443
1480
652
832
926 | .1
1.4
2.0
2.1
2.1 | 1090
2830
1740
2090
2280 | 7.1
7.6
8.1
8.2
8.1 | | eb.
lpr.
lay | 25 | 120
2.0
100
26
14 | 20

14

17 | 0.00 | 408 | 125
142
71
64
45 | 192
213
150
224
129 | | 220
124
118
118
104 | 0
0
0
0 | 1580
1870
1020
1320
619 | 260
252
182
210
152 | 1.0
.9
.7
 | 3.7
.6
.1
.2
.6 |
. 41

. 24 | 2400 | 3.84
4.46
2.65
3.26
1.70 | 914
17.7
526
168
47.2 | 1780
1940
1090
1280
665 | 1600
1840
994
1180
580 | 2.0
2.1
2.0
2.7
2.2 | 3290
3540
2280
2740
1660 | 7.8
7.5
7.4
8.2
7.8 | | uly
ept
ct. | 19
13
11
17 | 11
b10
12
1890
100 |
17
 | ======================================= | 272 | 56
60
88
34
92 | 159
110
180
58
196 | | 112
140
98
118
152 | 0
0
0
2 | 1030
784
1510
387
1260 | 178
165
210
78
190 | .6 | $\begin{array}{c} .2 \\ .7 \\ 1.0 \\ 3.7 \\ 1.4 \end{array}$ | . 47 | | 2.65
2.12
3.69
1.15
3.13 | 57.9
42.1
87.8
4300
621 | 1070
925
1560
490
1280 | 978
810
1480
390
1160 | 2.1
1.6
2.0
1.1
2.4 | 2270
1970
2920
1120
2570 | 8.3
7.7
8.3
8.0 | | lan.
lan.
leb. | 16, 1961
17
13
13 | 79
79
84
30
15 | 18

 | ======================================= | 376 | 71
93
73
86
112 | 199
167
169
222
268 | | 174
164
188
148
182 | 0
0
0
0 | 1190
1200
965
1550
1170 | 205
210
190
210
415 | .6

 | 2.4
1.6
.1
2.5 | .30 | 2280
1910 | 3.13
3.10
2.60
3.75
3.58 | 490
486
433
224
106 | 1240
1320
1060
1550
1370 | 1100
1190
906
1430
1220 | 2.5
2.0
2.3
2.5
3.1 | 2590
2610
2300
3010
3160 | 8.1
7.3
8.6
8.2 | | pr.
June
July | 19 | 14
37
99
.5
6.8 | 16

 | | 444
364
204
174 | 122
76
39
57 | 187
152
84
79
158 | | 144
120
212
132
112 | 0
0
0
0 | 1550
1130
530
560
1360 | 200
195
90
106
222 | .6

 | 2.0
.2
.0
.8
2.5 | . 75

 | 2260
1120
1160 | 3.70
3.07
1.52
1.58
3.43 | 103
226
299
1.57
46.3 | 1610
1220
670
670
1480 | 1490
1120
497
562
1390 | 2.0
1.9
1.4
1.3 | 3000
2530
1440
1470
2850 | 7.7
7.6
7.6
7.8 | | ec
an.
lar. | 4 | 52
75
b32
b2.5
b3.6 | | | |

 | 175
146
208
296
180 | | 118
82
64
108
104 | 0
0
0
0 | 1140
887
1300
1940
1590 | 210
155
260
280
220 |

 | 1.3
2.8

1.9 |

 | 2140
1670
2560
3220
2840 | 2.91
2.27
3.48
4.38
3.86 | 300
338
221
21.7
27.6 | 1200
895
1320
1860
1660 | 1100
828
1270
1770
1580 | 2.2
2.1
2.5
3.0
1.9 | 2520
2070
2910
3500
3100 | | | lay
June | 22
22
27
24 | ь28
ь84
30 | == | == | | == | 236
124
185 | | 128
180
148 | 0
0
0 | 1280
720
850 | 280
150
245 | == | == |
 | 2500
1460
1610 | 3.40
1.99
2.19 | 189
331
130 | 1320
840
950 | 1220
692
828 | 2.8
1.9
2.6 | 2910
1850
1940 | | | | | | | | | | С. | NORT | H FORK | RED R | IVER NE | AR CARTER | , OKL | ١. | | 21.151 | | | Silvini | ja sa | 375 | | | | Dec.
Dec.
Peb. | 28, 1959
10
21
25, 1960
24 | b12
32.9
161
250
37 | 14

21
14 |

0.01
.00 | | 95
96
38
121
101 | 359
279
147
260
252 | | 232
212
178
368
154 | 0
0
2
0
0 | 1060
919
371
893
1030 | 500
388
205
350
310 | 0.5

.6
1.0
.7 | 0.7
.6
5.8
10
1.0 | 0.41

.23
.52 | 2190
998
2210 | 3.37
2.98
1.36
3.01
3.05 | 80.4
194
434
1490
224 | 1220
1070
510
1170
1090 | 1030
896
360
868
964 | 4.5
3.7
2.8
3.3
3.3 | 3490
2910
1500
2890
2750 | 7.8
8.0
8.3
7.9
7.3 | | July
Oct.
Jan. | 12
11
17, 1961 | 156
17
204
103 | 17
16
22
17 | .00 | | 56
93
96
95 | 194
261
242
251 | | 172
170
270
200 | 0 0 0 | 635
947
856
839 | 252
305
305
295 | .7
.4
1.0
.6 | 1.8
1.0
2.6
1.8 | .26
.53
.28
.47 | 2080
1990 | 2.04
2.83
2.71
2.60 | 632
95.5
1100
531 | 740
990
1020
910 | 599
850
798
746 | 3.1
3.6
3.3
3.6 | 2100
2650
2630
2480 | 7.8
7.8
7.8 | Table 7.--Chemical Analyses of Water From Streams at Selected Sites in the Red River Basin, Oklahoma--Continued | | | | | 15 | | | | Bi- | _ | | | | | | Dis | solved a | solids | Hard
as Ca | | So- | Specific | | |---|--------------------------------------|-------------------------------|--------------|----------------------------|-----------------------------|---------------------------------|----------------------------|--|---|---------------------------------|---------------------------------|---|---|-------------------|--------------------------------------|--------------------------------------|----------------------------------|--------------------------------------|---------------------------------|---------------------------------------|--|----------------------| | Date
of
collection | Discharge
(cfs) | Silica
(SiO ₂) | Iron
(Fe) | Cal-
cium
(Ca) | Mag-
ne-
sium
(Mg) | Sodium
(Na) | Po-
tas-
sium
(K) | car-
bon-
ate
(HCO ₃) | Car-
bon-
ate
(CO ₃) | Sulfate
(SO ₄) | Chloride
(Cl) | | Ni-
trate
(NO ₃) | Bo-
ron
(B) | Milli-
grams
per
liter | Tons
per
acre-
foot |
Tons
per
day | Cal-
cium,
Mag-
ne-
sium | Non-
car-
bon-
ate | dium
ad-
sorp-
tion
ratio | duct-
ance
(micro-
mhos at
25°C) | pH | | | and the second | | | | c. | NORTH | FORK | RED R | IVER N | EAR CAR | TER, OKLA | Co | ntinu | ed | | | | | | | | | | ov. 14, 1961
bec. 5
an. 31, 1962
lar. 7
lar. 28 | 39
83
106
670
622 | | | | | 148
195
195
227
275 | | 226
104
220
196
168 | 0
0
0
0 | 750
723
611
730
960 | 210
265
268
335
340 | | 0.5
2.0
.0
 | | 1700
1610
1510
1860
2160 | 2.31
2.19
2.05
2.53
2.94 | 179
361
432
352
128 | 940
790
770
900
1020 | 755
705
590
740
882 | 2.1
3.0
3.1
3.3
3.7 | 2190
2160
2100
2460
2780 | 8.
7.
8. | | Apr. 25 | b22
b160
b107
b.6
b86 | | | | | 247
229
137
128
129 | | 96
210
232
190
232 | 0
0
0
0 | 955
625
430
610
460 | 315
345
185
175
172 | | ======================================= | | 2040
1710
1160
1420
1180 | 2.77
2.33
1.58
1.93
1.60 | 121
739
335
2.30
274 | 980
810
600
760
630 | 902
638
410
604 | 3.4
3.5
2.4
2.0
2.2 | | 7.
7.
8. | | | | | | | | | D. | CACHE | CREEK | NEAR WA | ALTERS, OF | KLA. | | | | | | | 1000 | | | | | Oct. 2, 1962
Oct. 23
Nov. 14
Dec. 4
Dec. 17 | 27.1
38.9
b38
757
49.5 | | | 1000 | | 68

23 | | | | | 71
57
56
20
50 | | | | | | | 120

104 | | 2.7

1.0 | 715
563
659
312
635 | | | Jan. 7, 1963
Jan. 30
Mar. 5
Apr. 3
Apr. 22 | 43.4
37.1
30.3
76.4
31.2 | | | | |

51 | | | | | 57
56
68
54
72 | | | | | | |

146 | | 1.8 | 698
731
789
525
777 | | | May 21 | 31.7
1010
28.2
19.5
17.0 | | | | | 74
21

74 | | | | | 64
10
66
64
64 | | | | | | | 234
130

180 | | 2.1
.8

2.4 | 774
346
715
677
685 | | | Aug. 27
Sept. 17 | 14.0
b18 | | | | | 65
65 | | | | | 60
54 | | | | | | | 172
170 | | 2.2 | 665
638 | | | | | | | | | | E. I | EEP RE | D RUN | NEAR RA | NDLETT, C | KLA. | | | | | | | | | | | | Fov. 12, 1959 Jan. 6, 1960 Jan. 28 Jar. 9 Jar. 16 | 16
24.5
15.4
11.5
bl1 | | | 74
70
75
78
63 | 24
89
91
94
37 | 138
346
502
540
216 | | 190
336
140
168
196 | 8
0
0
0 | 99

130 | 220
580
840
910
342 | 0.3

.7 | 1.8 | | 658

886 | 0.89 | 28.4

26.3 | 284
540
560
580
310 | 115
264
446
442
150 | 3.6
6.5
9.2
9.8
5.3 | 1170
2560
3330
3610
1560 | 8.
8.
8.
8. | | Apr. 1 | 9.2
b34
b4.0
24.0
b.2 | | | 66
66
54
24
45 | 57
19
13
6.8 | 314
121
107
34
85 | | 400
208
200
120
234 | 0
8
6
0
4 | 69
47
19
36 | 430
175
140
30
93 | ======================================= | 1.7
1.2
.2 | | 655
533
182
438 | .89
.72
.25 | 60.1
5.76
11.8
.24 | 400
242
188
88
184 | 0 | 6.8
3.4
3.4
1.6
2.7 | 2180
1020
845
310
687 | 8.
8.
7. | Table 7.--Chemical Analyses of Water From Streams at Selected Sites in the Red River Basin, Oklahoma--Continued | Doto | | | | Mag | 183 | Po- | Bi- | 0 | | | | | | Di | ssolved s | solids | Hardness
as CaCO ₃ | | So- | Specific | | |---|----------------------|-------------------------------|----------------------|-----------------------------|-----------------|---------------------|--|---|-------------------------------|------------------|----------------|------------------------------------|-------------------|---------------------------------|------------------------------|----------------------|--------------------------------------|-----------------------------|---------------------------------------|--|----------| | Date
of
collection | Discharge
(cfs) | Silica
(SiO ₂) | Cal-
cium
(Ca) | Mag-
ne-
sium
(Mg) | Sodium
(Na) | tas-
sium
(K) | car-
bon-
ate
(HCO ₃) | Car-
bon-
ate
(CO ₃) | Sulfate
(SO ₄) | Chloride
(Cl) | | Ni-
trate
(NO ₃) | Bo-
ron
(B) | Milli-
grams
per
liter | Tons
per
acre-
foot | Tons
per
day | Cal-
cium,
Mag-
ne-
sium | Non-
car-
bon-
ate | dium
ad-
sorp-
tion
ratio | duct-
ance
(micro-
mhos at
25°C) | | | | | | | | | F. V | ASHITA | RIVE | R NEAR I | DURWOOD, | OKLA. | | | | | | | | | | | | Water year 1951
Maximum,
Jan. 21-31,1951.
Minimum, May 2-3.
Weighted average. | 436
7850
1916 |
 | 153
50
78 | 60
17
27 | 63
17
29 | 7 | 368
153
185 |
8
 | 337
56
159 | 79
21
37 | === | 1.4
5.1
2.8 | | 936
282
478 | 1.28
.39
.65 | 1100
5980
2470 | 628
195
306 | 327
56
154 | == | 1330
440
693 | 8 | | Water year 1952
Maximum,
Dec. 11-20,1951.
Minimum, Nov. 2
Weighted average. | 233
1060
629 | 15 | 136
11
75 | 53
3.3
29 | 77
7
43 | 3.8 | 307
22
189 | 2

 | 337
23
169 | 95
4.5
46 | 0.3 | 1.3
10
5.2 | 0.24 | 912
70
499 | 1.24
.10
.68 | 574
200
847 | 558
41
306 | 302
23
151 |
 | 1290
45
736 | 8 7 | | Water year 1953
Maximum,
June 1-2, 1953
Minimum, May 13
Weighted average. | 148
3410
518 | | 136
32
65 | 49
4.6
19 | 103
12
35 | 1 | 137
111
162 |
2 | 431
17
119 | 144
6.5
40 | = | 1.0
3.8
3.7 | | 1050
140
390 | 1.43
.19
.53 | 422
1290
545 | 541
99
240 | 428
4 | 1.9
.5 | 1410
232
595 | 8 8 | | Water year 1954
Maximum,
Sept.11-14,1954.
Minimum, June 8
Weighted average. | 16.2
7980
1258 | Ξ | 124
40
63 | 65
5.8
16 | 123
7
26 | . 7 | 190
110
153 | 2
4 | 432
33
101 | 160
9.5
36 | | 1.6
5.9
2.5 | | 1050
160
350 | 1.43
.22
.48 | 46
3450
1190 | 575
124
223 | 416
25
98 | 2.2 | 1620
291
545 | 8 8 | | Water year 1955
Maximum,
May 5-10, 1955
Minimum, | 124 | | 100 | 63 | 95 | | 205 | 4 | 389 | 125 | | 2.6 | | 972 | , 1.32 | 325 | 510 | | 1.8 | 1390 | 8 | | Oct. 1, 1954
Weighted average. | 4370
878 | | 28
64 | $\frac{2.4}{21}$ | 7
23 | .9 | 93
157 | == | 16
112 | 5.4
33 | | 3.9 | | 110
362 | .15 | 1300
858 | 80
246 | 4
118 | . 4 | 193
562 | 8 | | Mater year 1956 Maximum, July 30, 1956 Minimum,Oct.1-4, | 120 | *== | 144 | 60 | 139 | i s | 128 | | 497 | 200 | . 1 | 2.5 | | 1160 | 1.58 | 376 | 605 | 500 | 2.5 | 1710 | 7. | | 7-10, 1955
Weighted average. | 3589
440 | == | 51
87 | 15
35 | 14
46 | | 126
185 | <u></u> | 80
211 | 18
62 | | 3.9 | | 264
573 | .36 | 2560
681 | 188
361 | 84
210 | .4
1.1 | 444
880 | 7 | | dater year 1957
Maximum,
Jan. 23, 1957
Minimum, | 188 | | 100 | 49 | 182 | | 164 | 4 | 269 | 300 | | 2.3 | | 1170 | 1.59 | 594 | 450 | 309 | 3.7 | 1830 | 8. | | May 17-20
Weighted average. | 64550
3555 | == | 36
54 | 7.5
16 | 8
20 | . 5 | 130
162 | == | 18
70 | 8.8
26 | | 2.5
3.2 | | 169
303 | .23 | 29450
2850 | 121
200 | 14
68 | .3 | 268
465 | 8. | | ater year 1958
Maximum,
June 16-20,1958. | 410 | | 106 | 49 | 66 | | 232 | 10 | 263 | 90 | | 1.2 | | 824 | 1.12 | 912 | 465 | 258 | 1.3 | 1090 | 8. | | Minimum,
Aug. 10-13
Weighted average. | 1880
934 | -55 | 46
84 | 11
31 | 21
43 | | 152
229 | | 42
149 | 26
62 | | 1.4 | | 222
522 | .30 | 1130
1320 | 160
337 | 36 | .7
1.0 | | 7. | | ater year 1959
Maximum, | | | | ļ ; | | | | | | | | | | | | 1020 | 00. | 100 | | Triangle Control | | | Sept. 14-17,1959
Minimum, June 1-3.
Weighted average. | 224
4533
640 | == | 178
66
87 | 63
11
28 | 98
15
41 | | 120
132
175 | 6 | 650
98
198 | 100
12
49 | == | 2.0
3.7
2.8 | | 1210
280
531 | 1.65
.38
.72 | 732
3430
918 | 705
208
332 | 90 | 1.6
.4
1.0 | 1590
440
778 | 7.
8. | See footnotes at end of table. Table 7.--Chemical Analyses of Water From Streams at Selected Sites in the Red River Basin, Oklahoma--Continued (Results in milligrams per liter except as indicated. Calculated values for sodium plus potassium are centered between the two columns.) | Date
of
collection | | | | | | | | Bi- | | | | | | | Dia | solved a | solids | Hardness
as CaCO ₃ | | So- | Specificon- | | |---|--------------------|-------------------------------|--------------|----------------------|-----------------------------|----------------|--------|--|---|-------------------------------|------------------|-------|------------------------------------|-------------------|---------------------------------|------------------------------|--------------------|--------------------------------------|-----------------------------|---------------------------------------|--|-----| | | Discharge
(cfs) | Silica
(SiO ₂) | Iron
(Fe) | Cal-
cium
(Ca) | Mag-
ne-
sium
(Mg) | Sodium
(Na) | sium | car-
bon-
ate
(HCO ₃ | Car-
bon-
ate
(CO ₃) | Sulfate
(SO ₄) | Chloride
(C1) | |
Ni-
trate
(NO ₃) | Bo-
ron
(B) | Milli-
grams
per
liter | Tons
per
acre-
foot | Tons
per
day | Cal-
cium,
Mag-
ne-
sium | Non-
car-
bon-
ate | dium
ad-
sorp-
tion
ratio | duct-
ance
(micro-
mhos at
25°C) | pH | | | | | | | | F. | WASHIT | ra RIVI | ER NEA | R DURWOO | DD, OKLA | -Cont | inued | | | | | | | | | | | Water year 1960 | Maximum,
Dec. 1-10, 1959.
Minimum, | 447 | | | 188 | 73 | 7 | 7 | 336 | | 509 | 92 | | 3.2 | | 1200 | 1.63 | 1450 | 770 | 494 | 1.2 | 1560 | 8. | | May 19-20, 1960.
Weighted average. | 17200
1594 | == | | 46
94 | 11
32 | 1
4 | | 142
202 | 6
 | 45
212 | 20
46 | | .2
2.4 | | 229
572 | .31
.78 | 10630
2460 | 162
366 | 36
40 | .6 | 376
812 | 8. | | Water year 1961 | Maximum,
Mar.17-24, 1961.
Minimum, | 953 | 9.0 | | 114 | 41 | 68 | 2.6 | 248 | 2 | 250 | 110 | 0.3 | 1.2 | | 1140 | 1.09 | 2930 | 455 | 248 | 1.4 | 1140 | 8.: | | Dec. 9, 1960
Weighted average. | 3040
1135 | 12 | | 47
88 | 9.8
81 | 2 4 | | 144
197 | 2
0 | 37
186 | 38
56 | .3 | 5.0
2.4 | | 262
564 | .36 | 2150
1730 | 158
348 | 36
182 | 1.0 | 421
800 | 8 | | Water year 1962 | Maximum,
Feb. 11-20, 1962
Minimum, June 19. | 498
9760 | | | 170
39 | 68
10 | 9 | 2 | 296
132 | 4 0 | 495
46 | 98
22 | | 11 | | 1190
221 | 1.62 | 1600
5820 | 705
140 | 456
32 | 1.5 | 1500
345 | 8. | | Weighted average. | 1345 | | | | | 4 | 3 | 199 | 3 | 213 | 49 | | | | 581 | .79 | 2110 | 363 | 195 | 1.0 | 840 | - | | Water year 1963
Maximum,
July 23-28, 1963 | 80.8 | | | | | 10 | 9 | 142 | 0 | 670 | 130 | | | | 1450 | 1.97 | 316 | 760 | 644 | 1.7 | 1730 | 8. | | Minimum,
Oct. 28-31, 1962
Weighted average. | 5510
629 | | | 47
95 | 12
37 | 1 5 | 5 | 122
162 | 0 | 63
269 | 23
68 | === | 22 | | 260
661 | .35 | 3870
1120 | 166
390 | 66
254 | .5
1.2 | 412
938 | 8. | | Water year 1964 | Maximum,
May 1-3, 1964 | 254 | | | | | 10 | 5 | 124 | 8 | 695 | 138 | | | | 1440 | 1.96 | 988 | 805 | 690 | 1.6 | 1760 | 8. | | Minimum, Aug. 18.
Weighted average. | 722
340 | | | | | 1 4 | 7 | 124
144 | 0 | 37
207 | 15
54 | | | | 190
552 | .26 | 370
507 | 124
324 | 22
200 | .7 | 328
777 | 8.3 | | weighted average. | 340 | | | | | | | | | | | | | | | | 77 | | | | | | | | A state | | | | | | G. CI | LEAR BO | OGGY C | REEK NEA | AR CANEY, | OKLA. | | | | | | | | | | | | Oct. 19, 1961
Nov. 2 | 139
b65 | | | 59
51 | 13
21 | 23
39 | | 212
214 | 0 | 21
21 | 38
70 | | 0.2 | | 273
324 | 0.37 | 102
56.9 | 200
212 | 26
37 | 0.7 | 461
573 | | | Dec. 7 | b274 | | | 38 | 16 | 36 | | 156 | ő | 23 | 62 | | . 1 | | 274 | .37 | 203 | 162 | 34 | 1.2 | 468 | 8.2 | | Mar. 2, 1962 | 102 | | | 85 | 26 | 56 | | 320 | 0 | 30
31 | 106 | | .0 | | 483
285 | .66 | 133
198 | 320
196 | 58
21 | 1.4 | 871
467 | 8. | | Apr. 4 | 258 | | | | | 26 | | 206 | 4 | | 32 | | | | | | | | 30 | 1.4 | 457 | | | May 9 | 124
680 | | | 17 | | 39
9.0 | | 140
94 | 0 | 33
13 | 57
12 | | | | 261
110 | .35 | 87.4
202 | 144
88 | 11 | 1.4 | 208 | 7.0 | | Aug. 14 | b14 | | | | | 56 | | 190 | 0 | 11 | 115 | | | | 388 | . 53 | 14.7 | 208 | 52 | 1.7 | 668 | 8. | | Sept. 11 | b212 | | | | | 11 | | 166 | 0 | 11 | 16 | | | | 210 | .29 | 120 | 146 | 10 | . 4 | 332 | 8.3 | | Oct. 1 | 64 | | | | | 8.5 | | 100 | 0 | 8.6 | 11 | | | | 138 | . 19 | 23.8 | 88 | 6 | . 4 | 211 | 8. | | Nov. 6 | 134 | | | | | 25 | | 194 | 4 | 25 | 37 | | | | 290 | . 39 | 105 | 190 | 24 | .8 | 463 | | | Dec. 4 | 879 | | | | | 18 | | 154 | 2 | 20
34 | 29
60 | | | | 229
301 | .31 | 543
140 | 152
186 | 22
42 | 1.1 | 370
530 | | | Jan. 2, 1963 | 173
78 | | | | 25 | 36
50 | | 176
204 | 0 | 34 | 90 | | | | 378 | .51 | 79.6 | 220 | 53 | 1.5 | 669 | | | Jan. 31
Feb. 26 | 56 | | | | | 57 | | 170 | 2 | 33 | 101 | | | | 357 | .48 | 54.0 | 196 | 53 | 1.8 | 643 | | See footnotes at end of table. Table 7.--Chemical Analyses of Water From Streams at Selected Sites in the Red River Basin, Oklahoma--Continued (Results in milligrams per liter except as indicated. Calculated values for sodium plus potassium are centered between the two columns.) | Date of collection ar. 26, 1963 pr. 23 ay 21 une 18 uly 16 ug. 12 ept. 9 ec. 5 ec. 30 an. 6, 1964 | | 107
68
58
26 | Iron
(Fe) | Cal-
cium
(Ca) | Mag-
ne-
sium
(Mg) | Sodium
(Na) | Po-
tas-
sium
(K) | Bi-
car-
bon-
ate
(HCO ₃) | Car-
bon-
ate
(CO ₃) | Sulfate
(SO ₄) | Chloride
(Cl) | | trate | Bo- | Milli- | Tons | Tons | Cal- | Non- | dium
ad-
sorp- | duct-
ance | pl | |--|---|-----------------------|--------------|----------------------|-----------------------------|----------------|----------------------------|---|---|-------------------------------|------------------|------|-----------------------------|-----|-----------------------|----------------------|------------|--|-------------|------------------------------|------------------|------| | pr. 23 | | 68
58 | | | | | | bon- | bon-
ate
(CO ₃) | (SO ₄) | (C1) | ride | trate
(NO ₃) | (B) | grams
per
liter | per
acre-
foot | per
day | Mag-
ne-
sium | bon-
ate | r- tion mhore ratio 25° | mhos at
25°C) | e pE | | pr. 23 | | 68
58 | | | | G. CL | EAR BO | OGGY CI | REEK N | EAR CAN | EY, OKLA | Cont | inued | ı | | | | | | | | | | ay 21 | | 58 | | 44 | | 30 | | 196 | 0 | 30 | 47 | | | | 290 | 0.39 | 83.8 | 192 | 31 | 1.0 | 504 | 8 | | une 18
uly 16
ug. 12
ept. 9
ec. 5
ec. 18
ec. 30
an. 6, 1964 | | | | 77 | 100 | | | | | | - T- | | | | 309 | . 42 | 56.7 | 194 | 37 | . 9 | 504 | 8 | | uly 16 ug. 12 ept. 9 ec. 5 ec. 18 ec. 30 an. 6, 1964 | | 26 | | 26 | 22 | 53 | | 136 | 4 | 30 | 86 | | | | 319 | . 43 | 50 | 156 | 38 | 1.8 | 537 | 8 | | ug. 12ept. 9ec. 5ec. 18ec. 30 | | 4 | | 27 | 24 | 63 | | 144 | 4 | 22 | 112 | | | | 347 | . 47 | 24.4 | 168 | 43 | 2.1 | 605 | 8 | | ept. 9
ec. 5
ec. 18
ec. 30
an. 6, 1964 | | 14 | | 30 | 28 | 61 | | 166 | 4 | 17 | 116 | | | | 358 | . 49 | 13.5 | 190 | 47 | 1.9 | 649 | 8 | | ec. 5ec. 18ec. 30 | | 21 | | 38 | 28 | 64 | | 190 | 4 | 17 | 122 | | | | 395 | . 54 | 22.4 | 212 | 50 | 1.9 | 697 | 8 | | ec. 18
ec. 30
an. 6, 1964 | | 3.5 | | 54 | 28 | 66 | | 228 | 8 | 15 | 124 | | | | 443 | .60 | 4.19 | 248 | 48 | 1.8 | 757 | 8 | | ec. 30
an. 6, 1964 | | 8.6 | | | | | | | | | 52 | | | | | | | | | | 631 | | | an. 6, 1964 | | 9.9 | | | | W | | | | | 58 | | | | .55 | | 37 | . 77 | 77 | | 658 | | | | | 9.2 | | | | 62 | | 262 | 4 | 23 | 140 | | | | 480 | . 65 | 11.9 | 308 | 86 | 1.5 | 878 | | | | | 10 | | | | 28 | | 270 | 0 | 27 | 65 | | | | 379 | . 52 | 10.2 | 280 | 59 | .7 | 639 | | | an. 20 | | 11 | | | 55- | | | | | | 67 | | | | | | | | | | 527 | | | an. 28 | | 8.6 | | | | 44 | | | | | 82 | | | | | | 100 at t | 800 | | 9- | 689 | | | eb. 6 | | 20 | | | | 38 | | 196 | 4 | 21 | 76 | | | | 322 | . 44 | 17.4 | 214 | 47 | 1.1 | 563 | | | eb. 12 | | 17 | | | | | | | | | 81 | | | | | | | | | | 648 | | | eb. 17 | | 14 | | | | | | | | | 80 | | | | | | | 100 | 844 | | 675 | | | eb. 24 | | 11 | | | | | | | | | 137 | | | | | | SEPARA | | 100 | | 858 | | | ar. 2 | | 11 | | | | 46 | | 162 | 4 | 35 | 95 | | | | 366 | .50 | 10.9 | 210 | 70 | 1.4 | 644 | ٤ | | ar. 16 | | 52 | | | | | | | | | 46 | | | | | 22
| | 1,00 | 44 | 142 | 507 | | | ar. 20 | | 666 | | | | 11 | | 108 | 0 | 21 | 21 | | | | 192 | .26 | 345 | 116 | 27 | . 4 | 284 | | | ar. 24 | | 90 | | | | | | | | | 30 | | | | | | | | | | 422 | | | ar. 31 | | 31 | | | | | | | | | 80 | | | | | 22 | Blader - | | | | 612 | | | pr. 6 | | 1650 | | | _ II | 16 | | 176 | 0 | 20 | 27 | | | | 233 | .32 | 1040 | 168 | 24 | . 5 | 393 | 8 | | pr. 14 | | 89 | | | | | | | | 20 | 34 | | | | | .52 | 1010 | | | | 470 | | | pr. 21 | | 50 | | | | | | | | | 86 | | | | | | | | | | 693 | ay 1 | | 34 | | | | | | | | | 64 | | | | 445 | | | | 70 | | 624 | | | ay 7 | | 29 | | | | 32 | | 260 | 0 | 33 | 80 | | | | 445 | .61 | 34.8 | 292 | 79 | . 8 | 709 | | | ay 11 | | 2670 | | | | 13 | | 136 | 0 | 15 | 18
17 | | | | 159 | .22 | 1150 | 124 | 12 | . 5 | 293
341 | | | ay 15ay 22 | | 326
68 | | | | | | 400 | - 11 | 324 | 26 | | | | | | | | | | 442 | | | | | | | | | | | | | | | | | | | A | | | | | | | | ay 28 | | 50 | | | | | | | | | 37 | | | | LEE | | | | | 77 | 497 | | | une 10 | | 28 | | | | 24 | | 242 | 0 | 31 | 40 | | | | 328 | . 45 | 24.8 | 234 | 35 | . 7 | 530 | | | une 18 | | 2700 | | | | | | | | 7.0 | 7.2 | | | | === | 77 | | | | | 129 | | | une 19 | | 3380 | | - 55 | | 3.2 | | 60 | 0 | 7.0 | 6.4 | | | | 74 | .10 | 675 | 58 | 9 | . 2 | 123 | | | uly 13 | | 6.1 | | | | 25 | | 212 | 0 | 20 | 43 | | | | 292 | .40 | 4.81 | 200 | 26 | .8 | 496 | { | | uly 28 | | 1.1 | | | | 27 | | 216 | 0 | 21 | 60 | | | | 308 | . 42 | .91 | 224 | 47 | . 8 | 552 | 8 | | ug. 5 | | . 2 | | | | | | | | | 70 | | | | | | | | | | 589 | | | ug. 19 | | .1 | | | | 37 | | 222 | 0 | 23 | 72 | | | | 337 | . 46 | .09 | 226 | 44 | 1.1 | 606 | | | ug. 25 | | 5.1 | | | | | | | | | 103 | | | | 775 | | | | | | 656 | | | ept. 3 | | 29 | | | | | | | | | 21 | | | | | | | | | | 301 | | | ept. 14 | | 3.9 | | | | | | - | | | 30 | | | | | | 122 | | | | 391 | | | ept. 23 | | 2940 | | | | | | | | | 6.0 | | | | | . 10 2 1 | | | | | 202 | | | ept. 29 | The San | 622 | | | | | | | | | | | | | | | | THE RESERVE OF THE PARTY | | COLUMN TWO IS NOT THE OWNER. | 202 | | See footnotes at end of table. Table 7.--Chemical Analyses of Water From Streams at Selected Sites in the Red River Basin, Oklahoma--Continued (Results in milligrams per liter except as indicated. Calculated values for sodium plus potassium are centered between the two columns.) | | | | | Cal-
cium
(Ca) | | | Po- | Bi- | | | | | | | Dis | solved s | olids | Hard
as Ca | ness
aCO ₃ | So- | Specific con- | 2 | |--------------------------|--------------------|-------------------------------|--------------|----------------------|-----------------------------|----------------|-------|--|---|-------------------------------|------------------|-------|------------------------------------|-------------------|---------------------------------|------------------------------|--------------------|--------------------------------------|-----------------------------|---------------------------------------|--|-----| | Date
of
collection | Discharge
(cfs) | Silica
(SiO ₂) | Iron
(Fe) | | Mag-
ne-
sium
(Mg) | Sodium
(Na) | tas- | car-
bon-
ate
(HCO ₃) | Car-
bon-
ate
(CO ₃) | Sulfate
(SO ₄) | Chloride
(Cl) | Tiue | Ni-
trate
(NO ₃) | Bo-
ron
(B) | Milli-
grams
per
liter | Tons
per
acre-
foot | Tons
per
day | Cal-
cium,
Mag-
ne-
sium | Non-
car-
bon-
ate | dium
ad-
sorp-
tion
ratio | duct-
ance
(micro-
mhos at
25°C) | | | | | | | | | | н. кі | AMICHI | RIVE | R NEAR I | BELZONI, | OKLA. | | | | | | | | | | | | Oct. 18, 1961 | | | | 4.2 | 3.2 | 3.4 | | 22 | 0 | 7.2 | 4.3 | | 0.0 | | 44 | 0.66 | 38.5 | 24 | 6 | 0.3 | 52 | 7. | | Nov. 2 | 133 | | | 5.3 | 1.7 | 7.6 | | 24 | 0 | 6.6 | 6.1 | | 1.7 | | 63 | . 09 | 22.6 | 20 | 1 | .7 | 68 | 7. | | Dec. 14 | | | | 3.2 | 1.7 | 5.8 | | 16 | 0 | 7.0 | 4.6 | | . 8 | | 43 | .06 | 322 | 15 | 2 | .6 | 45 | | | Mar. 2, 1962 | | | | 2.4 | 1.9 | 6.9 | | 16 | 0 | 8.2 | 3.5 | | .7 | | 42 | .06 | 236 | 14 | 1 | .9 | 49 | | | Apr. 3 | 2910 | | | 2.2 | 1.6 | 5.3 | | 16 | 0 | 6.2 | 2.6 | | . 7 | | 51 | .07 | 401 | 12 | 0 | .7 | 49 | 7.: | | May 3 | 1540 | | | 4.6 | 1.3 | 6.2 | | 24 | 0 | 6.2 | 3.0 | | . 6 | | 56 | . 08 | 233 | 17 | 0 | .7 | 61 | 7.4 | | June 20 | 264 | | | 4.2 | 1.6 | 6.0 | | 22 | 0 | 6.6 | 3.6 | | .2 | | 44 | .06 | 31.4 | 17 | 0 | . 6 | 63 | | | Aug. 14 | 5.3 | | | 6.4 | 1.9 | 9.4 | | 36 | 0 | 5.2 | 6.2 | | 1.0 | | 61 | . 08 | .87 | 24 | 0 | .8 | 90 | | | Sept. 13 | 236 | | | 3.7 | 2.2 | 8.3 | | 26 | 0 | 6.0 | 5.4 | | 1.0 | | 51 | . 07 | 32.5 | 18 | 0 | . 8 | 67 | | | Nov. 8 | 427 | 14 | | 4.8 | 1.0 | 6.0 | | 18 | 0 | 6.0 | 5.6 | | | | 41 | .06 | 47.3 | 16 | 1 | . 6 | 57 | | | Dec. 6 | 1785 | 10 | | 4.8 | 1.0 | 5.3 | | 16 | 0 | 6.2 | 5.6 | | | | 46 | . 06 | 222 | 16 | 3 | . 6 | 54 | 7.0 | | Jan. 4, 1963 | 392 | 11 | | 5.2 | .7 | 6.0 | | 16 | 0 | 6.4 | 6.6 | | == | | 44 | .06 | 46.6 | 16 | 3 | .6 | 60 | | | Jan. 31 | 194 | 11 | | 4.0 | 1.5 | 8.7 | | 20 | 0 | 7.8 | 7.4 | | | | 41 | .06 | 21.5 | 16 | 0 | 1.0 | 68 | | | Feb. 28 | 92 | 6.8 | | 8.0 | 1.0 | 8.7 | | 24 | 0 | 9.2 | 9.8 | | | | 50 | . 07 | 12.4 | 24 | 4 | .8 | 88 | | | Mar. 28 | | 17 | | 4.0 | 1.5 | 5.5 | | 16 | 0 | 5.8 | 6.3 | | | | 51 | . 07 | 420 | 16 | 3 | . 6 | 57 | | | Apr. 25 | 210 | 13 | | 7.2 | . 5 | 8.3 | | 24 | 0 | 7.0 | 7.7 | | | | | | | | | | 77 | | | May 23 | 63 | 16 | | 6.4 | 1.0 | 6.7 | | 24 | 0 | 5.8 | 6.4 | | | | 46
47 | . 06 | 26.1
8.00 | 20
20 | 0 | .8 | 70 | | | June 20 | 73 | 9.6 | | 7.2 | 1.0 | 6.2 | | 22 | 0 | 7.4 | 7.1 | | | | 51 | . 07 | 10.0 | 22 | 4 | .6 | 79 | | | July 19 | 30 | 11 | | 4.0 | 1.9 | 3.0 | | 16 | 0 | 5.4 | 4.4 | | | | 52 | .07 | 4.21 | 18 | 5 | .3 | 56 | | | Aug. 14 | 9.4 | 8.4 | | 3.2 | 1.9 | 4.8 | | 20 | 0 | 4.0 | 4.2 | | | | 49 | .07 | 1.24 | 16 | 0 | . 5 | 54 | | | Sept. 11 | 4.9 | 8.4 | | 3.2 | 2.4 | 5.3 | | 20 | 0 | 4.3 | 6.0 | | == | | 48 | . 07 | . 64 | 18 | 2 | . 5 | 60 | | a Flow shown for maximum, minimum, and weighted average is mean discharge for the period. b Field estimate. ## EXPLANATION Figure 11 Location of Streamflow and Chemical-Quality Data-Collection Sites, Major Existing Reservoirs, and Potential Reservoir Sites in Texas 72902790 628.11 T355r Texas Water Dev. Board Report Reconnaissance of the chemical quality of surface waters of the Red River Basin, Texas BUS. & TERM CGP SER 000500 Y72902790 628.11 NO316684 081 T355R W600-7 R TEXAS WATER DEVELOPMENT BOARD REPORT--PAPER PSI ON DALLAS PUBLIC LIBRARY GOVERNMENT PUBLICATIONS